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ON SOME GEOMETRICAL CHARACTERIZATION
OF SINGULAR NORMEI1I3 MEASURES

In this paper there are given two characterizations of singular
normed measures. These theorems are used to study singular measures in

the product of measurable normed spaces.

Let Y be a (real or complex) vector space and let Z be a sub-
set of Y having at least two points. We say that two distinct
points p®, p2 e Z are antipodal in Z (or simply antipodal) if and
only if, for each x*, x2 e Z and for every vreal number t, the
equality t(px - P2> = - x2 implies |t] £ 1.

Let (X, A) be any measurable space. Then the set Y of all
signed measures defined on this space is a real vextor space (ad-
dition and multiplication by real numbers are applied in the usual
sense). Consider the subset M of Y containing all nonnegative
measures y defined on X and normed by the condition y(X) = 1. Then
one can prove the following.

Theorem 1. Two normed measures y, v e M are antipodal if and
only if (v - VY*(X) = 2 where (y - v)*(X) denotes the total varia-
tion of a signed measure y - v on X.

Proof. Remark first that, for all normed measures vy, V
defined on X, we have ( - V*(X) £ 2. Really, for upper and lower
variations of the measure X =y - v, we have the 1inequalities
A £y, X" £v. As X* = X+ + X-, so X*(X) £ 2.

Suppose now that (¢ - \D*X) = 2 and assume that there exists
a real number t 2 1 and two normed measures y», for which

t(y - vV) = yL - v*e Then we have (" - B)*X) = t(y - VO*X) > 2.
This inequality is impossible, so the measures y,v Ffulfilling the
condition (y - v)*(X) = 2 are antipodal.



Now, suppose we have (y - v)*(X) < 2. Then t = _ VJ% ®Hy) >~
and t(y - V*(X) = 2. Put X =t(y - v). Then X*(X) * X+ +
+ X_(X) = 2. Suppose that X+(X)<1. So X X)) >1. Let B be a
measurable set such that, for every measurable set A, we have
X)) SO for AcB and X(A) 1 0 for Ac X \ B. Then X(X \ B) =
=X+ <1 and XB) = -X-(X) < -1. These inequalities imply
y(X) < v(X), which is impossible. Assuming X+(X) > 1, we obtain
a false inequality y(X) > v(X). So we proved that X+, X" are
normed measures. The equality X=t(y-v)=X -X shows that
the measures y, v are not antipodal. This completes the proof.

By the above theorem, we obtain the other characterization of
antipodal points of M.

Theorem 2. Two normed measures y, v e M are antipodal if and
only if they are singular.

Proof. Suppose first the measures y, v are singular. Let
A be a measurable subset of X for which y*(A) = v*(X \ A) =0.
Then ¢y - V*X) 2 y(X \ A) + v(A) = 2. But, on the other hand,
Y -Vv)*X) S2, so (¢ - vW*(X) =2 and, consequently, y, v are
antipodal.

Assume now y, % to be antipodal. We haxi

2 = (y - v)*(X) = [y(X\ B) + >(B)] - [y(B) + v(X\ B)],

when B is as in Theorem I. So y(X \ B) + v(B) = 2 and y(B) +
+ v(X\ B) = 0 and, consequently, y(@B) = v(X\ B) = 0.

The theorem just proved gives a simple geometrical characte-
rization of singular normed measures on X. We used them to cha-
racterize singular measures on a product space. The following
lemmas will be useful.

Lemma 1. Let y, v be nonnegative o-finite measures on (X, A)
such that vX) >0 and v« y (v is absolutely continuous with
respect to y). If y =y + v, then there exists a measurable real
function f such that, for every measurable set A, we have

v(A) = f F dy
A

and 0 S f <1 y-almost everywhere on X. Moreover, the set B =
={xeX:0<fF(x)<I1} is measurable and y(B) > O.

Proof. It is clear that v « y and y is o-finite. By the
Lebesgue-Radon-Nikodym theorem, there exist only two finite non-
negative measurable functions fQ, ¥ defined on X such that, for
every measurable set A, the equalities

V(A) =S f dy = T T dii
A ° A



hold. From this we obtain

S f(l + f-)dy = ¥ FQdy.
N ( -)dy r y

Hence fO = f(l + fol y m a.e. on X. So, according to the assump-
tion v<ky, we have that 0 S f <1 y - a.e. on X.

Moreover, the equivalence f(x) =0 « fQ() = 0 is fulfilled
y - a.e. on X and the equality f = 0 does not hold y - a.e. on X.
So aset B={xe X :0< f(xX) <1} is measurable and y(B) > 0.
This ends the proof.

Lemma 2. IF¥ a-finite measures y, v on X are nonnegative and
fulfil the conditions v« vy, y * v, then

¢ - VvI*X) <y + v(X).
Proof. Put y =y + v. Let f be a function from the first
lemma and let
B={x6X :0<fX) < 1},
Bk = {xe X £ < f(X) <1 - £}.
®
= U
k»3
integer kQ 2 3 such that y(“k ) >0.

