ACTA UNIVERSITATIS LODZIENSIS FOLIA MATHEMATICA 4, 1991

Nguyen Van Man

CHARACTERIZATION OF POLYNOMIALS IN ALGEBRAIC ELEMENTS WITH COMMUTATIVE COEFFICIENTS AND ITS APPLICATIONS

The present paper is a continuation of the autor's paper [7], in which we have defined and studied characteristic polynomials for polynomials in algebraic elements in a linear commutative ring. We also have given examples of applications for singular integral operators with rotation.

1. ALGEBRAIC AND ALMOST ALGEBRAIC ELEMENTS OVER A COMMUTATIVE LINEAR RING

Let X be a linear ring over the complex scalar field with unit I. Throughout this paper, X_{o} will stand for a commutative linear ring in X and I $\in X_{o}$.

DEFINITION 1.1. An element $S \in X$ is said to be an algebraic element over X_{A} if there is a polynomial

$$P(t) = \sum_{k=0}^{m} p_k t^k, \quad p_0 \neq 0$$
 (1.0)

in variable t with the coefficients in X_{O} such that

 $P(S) = 0, S_{p_1} = p_k S; k = 0, 1, ..., m.$

DEFINITION 1.2. If there is a polynomial P(t) of the form (1.0) satisfying the conditions $p_k \in \mathcal{T} \cup X_0$ (k = 0, 1, ..., m) and $P(S) = T \in \mathcal{T}$, where \mathcal{T} is a two-sides ideal in X, then we say that S is an almost algebraic element with respect to the ideal

Nguyen Van Man

 \Im over X_0 . If there is a polynomial P(t) with the smallest degree m for which the identity P(S) = 0 ($P(S) = T \in \Im$) holds, we say that S is an algebraic (almost algebraic) element of order m.

It is easy to see that each element $S \in X_{O}$ is an algebraic element over X_{O} with the characteristic polynomial of the form $P_{S}(t) = t - S$. Notice that all algebraic elements (over a field of scalars [1] - [2]) are the ones over X_{O} .

We denote by $\mathcal{A}(X_{O})$ the set of all algebraic elements over X_{O} . Similarly, by $\mathcal{A}(X_{O}/\mathcal{V})$ we denote the set of all almost algebraic elements over X_{O} with respect to an ideal \mathcal{V} . The characteristic polynomials of S will be denoted by $P_{S}(t)$. Evidently, if an element S is almost algebraic with respect to an ideal $\mathcal{V} \subset X$ then the corresponding coset [S] in the quotient ring $[X] = X/\mathcal{V}$ is algebraic and if $P_{S}(t) = p_{O}t^{m} + p_{1}t^{m-1} + \ldots + p_{m}$ then $P(t) = [S] = [p_{O}]t^{m} + [p_{1}]t^{m-1} + \ldots + [p_{m}]$.

The following examples show that an algebraic (almost algebraic) element over X_0 is not necessarily an algebraic (almost algebraic) over a field of scalars.

Example 1.1. Let $X_0 = \phi[0, 1]$ and let $(S\phi)(t) = \phi(1-t)(V\phi)(t) = a(t)\phi(t) + b(t)(S\phi)(t)$ where a(t), $b(t) \in \phi[0, 1]$. It is easy to verify that $S^2 = I$; SA = AS; SB = BS; $V^2 - AV + B = 0$ where A = [a(t) + a(1-t)]I; B = [a(t)a(1-t) - b(t)b(1-t)]I. From these relations we obtain the following results: V is an algebraic element over X_0 with characteristic polynomials $P_V(t) = t^2 - At + B$. It is an algebraic element over a ring of scalars if and only if a(t) + a(1-t) = const; a(t)a(1-t) - b(t)b(1-t) = const.

Example 1.2. Let Γ be a simple closed contour of Liaponour type. Denote by $L_0(L_p(\Gamma))$ $(1 the set of all linear operators A with domains <math>D_A = L_p(\Gamma)$ and with values in $L_p(\Gamma)$.

and P(S) = 1 < , where a sector of the second with corport to the ide

Let
$$X_{o} = \phi(\Gamma); X = L_{o}(L_{p}(\Gamma))$$

$$(S\varphi) (u) = \frac{1}{\pi i} \int_{\Gamma} \frac{\varphi(\tau) d\tau}{\tau - u}$$

 $(V\varphi)$ (u) = a(u) φ (u) + b(u) (S φ) (u); a(u), b(u) $\in \varphi(\Gamma)$. (1.2) The following well-known result was stated in [1]-[4]: $s^2 = I$; Sa - aS $\in \mathcal{T}$ for a $\in \varphi$ (Γ) where \mathcal{T} is an ideal of compact continuous operators. This result permits us to obtain the following theorem.

