Show simple item record

dc.contributor.authorPlebaniak, Robert
dc.date.accessioned2015-04-13T07:49:44Z
dc.date.available2015-04-13T07:49:44Z
dc.date.issued2014-12-08
dc.identifier.issn1687-1812
dc.identifier.urihttp://hdl.handle.net/11089/7874
dc.description.abstractIn this paper, in fuzzy metric spaces (in the sense of Kramosil and Michalek (Kibernetika 11:336-344, 1957)) we introduce the concept of a generalized fuzzy metric which is the extension of a fuzzy metric. First, inspired by the ideas of Grabiec (Fuzzy Sets Syst. 125:385-389, 1989), we define a new G-contraction of Banach type with respect to this generalized fuzzy metric, which is a generalization of the contraction of Banach type (introduced by M Grabiec). Next, inspired by the ideas of Gregori and Sapena (Fuzzy Sets Syst. 125:245-252, 2002), we define a new GV-contraction of Banach type with respect to this generalized fuzzy metric, which is a generalization of the contraction of Banach type (introduced by V Gregori and A Sapena). Moreover, we provide the condition guaranteeing the existence of a fixed point for these single-valued contractions. Next, we show that the generalized pseudodistance J:X×X→[0,∞) (introduced by Włodarczyk and Plebaniak (Appl. Math. Lett. 24:325-328, 2011)) may generate some generalized fuzzy metric NJ on X. The paper includes also the comparison of our results with those existing in the literature.pl_PL
dc.language.isoenpl_PL
dc.publisherSpringerpl_PL
dc.relation.ispartofseriesFixed Point Theory and Applications;2014:241
dc.rightsUznanie autorstwa 3.0 Polska*
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/pl/*
dc.subjectfuzzy setspl_PL
dc.subjectfuzzy metric spacepl_PL
dc.subjectcontraction of Banach typepl_PL
dc.subjectfixed pointpl_PL
dc.subjectgeneralized fuzzy metricspl_PL
dc.subjectfuzzy metricspl_PL
dc.titleNew generalized fuzzy metrics and fixed point theorem in fuzzy metric spacepl_PL
dc.typeArticlepl_PL
dc.page.number1-17pl_PL
dc.contributor.authorAffiliationUniversity of Łódz, Department of Nonlinear Analysis, Faculty of Mathematics and Computer Sciencepl_PL
dc.referencesBanach, S: Sur les opérations dans les ensembles abstraits et leurs applications aux équations intégrales. Fundam. Math. 3, 133-181 (1922)pl_PL
dc.referencesCaccioppoli, R: Un teorema generale sull’esistenza di elementi uniti in una trasformazione funzionale. Atti Accad. Naz. Lincei, Rend. Cl. Sci. Fis. Mat. Nat. 11, 794-799 (1930)pl_PL
dc.referencesBurton, TA: Integral equations, implicit functions, and fixed points. Proc. Am. Math. Soc. 124, 2383-2390 (1996)pl_PL
dc.referencesRakotch, E: A note on contractive mappings. Proc. Am. Math. Soc. 13, 459-465 (1962)pl_PL
dc.referencesGeraghty, MA: An improved criterion for fixed points of contractions mappings. J. Math. Anal. Appl. 48, 811-817 (1974)pl_PL
dc.referencesGeraghty, MA: On contractive mappings. Proc. Am. Math. Soc. 40, 604-608 (1973)pl_PL
dc.referencesMatkowski, J: Integrable solution of functional equations. Diss. Math. 127, 1-68 (1975)pl_PL
dc.referencesMatkowski, J: Fixed point theorems for mappings with a contractive iterate at a point. Proc. Am. Math. Soc. 62, 344-348 (1977)pl_PL
dc.referencesMatkowski, J: Nonlinear contractions in metrically convex space. Publ. Math. (Debr.) 45, 103-114 (1994)pl_PL
dc.referencesWalter, W: Remarks on a paper by F. Browder about contraction. Nonlinear Anal. 5, 21-25 (1981)pl_PL
dc.referencesDugundji, J: Positive definite functions and coincidences. Fundam. Math. 90, 131-142 (1976)pl_PL
dc.referencesTaskovi´c, MR: A generalization of Banach’s contractions principle. Publ. Inst. Math. (Belgr.) 23(37), 171-191 (1978)pl_PL
dc.referencesDugundji, J, Granas, A: Weakly contractive maps and elementary domain invariance theorems. Bull. Greek Math. Soc. 19, 141-151 (1978)pl_PL
dc.referencesBrowder, FE: On the convergence of successive approximations for nonlinear equations. Indag. Math. 30, 27-35 (1968)pl_PL
dc.referencesKrasnoselskiı, MA, Vaınikko, GM, Zabreıko, PP, Rutitskiıi, YB, Stetsenko, VY: Approximate Solution of Operator Equations. Noordhoof, Groningen (1972)pl_PL
dc.referencesBoyd, DW, Wong, JSW: On nonlinear contractions. Proc. Am. Math. Soc. 20, 458-464 (1969)pl_PL
dc.referencesMukherjea, A: Contractions and completely continuous mappings. Nonlinear Anal. 1, 235-247 (1977)pl_PL
