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Abstract. The main objective of the study is to examine model selection methods in log-

linear analysis. Log-linear analysis is a tool for independence analysis of qualitative data. Cell 
counts are Poisson distributed and all variables are treated as response. This method allows to 
analyze any number of variables in a multi-way contingency table. In log-linear analysis we model 
cell counts, where expected cell frequencies are functions of parameters representing 
characteristics of the categorical variables and their relationships with each other (interaction).  

The purpose of this paper is the presentation and comparison of model election criteria. The 
most popular statistics are chi-square test, likelihood ratio test and information criteria (AIC 
[Akaike 1973] and BIC [Raftery 1986]) but also Aitkin [Aitkin 1978] method for high dimensional 
tables.  
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I. LOG-LINEAR ANALYSIS – INTRODUCTION 

 
The analysis of discrete cross-classified multivariate data has occupied an 

important place in statistics since the beginning of XX century. Although several 
important papers were published, the development and the use of methods for 
the analysis of cross-classified data had to await the general availability of 
computer software and statistical packages. Today it is possible to analyze large 
datasets of cross-classified data and to focus on data itself. In this paper log-
linear analysis and its model selection criteria are presented.  

Log-linear models are a standard tool to analyze structures of dependency in 
multi-way contingency tables. The criteria to be analyzed are the expected cell 
frequencies as a function of all the variables in the survey. There are several 
types of log-linear models depending on number of variables and interactions 
included. Saturated model for a three-way KJH   ( ,,...,2,1 Hh   

KkJj ,...,2,1,,...,2,1  ) table includes all the possible effects in multiplicative 

form for three variables is given as: 
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where hjkm  - expected cell counts for the contingency table.  

By taking the natural logarithms we have additive equation given as: 
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where:   represents an overall effect or a constant, ,X
h  ,Y

j  Z
k  represents the 

effect of the row, column and layer variable X, Y, Z, ,XY
hj  ,XZ

hk  YZ
jk  represents 

the interaction between two variables ,XY  ,XZ  ,YZ  XYZ
hjk  is an interaction term 

between .XYZ  
Saturated model reproduces perfectly the observed cell frequencies through 

the theoretical frequencies and such model is meaningless since the aim is to 
find a more parsimonious model with less parameters. In order to find the best 
model from a set of possible models, some additional measures have to be 
considered. A rule of thumb to determine the degrees of freedom is df number 

of cells – number of free parameters [Agresti 2002]. The starting point is 
saturated model. Thus, the aim of a researcher is to find reduced model.  
A reduced model is a more parsimonious model with fewer parameters and thus 
fewer dependencies and effects. The hierarchy principle reveals that a parameter 
of lower order cannot be removed when there is still a parameter of higher order 
that concerns at least one of the same variable. 

As the number of dimensions of a multidimensional table increases, so does 
the number of possible models. The model selection methods considered are the 
stepwise procedures (forward selection and backward elimination). Significance 
of test statistics is measured by their p-value and a test statistic fails to achieve  
a predetermined minimum level of significance   if p  and it maintains that 
level of significance if .p  A value for   error lies between 0.1 and 0.35 

[Bishop et al., 1975]. When the null hypothesis is rejected, the result is said to be 
statistically significant.  

A unique set of ML estimates for every cell can be derived from the 
sufficient statistics alone with the use of iterative proportional fitting [Deming, 
Stephen 1940].  
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II. MODEL SELECTION METHODS IN LOG-LINEAR ANALYSIS 
 
The main goal of log-linear analysis is to find the smallest model that fits the 

data. The overall goodness-of-fit of a model is assessed by comparing the 
expected frequencies to the observed cell frequencies for each model. The 
goodness of fit of a log-linear model is usually tested using either the Pearson 
chi-square test statistic or the likelihood ratio statistic:  

 

 
  













H

h

J

j

K

k hjk

hjk
hjk m

n
nG

1 1 1

2 ln2 , (3) 

 
where hjkn  – observed cell counts a for three-way table.  

Therefore, larger 2G  values indicate that the model does not fit the data well 
and thus, the model should be rejected. This strategy is the opposite of the usual 
chi-square test of independence, where we seek to reject the null hypothesis of 
no association. But in trying to find the best fitting log-linear model to describe 
cross-table, we hope to accept the hypothesized model, hence we want to find  

a low 2G  value relative to df [Knoke, Burke 1980]. The likelihood ratio can also 
be used to compare an overall model within a smaller, nested model (i.e. 
saturated model with one interaction or main effect dropped to assess the 

importance of that term). The equation is 2
1

2
2

2 GGG   with: ,12 dfdfdf   

where 2 is nested model, 1 is the higher parameterized model, 1df  and 2df  are 

degrees of freedom for model 1 and model 2.  