THEOREM 1.1. Suppose that V is given by the formula (1.2)then $V \in \mathcal{A}(X_0/\Im)$ and $P_V(t) = t^2 - 2at + a^2 - b^2$.

Example 1.3. Suppose that T, X and 7 are defined as in the Example 1.2. Denote by X the linear ring generated by all operators of the following form V = aI + bS + D; a, $b \in \phi(\Gamma)$, $D \in \mathcal{T}$. Observe that $[X_0] = X_0/\mathcal{T}$ is the commutative ring. Let $(W\phi)$ $(u) = \phi[\alpha(u)], u \in \Gamma$, where $\alpha(u)$ is a Carleman function ([1]-[4]). The operator W defined by means of a Carleman function of order 2 is a multiplicative involution $W^2 = I$.

By straightforward calculations we can prove the following. THEOREM 1.2. Let K = aI + bS + (cI + dS)W where a, b, c, de $\in \varphi(\Gamma)$, S and W are defined by the formulas

 $(S\varphi) (u) = \frac{1}{\pi i} \int_{\Gamma} \frac{\varphi(\tau) d\tau}{\tau - u}; \quad (W\varphi) (u) = \varphi[\alpha(u)]; \quad W^2 = I.$

Then $K \in \mathcal{A}(X_0/\Im)$ with the characteristic polynomial

$$P_{y}(t) = t^{2} - (A + A_{1})t + AA_{1} - CC_{1}$$

where

 $A = aI + bS; A_1 = a(\alpha)I + \gamma b(\alpha)S;$

 $C = cI + dS; C_1 = c(\alpha)I + \gamma d(\alpha)S$

 $(\gamma = 1$ when the shift does not change the orientation of the contour Γ , $\gamma = -1$ for the contrary case).

Similar examples can easily be extended (see [1]-[4]).

(1.1)

2. CHARACTERIZATION OF THE POLYNOMIALS

IN ALGEBRAIC ELEMENTS WITH COMMUTATIVE COEFFICIENTS

In this section we consider the polynomial

$$V: = V(S) = \sum_{j=1}^{m} A_j S^{m-j}$$
(2.1)

where S is an algebraic element (over a field of scalars) with the characteristic polynomial

$$P_{S}(t) = \prod_{j=1}^{n} (t - t_{j})^{r_{j}}; t_{j} \in C \quad t_{i} \neq t_{j} \text{ for } i \neq j,$$
$$r_{o} + r_{1} + \dots + r_{n} = N$$
(2.2)

and $A_j \in X_0$, j = 0, 1, ..., m.

DEFINITION 2.1. We recall that an element $S \in X$ is X_{O} -stationary if SA = AS for all $A \in X_{O}$.

For stationary elements we can formulate the following result.

THEOREM 2.1. Let S be an algebraic element with the characteristic polynomial (2.2). Suppose that S is X_0 -stationary. Then V of the form (2.1) is an algebraic element over X_0 .

Proof. It is easy to verify that

 $V(S) - V(t_j)I = (S - t_j) V (S, t_j)$ (2.3) where

$$V(s, t_{j}) = A_{0} \delta_{m-1} (s, t_{j}) + A_{1} \delta_{m-2} (s, t_{j}) + \dots + A_{m-1}$$

$$\delta_{k}(s, t_{j}) = s^{k} + t_{j} s^{k-1} + t_{j}^{2} s^{k-2} + \dots + t_{j}^{k} I.$$

Put P(t) = $\prod_{j=1}^{n} (t - V(t_{j}))^{r_{j}}$. From (2.3) we get

$$P(V) = \prod_{j=1}^{n} (V - V(t_{j}))^{r_{j}} = \prod_{j=1}^{n} (s - t_{j}I)^{r_{j}} \prod_{j=1}^{n} [V(s, t_{j})]^{r_{j}} = 0$$

which proves the V is an algebraic element over X_0 .

To determine the characteristic polynomial of the element V over a commutative ring we have to introduce some necessary notions.

First we consider the case of simple roots.

