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The note is devoted to a class Qn of functions /  analytic and 
univalent in the unit disk U , satisfying in addition the conditions 
/(0 ) =  1 and, in the case n =  1: O $ f(U),  in the case n > 2: if w £ 
f (U),  then £jw £ f (U),  e, = exp for every j  =  1 , . . .  ,n  -  1.
Variational formulas are derived and, as applications, are given the 
estimations of some functions in the considered class of functions.

1. I n t r o d u c t i o n

Let Qn , n > 1, be a class of functions /  which are analytic and 
univalent in the unit disk U =  {z : \z\ < 1}, have a series development

f ( z ) =  1 +  ai 2 +  a2z 2 +  . . .

and satisfy the condition:

1° if w £ f(U) ,  then EjW £ f ( U ), £j =  exp for every
j  = 1, . . . ,  n — 1, n > 2 , 0 ^  f ( U ) for n = 1 .



It is clear that Q2 is the well known Gel’fer class Q and Q\ is 
the class of non vanishing functions [8]. Moreover if /  is in Qn, then 
f n/2, where / n/ 2(0 ) =  1 , is in Q and if /  is in Q, then / 2/ n , where 
/ 2/ " (0 ) =  1, is in Qn. The variational method developed by Hummel 
in [5] for Gel’fer class induces of course a variation in the class Qtl. 
However the calculations are such that it is almost as easy to obtain 
the variation directly in the class Qn, using the technics developed by 
Hummel and Schiffer in [6].

2. V a r i a t i o n a l  f o r m u l a s

Let D be a domain with the following property:
2° if to 6  D , then ej tu D, j  — 1 ,. . .  ,n  — 1, for n > 2 and

0 $ D for n = 1.
Let A be a domain containing dD  and such that to € A  iff ejw € A,

j  = — 1 . Let $(w) be analytic in A and let it satisfy the
identity

$(w)  = $ (e j w ) ,  j  = 1, . . . ,  n — 1 , 

for n >  2 and all w 6  A. Moreover let it be such that the function

is defined, analytic and uniformly bounded in A x A. It can be proved 
that the function

w*(w) =  wexpee ,a<I>(w),

where e > 0 , a  £ 71, for e sufficiently small and for all a  is univalent 
in A and maps the boundary dD  onto the boundary of a new domain 
D* also having the property 2°.

Let iu0 be any point such that £jW0 dD , j  =  0 , . . . ,  n — 1, and
set

m  * / \ wn ~  1(1) $(w) =
Wn — Wn



It is easily shown that satisfies the requirements given above,
and hence induces a variation for generalized Gel’fer functions.

Let /  € Qn and let
(i) £jwo £  /( [ / ) ,  j  =  0 , n -  1 or

(ii) w0 € f (U).
In both cases the function (1) has the required properties for D  =  
f (U).  In the case (i) the composition w* o /  gives us the varied 
function

(2) /» ( , )  =  /(* ) + « / ( , ) . “  +  <Ke).

In the case (ii), basing on Goluzin’s method of constructing variations 
of functions of the class S  ( /  G 5  if /  is analytic and univalent in U 
and /(0 ) =  / '(0 )  - 1  =  0) [4] p. 98, we obtain the varied function in 
the form

fn(z) — 1
r ( z )  = f ( z ) + e f ( z ) e ' a

- e e iaz f ( z )

f n(z) -  /'»(C)

/ " (C ) - 1  c 
2/(3 ) X 2/ ”- 2K ) . r ( 0  * -  c

-fa  > / " ( C ) - i  c *+  ee ,az f ( z )  -------- -■
« C  / n " 2(C ) / ' 2(C ) 1 -  C *

+  ° ( £ )>

where /(C) =  w0.
Other useful varied functions we can obtain by transformations in 

the z-plane. Let u>(z) be univalent in U, u>(U) C U, ^(0) =  0, then 
/  o u> 6 Qn- hi particular, putting u(z)  — e±lsz, £ > 0 , we have a 
varied function
(4) f*(z )  =  f ( e ±l6z) =  f ( z ) ±  £ i z f ( z ) +  o(e).
Putting next u>(z) =  (1 — e)z,  0 < £ < 1, we have a varied function

(4’) f*(z)  =  / ( ( l  -  e)z) =  f ( z )  -  £*/'(*) +  o(s).
Putting finally u>(z) =  A:“ 1((l — £)Ar£V(2r)), where ka(z) =  z(l +  
e~iaz)~2, 0 < e <  1, « 6 K, we have the slit variation

e,Qf -j- z
(5) f *{ z )  = f { z ) - £ z f { z ) - r - ------ + o ( e ) .



