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The existence of solutions of the equation Lx  =  N x,  where L is a 
Fredliolm linear operator of index zero and N  is a nonlinear continu-
ous map, is established. N  is sublinear Landesman-Lazer ones. The 
results are applied to boundary value problems with nonlinearities 
also involving derivatives. The resonance can be multidimensional.

1. I n t r o d u c t i o n

Most of boundary value problems: Pu = iV(u), Bu  =  0, where P  
is a linear differential operator, N  is a superposition operator and B
- a boundary linear operatop, can be transformed to x — P ~ 1N(x)  
in an appropriate function space. There are a lot of topological and 
variational techniques to find a fixed point of P ~ l N,  mainly, when 
this operator is compact. However, if the linear problem Pu = 0, 
Bu  — 0, has nontrivial solutions, then P -1  does no exist and we 
cannot use this method; the system is said to be at resonance.

Tire resonance problem was first, studied by Landesman and Lazer
[11] with N(u)(x)  =  f (x ,u (x )) ,  f  bounded and having limits as 
u —> ±oc. Then, there started to appear papers by several authors



with attem pts to examine an unbounded nonlinearity / .  The growth 
of /  as |u| tends to infinity is sufficiently slow and the Landesman- 
Lazer condition is replaced (or strengthened) by the monotonicity 
of f ( - , t) [6], [20], [15] or another assumptions [8], [10]. The au-
thors often confine themselves to the case of second order ordinary 
differential equations not involving the first derivative. Moreover, 
the multiplicity of the resonance, i.e. the dimension of the space 
of solutions Pu  =  0, Ba  =  0, is usually 1. This excludes, for in-
stance, the periodic boundary value problem; u" +  m'2u =  
u(0) — u(2n) =  0 =  ii'(0) — u'(2tt); m  = 1 ,2 ,. . .  (cf. [9],[4]).

Here, we consider all these problems without the above restrictions 
in an abstract framework closely related to our previous paper [19]. 
Let X,  Y  and Z  be Banach spaces. Consider the following equation:

(1.1) L(X0)y = N(Jy )

where L : R D (Ao,Aj) —> L (Y ,Z )  is a continuous map with L(A) 
being a linear homeomorphisin for A ^  Ao, N  : X  —> Z  is a nonlinear 
continuous map transforming bounded sets onto bounded ones and 
J : Y  X  - a completely continuous linear injection. Suppose that 
the inverse operator G(A) =  ¿(A) -1  € L (Z,Y ) ,  A ^  A0, has the form

n

( 1.2 ) G(X) = G„(A) +  ] T c J(A){ui ( A ) ,> J(A)
j =  1

where G0 : (A0,Ai) -► L (Z,Y ) ,  Uj : (A^Aj) -> Z *, Wj : (A0 ,Ai) -» 
Y , Cj : (Ao, Ai) —* R, j  = 1 , . . . , n, are continuous and limA_̂  A+ M A)I 
=  oo for any j .

Let
n

(1.3) ImZr(Ao) =  P) kerUj(A0),
7=1

(1.4) kerL(Ao) =  Linfiu^Ao) : j  =  1 , . .  . , n }

with u>j(\o),j =  1 bei ng linearly independent. It follows that 
= 1 i - " i n and U j(\) , j  — 1 , . . . , n  are linearly independent 

for A sufficiently close to Ao- We assume without loss of generality 
that all A 6  (A0, Ai) have this property. Suppose that



(1.5) L( \ o )Go (Xo) z  = z,  2 G ImL(Ao).

It is equivalent to the system

lim Cj ( \ ) (u j (X) ,  z ) L ( \ ) w j ( \ )  =  0
A—►Ao

for j  =  1 and z  € ImL(Ao), which can easily be verified in
applications.

It is obvious that equation (1.1) is equivalent to the system

(1.6) (u,j(\o),N(Jy))  =  0, j  = 1 , . . .  ,n,

(1.7) y =  G0( \ 0)N(Jy)  +  £ C > , - ( A  0)
j = i

where C%,. . .  ,C n are arbitrary real constants. The multiplicity of 
the resonance equals n.

We consider separately two cases: sublinear

(1.8 ) lim sup =  0 ,
||i||—oo 11*11

and of linear growth

(1.9)  U ms Up J M = 7 > 0 .
It r II •rw'-i II II

2. T h e  SUBLINEAR CASE

We shall need the following lemma in both cases.

Lem ma. I f  there exists a sequence (y*) of solutions of  equations

L(\k)yk  =  tkN(Jyk)



where Ak —> A(| , t k —> 1, such that (Jyk)  C V  i s bounded, then 
equation (1.1) has a solution.

Proof. Denoting z* = J yk, we have xfc =  t kJG(Xk)N(xk) and, 
by (1.2 ), both (ffcJGo(Afc)JV(x*)), and (*jt ci(^k)(uj(Xk), N ( x k )) 
Jwj(Xk))  are bounded sequences. Due to the linear independence of 
Jwj(X), j  =  1 , . . .  ,n  all sequences

(ikCj(Xk){uj{Xk),N(xk)))k , j  =  l , . . . , n ,

are bounded. We can choose convergent subsequences (we do not 
change the indices for simplicity)

t kJ G 0(Xk)N(xk)  —> x0, 
hcj{Xk){uj (Xk) ,N(xk )) -> Cj, j  = 1, . . .  ,n .