Characterization of polynomials in algebraic elements

LEMMA 2.1. Suppose that the algebraic element S has simple roots t1, t2, ..., tn only and that $V(t_1) = ... = V(t_{n_1}) = B_1$ $V(t_{n_1+1}) = \dots = V(t_{n_2}) = B_2$ $V(t_{n+1}) = ... = V(t_n) = B_s$ (2.4) $B_i \neq B_i$ for $i \neq j$, $n_1 + n_2 + ... + n_s = n$). Moreover, we assume that S is X_-stationary and $\prod_{\substack{\nu \neq j}} (B_j - B_{\nu}) \sum_{\substack{\nu = n+1}} P_{\nu} \neq 0; \quad j = 1, 2, ..., s$ where P1, P2, ..., Pn are projectors associated with S. Then $P_V(t) = \prod_{\nu=1}^{S} (t - B_{\nu})$. Proof. Denote $\prod_{v=1}^{s} (t - B_v)$ by Q(t), then Q(V) == $\bigcap_{i=1}^{\infty} (V - B_{i})$, for the obvious side to be a basis of the first set over anows A. 1a the Vandermonds determinant of the nu It is easy to see that $V(S) - B_{\nu+1} = \prod_{j=n+1}^{n_{\nu+1}} (S - t_j I) \cdot Q_{\nu+1}(S); \quad \nu = 0, 1, ..., S - 1$ where $Q_{n+1}(S)$ are polynomials in variable S with coefficients in X_{o} . Thus $Q(V) = \bigcap_{j=1}^{n} (S - t_{j}I) \bigcap_{j=1}^{n} Q_{j}(S) = 0.$ Suppose that $\tilde{Q}(t) = \prod_{v \neq v_0} (t - B_v)$ $(1 \le v_0 \le s; v_0 = fix)$ then by the assumptions $\widetilde{Q}(V) = \sum_{\nu=1}^{n} Q(v(t_{\nu})) P_{\nu} = \prod_{\nu \neq \nu_{o}} (B_{\nu_{o}} - B_{\nu}) \sum_{\nu=n+1}^{n_{\nu_{o}}} P_{\nu} \neq 0$ v_0⁻¹ From these we get $P_{v}(t) = Q(t)$.

Lemma 2.1 permits us to introduce.

DEFINITION 2.2. An algebraic element S (over a field of scalars) of order m is said to be X_O -linearly independent, if the condition

 $A_{o} + A_{1} S + ... + A_{m} S^{m-1} = 0; A_{j} \in X_{o}, j = 0, 1, ..., m - 1$ implies $A_{o} = A_{1} = ... = A_{m-1} = 0.$

LEMMA 2.2. Suppose that S is an algebraic element with single roots t_1, t_2, \ldots, t_m only. Then S is X_0 -linearly independent if and only if the projectors P_1, P_2, \ldots, P_m associated with S are X_0 -linearly independent.

Proof. Sufficiency. Suppose that P_1 , P_2 , ..., P_m are X_o linearly independent and $A_o + A_1S + \ldots + A_{m-1}S^{m-1} = 0$; $A_j \in X_o$. This equality can be rewritten as follows:

 $\sum_{j=0}^{m-1} A_{j} S^{j} = \sum_{j=0}^{m-1} A_{j} \sum_{k=1}^{m} t_{k}^{j} P_{k} = \sum_{k=1}^{m} (\sum_{j=0}^{m-1} A_{j} t_{k}^{j}) P_{k} = 0.$

thus, by our assumptions, we get $\sum_{j=0}^{m=1} A_j t_k^j = 0$. It is easy to verify that the determinant of this system with respect to the unknows A_j is the Vandermonde determinant of the numbers t_1 , t_2 , ..., t_m . This implies $A_j = 0$; j = 0, 1, ..., m - 1. Thus, S is X_0 -linearly independent.

Necessity. Suppose that S in X_-linearly independent and

 $\sum_{j=1}^{m} A_{j} P_{j} = 0; \quad A_{j} \in X_{0}, \quad j = 1, 2, ..., m.$

Acting on both sides of this equality by the elements P_k we obtain $A_k P_k = 0$ (k = 1, 2, ..., m) where $P_k = \prod_{j \neq k} \frac{S - t_j I}{t_k - t_j}$ (see [1]). Since deg $P_k \leq m - 1$ we get $A_k \prod_{j \neq 1} \frac{1}{(t_k - t_j)} = 0$. Thus, $A_k = 0$.

With the aid of Lemma 2.2 we can formulate the result of Lemma 2.1 as follows.

THEOREM 2.2. Let S be an algebraic element with single roots

t₁, t₂, ..., t_m only. Suppose that S is X₀-linearly independent and that $\prod_{\nu \neq j} (B_j - B_{\nu}) \neq 0$ for j = 1, 2, ..., s where B_j (j = 1, 2, ..., s) are defined by (2.4). Then $P_V(t) = \prod_{\nu=1}^{S} (t - B_{\nu})$.

