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ESTIMATION OF THE FUNCTIONAL A2 • A?
IN THE CLASS OF BOUNOED SYMMETRIC UNIVALENT FUNCTIONS

Denote by Sp(M), M > 1, the family of functions F(z) = z +
+ Y. Anz0 holomorphic and univalent in the disc E = {z : | z | < l}, with
n=2

real coefficients and satisfying the condition |F(z)|SM, z e E.
In the paper there has been obtained a sharp estima

In the paper there has been obtained a sharp estimation of the func­
tional H(F) = Aj* Aj in the classes Sp(M), M > 1.

Introduction

Let SR stand for the family of functions
00

(0 .1) F(z) » z + £ Anzn
n=2

holomorphic and univalent in the disc E = -[z ; |z|<l}, with real 
coefficients.

Denote by S^iM), M > 1, the subfamily of the former, con­
sisting of bounded functions, i.e. of those satisfying the con­
dition

|F(z)| S  M for z 6 E

The problems connected with the estimation of coefficients in 
the classes defined above were dealt with by many mathematicians.

In the family SR(M) well known are, among others, the follow­
ing sharp estimations:



1) for each function F e SR(M) [5],

(0.2) |A2I S 2(1 - ^) for M > 1;

2) for each function F e SR(M) ([7], [9], [3]),

(0.3) |Aj|
1 - M-2 when 1 < M £ e

1 ♦ 2X2 - 4AM" 1 + M~2 when e S M < +oo

where the X occurring in (0.3) in the greater root of the equation

X l g X  = -M* 1

3) for each function F e SR(M), n even and M sufficiently 
large [8], [2], [ 1 0], [ll]),

(0.4) A :£ P-(M)ll n . ^

where Pn(M) is the n-th coefficient in the Maclaurin expansion of 
a Pick function w = M) defined by the equation

(0.5) --- *— -  = — — ?--- z e E, <>(0, M) » 0
(1 - ft) 2 (1 - z)2 ,

Moreover, this function realizes the equality in estimation 
(0 .2 ) .  ■ v

From estimation (0.3) it follows that the Pick function does 
not realize the maximum of the functional H(F) = A^, F e SR(M), 
M > 1.

The above-mentioned results justify the purposefulness of the 
investigation of the functional of the form

(0.6) H(F) = A2 • Aj

defined in the family SR(M). It is worth noting that (0.6) is not 
a linear functional. i'!

To estimate the functional H(F) = A2 • Ay, the variational me­
thod is made use of in the paper. In particular, we use the gene­
ral equation for extremal functions, obtained by I. 0 z i u- 
b i r i s k i  [l].



1. The equation for functions extremal 
with res poet to the Jfunctional A2 • A, 

defined in the class S„(M)

Consider the functional

(1.1) H(F) = A2 • A3

defined on the family SR(M), M > 1. Since functional (1.1) is 
continuous, and the family SR(M) compact, there exists a function 
F* e Sr (M) of the form

(1.2) w = F*(z) = z A»zn
n-2

for which the functional attains its maximum. It is easy to notice 
that H(F*) > 0 and, thereby, A£ * 0 and A^ 1 0. Moreover, 
in virtue of [l], each of the extremal functions satisfies the 
following differential-functional equation:

r- # -* 2
(1 .3 )  Til ( F * ( z )  ) e. i » . » ( z ) ,  0 < I z I < 1  

L F * ( z ) .  z1

where

W ( w > 1 E  D£-i[(S )P' 1 ♦<m )1' p1 - p = 2

3
w(z) r Ep - i (zPl + zlP) ■ 2V* 

P=1

DJ = 2M"2(A^ + 2AJ)', D* 2 a 2M'3AJ

(1.4) E* = 3M*1A5A5, EJ = 2M'1 [a^ ♦ 2A|2]

E-> * 2M-1AS, V *  - min [0i cos x ♦ OS cos 2x] ¿ 1 0̂ xs2u 1 i



The functions 7Jl(w) and 7 1 (2 ) take real-negative values on 
the circles IwI = M and |z| = 1, respectively, and either of them 
has at least one double zero on the respective circle just mention­
ed. It can easily be observed that if is a zero of the func-

2°  2 M Mtion 7TC(w), so are the numbers wQ , — -, analogously if z
0 0  1 1is a zero of the function 71 (z), so are the numbers zQ , y~.