dc.referencesMeir, A, Keeler, E: A theoremon contractionmappings. J. Math. Anal. Appl. 28, 326-329 (1969)pl_PL
dc.referencesLeader, S: Equivalent Cauchy sequences and contractive fixed points in metric spaces. Stud. Math. 66, 63-67 (1983)pl_PL
dc.referencesJachymski, J: Equivalence of some contractivity properties over metrical structures. Proc. Am. Math. Soc. 125, 2327-2335 (1997)pl_PL
dc.referencesJachymski, J: On iterative equivalence of some classes of mappings. Ann. Math. Sil. 13, 149-165 (1999)pl_PL
dc.referencesJachymski, J, Józwik, I: Nonlinear contractive conditions: a comparison and related problems. In: Fixed Point Theory and Its Applications. Banach Center Publ., vol. 77, pp. 123-146. Polish Acad. Sci., Warsaw (2007)pl_PL
dc.referencesKramosil, I, Michalek, J: Fuzzy metric and statistical metric spaces. Kibernetika 11, 336-344 (1975)pl_PL
dc.referencesArtico, G, Moresco, R: On fuzzy metrizability. J. Math. Anal. Appl. 107, 144-147 (1985)pl_PL
dc.referencesDeng, Z: Fuzzy pseudo-metric spaces. J. Math. Anal. Appl. 86, 74-95 (1982)pl_PL
dc.referencesGeorge, A, Veeramani, P: On some results in fuzzy metric spaces. Fuzzy Sets Syst. 64, 395-399 (1994)pl_PL
dc.referencesErceg, MA: Metric spaces in fuzzy set theory. J. Math. Anal. Appl. 69, 205-230 (1979)pl_PL
dc.referencesKaleva, O, Seikkala, S: On fuzzy metric spaces. Fuzzy Sets Syst. 12, 215-229 (1984)pl_PL
dc.referencesGrabiec, M: Fixed points in fuzzy metric spaces. Fuzzy Sets Syst. 125, 385-389 (1989)pl_PL
dc.referencesVasuki, R, Veeramani, P: Fixed point theorems and Cauchy sequences in fuzzy metric spaces. Fuzzy Sets Syst. 135, 415-417 (2003)pl_PL
dc.referencesGregori, V, Sapena, A: On fixed-point theorems in fuzzy metric spaces. Fuzzy Sets Syst. 125, 245-252 (2002)pl_PL
dc.referencesMihe¸t, D: A Banach contraction theorem in fuzzy metric spaces. Fuzzy Sets Syst. 144, 431-439 (2004)pl_PL
dc.referencesHadžic, O: Fixed point theory in probabilistic metric spaces. Serbian Academy of Sciences and Arts, Branch in Novi Sad, University of Novi Sad, Institute of Mathematics, Novi Sad (1995)pl_PL
dc.referencesSehgal, VM, Bharucha-Reid, AT: Fixed points of contraction mappings on PM-spaces. Math. Syst. Theory 6, 97-100 (1972)pl_PL
dc.referencesSchweizer, B, Sherwood, H, Tardiff, RM: Contractions on PM-spaces: examples and counterexamples. Stochastica 12(1), 5-17 (1988)pl_PL
dc.referencesTardiff, RM: Contraction maps on probabilistic metric spaces. J. Math. Anal. Appl. 165, 517-523 (1992)pl_PL
dc.referencesSchweizer, B, Sklar, A: Statistical metric spaces. Pac. J. Math. 10, 314-334 (1960)pl_PL
dc.referencesQiu, Z, Hong, SH: Coupled fixed points for multivalued mappings in fuzzy metric spaces. Fixed Point Theory Appl. 2013, 162 (2013)pl_PL
dc.referencesHong, SH, Peng, Y: Fixed points of fuzzy contractive set-valued mappings and fuzzy metric completeness. Fixed Point Theory Appl. 2013, 276 (2013)pl_PL
dc.referencesMohiuddine, SA, Alotaibi, A: Coupled coincidence point theorems for compatible mappings in partially ordered intuitionistic generalized fuzzy metric spaces. Fixed Point Theory Appl. 2013, 265 (2013)pl_PL
dc.referencesWang, S, Alsulami, SM, ´ Ciri´c, L: Common fixed point theorems for nonlinear contractive mappings in fuzzy metric spaces. Fixed Point Theory Appl. 2013, 191 (2013)pl_PL
dc.referencesHong, S: Fixed points for modified fuzzy ψ-contractive set-valued mappings in fuzzy metric spaces. Fixed Point Theory Appl. 2014, 12 (2014)pl_PL
dc.referencesSaadati, R, Kumam, P, Jung, SY: On the tripled fixed point and tripled coincidence point theorems in fuzzy normed spaces. Fixed Point Theory Appl. 2014, 136 (2014)pl_PL
dc.referencesWłodarczyk, K, Plebaniak, R: A fixed point theorem of Subrahmanyam type in uniform spaces with generalized pseudodistances. Appl. Math. Lett. 24, 325-328 (2011). doi:10.1016/j.aml.2010.10.015pl_PL
dc.referencesTirado, P: On compactness and G-completeness in fuzzy metric spaces. Iran. J. Fuzzy Syst. 9(4), 151-158 (2012)pl_PL
dc.contributor.authorEmailrobpleb@math.uni.lodz.plpl_PL


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

Uznanie autorstwa 3.0 Polska
Except where otherwise noted, this item's license is described as Uznanie autorstwa 3.0 Polska