Consider now the case of multiple roots.

LEMMA 2.3. Suppose that S is an algebraic element with the characteristic polynomial of the form (2.2). Then S is X_0 -line-arly independent if and only if the elements P_4 ;

 $(S - t_j I)^{\nu j} P_j$ $(j = 1, 2, ..., n; v_j = 1, 2, ..., v_j - 1)$ associated with S are X₀-linearly independent.

 ${\tt P}\ {\tt r}\ {\tt o}\ {\tt o}\ {\tt f}$. Necessity. Suppose that S is ${\tt X}_{{\tt o}}\mbox{-linearly independent and}$

 $\sum_{j=1}^{n} \sum_{\nu=0}^{j-1} A_{j\nu} Q_{j}^{\nu} = 0 \text{ where } A_{j\nu} \in X_{o}, \ Q_{j}^{\nu} = (S - t_{j}I)^{\nu} P_{j}.$

Applying the element ϱ^μ_k to both sides of this equality, we obtain the following relations

Since $Q_k^{r_k} = 0$ (see [1]-[2]) we can rewrite these relations as follows

$$A_{k0} P + A_{k1} Q_{k} + \dots + A_{kr_{k}-1} Q_{k}^{r_{k}-1} = 0$$

$$A_{k0} Q_{k} + \dots + A_{kr_{k}-2} Q_{k}^{r_{k}-1} = 0$$
...

$$A_{k0} Q_{k}^{r_{k}-1} = 0$$
 (2.5)

By our assumptions, from the last equality of (2.5), we have $A_{k0} = 0$. This and equalities (2.5) together imply that $A_{kv} = 0 \forall k, v$

Sufficiency. Suppose that Q_k^{ν} (k = 1, 2, ..., n; ν = 0, 1, r_{k-1}) are X₀-linearly independent and

 $\sum_{j=0}^{N-1} A_j S_j = 0, \qquad A_j \in X_o$

Using the equality $S^k P_j = \sum_{\nu=0}^k {k \choose \nu} t_j^{k-\nu} Q_j^{\nu}$ we can write (2.6) as follows

 $\begin{array}{cccc} n & r_{j}^{-1} & N^{-1} \\ \Sigma & \Sigma & (\Sigma & (\sum_{\nu} k) & A_{k} & t_{j}^{k-\nu}) & Q_{j}^{\nu} = 0 \\ j = 1 & \nu = 0 & k = \nu \end{array}$

By our assumptions, we get $\sum_{k=\nu}^{N-1} {k \choose \nu} t_j^{k-\nu} A_k = 0; j = 1, 2,$

..., n; $v = 0, 1, \ldots, r_j - 1$. Abgebal glassifier a six bed

It is easy to verify that the determinant of this system with respect to unknowns A_k is invertible. This implies that $A_k = 0$, for every k.

REMARK 2.1. All algebraic elements over X_{O} are X_{O} -linearly independent. For instance, all algebraic element are C-linearly independent.

LEMMA 2.4. Suppose that S is an algebraic element with the characteristic polynomial of (2.2). Let

 $\mathbf{v}(\mathbf{s}) = \sum_{\substack{k=1 \\ k=1}}^{n} \sum_{\nu=0}^{r_k-1} \mathbf{A}_{k\nu} \mathbf{Q}_k^{\nu}; \quad \mathbf{A}_{k\nu} \in \mathbf{X}_0; \quad \mathbf{A}_{k0} \neq 0, \quad k = 1, 2, \dots, n$

 $P(S) = \sum_{k=1}^{n} \sum_{\nu=0}^{r_k-1} \alpha_{k\nu} Q_k^{\nu}; \quad \alpha_{k\nu} \in C$

and suppose that S is X_0 -linearly independent and X_0 -stationary. Then P(S) V (S) = 0 implies P(S) = 0.

Proof. It is easy to verify that

$$P(S) V (S) = \sum_{k=1}^{n} \sum_{\substack{i=1 \\ i=1}}^{r_k-1} \alpha_{k\nu} A_{k\mu} = Q_k^i = 0.$$

This implies $\sum_{\nu+\mu=i}^{\infty} \alpha_{k\nu} A_{k\mu} = 0$; k = 1, 2, ..., n; $i = 0, 1, ..., \nu+\mu=i$

 $r_{\rm p}$ - 1. We can rewrite these relations as follows

 $\alpha_{k0} A_{k0} = 0$ $\alpha_{k1} A_{k0} + \alpha_{k0} A_{k1} = 0$ $\alpha_{kr_{k}-1} A_{k0} + \dots + \alpha_{k0} A_{kr_{k}-1} = 0$

(2.7)

(2.6)

Characterization of polynomials in algebraic elements

By our assumptions, from the first equality of (2.7) we get $\alpha_{k0} = 0$. This, and equalities (2.7), together imply that $\alpha_{k} = 0$ $\forall k, v$.