Hence Xk —> xq  +  GjJwj(Xo) =: x. Moreover, for every j ,
(uj(A0), iV(x)) =  0 and x0 =  JGq(X0)N(x).  Therefore x = Jy  for 
some y G Y , and

n

V =  Go(Xo)N(Jy) + Y , c i wi(  Ao). 
i= i

This means that y is a solution of (1 .6) -  (1.7), thus, equivalently, of 
(1.1).

Let N  : X  Z  satisfy condition (1.8). This holds, for example, if

\\N(x)\\ < a||x ||p -f b, x €E X ,

for some positive constants a, b and p < 1. Let « j =  + 1  if 
limA-*Ao cj(A) =  +oo and otj =  —1 if this limit equals —oo, j  —
1, . . .  ,n .

T he o rem  1. If  for any sequence ( x „ )  C X with properties | | | |  —> 
oo, —> £  CjJwj(Xo) there exists ji G {1, . . . ,  n} sucij tiiai
Cjj /  0 and

(2-1) Ci l a >1(ui l (A o),W (i,,))<0



for sufficiently large v, then equation (1.1) has a solution.

Proof. Take any sequence A*. -> A+, A* ^  A0, and consider a sequence 
of equations

L ( \ k)yk = N ( J y k)

or, equivalently
x k = JG(Xk)N (xk).

Fix k € N  and choose R k > 0 such that

<  i i . / G(Ai ) i r i
11*11

for ||s|| > R k. In particular, for ||.t|| =  R k

|| JG(Xk)N(x)\\ < ||s|| =  R k

and, by the Rothe theorem [12], solutions x k =  J y k exist. Due to the 
Lemma, we should only show that (x k) cannot be unbounded.

Suppose it is unbounded. We may assume without loss of gener-
ality that ||x*|| —> oo. Then

I M " 1** = JG o iX kM xkW- 'N ix t) )  

+  X l C>(Afc)(U>(Afc)’ Ha:fell ~l N (Xk))Jw j(Xk), 
j

where ||x* ||-1  N ( x k) —> 0. Repeating the arguments from the proof 
of the Lemma, we get convergent subsequences

(2 .2 ) cj(^k)(uj(Xk), ||a:fe||- 17V(xfc)) -> Cj, j  = 

and, hence
n

Y , C , J w j (  A0 ).  

j=  1

Thus, for sufficiently large k and each j ,  (uj(Xo), N ( x k)) has a con-
stant sign. By (2.2), aj(uj(Xo), N (x k )) has the same sign as Cj for 
j  = 1, . . . ,  n and this contradicts (2 .1).



C oro lla ry  1 . I f  N  is bounded and there exists limits N (C \ , . . . ,  Cn) 
=  linv—oo N (x „ ) for any \\xu\\tooo, ||a:^||“ ‘a:*, -> '%2CjJwj(\0), in-
dependent o f  the choice of  the sequence (x„), then the sufficient con-
dition can be written in the form

Cj la j l (uj l ( \ 0) ,N (C 1, . . . , C n) )< 0 .

as it is in [19]. For n = 1 and N  being a superposition operator it is 
equivalent to the Landesman-Lazer condition.

3. T h e  n o n l in e a r it y  w it h  l in e a r  g r o w t h

Let us introduce two families of linear subspaces of Y :

Y \  = Un{wj(X) : j  = I , . . .  ,n}  Y \  =  Im G 0(A),

where A € (Ao, Aj). Changing slightly the regular part G'o(A) and the 
irregular one in (1.2 ) if it is necessary, one may assume that

(3-1) F  =  FA ® F a.

we shall use the obvious notation y = y\  +  V\ for y £ Y  and A € 
(Ao, Ai).

T h e o rem  2 . Let N  satisfy (1.9) with 7  such that 

(3-2) 7 |||J G 0(A)|| <  <7(1 +  cr) “ 1

for a positive constant a. Assume that there exists 8 > 0 and r > 0 
such that, for all j ’s, either

(3.3) C ~ l (uj( \) ,  N ( J y \  + ^ 2 C i J w i ( A))) > 6

or

(3.4) C ~ x (uji(A), N ( J ÿ x +  £  CiJwi(A))) < -  6



or

(3.5) C j a t j ( u j ( \ ) , N ( J y \  + Y / C iJ w i(X))) < 0
I

for any A G (A0,Ai), G Fa, C \ , . . . ,C n G R provided that |Cj| <  
|C'j| > r for t ^  j ,  \\Jyx\\ < <r\\Jy\W =  <r|| £  Ci Jwj ( \ ) \ \ .
Then equation (1.1) has a solution.