3 .  S c h i f f e r  e q u a t i o n

Let ^  be a continuous complex valued functional over Qn, having 
a Gateaux complex derivative. That means

for any /  6  Qn, h analytic in U, and any e > 0 , where A/  is continuous 
linear functional in h.

The class Qn is not compact in the topology of uniform convergence 
on compact subsets. However it becomes compact by addition of the 
function f (z )  =  1. Thus the problem of maximizing Re ^  in Qn U {1}, 
if of course <I> is defined also for /  =  1, always has a solution in Qn U{ 1} 
and this solution is in Qn, if we verify that /  =  1 is not maximal.

Suppose now that /  e  Qn is locally maximal for Re i», that means 
Re #(/*) < Re ty(f) for all „nearby” f* e Qn („nearby” in the sense 
of uniform convergence on compact subsets). Using the varied func-
tions (2), (3), (4), (4’) and (5) we can prove

Theorem 1. Let ^  be a complex valued functional defined and con-
tinuous over Qn, having a complex Gateaux derivative A f as defined

I f f  € Qn is locally maximal for Re then f  has following prop-
erties.

(a) w =  / ( ( )  satisfies the differential equation

in some ring P  = {( : r < |C| < 1}.
(b) Im A f (zf ' ( z) )  = 0, Re A f (z f ' ( z) )  > 0.
(c) The right-hand side of (9) is an analytic function in the ring 

A  =  : r <  |CI <  i } ,  real and non-positive on OU.

(6 ) ^ ( /  +  eh) = < b ( f )  + eAf(h)  +  o(e)

in (6).



(d) /  maps U onto a domain whose boundary was made up of  
analytic arcs which lie on trajectories o f the quadratic differ-
ential

fa\ n w n~ 2 (  f n(z) -  1 \  2(8 ) —-— - A / I / ( z ) - ——------ - )  d w 2.
wn — 1 \  f n(z) — w n J

(e) I f  A ,  ( f ( z ) X ) JS a rational function 0  const., then the

set C \  (J"_o £j f (U ) has no interior points, where £ j f ( U ) =  
{w : 3zeuw =  £jf(z)} .

(f) I f  the points EjW0, j  =  0...n -  1, are not in f (U) ,  then at 
least one o f them is on the boundary df (U).  The points  0 
and oo are also on this boundary.

The function g(z) = is univalent in U and maps U onto a
domain which closure is the entire complex sphere.
Proof.

Ad (a) From the varied formula (3) and the formula (6 ) it follows 

Re * ( /• )  =  Re * ( /)  + £ Re {.<• [A/ ~ ^

0 r \ ____ c j j

+  A /  i  

n C > - 2( 0  / ' 2(C )1 -  C*
+  o(£).

Furthermore, because a  is arbitrary and /  makes Re 'I' a local maxi-
mum, we have

Taking account of the representation of continuous linear functional 
in the set of analytic functions in U [1], we shall extend the functional



A/ to a continuous linear functional on the class of functions mero- 
morphic in U and having the poles in the ring P. As a consequence 
we obtain (7), where (  is arbitrary in P.

Ad (b) The varied formulas (4) and (4’) give

R e '!'(/*) =  Re <]>(/) +  eRe {Af ( i z f ' ( z ) ) }  +  o(e),

and
Re W )  =  R e V ( f )  -  e Re  {Af  (z f ' ( z) )}  + o(e).

Since /  realizes the maximum of Re <]> and e is an arbitrary real 
number or an arbitrary positive number, then (b).

Ad (c),(d) The varied formula (5) shows that for £ £ dU

Re ^ ( /* )  =  Re $ ( /)  -  £ Re | a /  (* /'(* )  |  +  o(e).

Since /  is maximal for Re ^  and e is an arbitrary positive number, 
then

and hence and by (b) it follows that the left-hand side of (7) is analytic 
for w =  / ( ( )  on dJJ and that

R r f " C 2/ - - 2( c ) / ,2( o . n * ) - 1  \ l . n
R* t  /»(C) - 1  A/ l / ( 2 ) / » w  - / " ( o )  i  -  0

on dU. Consequently, the boundary d f ( U ) must lie on the trajecto-
ries of the quadratic differential (8 ).

Ad (e) Suppose now that the set E  =  C \  (JJ=o ei f (U)  l̂as an 
interior point. Hence, there exists a disk K  C E.  Let w 6  K.  If we 
apply (6 ) and the varied formula (2 ), we obtain

Re * ( /* )  =  Re * ( / )  +  e Re j e “> A ,  ( f ( z )  } +  „(£).

