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SOME GENERALIZATIONS OF RESULTS
OF CARATHEODORY AND MILLER

This paper concerns measurable functions. It 1is shown that in the
Miller theorem from [Z] the assumption about the set J can be weakened.
Moreover, it turns out that the carrying over of the Caratheodory theo-
rem from [1] to the case of functions and sets having the Baire property
is impossible.

C. Caratheodory has shown 1in [I] that there
exists a Lebesgue measurable function f, f: R <R such that for
each non-empty open interval 1 and for each set J of positive
Lebesgue measure the set ¥ 1(J) H | has positive Lebesgue measu-
re. Whereas H. J. Miller has proved in [2] there exists
a Lebesgue measurable function g, g: R »R such that for each
non-empty open interval I and for each set J of the second cate-

gory the set T-1(@ O 1 is also of the second category.

On account of above we can put the following questions:

D if in Miller theorem the assumptions about the set J can
be weakened;

2) if in Caratheodory theorem one can replace the measurabili-
ty in Lebesgue sense by the property of Baire.

The following theorem gives the answer to the first question
(we assume CH).

THEOREM 1. There exists a Lebesgue measurable Tfunction T,
f; R %R such that for every non-empty interval 1 and for every
y eR the set £ 1¢yp n | is of the second category.

The proof of this theorem is based upon the Tfollowing lemma.



LEMMA 1. There exists a family £ of power C (C- the car-
dinal of the continuum) of pairwise disjoint sets and such that
they are of the second category on every non-empty open interval
and U C = Ri

Proof. Let l be the smallest ordinal number of the power
C. Let A= {A; A is 90 of the first category). We arrange
the elements of the family A in the transfinite sequence of type
fl 1i.e. A= {Aa; a < fl}. Let D be the family of all non-empty

open interval @, b) c R, i.e. B = (Ig; Ig - open interval, 5 <
< £} and let be the set of all ordinal numbers a < fl. Let
us consider the set A*®**#l obviously card (Ax$ x )-c-
We arrange the elements of the set oj x in the sequence of
type fl, i.e.

cxXPx g = {Eg. p < n)i
where Ep = (Aa(p), 15(p), tf0)) some a(0), 60), r@ < fl.

Now, we inductively define a certain set of power C . Let xQ
be any element of the set i16(0) - Aa(0). Suppose, that we have

already chosen v \SE where e < fl and we choose some xee IG(e)'

Aa(v) U {xv; v <E”" Such element exists, because the

set li(e) ” Aa(v) U v < &) is of the second catego-
ry. Hence, by the transfinite induction, we appoint the set {x ;
£ < fi} E
Let O<n<fl, ={xE; y(€)=n} and C =R - U c .
o<n<n 1

It is easy to see that {XE; y(E) =0}yc CQ. We shall prove
that C = {; T < M} is a required family of sets.

All chosen elements x are different and if x£—e CTl’ X -e
T1' e

e Cn2 for some e " 1li, n2 then from the definition of the

sets of type C we have that ?(e") = and ¢;(e") = n2 from where
it follows that rix = 2. Hence the sets are parwise disjoint.
Now, we suppose that Cnn (@, b) is a set of the first category
for some n <a and for some interval (@, b) = I.-, hence ¢ n
fl (@, b) 1is contained in a certain set of the first category and
of type contained in (@, b) = Ijf, 1i.e. there exists a" such



that n (@ b) c Aa-. However it is impossible, because (A,-,
15—, n)e and it lies in the sequence {Ep} on the
spot, for instance, p, i.e. a" = ay), 6" = 6(W), n= —-j(P)- The
point X was chosen from the set X6p j - Aa(u)> in the other
words Xz © C 'I n Ib’ and X £ Aa o) Hence for any p) and for any

open interval 1 the set C™ i1 is of the second category.
Proof of Theorem 1. Let {Cala<n be a family of pair-

wise disjoint sets and such that they are of the second category
on every non-empty open interval and aléiJ €, = R -
Let R =MU B where the set M has Lebesgue measure zero and
the set B is of the first category, Mn B =0 (see [3], p- 9.
Let h: R 1———{83 . We define the function f
_ n

for xe M n Ch(t),

e = 0 for x e B.

It is easy to see that the function Ff 1is measurable in Le-
besgue sense, because for every aeR F 1((-®, a)) is contained
in the set M or contains the set B. Moreover, for any y e R

M n Ch(y) fory £0,

PN gy  fory=o.

IT 1 is a non-empty open interval then it is not difficult to
observe that for any yeR the set I n M n Ch(y) 1is of the se-

cond category, because inM @QCh(y) = ~1n Ch(y)d “ ~Ch(y) n
n d-wm]-

The answer to the secong question is negative. The following
theorem is true.

THEOREM 2. For every function g having the property of Baire
there exist a non-empty open interval | and a set J of the second

category having the property of Baire such that the set g 1) n
n I is of the first category.

Proof. Let g be an arbitrary function which has the pro-
perty of Baire. There exists a residual set E such that g|E is
continuous. Let x*£ E and let . > 0 be an arbitrary number.



Let us put J * [gXQ) - e, g(xQ) + €]. From the continuity of
the function g|JE it follows that there exists 6 >0 such that
g(Ixo -6, xQ+ il nE)c J. Let 1 = (CQ -5, xg + 6) and let
JcR be a set of the second category with the Baire property
disjoint with J. It is easy to see that g_1(J n IcR - E, hence
g "J) n 1 is of the first category.

We can prove this theorem in a little more general form.

Let (X, S) be a measurable space, ifc S, 3-a-ideal such
that S= 2 A”™>9 n”™ =0 where X is a topological space and g
is the family of open sets in X and S is a o-algebra. Let Y be a
topological space with countable basis.

LEMMA 2. Let f: X «Y. The function ¥ is S-measurable if
and only if there exists a set Pe V such that fX - P)is con-
tinuous .

The proof of this lemma is similar to the proof of suitable
property of Baire functions (see for example [3])-

Let us assume that X is the Hausdorff space with countable
basis. Then the following theorem is true.

THEOREM 3. For every S-measurable function f: X % X there
exist an open set Hex and asetJe S -V such that -1 n
flHG6 5.

Proof. Let F be an arbitrary S-measurable function. The-
re exists a set Pe V such that fi(X - P) is continuous. Take xQ "
$P and let Vex be a neighbourhood of Ff(xQ). From the con-
tinuity of the function fi(X - P) it follows that there exists a
neighbourhood H of xQ such that f(H - P) c V. Let Jc X,J e S -a
be a set disjoint with V. It 1is easy to see that £ 1(J) n Hc p,
it means that f°1(J) n He «.
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Wlastaua Porada

PEWNE UOGOI .NIENIA DOTYCZACE WYNIKOW CARATHEODOR{ "EGO 1 MILLERA

Prezentowany artykut dotyczy funkcji mierzalnych. Pokazano w nim, ze w
twierdzeniu Millera z pracy [Z] mozna istotnie ostabi¢ zalozenie dotyczace
zbioru 3: Ponadto okazato sie, ze przeniesienie twierdzenia Caratheodory ego
z pracy [1) na przypadek funkcji 1 zbioréw majd4cych whkasnoS¢ Baire a  jest

niemozliwe.



