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In this paper there are given two characterizations of singular 
normed measures. These theorems are used to study singular measures in 
the product of measurable normed spaces.

Let Y be a (real or complex) vector space and let Z be a sub­
set of Y having at least two points. We say that two distinct 
points p^, p2 e Z are antipodal in Z (or simply antipodal) if and 
only if, for each x^, x2 e Z and for every real number t, the 
equality t(px - P2> = - x2 implies |t| £ 1.

Let (X, A) be any measurable space. Then the set Y of all 
signed measures defined on this space is a real vextor space (ad­
dition and multiplication by real numbers are applied in the usual 
sense). Consider the subset M of Y containing all nonnegative 
measures y defined on X and normed by the condition y(X ) = 1. Then 
one can prove the following.

Theorem 1. Two normed measures y, v e M are antipodal if and 
only if (y - v)*(X) = 2 where (y - v)*(X) denotes the total varia­
tion of a signed measure y - v on X.

P r o o f .  Remark first that, for all normed measures y, v 
defined on X, we have (y - v)*(X) £ 2. Really, for upper and lower 
variations of the measure X = y - v, we have the inequalities 
A+ £ y, X' £ v. As X* = X+ + X-, SO X*(X) £ 2.

Suppose now that (y - \J)*(X) = 2 and assume that there exists 
a real number t 2 1 and two normed measures y^, for which
t (y - v) = yL - v ̂ • Then we have (y.̂  - \31) * (X ) = t(y - v)*(X) > 2. 
This inequality is impossible, so the measures y,v fulfilling the 
condition (y - v )*(X ) = 2 are antipodal.
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Now, suppose we have (y - v)*(X) < 2. Then t = _ 'vj (x") >  ̂

and t(y - v)*(X) = 2. Put X = t(y - v). Then X*(X) * X+ (X) + 
+ X_(X) = 2. Suppose that X+ ( X ) < 1 .  So X (X) > 1. Let B be a 
measurable set such that, for every measurable set A, we have 
X(A) S O  for A c B and X(A) 1 0 for A c X \ B. Then X(X \ B) = 
= X+(X) < 1 and X(B) = -X-(X) < -1. These inequalities imply 
y(X) < v(X), which is impossible. Assuming X+(X) > 1, we obtain 
a false inequality y(X) > v(X). So we proved that X+ , X" are 
normed measures. The equality X = t ( y - v ) = X  - X  shows that 
the measures y, v are not antipodal. This completes the proof.

By the above theorem, we obtain the other characterization of 
antipodal points of M.

Theorem 2. Two normed measures y, v e M are antipodal if and 
only if they are singular.

P r o o f .  Suppose first the measures y, v are singular. Let 
A be a measurable subset of X for which y*(A) = v*(X \ A) =0. 
Then (y - v)*(X) 2. y(X \ A) + v(A) = 2. But, on the other hand, 
(y - v )*(X ) S 2, so (y - v)*(X) = 2 and, consequently, y, v are 
antipodal.

Assume now y, \> to be antipodal. We hav<i
2 = ( y  -  v ) * ( X )  = [ y ( X  \  B)  + \> ( B ) ]  -  [ y ( B )  + v ( X  \  B ) ] ,

when B is as in Theorem l. So y(X \ B) + v(B) = 2 and y(B) + 
+ v(X \ B) = 0 and, consequently, y(B) = v(X \ B) = 0.

The theorem just proved gives a simple geometrical characte­
rization of singular normed measures on X. We used them to cha­
racterize singular measures on a product space. The following 
lemmas will be useful.

Lemma 1. Let y, v be nonnegative o-finite measures on (X, A) 
such that v(X ) > 0 and v «  y (v is absolutely continuous with 
respect to y). If y = y + v, then there exists a measurable real 
function f such that, for every measurable set A, we have

v(A) = f  f dy 
A

and 0 S f < 1 y-almost everywhere on X. Moreover, the set B = 
= { x e X : 0 < f ( x ) < l }  is measurable and y(B) > 0.

P r o o f .  It is clear that v «  y and y is o-finite. By the 
Lebesgue-Radon-Nikodym theorem, there exist only two finite non­
negative measurable functions fQ, f defined on X such that, for 
every measurable set A, the equalities

v(A) = S  f dy = f  f dii 
A ° A



hold. From this we obtain
S  f(l + f-)dy = f  fQdy.
X ° X

Hence f = f(l + f I y ■ a.e. on X. So, according to the assump-o o
tion v <k y, we have that 0 S f < 1 y - a.e. on X.

Moreover, the equivalence f(x) = 0  «=> fQ(x) = 0 is fulfilled 
y - a.e. on X and the equality f = 0 does not hold y - a.e. on X. 
So a set B = {x e X : 0 < f(x) < 1} is measurable and y(B) > 0. 
This ends the proof.

Lemma 2. If a-finite measures y, v on X are nonnegative and 
fulfil the conditions v «  y, y * v, then 

(y - v )*(X ) < y(X) + v(X).
P r o o f .  Put y = y + v. Let f be a function from the first 

lemma and let
B = {x 6 X : 0 < f(x) < 1},

Bk = {x e X : £ < f(x) < 1 - £}.
00

Then u(B) > 0. Moreover, B = U  Bv . So there exists a positivek»3
integer kQ 2 3 such that y(^k ) >0.