Proof. We may assume without loss of generality that

M A ) |> 2 i - \  j  = l , . . . , n ,

7 ||JG„(A)|| < » ( ! + » ) - ' ,

for every A G (A(), A]). Take e > 0 such that

(7  +  e)||.7Go(A)|| <  <t(1 +  <r) 1, A g ( A o , A i ) ,

and R  > 0 such that

l|J V (*) IIS (7  +  « )M I. 11*1 > R ,

and consider a homotopy H : X  x (0,1) —» X

UGo(Xi )N(x) + \  ), 7 V (z )> ^ (A j), 

for t G (0, | ) ,  
i,7Gf(2Ai( l  - 1) +  A0(2i -  l )) t f (® ) ,

for t G ( | ,1 ) .

Clearly, H  is continuous. We shall show that all fixed points of 
t G (0,1), if they exist, are contained in one ball. Let t G ( | ,  1) and 
A =  A(t) —  2A i ( l  -  t) +  A0(2i -  1). by (3.1) the equation x =  H (x , t )  
is equivalent to the system

(3.7)

yx =  tG 0(X )N (J y x +  ' £ d i J w i ( A))
2

(3-8)
dj = tcj(X)(ii j(X),N(Jyx  +  ^  diJ w i(X))), j  =  1 , . . .  ,n.

1



Suppose that a solution x = J y \  -f .Jyx satisfies ||x|| >  R. Then

l|Ji?» ll< lkG o(A )||(7 +  i ) M  

<<r(l  + ® r 1(||J»*|| +  ||J fA||)

S O

\\Jyx\\ < * \ \ J v x l

On the other hand, jdfj| > r cannot satisfy (3.8) due to (3.3) or (3.4) 
or (3.5) and (3.6). Hence, all solutions to system (3.7) -  (3.8) satisfy

11*II =  ll*7i/|| < max{R,(cr +  l ) r  nm ax || J tO j(A )||}  - .  R 0.
*,j

For t  € (0, i ) ,  the reasoning leading to the estimate is almost the 
same. The corresponding system has the form

V\\ — i;G0( \ \ ) N {J y x i +  y  djJwj(Xi))
i

(1j  =  \ cj (Xi) (uj ( ^ \ ) , N ( J y Xl + Y ^ d i J w i{  Ai))), j  =  1
i

Our next step is to study the mapping H(-, 0) : X  X .  If we show 
that the Leray-Schauder degree degLS(I  — H(-, 0 ), B(Q, R 0), 0 ) ^  0 
where I  is the identity and J5(Q,i?o) - a ball in X centred at 0 with 
radius i?o, then equation ( 1 .1) will have a solution by the Lemma. 
But, H ( - ,)) is finite dimensional, thus this degree equals the Brouwer 
degree (cf. [12]) of this mapping resticted to J Y \ A t  last, it is 
equal to the degree

deg ( I  -  g : ( -R o ,  Ro)n, 0 ) 

where g = (gi , . . . ,  gn) ’ IR" -> R" is given by the formulae



j  = 1 , . . . ,  n. As we have shown above,

9j{dj , • • •, dj—i , dj^.\, . . . ,  dn) ^

hence g has no fixed points on the boundary of the cube (—R o ,R.q)u 
and the sign of gj on the whole face dj = +i?o (resp. dj = —R q ) is 
constant. Moreover, by one of the conditions (3.3), (3.4) or (3.5),

(3.10) g j ( d i , . . . , + R o , . . . , d n) g j ( d i , . . . , - R 0, . . . , d n) ^  0.

We shall define hj : (—Ro,Ro)n x (0,1) —* R, j  = l , . . . , n ,  by 
putting d = ( d i , . . . , d n):

hj(d, 0 ) =  dj — gj(d) for every d, 

hj(d, s ) =  (1 -  s)(dj -  gj(d)) -  sdj for .s 6  (0 , 1) 

and d, = (d\ , . . . ,  ±i?o, • • •, dn)

if gj is nonnegative on the face dj — +Ro, or

hj(d,s)  =  (1 -  .s)(rfj -  gj(d)) +  sdj for s € (0 , 1) 

and d = (dl t . . . ,  ± R 0, . . . ,  dn)

if gj is nonpositive on the face dj =  +Ro, and

hj(d, 1) =  — dj for every d

in the first case or

hj(d, 1) =  +dj for every d

in the second one. If gj vanishes on the whole face dj =  +i?o, 
the choice of the case is arbitrary. Then, we can extend hj  to 
(—Ro,Ro)n x (0,1) continuously. Set h = (h \ , . . . ,  hn). By (3.9) 
and (3.10), h is a homotopy which has no zeros on the boundary 
of (—i?o,Ro)n. But /?.(•,0) =  I  — g and /i(*,l) is an antipodal map-
ping that has an odd degree due to Borsuk’s Antipodensatz [12]. This 
ends the proof.



Remark. In the most important case, X  is a Hilbert space and sub-
spaces JY \  and J Y \  are orthogonal. Then condition (3.2) can be 
weakened:

(3-11) 7 ||^ o (A o )|| < < r(l+ < r2) - i

In fact, it is used only to get the estimate

i k n u  s  ( t+ £ ) i i 7 G o(A )iip?A +  . m n

£  17(1 +  £TJ ) T l ( | | J ' y Af  -I- | | 7 F j | | 2 ) i

implying
ll j n f  =  < 7 2 n m i i 2

which is needed in order to apply (3 .3 ) -  (3 .5 ).

