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Abstract. Nonparametric methods of regression form a large group of varied and rapidly 
growing methods. In many situations we have a problem with comparing these methods in order to 
select one of them to solve the regression problem. We present the simulation procedure for com-
paring the performance of several competing algorithms of nonparametric regression. This proce-
dure has two stages. In the first one, the ranking of nonparametric models of regression is created. 
In the second stage, statistical test procedures can be used to test the significance of differences in 
the performances of models presented in the ranking. The procedure is applied to regression 
benchmark studies based on real world data. 
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I. INTRODUCTION 
 
The choice of the method that is the most suitable for a particular regression 

task is the dilemma faced by many researchers. Analyses aiming to compare and 
test different regression methods clearly show that it is impossible to indicate the 
best method which allows to build models generating the minimal mean squared 
errors irrespective of the data set under study (Meyer, Leisch, Hornik (2003)). 
The character of the data set sometimes determines the choice of a suitable 
method. Most of the times, however, we have a number of models to choose 
from and they are of equal prediction accuracy. 

The paper aims to present the procedure allowing the comparison of non-
parametric methods and the selection of the method most suitable for a particular 
regression problem. The procedure helps to create the ranking of nonparametric 
regression models in terms of the number of mean squared errors generated, 
while it takes into account the significance of the differences between the values 
of MSE . Due to the nature of nonparametric regression methods – their dispa-
rate mechanisms, it is impossible to analytically compare the created models. 
Therefore, the comparison was conducted with simulation procedures on 
benchmark data sets. 
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II. THE DESCRIPTION OF THE SIMULATION PROCEDURE 
 
The simulation procedure is conducted in two stages which lead to the selec-

tion of the best solution to the regression problem. The first stage involves build-
ing many models with different – both nonparametric and linear – regression 
methods. Its aim is to create the ranking of the models in terms of prediction ac-
curacy, determined based on the point estimator which is a mean squared error 
calculated by cross-validation ( CVMSE ). In order to guarantee the reliability of 

the simulation procedure, the second stage involves the examination of the sig-
nificance of the differences between the values of CVMSE  (calculated for the 

models built based on different methods). The stages of the simulation procedure 
are presented in detail in Table 1. 

 
Table 1. The stages of the simulation procedure 

Stage 1. 
Step 1. Divide the D training set into 10 (approximately) equinumerous and disjoint 

parts. 
Step 2. Execute the following operations for each of the analysed regression methods: 

a) build a number of regression models for different values of the parameters  
of a given method; 

b) calculate the mean squared error by cross-validation for all models built in a); 
c) choose the set of parameters with the corresponding model which has the min-

imal CVMSE ; the selected model is the representative of a given method in 

further comparison. 

Step 3. From the training set, draw B bootstrapping samples: B,, LL 1 . 

Step 4. For each sample bL  (for Bb ,,1 ) execute the following operations: 

a) divide bL  into 10 (approximately) equinumerous and disjoint parts; 

b) calculate the mean squared error )( bkCV MMSE L  by cross-validation for 

all regression models kM  (for Kk ,,1 ) with the optimal set of values of pa-

rameters (obtained in Step 2);  

 
Step 5. 

For each model kM  (for Kk ,,1 ) calculate: 
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Step 6. Create the ranking of models kM in terms of the values of CVMSE . 

Stage 2. 
Step 7. For each pair of models lk MM ,  (for lk   and Klk ,,1,  ) examine the sig-

nificance of the differences between the values of mean squared errors 
 )()(:0 lCVkCV MMSEMMSEH   based on the series of values: 
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Apply the test statistic (Hothorn et al. (2005)): 
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which follows a t-distribution with 1B  degrees of freedom when 
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Step 8. Correct the ranking of models from Step 6 with the results obtained in Step 7.  

Source: own elaboration. 
 