Let { ,  A2, ... An ) c A be any partition of X. Consider a 
new partition {C1( C2, ..., Cn ) e A obtained from the first one 
in the following way:

Ci =

A . n Bt i - 1, . . . , n 
1 Ko

A4 „ \ Bk i = n+1, ..., 2n. l-n

n 2n
It is easy to see that Ij Cj - Bk , U  C. - X \ Bk ,i-1 1 o i-n+1 1

Moreover,
n 
£ i«l£  I (y - v) (A- ) | = £  | (y - 2v)(Ai)|S T. \ S  (1 - 2f)dy| +1 i»l i“l v..

+ 1: I (y - V)(C. ) I S S  |1 - 2f Idil + y(X \ Bk ) S y(X) + 
i-n+1 B),. °O

+ v (X ) - rr- y (Bk ) •
Ko o

These inequalities hold for every partition {A^ A2, ..., An ), so



(y - v )*(X) S y (X) + v(X) - y(Bk ),
o o

which implies the proposition of the lemma.
Theorem 3. Let {( X^,, )} g j, be a family of measurable spaces 

and y^, ( y e r ) -  normed measures defined on X^. Let y =
= ®  y , v = ®  v . If there exists y_ e r such that y ,Y s r ' y e r  ' ° Y0
v are singular, then the product measures y, v are singular, 
Yo

too.
P r o o f .  By our assumption, there exists a set A e JL

such that y (A ) = v (X \ A ) = 0. Put 
Yo 'o Yo Yo Yo

Yo

A.. = X’°
N o X ,  \ A I * Y„.

'o 'o

Then the sets A = p  A , B = p  B are measurable subsets
y e  r ' y e  r '

of the product space ( P  X . P  A ) , such that y(A) =y e T  Y y e r Y
= v( P  Xv \ A) = 0. 

y e T  Y
If r is a finite set, then the above theorem can be reversed.

n n
Theorem 4. The measures y = ®  y,,, v = ®  v. defined on a

k*l K k=l 14
n n

product ( p  Xv , IP A J  of measurable spaces and normed by the 
k=l K k=l K

conditions = 1 (k = 1, 2, ..., n) are singular
if and only if there exists a positive integer kQ (1 £ kQ S n)
such that the measures yk , \>k are singular.

o o
P r o o f .  It remains to prove that if y, v are singular then

there exists kQ such that yk , vk are singular.
o o

For simplicity, let n = 2. So y = ŷ  ̂®  y2, v = ®  v2, x = 
= Xx x X2.

Suppose first that ^k «  yk, k = 1, 2. Let fk (k = 1, 2) de-
^vvnote the Lebesgue-Radon-Nikodym derivative -»— . Since yv , vv are
^k

normed measures, therefore no function f^, f2 can be yk - a.e.
equal to zero. This means that



1 1 
(_/- f2 dy 1) (S  t\ dy2) > 0.
X1 X2

By Kakutani's theorem, we have v «  y, so y, \> are not sin­
gular .

Now, consider the case when neither the pair ylr nor y2, 
v2 is singular. The Lebesgue decomposition theorem enables us to 
represent the measures Vj, v2 in the form

vk = vk + vk
when «  yk , 1 yk - Furthermore, > 0. Hence

v = (v^ ®  v2) + (vi ®  vj) + (v’j ®  v’2) + (vj $  v£).

Using lemma 2, we obtain (y - v)*(X) < 2. We have proved that 
then y, v are not singular. This ends the proof.

Now, we construct the example that theorem 3 cannot by re­
versed if y, v are product measures on a product of infinitely 
many measurable spaces.

Let Xn = <0, 1>, let A n be the o-algebra of all Borel sub­
sets of Xn. For each n e N and for each Borel subset Ec<0, 1>, 
put

4 E 

e E

card E n {~4i ~4, •••, 1} = k n n
0 E n {—j, —r, ..., 1} = 0.

n n

Then v «  u . Let y = ®  y„, v = ®  v_. For any measurable n n n“l n-1 n

subset B of the product a-algebra IP X , we haven»l n

v(B) =

1 1  1 and y ({(1, j, j, ...)}) = rr_ yR ({-})= 0. So, if we put A =



= id» k> T' •••))# then p(A) = v(p X \ A) =0 .  This result
1 i n-1 n

shows that u, v are singular.
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0 PEWNEJ CHARAKTERYZACJI MIAR OSOBLIWYCH UNORMOWANYCH

W pracy podaje się charakteryzację miar osobliwych unormowanych (twierdze­
nie 2). W twierdzeniu 3 formułuje się warunek dostateczny na to, by miary 
unormowane w iloczynie dowolnej ilości przestrzeni mierzalnych były osobliwe.
W twierdzeniu A pokazuje się, że w przypadku iloczynów skończonych podany wa­
runek jest również warunkiem dostatecznym. Konstruuje się również przykład na 
to, że w przypadku iloczynów nieskończonych twierdzenie 3 nie daje się odwrócić.