4. A p p l i c a t i o n s  t o  e l l i p t i c  BV Ps -  s u b l i n e a r  c a s e

The typical examples of Fredholm operators are elliptic partial 
differential operators acting on Sobolev spaces restricted by some 
coercive boundary conditions. We confine ourselves to the Dirichlet 
boundary value problems for simplicity, although we can apply all 
results to many other problems. Let P  be a uniformly elliptic partial 
differential operator in an open bounded set i) C K*' :

(4.1) P u =  aa(x)D°lu
| x |< 2  m

(where aa are sufficiently smooth bounded real functions on i) and 
the boundary of f2 is sufficiently regular [1]). Denote by the
space of functions which have fill derivatives up to order 2m sitting 
in the space L2(ft), and by -  the closure of the space of all
smooth functions with compact (in i2) support in Then the
operator P : H 2m(Q,) D i?on(^) is a Fredholm operator of
index 0. Suppose it is not invertible and denote by u> i,...,w n the 
orthonormal base of its kernel ke rP  (the orthogonality with respect



to the L 2 -scalar product), and by 9\ , . . . ,  6n -  the orthonormal base 
of im P. Put Quj , =  6j, j  =  1 , . . . , n, Q |k e rP 1- =  0, and extend 
Q linearly to the whole space Y  = H 2m(ù)  H (Î2). It is easy to 
see that the family of operators L(X) : Y  —> Z  =  L 2(il) given by the 
formula L( A) — P  +  A Q, A £ R, is admissible for our scheme with 
FA =  kerP-L, Y \  = kerP,

Go(A) =  (P |k e rP -Lr V Iinp, 

ci(A) =  A-1 , Wj(A) =  uj ,  (u j ( \ ) , z )  = J  0jz,
n

for j  =  1 , . . . ,  n, z £ Z, where prim P stands for the orthogonal 
projector on Im P.

Let /  : ÎÎ x R x R *1 x ••• x R l be a Carathéodory function, i.e. 
/(x ,- )  is continuous for a.e. x € f2, /(• , u0, u i , . . . ,  u i) : Q —> R is 
measurable. Assume that I <  2m  and /  satisfies the following growth 
condition: for any M  > 0, there exist g L 2(Q) and constants 
& p + i ,bt ^  0 where p = 2m — [(£ + 2 ) / 2], such that

(4-2) |/ ( x ,u 0 , . . . , « l ) |  =  +  ^p+i IIup+i ||p +  • • • +  &î||uî||p

(0 ^  p ^  1 is a fixed constant). It is known [7] that under these 
assumption the superposition operator

N(u)(x)  =  f ( x , u ( x ) ,D \u (x ) , . . . ,D iu ( x ) )

where Dsu =  (-D"w)|a |=si 5 =  1 , . . . , / ,  maps the space X  =  H l{ÇÏ) 
into Z =  L 2(Sl). Let J  : Y  —* X  be the inclusion map which is 
completely continuous [1]. The nonlinear operator N  is sublinear if 
p < 1 and

(4.3) lim M - 1\\aM\\L2 = 0 .
M—+00

We look for a solution of the BVP:

(4.4) Pu  =  /(x , u, D \u , . . . ,  D/u), u € i f m(fi).



Assume that, for any (C \ , . . . ,  Cn) G R u \  {0} and |a | ^  I

n

(4.5) Hk{x G Si : ] T  Cj D"wj (.t) =  0} =  0
i=  i

where p* stands for the Lebesgue measure in R* (comp. [7]). In tro-
duce, for ip G {±1}*’ , p =  0 ,1 , . . . ,  /, the following limits

/(* ;*o,*i,. ■•,**) =  lim sup/(a:,uo,---,w /)
u 0—►i0oo

U/ —►l/OO

f(x-,i0, . . . , i i )  =  lim inf f ( x , u 0, . . . , u t)
Uq —► I q O O

tt/ —►l/OO

where (el5 . . .  ,e s)oo =  (ejoo,. . .  ,e aoo), and sets

■ ■ > »/(Cl, • • •, Cn) =  {* G i) : C^-OO > o,

^   ̂C ¿DpU)i(x) — ip, p — 0 , 1 , . . . , / }
i

and similarly . . . ,  ¿ /(C i,. . . ,  C„) with Cjdj(x)  < 0.

T h eo rem  3. Under the above assumption, if, for each (C i , . . .  ,C n) 
G R" \  {0} there exists j  G { 1 , . . . ,  n} such that

Cj  £  ( J  ^ 7 (-;*o ,.- .,* i)

(4 .6 ) A'0+- " ' , (C l.....Cn)

+  J *o,. . . ,* ' / ) )<  o,

..... ..

then problem (4.4) has a solution.



Proof. Taking an arbitrary sequence (u(,y) )U£N C X  such tha t | |w ^ || 
—> oo and —> Y^CjUj, and using (4.5), we get

lim sup [  C>0J7 (^ u (" \ l> 1u("), . . . , Z W ,')) 
v —► OO J 

n

CjOj lim sup /(•, vSv\  . . . ,  D , u ^ ))+
V—+OO

. U I ,« 7 1 ,- , C n)
•o.... *|

/  lim inf / ( • ,ti (i/), . . . ,Z ) ;u (‘/)).
/ //—►OO

U (Cl....c„)
»0 »•••.<!