Let us denote 0 0
M(AS + 2AS)Cl.5) -- V — ^

2

Then formulae (1.4) will take the following form:

(1.6) 7n(

( 1 .7 )  71 ( z ) =

2AS [w* + |3Mw3 - - 4 t ~ w2 + (3M3 w + M4]w, . —1L--- -------- ,-- 1
m V

2A5 [z* , f , ] - V »  ,  , j

Mz2

(1.8) V* --^»min AS [cos 2x + |3cos x]M Goc<2fl

Lemma 1. Each function (1.2) extremal with respect to functio­
nal (1.1) satisfies the equation:

I. The case A£ > 0.
A.

if 0<(3<;4; 
8.

r z v '\2 A2 (w2 +łpMw + m2>2 A2(z2 + IS 2 + 1)2 ̂”  4 2 “ 2M w ZL

. -2 AS(w + M ) 2 [ w2 ♦ (fi - 2) Mw + M2Jp j j ---------- -  -

AS(z2 + A  z + I)2 
L 2M-  ------------



if 4 < (3 < 4 M;
C.

if ß ä 4M. 
II. Th(
0 .

1Î ß < 0 ; 
E.

if ß - 0 ,
F,

AJ (w + M ) 2 [w2 ♦ (ß - 2) Mw + M2]
M4w2

AJ(z ♦ l) 2 [z2 ♦(£- 2)z ♦ l]
z2

< 0 .

AJ (w M ) 2 [w2 + M(ß - 2)w + M2]
M4w2

AJ(z ♦ 1)2 [:z2 +(-§• - 2)z + l]
z2

( F - f
AJ(w - M ) 2 (w + M ) 2

m V

i > |N>
* (z + l ) 2 ( z - l ) 2

z2

AJ (w - [w2 + M(0 + 2)w + M ] 2

M*w2

AJ(z - l)2[z2 +(£ + 2 ) z l]



Besides,

(1.9) H(F*)=

in case A
2

y  A^Tl + ( -ig-- (3 + 1)J in case B
M

7  A2 [ ^ ł + M * l]

Ą  AJ(1 - (1 + - f)

A 5 (1 ” "̂ j) M3 2

-y A5(1 * ¥ ) ( 1 + ¥  + m 5

in case C 

in case D

in case E

in case F

P r o o f .  Consider case I. Since > 0 and AJ^A^X), the­
refore from (1.5) it follows that, in this case, (3 >0.

Let us calculate V * . For the purpose, put

u(x) = (3 cos x t cos 2x

We then have u'(x) = - (3 sin x - 2 sin 2x, whence u'(x^) = 0 if 
Xj = 0, x2 = JT or cos Xj = Since u '(x) = -f3cos x ~ 4  cos 2x, 
therefore:

a) if 0 < (} < 4 ,  then umin * u ( X j ) ,
b) if (3 > 4, then umin = u(OT).
Finally, in virtue of the above and (1.8), we obtain

( 1 . 10 ) V * =

-2A
M

2A

| (1. ♦ fig-) if 0 < p S 4 ,  Ajji >

M
2(1 - (3) if (3>4, A* > 0 
3

Let us substitute the values determined in (1.10) into (1.6). 
After some simple transformations we shall get



(1 ,1 1) TC(w)*
m V

2A3 (w M ) 2 [w2 + (|3 - 2)Mw + M2] if [3 > 4

M5w2

We shall next examine the function W(z) in the case under 
consideration. From the properties of this function - mentioned 
at the beginning of the section - and from formula (1.7) it fol­
lows that it can only be the form

( 1 . 1 2 )

or

(1.13)

7l(z)
2A£(z - € ) 2 [ z2 + s (r + ¿)z + l]

Mz'