 

We need to emphasise that in order to assure the accuracy of testing the sig-
nificance of the differences between CVMSE , it is necessary to develop a uni-

form and clear simulation procedure which will provide the same conditions for 
calculations and comparisons. This, for example, means that all analysed regres-
sion models are built based on the same bootstrapping samples B,, LL 1 , 

drawn from a given training set. Moreover, the optimal combinations of the pa-
rameters of the models, determined at the first stage of the procedure, do not 
change either. 

 
III. EMPIRICAL STUDY 

 
The analysis was conducted on five real benchmark data sets1. The most im-

portant characteristics of these sets are presented in Table 2. 
 
 

Table 2. The characteristics of the data sets used in the analysis 

Name of the data set Number of observations Number of variables 

Autompg 398 8 

Boston 506 14 

Clothing 400 13 

Ozone 366 13 

Star 5748 6 

   Source: own elaboration. 
 
 

The study involved the comparison of the nonparametric regression models 
built using the following methods: 

 projection pursuit regression (PPR) (Friedman, Stuetzle’a (1981)), 
 bootstrap aggregating (BAGGING) (Breiman (1996)), 

                                                 
1 Data sets used in the analysis come from libraries Ecdat and mlbench of the R package. 
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 multiple additive regression tress (MART) (Friedman (1999a), Friedman 
(1999b)), 

 random forests (Breiman (2001)), 
 multivariate adaptive polynomial spline regression (POLYMARS) (Koop-

erberg et al. (1997)), 
 support vector machines in regression (SVM) (Vapnik (1998)), 
 neural network in regression (NNET) (cf. Bishop (1995)). 
The results for the nonparametric regression models were also compared 

with the values of CVMSE , calculated for linear model (LM). 

According to the simulation procedure, the analysis was carried out in two 
stages and its results are presented in Tables 3-7. 

In the first part of the study, we created the rankings of the regression mod-
els for each data set. The rankings were based on the mean squared errors calcu-
lated by cross-validation (this stage is illustrated with the first three columns of 
each of Tables 3-7). 

In the second stage, we tested the significance of the differences between the 
values CVMSE . In order to do this, we drew 100 bootstrapping samples 

( 100B ) from each training set, which means that the study used 8 (for each 

D set) 100-unit series of values  
100,,1

)(
bbiCV MMSE L , calculated for each 

of the regression methods. The results of the examination of the significance of 
the differences between the errors CVMSE  resulted in a certain correction of the 

previously obtained rankings (presented in columns 4. and 5. of each of Tables  
3-7). 

 
Table 3. The results and rankings of regression models for the dataset Autompg 

Stage 1. Stage 2. 

Ranking Methods CVMSE  Ranking Methods 

1 R. FOREST 4.04 1 R. FOREST 

2 MART 5.55 2 MART 

3 BAGGING 6.45 3 BAGGING 

4 SVM 6.53 3 SVM 

5 POLYMARS 7.45 5 POLYMARS 

6 PPR 7.62 6 PPR 

7 NNET 8.75 7 NNET 

8 LM 11.11 8 LM 

Source: own elaboration. 
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Table 4. The results and rankings of regression models for the dataset Boston 

Stage 1. Stage 2. 

Ranking Methods CVMSE  Ranking Methods 

1 R. FOREST 5.74 1 R. FOREST 

2 MART 8.21 2 MART 

3 BAGGING 10.15 3 BAGGING 

4 PPR 10.31 3 PPR 

5 POLYMARS 11.85 5 POLYMARS 

6 SVM 12.31 5 SVM 

7 NNET 14.13 6 NNET 

8 LM 22.70 8 LM 

Source: own elaboration. 
 
 

Table 5. The results and rankings of regression models for the dataset Clothing 

Stage 1. Stage 2. 

Ranking Methods CVMSE  Ranking Methods 

1 PPR 61052510   1 PPR 

2 SVM 61041722   2 SVM 

3 MART 61048638   3 MART 

4 R. FOREST 61057947   4 R. FOREST 

5 BAGGING 61047162   5 BAGGING 

6 NNET 61011468   6 NNET 

7 LM 61061082   7 LM 

8 POLYMARS 91050794   7 POLYMARS 

Source: own elaboration. 
 