Obviously, lim sup,,.,«*, /(•, u(,/), . . . ,  DivS^)  ^  /(•; i0, . . . ,  */), 
hm inf1/_>00/(- ,u (J/), . . . , .D /u ('')) ^  /(•; io, ■. • ,*<), and, by (4.6), we 
obtain condition (2 .1).

The inequality (4.6) can be reversed (take A —> 0 — so ctj =  —1 ) 
but with replacing /  and / .  The functions /  and /  can be infinite -  
the left-hand side of (4.6) can be equal —oo.

If the elliptic operator (4.1) is selfadjoint, we have 6j =  ujj,j  =  
l , . . . , n ,  and we can replace the left-hand side of (2 .1)by the sum 
over j\  =  1 ,2 ,. . . ,  n. Here, this means

(4.7) j  u f { - y v\ . . . , D lU^ ) ^ Q
h

where | |u ^ | |  —► oo, —► u> € L infw i,. . .  ,o»n}. Thus, we
have the following sufficient condition for the solvability of (4.4):

Corollary 2. I f  P  is selfadjoint and, for any solution u  of  the linear 
homogeneous problem Pu =  0, u =



4d B. PRZERADZKI

where
f ( x )  = lirnsup f ( x , u 0, . . .  ,ui)

u0—>sgn ui(x)oo 
u i-+sg n  D iu i(x )o o

a /—*sgn D iu j( x ) oo

and f  is defined analogously with lim inf instead lim sup.

If /  does not depend on derivatives and n — 1, the sufficient con-
dition has the form

(4.9)

where

I  w i / + +  I  u if  > 0 > I  u if + J  u>if+
A + A _ A +  A _

A+ =  {x : u)\(x) > 0}, A _ =  {x : u>\(x) < 0},

/+ (x) =  liminf f (x ,u ) ,  f ~  =  limsup f (x ,  u).
« — + ° o  a — - o o

This result is closely related to [3].
The case when f  = f  (there exist limits) was intensively studied 

starting from the paper by Nirenberg [17]. He considered the linear 
Fredholm operator of nonnegative index but (as he noticed) his as-
sumptions can be verified practically only for the index equal to 0 . 
Therefore, our results generalizes the Nirenberg theorem in a sense 
. Moreover, Corollary 2 implies the first theorem on resonant prob-
lem obtained by Landesman and Lazer [11] and its generalization by 
Williams [23].

For the case /  depended on derivatives, one can get less restrictive 
assumptions by using Corollary 1 directly.

Corollary 3. Let n =  1 and f  be sublinear. Suppose that, for any  
(u(")) C with properties | |u ^ | |  —♦ oo, ||u(‘/)||~1u(t') —► u)\
(resp. —> there exists an L 2 -limit

f+(x)  =  /  (a;, u{l/\ x ) , . . . ,  D / u ^ x ) )



(rcsp. f - ( x )  =  lim /  (x ,u(")(a:),... ,D iu (u\ x ) )  . )
V —  OQ

If the numbers

(4.10) J  cji / + +  J  u \  J  w i /_  +  J  u i f +

A +  A -  A +  A -

have the opposite sings, then BVP (4.4) has a solution.

E xam ple . Let us apply the above result to a typical problem

u" +  u = arctan(u +  u') +  h(x),
(4.11) , , N

l i ( 0 )  =  u (7 r )  =  0 ,

where li £ ¿ 2(0 , 7r). Here Pu  =  u", A0 =  —1, w0(x) =  sinx, / ( x ,u ,u ')  
=  arctan(u +  u') +  h(x),

r , s ) k ( X) ±  2 f° r  *  G (0 ’ f* )»
f±(x )  ~ h(x)=F f  for x £ ( | 7r ,7r), 

^4+ =  (0 , 7r), =  0. Condition (4.10) is equivalent to

(4.12) I Í  sinxh(x)dx
Jo

<  \/27r.

Therefore, nonlinear problem (4.11) has a solution provided that the 
square integrable function h satisfies inequality (4.12).

The functions /+  and /_  can be infinite. It is only im portant that 
the sums in (4.10) are not of the form oo — oo. For example,

f ( x , u ,u ' )  = y m a x ( 0 , u  + \ / i « ' j )  +  h(x)

is a Caretheodory function (h £ L 2) and, for the problem

(4.13) u" +  u — f ( x , u ,u ' ) ,  u(0) =  u (-k ) =  0,

we have /+ (x) =  +oo, f - ( x )  = li(x). Therefore, the condition guar-
anteeing the solvability of (4.13) is the following:

fJ o
sin x • li(x)dx <  0 .