Degrees of freedom. If the 2G  comparison statistic is not significant, then 
the nested model is not significantly worse than the saturated model.  

In order to find the best model from a set of possible models, additional 
measurements should be considered. Akaike information criterion [Akaike 1973] 
refers to the information contained in a statistical model according to equation: 

 

 dfGAIC 22  . (4) 

 
Another information measurement is Bayesian information criterion 

[Raftery 1986]: 
 

 ndfGBIC ln2  , (5) 

 
where n  – total sample size.  
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The model that minimizes AIC  and BIC  will be chosen.  

In log-linear models 2G  plays similar role to that of SSE (error sum of 
squares) in regression analysis. If 0X  indicates the smallest model and X  

indicates the log-linear model of interest, we define: 
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where  XG 2  and  0
2 XG  are the likelihood ratio test statistics for mail and 

smallest model. As in standard regression, as well as log-linear analysis 2R  
cannot be used to compare models that have different number of degrees of 

freedom (the larger models have larger 2R ). To compare the 2R  measures of 
various models it is necessary to adjust them by degrees of freedom according 
to: 
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where: q  denotes number of cells in contingency table, r  and 0r  are degrees of 

freedom for the model X  and 0X . A large value of 2
AdjR  indicates that the 

model X  fits well.  
Aitkin [1978, 1979] suggested a model selection method for testing every 

intermediate between s and s–1 factor model. To test the need for s-factor effect, 
we reject the null hypothesis of no s-factor effect if:  

 

  sssss ddGG   1
222

1 ,1  , (8) 

 

where: 2
sG  is the likelihood ratio test statistic with sd  degrees of freedom for 

testing all s-factor model against the saturated model. This is a test for the 
adequacy of the s–1 – factor model. Aitkin then identifies the smallest value of  
s for which the all s-factor effects models adequately fits the data. In (8) s  is 

chosen to satisfy:  
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or for some value   to choose t  ...2  [Christensen 1997]. (9) is the 

probability of not rejecting any of the s-factor tests. This is test for the adequacy 
of all the s-1-factor model. Aitkin then identifies the smallest value of s for 
which the all s-factor effects model adequately fits the data. The model with the 
largest s value for which (8) is fulfilled will be chosen. Aitkin [1979] suggests 
that it is reasonable to pick up an   level that yields a   between 0.25 and 0.5 

[Christensen 1997].  
 
 

III. APPLICATION IN R 
 
Log-linear analysis is available in R with the use of loglm function in 

MASS library. It allows to build model with any number of variable and any set 
of interactions. Parameters are estimated with the iterative-proportional fitting 
algorithm (IPF) [Deming, Stephen 1940] and data in contingency table are 
Poisson distributed with no distinguish between dependent and independent 
variable.  

Consider multi-way contingency table for Chile dataset (library(car)) 
with four categorical variables: region (C, Central; M, Metropolitan Santiago 
area; N, North; S, South; SA, city of Santiago), sex (F, female; M, male), 
education (P, Primary; PS, Post-secondary; S, Secondary) and vote (A, will 
abstain; N, will vote no (against Pinochet); U, undecided; Y, will vote yes (for 
Pinochet)) for 2700 respondents. All s-factors models were built and likelihood 

statistic 2G , information criteria and 2R  were computed with corresponding  
p-value.  

 
Table 1. Model selection statistics 

Model 2G  df  p  AIC  BIC  2R  
2
adjR  

 RSEV  0 0 1 0 0 1 1 

    SEVREVRSVRSE  18.372 24 0.785 –29.628 –171.253 0.956 0.995 

      EVSVSERVRERS  73.404 74 0.498 –74.596 –511.271 0.823 0.958 

    VESR  414.210 109 0.000 196.210 -447.000 0 0 

Source: own calculations in R. 
 
 

The comparison of all statistics shows, that the best model is 
    SEVREVRSVRSE  model. For this model the difference between df and 
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,2G  as well as AIC and BIC are the smallest with large .2R  This means that for 
this model the difference between observed and expected cells is the smallest 
meaning the model fits the data well.  

Another way to find the best fitting model is ANOVA method where 
difference between models are tested with corresponding p-value. We test the 

null hypothesis that .02 G   
Model fits the data well when its p-value exceeds 0.2 and when the 

difference between deviance ( 2G ) and df is relatively small.  
 