E , 6 * ±1 , 0 < r s 1

1 l(z )
2A|(z - a )2 (z -3) 2 

Mz2

Itft = 1, d  i ±1

Since the function 7l(z) is non-negative on the circle |z 
therefore, in the case of equation (1 .1 2), the inequality

TC(eiy) = — ĵ =(cos y - E) [2 cos y + 5(r + -p)] 2 0,

0 S y < 2JI

should hold, whencs

(1.14) £ = 1 and S = -1

or



3 2By comparing the coefficients at the same powers z and z in 
the numerators of formulae (1.7) and (1.12), we obtain

(1.15) = -2C + 6 (r + £)

(1.16) 2 , 2€5(r ♦ !)
A5

Case (1.14) is not possible because p > 0  and the other, i.e. 
(1.14'), remains valid. Then, by (1.15),

(1.17) r + r" 1 = $- - 2

Equality (1.17) is possible only for p ¡i 4M. Hence, in view 
of (1.12), we get the right-hand side of equation C, in juxtaposi­
tion with (1.11), gives us equation C.

A suitable formula for H(F*) follows then from (1.14 ) (1.16),
(1.17), and (1.10).

Proceeding analogously when the function ÎI (z) is defined by 
formula (1.13), we have

(1.18) * -4 cosx where x = Arg d

(1.1» , 2 * 2  COS X
A *2

whence
. 22AS(z2 + Jn z + 1)

7t( z) = — ---- 2^ --- -----Mz
From (1.11) it follows that equation (1.3) is of form A when

0 < ¡3 s 4, and of form B if 4<(3<4M. Whereas from (1.19), (1.18) 
and (1.10) we obtain suitable formulae (1.9),

Proceeding analogously in case It, i.e. when AJJ < 0, we get 
forms D, E and F of equation (1.3) as well as suitable formulae 
for H(F*) defined in (1.9).

So, we have shown that equation (1.3) - with appropriateness 
to the values of A£ and p - takes one of the six forms. We have 
also expressed the upper bound of the functional H(F) by means of 
P, A£ and M. Consequently, it is necessary to determine the



unknown quantities A£, (3 by M and to find the intervals of va­
riability of M. For the purpose, we shall next integrate each 
particular differential-functional equation A - F in order to ob­
tain equations for the unknown quantities and other auxiliary para^ 
meters, and carry out an appropriate discussion.

2. Integration of equations 
for extremal functions

Let us successively consider each particular equation:
1. Equation A. In this case - by lemma 1 - we have

. w2 + J-|3Mw + M2 z2 + z 1
(2 . 1 )  2 -----------« £ ------------- ---------

w M w z

e = ±1

Since F*(o) = 0, F*'(o) = 1, therefore £ = 1.
Integrating hoth sides of equation (2.1) in any simply connect­

ed sets which do not contain zero arid are contained in the discs 
! wI < M and lz| < 1, respectively, we have

(2.2) , ♦ $  log f -  = z - f  ♦ C

where the branch of the logarithm is so chosen that, for z = 0, 
it takes the valua 0, and C is a constant.

Since on the circle Izj * 1 there is an arc \  which is trans­
formed by the function w = F*(z) onto an arc f '  of the circle I wI * 
= M (cf. [1]), therefore, after substituting z = e £-y and, re­
spectively, w = Meiy£T' in equation (2 .2 ), we get

(2.3) re C * log M

Expanding the left-hand side of (2.2) in a power series in a 
neighbourhood of the point z = 0 and comparing the absolute
terms and the coefficients at z, we have



(2.5) ~2 + A  A2 + A5 * A2 2 " 1

Making use of the fact that A| is real and of (2.3), (2.4), we 
obtain

(2.6) A* « ^  log M

After determining the A^ from (1.9, A) and after substituting 
it, together with (2.6), into (2.5), we get

(2.7) (32 log M (1 - log M) = j(M2 - 1)

This equality makes sense only for M £  (1, e). After taking 
account of the fact that (3 > 0, from (2.7) we have

(2-7 '\ = 3 v T \ / W  m U .- \~og'W

Let us substitute the above relation into (2.6) and, next, 
(2.6) into (1.9, A). We shall then obtain the formula for H(F*) 
in case A.