E x am ple . Let us consider the periodic problem

u" +  u =  p(x)gi(u+) +  r(x)g2(u~),
(4.14) . .

u ( —7r) =  u{i r),  u  ( — 7r) =  u  ( 7r ) ,

where p, r : (—7r ,7r) —>• R are bounded measurable functions, 
gx, (j2 : (0 ,oo) —> R are continuous functions with the following prop-
erties:

9 , ( 0 ) =  5-2 ( 0 ) =  0 , 

l i m ^  =  0 , ,  =  1 , 2 ,
U—+OC u

lim gj(u) = 7 j € (0 , 00), j  =  1, 2 .
u— +00

Here, u+ =  max(0,u), u~ =  — m in(0,«), u = u+ — u~.  Since the 
multiplicity of the resonance equals 2 -  w-[(x) — s in s, w2(x)  =  cos x
-  we apply theorem 3 (with /  =  / ) .  It is easily seen that

/ ( * ;  + 1 )  =  7 ! p ( x ) ,  / ( x ; - l )  =  7 2 r ( . r ) ,  / ( z ; 0 )  =  0 .

Therefore, we have to study the signs of numbers

bi =■ Ci 7! /  p(x) sin xdx  +  C'i72 J  r (x )s inxdx,
A + A -

b2 =: C-271 /  p(x) cos xdx -(- C'272 y  r(x) cos xdx,
A+ A _

where .4-t =  ;c £ (—7r ,7r) : sgii(Ci s in s -f C2 cos a;) =  ± 1 . Suppose, 
for example, that p(x) ^  0 ^  »’(a;) a.e. ;r and at least one of these 
inequalities is sharp on a set of positive measure. Then one of b'-s 
must be negative since their sum is negative, and we have a solution 
of (4.14). Our assumption on p and r is not necessary. One can 
prove that one of bys is negative also for the case: p(x)  =  r(;r) =  0 
for x  G (—7r ,0 ), 71 =  00 , 72 =  + 00 , and



The results can easily be generalized for the right-hand side de-
pending on derivatives

/(* , m, u ') =  p(x)g i (i<+ , u') +  r{x)(j2{v~,u ')

where <jj : (0, oo) x R —>■ R are continuous, <7; (0 , u') =  0, 
limu_-f-oo u') — 7j G (0, oo > for j  = 1,2 and u' € R. The 
calculations are exactly the same.

5. A p p l i c a t i o n s  c o n t i n u e d  -  g e n e r a l  c a s e

Now, we consider elliptic BVP (4.4) in the case when /  has a 
lineai' growth, i.e. condition (4.2) holds with p — 1 . We shall apply 
theorem 2 , and the main difficulty lies in finding conditions that guar-
antee inequalities (3.3) -  (3.5) to be satisfied. We choose inequality
(3.5) which seems to be the simplest one and we consider only a res-
onance with a one-dimensional eigenspace spanned by =  ui and 
with the nonlinearity independent of derivatives. Moreover, let P  be 
selfadjoint, thus im L(0)Lui.

Let us suppose that /  satisfies the condition

for |u| > M  (M  is a positive constant), where a, a > 0 and b € L'2(Ci). 
The remaining assumptions and notations of section 4 are kept valid. 
We should show (taking A —» A^, we have cv0 =  —1) that

for sufficiently large \C\ and u orthogonal to u> in L 2-sense, ||u|| ^  
<tC||o;|| where a is connected with 7  and ||JGo(Ao)|| by inequality
(3.11). Obviously, n. can be chosen arbitrarily close to 7 .

Introduce two functions:

(5.1)

(5.2)

y(x) — Cu(x)  -(- u(x), x  € fi,



and x : ~> K measurable and such that

x(*) = ( f ( x ,y(x )) -  Kx))y(x )~l

for x € i2 which satisfy |y(x)| > M, and a x( x ) = f°r x ■ Then 
the left-hand side of (5.2) can be rewritten in the form

J  u(x)N(Cu> +  u)(x)dx  =  
n

J  u)(x)f(x, y(x))dx — J  u>(x)b{x)dx

IslgiW \y\>M

-  J  u(x)y(x)x(x)dx  +  J  u(x)y(x)x(x)dx.

\ y \ ^ M  i2

The first three summands are bounded independently of G, while, for 
the last one, we have the following estimates: 

for C > 0

J  u>(x)y(x)x(x)dx ^  Cn J  uj2 +  a J  uu +  a J
h Q OI«>0 wu<l

= Ca J  u 2 +  (a — a) J  uu  ^  C(a — a(a — a))|| H I2;
fi u>tt<0

for C < 0

Jujxyx ^  Ca||u>||2 + (a — a) J  uju ^  C(a — a(a — a))||u;||2.
u » > 0

Now, inequality (5.2) will be satisfied if a — <r(a — a) = 0- Hence by
(3.11), we need

(5.3) 7|| .7Go(Ao)||  < a (a2 + (a -  a)2) 2 .



Simple calculations give us the norm of the linear operator JGo(^o)  : 
L 2(Q) -+ L 2(Sl)

(5.4) ||JC?o(Ao)|| =  ^mm|A0 -  As |^

and the constant 7

7  =  limsup M - 11| « a/ || /,* -
M—* 00

Therefore, we prove the following

Theorem  4. (cf. [10]) Let us consider BVP (4.3) where L( \q)  = P  — 
A0I, P  is an elliptic par tial differential operator and Ao is its simple 
eigenvalue. If  the nonlinearity f  does not depend 011 derivatives and 
has a linear growth 7  G (0 , 00 ) and, for sufficiently large |u|, satisfies
(5.1) with â and â such that inequality (5.3) holds, then the DVP has  
a solution.