/  is maximal, then A/  (^f(z) j { ^ y ^ n )  =  0 for w e K , that contra-
dicts our assumption.

Ad (f) The univalence of g is the consequence of the condition 1°. 
The rest of the properties are obvious.



E x a m p l e .  To illustrate the theorem given above, we shall now find 
an estimate for the functional VP( /)  =  /'(()). We find without any 
difficulties that any /  £ Qn which locally maximizes R e /'(0 )  must 
satisfy the differential equation

n i wn~2w '2 1

(1 — wn)2 C2

Integrating

and then

(10) max R e /'(0 )  =  —.
f&Gn n

4 . GOLUZIN AND GltUNSKY INEQUALITIES

As an important application of the Theorem 1 , consider the prob-
lem of maximizing the functional defined as follows.

Suppose that L denote a continuous and linear functional defined 
in the set H (U ) of analytic functions in U and let L (l) =  0. Let 
<p(z,u) be analytic in U X U and t/>(z , u ) =  ip(z,u). We define

I ? ( V) = L ( L M ) ,  \L\2(i>) =  L ( L W ) ,

where we compose L succesively with the function of the first re-
maining variable, see [7], p. 114. For L 2 the order of composition is 
not important by general formula of the continuous and linear func-
tional defined in H(U).  For \L\2 we note that \eiaL\2 = \L \2 and 
Im |£ |2(V0 =  0 if ip(z,u) =  xp(z,ti).

this equation we receive that

= i + ^ + - ’



T heo rem  2 . Assume that there exists the function which maximizes  
in Qn the real part o f the functional

i " , ^  * “ ( ' " •  ¡ r o S i )

where k = j ,  \  £ 71, then

(11) max Re vp(/) =  \L\2 (log(l -  zu)) .
J

Remark. The functional 'I' is defined and continuous in Qn but not 
in Qn U {1}, then it is possible that the function maximal for Re *J/ 
does not exist.

Proof. Let /  be the maximal function for Re The complex Gateaux 
derivative Ay of is

V f n(z) -  f n{u) J

Applying the Theorem 1 we obtain for / ( C ) ,  C £ P — {C : r  < |C| < 1}

‘V n o r t f l / , , , ,  / ‘ w  \ \ 2
(12) - � c( / _  (c)  ( A + ( W ( 0 )£ ( f n( z ) - f n( O J J

=  - B(C) ,



is analytic in the ring Pi =  { (  : r <  |( | <  £} and B( ()  <  0 on dU. 
Hence, the left hand side of (12) has an analytic continuation on the 
same ring and it is a square of the function

(13) $(C)

_  » ( / * - ' ( C ) / ' ( C )  ( s . „  / * ( * )
i  -  / “ (C)

which is analytic in the ring P.  By (12) we see that there exists a 
branch of square root B*(()  of —B(( )  in P  and it can be proved that 
B*( () has an analytic continuation over dU. The same is true for the 
function $(C), so it is analytic in the ring ■P2 =  {C: r < |C | 5i l }  and, 
what follows from the inequality —B( Q  > 0 on d ll, real on dU . By

adding to (13) the function — L ^7^ )  +  L ^ ^ , which is analytic 
in Pi and real on dU, we receive the function

x ( ( )  =  * ( C )  -  £  ( ) +  l
z - ( J  VI ~ ( z

analytic in U, real on dU and A(0) =  $(0) =  —A. By the Schwarz 
reflection principle, X  extends to a bounded analytic function in C. 
Then X ( ( )  = X(0) =  —A for each £• We divide this identity by (  
and write it as follows

A  (x w  / * ( 0 - 1  + L ( lot / * ( * ) - / * « )
a c  I  *  C ( / * ( C )  +  D  I  R (-- -  C) ( / * ( * )  +  / * « ) )

(14) +  £(log(l — C2))) — 0- 

If we integrate (14) from 0 to (, we obtain

(15) Alogc O T O + L (log 0 - o S w m o ))
+  I(log(l  -  ( 2)) =  c,



It, is easily seen that Ree =  0. Indeed, by Theorem 1 (e) the set, 
£ \  U/=o £i f (U)  has no interior points, then there exists a point u  
which is common for the boundaries detlf{U)  and deuf(U) ,  where 
£* = — 1 and £ J =  1. Hence, there exist two sequences (z'm) and 
(2rn)» 2m. zrn € U such that £,J(z 'm) -> w, £ „ /(* ") ^ u a s  m -> oo. 
We may assume that z'n -> 2 ', 2" -> 2", 2 ', 2" 6 dU . Putting in
(15) succesively (  =  2^  and (  =  2" , letting m -* 00 and adding side 
by side the equalities obtained in such a way, we conclude that c is 
pure imaginary. Multiplying now (16) by A, applying L to both sides 
of (15), adding side by side the equalities obtained in such a way we 
have (11). The maximal function satisfies the identity (15) with (16) 
where Re c =  0.