From the condition p <; 4 we infer that (2.7) can hold only 
for M £ (1, Mq> where MQ is the only root of the equation

(2.0) 12 log M(1 - log M) + 1 - M2 * 0

We have thus proved
Lemma 2. If in the family SR(M), M £  (1, MQ>, there is an ex­

tremal function w * F*(z) satisfying equation A, then it fulfils 
the equation

(2.9) ^  iog |  - i  x z - I  + JL log M

ana the equality

(2.1°) H(F*) = l°-"T6g”"R

takes place, where MQ is the only root of equation (2.8). For M >
> Mq , there is no extremal function satisfying equation A.

2. Equation 8 . It can be represented in the form



2
(2 .11) fZw\2 . <»L-*Jc 3.

M*w2

(z2 ♦ ^  z ♦ I)2
z2

9where -r (G < t  < M) is one of the roots of the equation w*" + 
+ (¡3 - 2) Mw + M2 = 0.

From [6] (P- 660) and from (2.11) it follows that the point 
w = - 1 must be a boundary point of the domain F*(E), or else, the 
right-hand side of (2.11) would have a root at some interior
point of the disc E. Since F*(o) = 0, F*'(o) = 1,. therefore, by
(2.11), we have

(w + M)(
(2.12) zw'

M2 F  +

■ *  * y ; r g

M2 w

z2 *  A  z + 1

the branch of the root

(2.13) P(w) =

being so chosen that, for w = 0, it takes the value
Integrating both sides of equation (2.12), after using (2.13) 

and after some simple transformations, we have

(2 14) <M ♦ T ) 2 i o n  T-. MP(w) Cm + ~ t)2 tog _
2M2t T+ MP(w) 2M2 1 1 * P(w)

_ M2 - T2 # P(w) _ M2 - T2 p(w) a 
M2 M2P(w )-1 -rM2 P2(w - 1)



■ z * ft' lo9 z " Y  + c
where the branch of the root is chosen as above, the branches of 
the logarithms - so that log 1 =0. i jSince there exists a point zQ * e , 8 6 <0, 231) such that
lim F*(z) = <r [6], from equation (2.14) we havez-z„
zeE

(2.15) re {C> = 0

Let us expand the left-hand side of (2.14) in a power series 
in a neighbourhood of the point z = 0 and compare the absolute 
terms. Making use of (2.15), we get

A  lQ9 jjf AJ - f t  + f  ■•■0 

From the above relation we have

u . H >  * 5 , , * ® ^

Substituting (2.16) into (1.9, B), we obtain H(F*) depending 
only on (3. In order to determine the H(F*), we have to determine 
the (3. With that end in view, let us compare the coefficients at 
z ajter expanding the left-hand side of equation (2.14) in a Tay­
lor series in a neighbourhood of zero; we shall then get

(2.17) ft [aj - J3

After determining the A^ from (1.9, B) and after substituting 
it into (2.17) we have

(2;IB) A*
---- ---------- -------- -
16(3 - 16 (M ♦ 1)

2 4M * 48M2

or

iL .¡v  ♦ 16 P -  16 (M2 7 7 ?  
48M2



Juxtaposing (2.16) with (2.18), (2.18), we obtain two possi-. 
ble equations which should be satisfied by the (3 in the case con­
sidered:

0 - * 9,„n fi 0 , P  * “ f ’- 16(i|2 * »(2.19) i-jp- - IRlog Jjy - m  * -yI — ----- ----------
48M

or

(2 19 ' ) . J L  l0Q J L  , J L  /a2 ♦ 160 - 16(M2 + 1)’K t . i y  ) 2M 2M log  4M 4M --w ^ ^ 5 “

where 4<{J<4M.
At present, we shall h' concerned with the problem of the exi­

stence of roots of the above equations, as well as with the unique­
ness of solutions.