Exam ple. Consider the second-order ordinary defferentia.1 equation 
with two-point null conditions

u" + m 2u =  f (x ,  it),

u (0 ) =  u ( t t ) =  0,

where m  G N. Let /  be a Carathéodory function with property (5.1). 
Here, by (5.4), ||JG 0(m'2)|| =  ( 2 m - 1) " 1 form  > 1 and ||JG „(m 2)|| =
I for m. =  1. Thus, condition (5.3) has the form

7  < (2m -  l)â (â 2 +  (â -  â)2)- 2 ,?n > 1 ,

7  < 3â(â2 +  (â — â )2)_ 2 , m  = 1.

In particular, let

f ( x , u ) =  â.u+ — âu~ + g(x, u)

where â, à are positive constants and g is a Carathéodory function 
which is sublinear.



Then the problem with the jumping nonlinearity is solvable pro-
vided that

m ax(d,a )2 +  (max(a, a) min(a, a ) -1 — l )2 <  (2m — l )2

for m  > 1 and < 9 for m  =  1 (cf. [4]).

Remark. Assumption (5.1) can be replaced by

— a ^  ( / ( x , u )  — 6(x)tx-1 ^  — a

for \u\ > M; a, a > 0. Theorem 4 with its proof and Example will be 
changed slightly (now A —> so tvo =  +1 and we should prove the 
inequality opposite to (5.2)).

Although assumption (5.3) on 7  is much more restrictive than 
those in recent papers [8], [10], [3], we have no conditions on the 
behaviour of /  on the set x (—M, M) , such as u f ( x , u )  5; 0 which 
is global in the works mentioned.

We shall give an example of application of our abstract results, 
where the differential operator is not selfadjoint and the spaces X , 
y, Z  are, actually, Banach ones (even nonreflexive). Moreover, the 
nonlinearity is given by a more general function / .  The problem has 
the Neumann form

(5.6) u"  +p(A0)tt' +  r ( \ 0)u = f (x ,u ) ,  u'(0) = u '( l)  =  0 ,

where p and r are analytic functions of real parameter A in a neigh-
bourhood of A0, and /  : (0,1) x R —► E is a Caratheodory function 
such that

(5.7) |/(* ,« ) l =  a M  +  b(x )

where b G L x (0,1). The assumption on /  guarantee that the super-
position operator Nu(x)  = f (x ,u (x ) )  maps L l (0 ,1) into itself. We 
need a resonance problem, so the linear homogeneous BVP

(5.8) u" +  p(\o)u' + r ( \ 0)u = 0, u'(0) =  u '( l)  =  0,



should have a nontrivial solution. This means that either r(A0) =  0 
or p2(Xo) — 4r(Ao) +  4k '2 =  0 for some nonnegative integer k. We 
shall consider the second case with k > 0 and with the assumption 
that p2 — 4r +  4k2 t t2 does not vanish identically.

Put

wi(*;A) =  exp ^ - ip (A )x ^  (c.osd(\)x +  sin d(X)x)  ,

0)2(3:; A) =  exp ^p(A)x^ sin d(\)x,  

where

<i(A) =  i ( 4 r ( A ) - P2( A ) ) i .

These functions form a fundamental system for the linear differential 
operator

L(\)u  = u" + p{\)u' + r(\ )u

such that wi(-;Ao) spans the one-dimensional space of solutions to
(5.8). The standard calculations (see [2] for instance) show that the 
Green function of the problem is equal, for any A ^  A0, to

G(x, y ; A) =  [4d ( j ?  +  4d2) 1 sin-1 d. (d. cos d — ^  s in d'j 

^ i(y ) -  u>2(y)\epyw2(x) + K (x ,y ,  \ )

where

K{x,  y; A) =
f d 1 epy det 'wi(y) 2̂ (y)‘

.wi(x) U2(x).
I 0

for y < x, 

for y > x,

and we have omitted the argument A.
Let X  = Z  = L \ 0,1) and Y  =  {u € W 2' \ 0,1) : lim u'(x) =

x —<-0 +
lim u'(x) — 0} where W 2,1(0,1) is the Sobolew space of all functions

1 —>0 +
u : —■> R whose all derivatives (in the distribution sense) up to



order 2 are integrable (€ X1 (0,1)). It easy to see that L( A) maps 
homeomorphically Y  onto Z  for A ^  A0. Put

ci(A) =  4d2 (p2 +  4d2) * ctg d,

u i(A) - a linear continuous functional on Z  given by a bounded func-
tion epyu>i(y), wi(A)(x) =  u;i(x;Ao) and Go(A) : Z  —> Y  - a linear 
integral operator with the following kernel:

G0(z ,y ; A) =  -  [2pd2(p2 +4ci2)_ 1a;i(y; A) +u>2(y; A)]cMw i(i;A )
+  A ' ( x ,y ;  A) +  c i ( A ) e P!'a ; i( y ;  A ) ( w i ( x , A )  -  u>i(:r; A0 )) .