 

Table 6. The results and rankings of regression models for the dataset Ozone 

Stage 1. Stage 2. 

Ranking Methods CVMSE  Ranking Methods 

1 R. FOREST 8.93 1 R. FOREST 
2 MART 9.45 2 MART 
3 BAGGING 11.27 3 BAGGING 
4 SVM 11.67 3 SVM 
5 NNET 13.08 5 NNET 
6 POLYMARS 14.59 6 POLYMARS 
7 PPR 17.06 7 PPR 
8 LM 19.17 8 LM 

Source: own elaboration. 
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Table 7. The results and rankings of regression models for the dataset Star 

Stage 1. Stage 2. 

Ranking Methods CVMSE  Ranking Methods 

1 R. FOREST 1 812.1 1 R. FOREST 

2 MART 1 963.7 2 MART 

3 PPR 1 988.3 3 PPR 

4 NNET 2 037.8 4 NNET 

5 BAGGING 2 041.7 5 BAGGING 

6 SVM 2 052.2 6 SVM 

7 POLYMARS 2 082.2 7 POLYMARS 

8 LM 2 088.7 8 LM 

Source: own elaboration. 
 
The cases, where we fail to reject a null hypothesis about the insignificance 

of the differences between the values of CVMSE , are highlighted in bold or ital-

ics in Tables 3-7. For example, for the data sets Autompg and Ozon, the values 
of mean squared errors calculated with BAGGING and SVM methods turned out 
to be insignificant, whereas the values of CVMSE calculated for different regres-

sion models built on the set Star were significantly different in each case. 
The most interesting results were obtained for the data set Boston. The mod-

els built with BAGGING and PPR, POLYMARS and SVM as well as SVM and 
NNET had insignificantly different values of the mean squared error. However, 
the difference between the values of CVMSE  for the models POLYMARS 

and NNET turned out to be significant. 
 
 

IV. CONCLUSION 
 
The paper discusses the simulation procedure which allows the comparison 

of different nonparametric regression models and the selection of the best model. 
The procedure is implemented in two stages. In the first stage, the ranking of re-
gression models is created based on prediction accuracy measured with a mean 
squared error calculated by cross-validation ( CVMSE ). The second stage of the 

analysis aims to test the significance of the differences between the obtained 
values of CVMSE  and, as a consequence, correct the rankings. 

The empirical study showed that the models characterized with the best pre-
diction accuracy were usually the models built using regression trees – most 
commonly the RANDOM FORESTS, but the good results were also obtained 
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for the MART and BAGGING models. In each of the analysed cases, the values 
of CVMSE  for the best model were significantly different from the values of 

CVMSE  calculated for the models which ranked lower. 
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WYBRANE SYMULACYJNE PROCEDURY PORÓWNYWANIA 
NIEPARAMETRYCZNYCH METOD REGRESJI 

 
W artykule przedstawiono symulacyjną procedurę badawczą pozwalającą na porównywanie 

różnych nieparametrycznych modeli regresji, jak i wybór najlepszego z nich. Zaproponowana pro-
cedura przebiega dwuetapowo. W pierwszym etapie tworzony jest ranking modeli regresji, pod 
względem dokładności predykcji, mierzonej za pomocą błędu średniokwadratowego obliczonego 
metodą sprawdzania krzyżowego ( CVMSE ). Drugi etap analizy ma na celu zbadanie istotności 

różnic pomiędzy uzyskanymi wartościami CVMSE , a tym samym skorygowanie otrzymanych 

rankingów. Do testowania istotności wspomnianych różnic wykorzystano nieparametryczną staty-
stykę testującą zaproponowaną przez Hothorna. Opisaną procedurę badawczą zastosowano w ba-
daniu empirycznym, dla zbiorów danych standardowo wykorzystywanych do analizowania wła-
sności różnych metod regresji. 