Oenote

(2.20) 4R = X and M" = T
From the conditions imposed upon (3 and M we obtain

(2.21) T < A < 1 and 0 < T < 1

Let us substitute (2.20) into equations (2.19) and (2.19') we 
shall then get

(2.22) A( 1 2 log A) - 2T = y S 3 L l L z J ™ = _ l

(2.22') Ail - 2 log X) - 2T * - i...AI.z . j J  X

On purpose to shorten the notation, let us denote
2 2 *”"V'

K(A, T) » A(1 - 2 log A) - 2f, G (A, T) -- £ .1
3

A, = {(À, T), 0 < A S — , 0 < T sA. }

A, = {(X, T),-i-< A, < 1, 0 < T < T(X)} 
V F



A, * {(X, t> ~ < X  < 1, T a T(X)}

A* = {(X,T) <X<1, T(X) < T £ X}
Ve

A 5 = {(X, T), j < X < l ,  TX(X) < T £ x}

where T(X) = \  X(1 - 2 logX), while T^X) * 2X -y ^ X 2 - 1
After examining the signs of the values of K(X, T) and G(X,T) 

we acquire the following information:

K(X, T) > 0 <=> (X, T) e ( A ^ A g )

K(X, T) = 0 <s»(X, T) e A 3

K(X, T) < 0 o  (X, T) e A a

G(X, T) = 0 O  T * Tx(X), X€<|, 1)

G(X, T) > 0 o  (X, T) e A 5

By the information and the notation adopted above.it remains to 
consider two possibilities

(2.23) K(X, T) = G(X, T), (X. D e A j a CAj u  A 2)

(2.23') K(X, T) = -G(X, T), (X, T) 6 A 5 n  A4

In Fig. 1 we shall present domain in which (X, T) may vary, 
and in this domain we shall sketch the graphs of the functions

T(X), Tj(X) and T2(X) where T2(X) = 2X +-/5\2 - I

Denote k(T) * K(X, T) and g(T) = G(X, T), where X is fixed,
XG(j, 1), while T is variable, T e (T^iXJ^X).

After examining the functions k(T) and g(T) we obtain:
I. For each equation (2.23) has one solution ^ =

Ve
= T-j(X) 6 (T^(X),X) if and only if k(X) £ g(X).



-T=T2U1

II. For each — <A<1, 
Ve

T4U )  e (Tj<A), T(A)).
III. For each— < A < 1 ,  equation (2.23') has Ve

T5(X)

Fig. 1

equation (2.23) has one solution T

one solution T
-v./w e (T(A), A) if and only if k(A) £ -g(X).
IV. For equation (2.23') has no solutions belonging

to the interval (T(A),A).
After examining the functions kj^(X) = k(A) and gj(A) s g(A.)

for Ae(i. — > and the functions k.(A) = k(X) and g2( X) =
2 Ve

-g(A) for Ae(^, 1) we get
Lemmai 3. For each X € <X0, equation (2.23)

T = Tj(X) e (T^A), A), where AQ e (¿, -i)solution 
root of the equation

has exactly one 
is the only



II. For eachA€~-, l), equation (2.23) possesses exactly one 
solution T = T4U )  6 (T^(A), T(A)).

III. For each pair (X, T) e A 5 o A 4, equation (2.23) possesses 
no solutions.

It remains to decide whether, for distinct A € < A 0, 1), the 
roots of equation (2.23) are distinct and, if A 6 < X 0, 1), then in 
what interval the values of Tj(A) and T^(A) vary.

After some simple calculations we get that the functions Tj(A), 
T^(A) are decreasing functions of variable A in suitable intervals,
i.e. that the function

T*(A)
t3(a), a ^ x < ; ^

T4(A), yg, S A<1

decreases from the value AQ - TQ e (^, ) to
From lemma 3 and the above considerations there follows:
Lemma 4. For each T e <j|, To>, equation (2.22) possesses ex­

actly one solution X * \(T) 6 <TQ , 1) where TQ * 
the only root of the equation

For T e (0, 1), Tc>  equation (2.22) has no solution
belonging to the interval (T, 1). If T = j-fi tben (A)T = 1, whe­
reas if T * T , then A(Ta ) * TQ ; these are limit cases.