T h eo re m  3. It A ^  0 real, then every function f  o f Qn satisfies the 
inequality

(17) R e * ( / ) < - |L | 2( l o g ( l - 2u)).

This inequality is exact in the sense that there exists the function in 
Qn for which the inequality (17) becomes equality.

Proof. First we observe that the functional Re 'I' is bounded from 
above in Qn. This follows from (10) and from the general form of 
the continuous linear functional in H (U ) by using the inequality of 
Goluzin [4] (| log +  log(l -  |2 |2)| < log {±14 for g <E S).. . . .  1 ■— ZI

Let M  — supy€Cn Re<lr(f). Then there exists a sequence ( / m), 
fm £ Qn, almost uniformly convergent in U, such that Re vP ( /m) —> 
M.  Let f m —> f .  If f  £ then R e ^ ( /)  =  M  and /  is a maximal 
function for Re Suppose now that /  =  1. Then f'm(0) —> 0 and the 
first term in R e i ( / ra) has a limit - 00 . Let Fm = f (/m (0 ))-1 ( /4  ~ 
1). We see that Fm £ S  and, without loss of generality, we may 
suppose that Frn —+ F E S  almost uniformly in U. Substituting 
j f ' ( 0 ) F m +  1 in the place of /*  in R e ^ ( /m), we get that the last 
two terms in Re '!'(/„,) converge to finite limits

Re 12A ^log |  and Re | L 2 ^log ~ F (u )^  |

respectively. Hence, M  =  - 00 , which is impossible.



Wo shall now examine the case when A =  0. Getting A —> 0 in
(17), we assert that

(18) Re  | L ‘ (log {z / ’'( » )) )  } i  - I i | 2d»«(l - i* ) )

for every /  6  Qn- To prove that the inequality (18) is exact, we first 
remind that for each F  € S  the inequality

(19) Re/x2 L ^ l Z y ) }  ~  -!£|2(lo«(l -i«))

holds and there is a function of S  for which (19) becomes equality,
[7], p .114. Let F  be such a function. Next we observe that F  can 
be represented as a limit of a sequence (Fm) of bounded functions 
belonging to S. From the other hand, for each bounded function Fm 
and for the constant bm, |6m| sufficiently small, the function f m(z) — 
(1 -(- bmFm(z))2/'1 belongs to Qn. If we assume that bm —> 0 then, by 
the continuity of L , we have

(z -  u)(f,kn(z ) +  /* (« ))
_ n  i r  2 ( \ Kl(Fm(z) — Fm(u))_____  
-  le \  ^ og (z _  u)(2 +  6m(Fm(z) +  Fm(u))

-> Re 1 1 2 ^log ^  |  =  - | £ |2(lo« (l -  «*))•

Hence, it is obvious that the inequality (18) can not be improved. 
We have thus proved

T he o re m  4. For every function f  £ Qn the following inequality

Re {Li (iog (z-ixAzZ+Au)))}s ~ ] i ] t  iog(i ~ *u)
holds. This inequality can not be improved.

Remark. By replacing L  by e,nL , ft 6  K, we have a second version 
of inequality (18):

f k(z) -  f k(u)
(18’) L log (z -  u ) ( f k(z) +  f k(u))

< —\L\ log(l — zu).



To illustrate the theorems given above, we shall find the estima-
tions for some functionals defined in Qn.

(A ) Let A =  1, L(li) =  0 . Then for each /  £ Qn

l/'(0)| < -  n
and the maximal function is

/(* )
1 +  z \  "
l - z .

The same result was obtained directly from the equation (7).