LR tests for hierarchical log-linear models 
 

Model 1: 
 ~region + sex + education + vote  
Model 2: 
 . ~ sex + region + education  
Model 3: 
 . ~ sex + region + education  
 
           Deviance  df Delta(Dev) Delta(df) P(> Delta(Dev) 
Model 1   414.20949 109                                     
Model 2    76.07504  74  338.13445        35        0.00000 
Model 3    18.37152  24   57.70352        50        0.21188 
Saturated   0.00000   0   18.37152        24        0.78462 

 
It is clear that model that fits the data is model 3 (3-factors model) 

    SEVREVRSVRSE . Its deviance is close enough to the deviance of the 

saturated model and its p-value exceeds 0.2. It proves the result above obtained 

with the use of chi-square statistics, information criteria and 2R .  
In the next step Aitkin method is presented where all s and s-1-factors 

models are compared with the use of chi-square statistic.  
 
 

Table 2. Aitkin`s model selection 

s  1s  vs. s  22
1 ss GG   df  ),1( 1

2
sss dfdf    

3 3 versus 4   18.372 24 848.13)24,95.0(2   

2 2 versus 3   55.032 50 983.40)50,815.0(2   

1 1 versus 2 340.806 35 397.29)35,265.0(2   

 Source: own calculations in R. 
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The largest value of s  for which  sssss ddGG   1
222

1 ,1   is 4s . 

According to Aitkin`s criteria the saturated model  RSEV  fits the data, however 

this model is useless because it includes all possible effects and interaction 
between variables. In this example Aithin`s methods shows that best fitted 
model is saturated mode. Classical criteria showed previously showed that  
3-factors model fits the data well and this model should be chosen as the best 
because the aim of log-linear analysis is the smallest model that fits the data.  

Sometimes it is not so clear which model to choose, then the best is to stick 
to one method (e.g. information criteria or one of chi-square statistic). In this 
example two methods give the same result, Aitkin`s method gives saturated 
model as the best. Sometimes this method can give smaller model.  

 
 

IV. CONCLUSION REMARKS 
 
Log-linear models are concerned with the analysis of cross-classified data 

and they allow to analyze the relationship between two or more categorical 
variable. It allows to examine relationship between categorical data with 
interactions and several types of independence are considered: independence 
model, saturated model, homogeneous association, joint independence and 
partial independence. As the number of variables increases, number of possible 
interactions creases dramatically as well. Several models are built and with the 
use of model selection criteria the best model is chosen (model with the fewest 
parameters that fits data well). The analysis can easily be extended t tables with 
more variables, however as well as independence and odds ratio relationship 
become more complex.  

Model selection criteria presented in this paper are: chi-square and 

likelihood ratio, information criteria (AIC, BIC), 2R  coeficient, ANOVA and 
Aitkin`s method for higher-dimensional tables. They may give smaller model 
than with the use of stepwise method. However, it is always advisable to use 
particular model selection criteria to choose model that fits data well, but as well 
as information and structure that goes with particular model (model that is easy 
to interpret).  

“The analysis of the data does not end with finding an appropriate type 
model; that is just an important first step” [Christensen 1997].  
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KRYTERIA WYBORU MODELU W ANALIZIE LOGARYTMICZNO-LINIOWEJ 
 
Analiza logarytmiczno-liniowa jest metodą przeznaczoną do badania zależności pomiędzy 

zmiennymi niemetrycznymi w tablicy kontyngencji. Zmienne o rozkładzie Poissona traktowane są 
jako zmienne objaśniane. Metoda ta pozwala na analizę dowolnej liczby zmiennych, a także na 
uwzględnienie interakcji zachodzących pomiędzy nimi. W analizie logarytmiczno-liniowej 
modelowane są liczebności w poszczególnych komórkach tablicy, przy czym liczebności 
oczekiwane są funkcją parametrów reprezentujących zmienne dyskretne oraz relacje między nimi.  

Celem niniejszego artykułu jest prezentacja i porównanie kryteriów wyboru modelu  
w analizie logarytmiczno-liniowej. Podstawowymi kryteriami wyboru modelu są statystyka chi-
kwadrat oraz iloraz wiarygodności oraz kryteria informacyjne AIC i BIC. W niniejszym artykule 
zaprezentowana zostanie także metoda Aitkina, która przeznaczona jest do porównywania jakości 
dopasowania modeli o dużej liczbie zmiennych.  
 