For T e (0., 1) and Xe(T, 1), equation (2.22') has no solu­
tions.

Corollary 1. For each M e < M Q , equation (2.19) possesses
exactly one solution belonging to the interval (4, 4M) where MQ 
is the only root of equation (2.10). For A > 1, equa­
tion (2.19) has no solutions from the interval (4, 4M).

II. For each M > 1, (3 e (4, 4M) equation (2.19') possesses no 
solutions.

We have thus shown
Lemma 5. If in the family SR(M), M > 1, there is an extre­

mal function w = F*(z) satisfying equation B, then



H(F*) • ~ ~  - —  log + -^ (~- - (3 + 1)
> 2M 2M 4M L M B

where 3 is the only root of equation (2.19), belonging to the in-O i iterval (4, 4M), while M 6 (Ml)I a j ) where Mq is the onlv root of 
equation (2.10). Besides, the extremal function w » F*(z) sati­
sfies (2.14) where

0 (3C = -5m loo + A5 - + F

For M £ (Mq , --j ), there is no extremal function satisfying e- 
quation B.

3. Equation C. In thi3 case, the equation can be written in 
the form

(2.24) / 2W \2 (w ♦ M>2 (w + #  (w *
A w'; MT w 2

(Z + l)2 (z + £>) (z + ~)

2where -T(0 < T < M) is one of the roots of the equation w + 
+ (0 - 2 )Mw + M2 = 0, while -¿>(0 < £  si) is one of the roots of 
the equation z2 + (|j- - 2)z + 1 = 0,

Note that in the domain {• * E - (-1, -£> there is a single- 
-valued branch p(z) From (2.24) it follows that -1 =

* F*frgi) since F*(-g) * 0. Consequently, \n the domain F*(§) there 
is a single-valued branch of the P(w) defined in (2.13). Let us 
adopt p(o) = £, P(o) *

Since F»(o) « 0, F*"(o) = 1, equation (2.24) can be repre­
sented for z e i in the form



Integrating equation (2.25), we obtain ufter 3ome simple trans­
formations

(2.26) log . ÜL+JêZ log ---- --  -
2M T T + MP(w) 2M T 1 ♦ P(w.)

. M2 - T2 . __  P(w) _ M2 - T2 . P(w) „
M M2P5(w) - T? P2(w) - 1

« i l J L S ù l  log - (: .rjel! log
2g ¿p + p(z) 2# 1 + p(z)

+  c
P <z)-/p £> P <z) - 1

where C is a constant, and P(w), p(z) are the branches of the 
roots, chosen before, while the branch of the logarithm is so 
chosen that log 1 » 0.

Since, with z- -£ w - -z, therefore, passing to the limit of
z - -£ in (2.26), we have

C = 0

Next, expanding both sides of equation (2.26) in a power se­
ries in a neighbourhood of z = 0, after comparing the absolute

M X 1 Pterms and making use of the relations + = P " 2, g + _. » .p. _ 2)
we get

(2.27) A* = 2(1 - -̂)

Let us make another use of the expansion of equation (2.26) in 
a power series in question and compare the coefficients at z. We 
then obtain

« ■ 28> â [ * 2 - JT r j ' ^ 2 * A5 - * 5 i*

* z i ■ t i ■ é (1 ■ A ’ * A  • 1 * " S

Determining the A^ from (1.9, C) and substituting it, along, 
with (2.27), into (2.28), we have



11M - 13¡3----- 2__

Solving the inequality ¡3a4M, we deduce that M £.
We have thus proved
Lemma 6. If in the family SR(M)-, M 2: there is an extre­

mal function w = F*(z) satisfying equation C, then • Aj£ Pg(M)•
• P,(M) where P0(M), P,(M) are defined in the introduction. This 
estimation is true for M a For M < there is no extremal
function satisfying equation C.

Consider the function w = 9(z, M), holomorphic and univalent 
in |z| < 1, defined by equation (0.5). Since £P ( z , M) = z +
+ 2(1 - ^)z2 + (3 " 'S' * * •••* therefore ^(z, M) e SR(M) andM
H($>) = H(F*). It can easily be noticed that the function 
satisfies equation (2.26).