This kernel has a limit as A —> Ao iff there exists a limit

lim sin-1  d(\)  e~ c o s  d( \) x  — e~^p^ x cos knx
A—►Ao

If we denote the multiplicity of Ao as a zero of an analytic function h 
by m(/i; A0), then the last limit exists iff

(5.9) m (4 r - p 2 - 4 fc27r2; A0) ^  m (p -  p(A0); A0) =  m (r - r ( A 0);A0)

(the last equality always holds if p(Ao) /  0 ). Under this assumption, 
all the functions have continuous extensions as A —> Ao. Hence, we 
can consider BVP (5.6) in our abstract framework.

Condition (5.7) gives

lim sup ||JVu||/||u || =  7 ^  a

where the norms are from £*((),1). If 7  =  0, we can apply Theorem 1 
and get the following result:

BVP (5.6) with a sublinear nonlinearity (7  =  0) has a solution if 
the numbers

J  ePoyuJi(y; \ Q) f+(y)dy +  J  t Poyu x(y\ A0)/-(y )d y ,
A +  j4_



J  ePoVu>i(y\X0) f - ( y ) d y  +  J  ePoyui(y; A<,)/+(y)riy
A_ /i+

are of opposite sings, where

f ± ( y )  =  lim /(y ,u ) ,
ti—>±oo

A+ =  {y : W](y;A0) >  0},  A_ =  { y  : u>i(y;A0) <  0},  p0 =  p{ A0). 
Similarly as in (4.9), one can replace the limits in the definition of 
f ±  by lim sup and lim in f .

When 7  > 0 , we shall assume condition (5.1) with b € L x(0,1). As 
in the selfadjoint case, one should study the sign of

l

J  epyu \ ( y \ \ ) N ( C w \ ( \ o )  +  u)(y)dy

0

for large \C\ or, equivalently, of

1

R  =  j  epyu>i(y, \ ) (Ccui ( y ; \ 0) +  u ) ( y ) )x ( y )d y  

o

where xifj) € («, a) and ||u|| ^  cr\C\ ||rt>i(A0)||. For C > 0, we have 

R  ^  C m in (l,ep)a||wi(*; A)||z>2 ll^ i(A0)||x,=» 

-m a x ( l ,c p)sup |a;1(y;A )|a /  |u| 
y J

^  C'||u;i(Ao)||Lj(min(l,e,,)a ||w 1(-; A) | |L2

-  m ax(l, ep)a a  sup \u\ (y; A)|) 
y

and the following condition

m in (l,e ,’) 6 ||a;1(-; A) | |L2 ^  m ax(l, ep) a a  sup ^ ( y ;  A) |
y

is needed to obtain R. > 0. The same condition is obtained for C < 0. 
Inequality (5.10) should be satisfied for all A from a neighbourhood
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of Ao, but the left-hand side is a continuous function of A, thus we 
can put sup|u>i(A0)| and | |«>1 (A0) | | i n  (5.10) with the sharp inequa-
lity > . After simple though toilsome calculations we get

sup |i«i(A0)| =  max (l,e""^p°) ,

I M A o ) l l i ,  =  ( £  +  (1 -

1

||JGo(Ao)|| =  /  sup Go(x,y, \o)dx  
J yo
/ 3 _ ,  2. . 11 14 \  i

< ( 5 l i l + o W  +  T + w J "
A \ p o \

where £ =  lim (p(\)  — p(Ao))/(4r(A) — p2 (A) — 4/c~7r2). Using (3.2),
A—-Ao

we get the following restriction for the solvability of nonlinear problem 
(5.G) in the case 7  > 0 :

7(§lel +  ||po l +  j  +  j ^ ) ( “ v /2 W  +  “e~ l'', l \ / | l  - e~Ml)

< ae~^p°l\ J \ \  — e~P°\.

Our estimation were not subtle and can be strengthened, but the last 
condition will then become more and more complicated.

One can consider a more general problem in the same way:

(tit) +  pm_j(.r, A0)u(,n !) +  ••• +pi(a:,A o)u' + p 0( x , \ 0)u =

J5,(u) =  0, * =  1 ,. . .  ,m ,

where D 1, . . . ,  B m are linear operators acting on u ( (a ), j  =
0 ,1 , . . . ,  m — 1; p0, • • • ,Pm-i are functions sufficiently smooth w.r.t. x 
and analytic w.r.t. A. The linear homogeneous problem is supposed to 
have a nontrivial solution for A =  Ao and not to have such a solution 
for A close to A0. This general problem was studied in [19] in the case 
of a bounded continuous / .
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Bogdan Przeradzki

REZONANSOW E RÓW NANIA OPERATOROW E 
Z NIEOGRANICZONYM I CZĘŚCIAMI NIELINIOW YM I

Udowodnione jest istnienie rozwiązań równań nieliniowych postaci 
Lx = N (x), gdzie L jest operatorem liniowym indeksu 0, a N  od-
wzorowaniem nieliniowym ciągłym subliniowym lub o wzroście linio-
wym. Zakładane są warunki uogólniające warunki Landesmana-Laze- 
ra. Rezultaty abstrakcyjne zastosowano do problemów brzegowych, 
w których część nieliniowa zależy także od pochodnych, a rezonans 
może być wielowymiarowy.
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