Then u(B) > 0. Moreover, B Bv. So there exists a positive

Let {, A2, ... An) c A be any partition of X. Consider a
new partition {C1( C2, ..., Cn) e A obtained from the first one

in the following way:

A. n Bt i-1, ...,n
1 Ko
TS as N\ BK i 1 2
= n+
i‘—ﬁ ] n+l, ..., 2n.
} n 2n
It is easy to see that 1jCj - Bk , u C. - \ Bk ,
-1 1 o -+l 1
Moreover,

ﬁnl Iy -V (A-l)l =5 Iy - 2v)(AD)IS iI-I\S @ - 2fHady|] +

I »l L.

+ - Iy - WVE.)IS S 1 - 2fFMil + y(X \ Bk ) S y() +
i+l B °

+ v(X) - EFJ y(Bko) -

These inequalities hold for every partition {A™ A2, ..., An), so



¢ - vIFD) Sy + v(X) - y(Bk ),

o o]
which implies the proposition of the lemma.
Theorem 3. Let {(Xx~,, )} 9gJ, be a family of measurable spaces
and y», (yer)- normed measures defined on X~ Let y =

= ® y , v= 0 v . If there exists y e r such that y ,
Ysr " ver " hd YO

v are singular, then the product measures y, v are singular,
Yo
too.

Proof. By our assumption, there exists a set A e 1L
Yo
such that y A d>)=v X \N A )=0. Put
Yo "o Yo Yo Yo

A__ = X;o
X, \ A 1 o* Y
N o "o "o
Then the sets A= p A, B= p B are measurable subsets
ye r ' ye r '
of the product space ( P X . P A), such that y(A) =
yeT Y ver Y

=v( P Xv \ A = 0.
(yeT Y )

ITf r is a finite set, then the above theorem can be reversed.

n n
Theorem 4. The measures y = ® vy,,, v =® v. defined on a
k*l K k=l 1
n n
product (p Xv, P AJ of measurable spaces and normed by the
k=1 K k=1 K
conditions =1 (k=1 2, ..., n) are singular

if and only if there exists a positive integer kQ (@ £ kQ S n)

such that the measures yk , W are singular.

o o]
Proof. It remains to prove that if y, v are singular then
there exists kQ such that yk , vk are singular.
o o
For simplicity, let n = 2. Soy = y"® y2, Vv = ® v2, x =
= XX X X2.
Suppose first that "k« yk, k=1, 2. Let fk (k = 1, 2) de-
'A%
note the Lebesgue-Radon-Nikodym derivative » . Since yv, vv are
N|
k

normed measures, therefore no function f, f2 can be yk - a.e.

equal to zero. This means that



1 1
(/- 2 dy1l) (S t\ dy2) > 0.

X1 X2
By Kakutani®s theorem, we have Vv « vy, so y, ¥ are not sin-
gular .

Now, consider the case when neither the pair ylr nor y2,

v2 is singular. The Lebesgue decomposition theorem enables us to

represent the measures Vj, v2 in the form

vk = vk + vk

when « vk, 1 yk- Furthermore, > 0. Hence
v=W'0® Vv2)+ (Vi ® vj) + (Vi® v2) + (vi $ VvE).

Using lemma 2, we obtain - VW*(X) < 2. We have proved that
then y, v are not singular. This ends the proof.

Now, we construct the example that theorem 3 cannot by re-
versed if y, v are product measures on a product of infinitely
many measurable spaces.

Let Xn = <0, 1>, let An be the o-algebra of all Borel sub-

sets of Xn. For each ne N and for each Borel subset Ec<0, 1>,

put

4 E

e E

card E n {~4i ~4, eee, 1} = k
n n
0 En {fj, -r, ..., 1} = 0.

n n

Then v« u . lLet y=® vy, v=0 v. For any measurable
n n n“l n-1 1
subset B of the product a-algebra IPI X , we have
1° n

v(B) =

and y({, 175, .OP = myr ({-})= 0. S5, if we put A =



= id» |Z<L> 'E' eee))# then p(A) = v(pl X \A) =0. This result
n- n

shows that u, v are singular.
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0 PEWNEJ CHARAKTERYZACJI MIAR OSOBLIWYCH UNORMOWANYCH

W pracy podaje sie charakteryzacje miar osobliwych unormowanych (twierdze-
nie 2). W twierdzeniu 3 formutuje sie warunek dostateczny na to, by miary
unormowane w iloczynie dowolnej ilosci przestrzeni mierzalnych bydy osobliwe.
W twierdzeniu A pokazuje sie, ze w przypadku iloczynéw skonczonych podany wa-
runek jest rowniez warunkiem dostatecznym. Konstruuje sie rowniez przyktad na

to, ze w przypadku iloczynéw nieskonczonych twierdzenie 3 nie daje sie odwroécic.