4. Equation D. In this case, the equation can be written in 
the form

9 M2-2 (w + M) (w - T) (w - ~ r )
(2.2S) --------- - r T ...... "M w

(z ♦ n 2(z - ¿.Hz - h
.... ... .. "2------- ÙL~z

o
where % e (0, M) is one of the roots of the equation w + M(p -2)w + 
+ M2 = 0, while g e (0, 1) is one of the roots of the equation 
z2 ♦ (Jj- - 2)z ♦ 1 = 0.

Proceeding similarly as in case C, we have

A* - 2(1 - ¿) > 0

whence we get a contradiction since, in the case under considera­
tion, A* < 0.

So, we have shown
Lemma 7. There is no extremal function with respect tc the fun­

ctional H(F), satisfying equation 0.
5. Equation E. In this case, the equation after some transfor­

mations takes the form

(2.30) 2 !L w j — jj! » - i
w M2w z



Inr . itlng both sides of the above equation, we have

(2.31) ^  . i  = 2 , y  . c

where C is a constant.
Let us expand the left-hand side of (2.31) in a power series in 

a neighbourhood of z = 0 and compare the absolute terms as well 
as the coefficients at z. We shall then get

(2.32) ' C * -Aij;

(2.32') 4? + A*2- A$ = 1M
Determining the A5 from (1.9, £) and substituting it into 

(2.32'), we obtain

a22 " ¥ '  -
Hence, after taking account of the sign of AJ (AJ <0), we get

*2 3 ‘ f a '

and, thereby, we have determined the H(F*) in the case consider­
ed. 8y examining equation (2.31) for C one can easi-lily demonstrate that it possesses a solution belonging to the family 
Sr (M) only for M £

Mo have thus proved
Lemma 8 . If in the family SR(M), M >  1, ther« Is sn extre­

mal function w = F*(z) satisfying equation E, then

IS IE P ®
and moreover, this function satisfies the equation

^  1 1  s z + i + y ^ ( l  --ij)'

This case can hold only for M 2  jj.
6 . Equation F. Let us write that equation in the form



/zw\2 iw * M) (w + <w + T*)(2.33) ( ¿ a - ) --------- r~=------ =
w M w

(z - l)2 (z p)(z +
-------- ? — * -

Proceeding similarly as in case C, we get

A2 = '2(1 " TT*

Let us substitute the above relations into (1.9, F 
then obtain H(F*) = -P2(M) • P3(M) where P2(M), Pj(M) 
in the introduction.

From the inequality /3 > 0 follows that M <^j- 
Consequently, we have proved
Lemma 9. If in the family SR(M), M > 1, there 

mal function satisfying equation F, then

H(F*) .» -P2(M) • P3(M)

and moreover, this function satisfies the equation

(2.34) Â  lo® f i ' S l î i  " &  l09 I~rÎ(î8 +
. M2 ». T2 P(w)

T O T T ? "

. M . „PCy), . a l0B
M <r P2(w) - l 2M e  *  P(z)

- & log * - P(,> ♦ (l - A  ■■■■ K » 1 - 
2M 1 * p(z) e P2<z) - p‘

i - ¿>2 P(z)
£ p2(z) - 1

); we shall 
are defined

is an extre-



Thi3 case can hold only for M < yr.
Consider the function w = -«PC-z, M) where w = “PCz, M) is

defined by equation (0.5). Since-9(-z, M) = z 2(1 - -^)z2 +
+ ( 3 - |j- + -̂ -j)z3 + ..., therefore-<P (-z, M) € SR(M) and HC-i’t-z.M)) 

M
= H(F*). It is easy to demonstrate that the function w =-<P(-z, M) 
satisfies equation (2.34).