(B ) Let L(h) =  1 ^ { h (zp) -  h(0)), where zu . . . ,zN are arbi-
trary points in U and A[,...,Ajv arbitrary complex numbers, A 6  H. 
Then for each /  £ Qn

1)

n f ' ( 0 ) N X N

- ! f > -  ^ * • ^ ( * * « = 9 ' ^ ) ' }
N

< -  •VA<'los ( 1 -  ZpzZ)-
li, v=l

We define the differential quotient — as h '(z) when u = z.
Putting in (20) A =  where A/‘ is real  we have the
inequality

(2 !) Re (  V  A„A„ lo g ------- ___________________1
\ ^ l  (Z/‘ -  ^ )(Z  ( ^ )  +  / *( ** ) )  J



It is analogous to the Goluzin inequality for the class S, [4], p. 128. 
For the special case when N  =  1, A| =  1, z\ — z, we have the 
inequality

(22) / '(* )
/(* )

<
n (l -  \z\2)'

(C) Let A =  0, L(h)  =  A\h' (z),  Aj - an arbitrary complex number, 
z (E U arbitrary but fixed. Then for every /  £ Qn we have the 
inequality

Re A f{ / ( z ) ,2 } + A ? ( fc2 +  - ) <  6 -
|Ai |2

/ ( * ) ;  I ~ “ ( i - M 2)2

Taking in account that A] is arbitrary, we have the inequality

1(23) < 6
( i  -  M 2)2 ’

where {/(¿r),^} =  ^  ( />(*) ) ~  2 (  / ' (z) )  denote a Schwarzian de-
rivative for /  at the point 2 .

Let {Am }“ =1 be a sequence of complex numbers such that

lim sup | Am | ™ < 1m — > oo

and A arbitrary real. By Toeplitz theorem [6] p. 36, there exists a 
functional L £ H' (U) such that L(zm) =  Am, m  = 1,...,, L( 1) =  0 . 
Let

f  a z , u< = lo„
">*f— u

then for every /  6  we have by (11) the inequality 

(24)
Re i  A2 log —-■■j - +  2A Apa po +  Ap A9a pg 1 < |A„|



It is analogous to the weak Grunsky inequality for the class S  [2], 
p. 122. By the Toeplitz theorem mentioned above we observe that 
(24) represents a different form of the inequality (17).

By (24) for A =  0 we can obtain like in [7], p. 119, the inequality

(25)
N

£ * >J)=l

N

£ »
<7=1

N
I'M

for all Aj,...,Ayv G C, which is analogous to the strong Grunsky 
inequality in S, [2], p. 123.

From (25), applying the Cauchy-Schwartz inequality, we have

—  • £  —  •
P= 1 P  7=1 q

where Ap and ¡iq are arbitrary complex numbers. (26) is analogous 
to the generalized weak Grunsky inequality [7], p. 124.

Remark. The inequalities (24) are not only necessary but also suffi-
cient for /  6  H(U)  to be in Qn.

R e f e r e n c e s

[1] R. Cacciopoli, Sui funzioni lineari nel campo delle funzioni analitiche, Atti 
Accad. Naz. Lincei Rend. Cl. Sci. Fis. N atur 13 (1931), 263-266.

[2] P.L. Duren, Univalent Functions, Springer-Verlag, 1983.
[3] S.A. Gel’fer, On the class of regular functions which do not take on any pair 

of values w and —w, in Russian, Mat. Sbornik N. S 19(61) (1949), 33-46.
[4] G.M. Goluzin, Geometric Theory of Functions of a Complex Variable, Transl. 

Math. Monographs, 26, Amer. Math. Soc., Providence RI, 1969.
[5] I. A. Hummel, A variational method for Gel’fer functions, J. d ’Analyse Math. 

30 (1976), 271-280.
[6] I.A. Hummel, M.M. Schiffer, Variational methods for Biebcrbacli-Eilenberg 

functions and for pairs, Ser A. I. M athematica, Ann. Acad. Sci. Fennicae 3
(1977), 3-42.

[7] G. Schober, Univalent Functions, Selected Topics, Springer-Verlag, 1975.
[8] J. Sladkowska, A variational method for univalent nonvanishing functions in  

the unit disk, Math. 16, Folia Scientiarium Universitatis Technicae Resoviensis 
129 (1994), 63-77.

(26) E E Q p q  ^ p  f ^ q



VARIATIONAL METHOD FOR CiEL’FER FUNCTIONS 123 

Janina Śladkowska

M ETO DA  W A R IA C Y JN A  DLA U O G Ó LNIO NY C H
FU N K C JI GEL’F E R ’A

Praca jest poświęcona klasom Qn funkcji /  analitycznych i jedno- 
listnych w kole jednostkowyn {7, spełniających dodatkowo warunki m = i i, w przypadku n — 1: O ^ f (U) ,  w przypadku n > 2: 
jeśli to e  f (U) ,  to £jW £ f(U),  £j = exp dla j  -  1 , . . .  , n  -  1. 
Uzyskano wzory wariacyjne i zastosowano je do oszacowania pewnych 
funkcjonałów w rozważanych klasach.
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