3. The fundamental theorem

In the investigations made so far, we have considered all pos­
sible forms of differential-functional equation (1.3). At present, 
we shall proceed to proving

The fundamental theorem
2 3For any function w = F(z) = z + A2z + A?z ♦ 

ly SR(M), M > 1, the following sharp estimation

(3.1)—(3.5)

-2(1 - ¿)2(3 M)

A , £

WTV(“ - y

- ir>

of the fami-

if 1 < M si 13
11

if Ve S M S H

if Mq S M

if M > 13

takes place; where in (3.3), (3.4) Mq is the only root of the 
equation 12 log M(1 - log M) + 1 - M2 = 0, while the |3 occuring in
(3.4) is the only root of the equation

aa -  4 _
2M 2M 109 4R' - JL ^  * i6<* ~ 16(m2 *■

4BM
(belonging to the interval (4, 4M)),



P r o o f .  In lemmas 2,5, and 6 , 8 , 9  we have obtained the 
formulae for the values H(F*) of functional (1.1), as well as the 
intervals in which suitahle estimations can hold true. Since the 
intervals obtained are not disjoint, the proof of the theorem will 
consist in determining the sharp estimations in the common parts of 
the above-mentioned intervals.

Note first that, in the interval (1, ~~> formulae (3.1) or
(3.3) can hold (see lemmas 9, 2). Comparing both values of the 
functional, we arrive at the conclusion that the estimation valid 
in this interval is (3.1); the function w =-<J> (-z, M), where w =
= P(z, M) is a Pick function defined by equation (0.5), realizes 
the equality in estimation (3 1) and belongs to the family SD(M).IX KSimilarly, in the interval < n >  V e ‘> there can hold two cases, 
i.e. (3.2) or (3.3) (see lemmas 2, 8). Comparing both values 
of the functional in the interval considered, we infer ¿.hat the 'es­
t imation  valid is (3.2), equality taking place for the function w*
= F*(z) defined by equation (2.30), This function maps the disc E 
onto the disc |w I < M from which two arcs lying on the real axis 
and issuing from the points Wj 2 = ~M have been removed.

Let us next consider the interval <Ve', M0> where Mq is defined 
in theorem 1. In this interval', formulae (3.2) or (3.3) can take 
place. After comparing suitabale values of the functional H(F) in 
the interval under consideration we deduce that the estimation hol­
ding true is (3.3); the equality in estimation (3.3) is realized 
by the function w s F*(z) defined by equation (2.9); the proof of 
the existence of such function of the family Sp(M) can be found in
CO-

Let us now take into consideration the interval < M Q , i|>. In 
this interval, estimations (3.4) or (3.2) can hold. Comparing 
both values of the functional in the interval considered, we infer 
that (3.4) is valid; the equality in estimation (3.4) is realized 
by the function w = F*(z) defined by equation (2.14); the proof of 
the existence of such function of the family SR(M) can be found in 
paper [4 ].

What is left for us is to consider the interval <^-j, +0°) • From 
lemmas 6 and 8 it follows that, in the interval under considera­
tion, formulae (3.5) or (3.2) can hold true. From the compari­
son of both values of the functional we conclude that formula (3.5)



is valid in this interval; the function realizing the equality in 
this estimation is w * <P(z, M) defined by equation (0.5) which, as 
we know, belongs to the family Sp(M). Consequently, the theorem 
has been proved. 2 ^Corrollary 2. For any function w * F(z) = z + A?z + A}z * . . , 
of the family SR(M), M > I, the product A2 • A? is greater 
than or equal to suitable values (3.1)-(3.5) multiplied by minus 
one.

This corollary results from the fact that if F € Sft(M),then the 
function w = -F(-z), too, belongs 1;o tho family SR(M):
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Longin Pietrasik

OSZACOWANIE FUNKCJONAŁU A2 • A 3 W KLASIE FUNKCJI OGRANICZONYCH, SYMETRYCZNYCH I JEDNORODNYCH

Oznaczmy przez 5R(M), M > 1, rodzinę funkcji F(z) * z + holomorfi-n*2
cznych i jednolistnych w kole E = { 2 : |z| < 1}, o rzeczywistych współczynni­
kach i spełniających warunek I F(z)l SM, z e E.W pracy uzyskano dokładne oszacowanie funkcjonału H(F) = A,* A, w klasach
SR(M), M > 1.