Now we can formulate the main result in our investigations: THEOREM 2.3. Let S be an algebraic element with the characteristic polynomial

$$P_{S}(t) = \prod_{i=1}^{n} \prod_{j=1}^{n_{i}} (t - t_{ij})^{r_{ij}}; t_{ij} \neq t_{\nu\mu}$$

for (i, j) \neq (v, μ)

and V(t) - a polynomial in variable t with coefficients belong to X_{o} . Suppose that

(i)
$$V(t_{kj}) = R_k$$
; $k = 1, 2, ..., n$; $j = 1, 2, ..., n_k$
(ii) $V'(t_{kj}) = ... = V^{\binom{(s_{kj})}{(t_{kj})}} = 0$; $V^{\binom{(s_{kj}+1)}{(t_{kj})}} \neq 0$.

If S is X_-linearly independent and X_-stationary, then

$$P_V(t) = \prod_{i=1}^{n} (t - R_i)^{\delta_i}; \quad V: = V(S)$$
 (2.9)

where

 $= \begin{cases} \alpha_{i} & \text{when } \alpha_{i} & \text{is an integer,} \\ \\ [\alpha_{i}] + 1 & \text{otherwise,} \end{cases}$

$$\alpha_{i} = \max \{ \frac{s_{i1}}{s_{i1} + 1}, \frac{r_{i2}}{s_{i2} + 1}, \dots, \frac{r_{in_{i}}}{s_{in} + 1} \}; i = 1, 2, \dots, n.$$

We base the proof Theorem 2.3 on three additional lemmas.

LEMMA 2.5. Let S be an algebraic element with the characteristic polynomial of the form (2.2). Suppose that V(t) is a polynomial with coefficients belonging to X_o such that

 $V(t_i) \neq V(t_j)$ for $i \neq j$; $V'(t_i) \neq 0$; i = 1, 2, ..., n. If S is X_o-linearly independent and X_o-stationary, then

$$P_{v}(t) = \prod_{j=1}^{n} (t - v(t_{j}))^{r_{j}}; \quad v = v(s).$$

81

(2.8)

Nguyen Van Man

82

Proof. Denote $\prod_{j=1}^{n} (t - V(t_j))^{r_j}$ by P(t). According to Theorem 2.1, P(V) = 0. Fut

$$Q_1(t) = (t - V(t_1))^{\alpha_1} \prod_{j=2}^{n} (t - V(t_j))^{r_j}$$
 for $\alpha_1 < r_1$.

Observe that

$$Q_{1}(\mathbf{v}) = (\mathbf{s} - \mathbf{t}, \mathbf{I})^{\alpha_{1}} \prod_{j=2}^{n} [\mathbf{s} - \mathbf{t}_{j}]^{r_{j}} \cdot [\mathbf{v}(\mathbf{s}, \mathbf{t}_{1})]^{\alpha_{1}}$$
$$\cdot \prod_{j=2}^{n} [\mathbf{v}(\mathbf{s}, \mathbf{t}_{j})]^{r_{j}}$$

where V(S, t;) are defined by the formula (2.3).

Put
$$Q(t) = \bigcap_{j=2}^{n} \left[V(t, t_j) \right]^{r_j} \cdot \left[V(t, t_1) \right]^{\alpha_1}$$

According to Theorem 2.1, the element Q(S) has characteristic roots belonging to the set

 $\{Q(t_j); j = 1, 2, ..., n\}.$ On the other hand, by our assumptions, we have

$$V(t_i, t_j) = \frac{V(t_i) - V(t_j)}{t_i - t_j} \neq 0 \quad \text{for } i \neq j$$

 $V(t_j, t_j) = V'(t_j) \neq 0.$

Hence, the element Q(S) has the same properties as V(S) in Lemma 2.4. According to Lemma 2.4, $Q_1(V) = 0$ if and only if

$$Q_2(V) = \prod_{j=1}^{n} (s - t_j I)^{r_j} \cdot (s - t_1 I)^{\alpha_1} = 0$$

Thus $Q_1(V) \neq 0$ and we get $P_U(t) = P(t)$.

LEMMA 2.6. Suppose that S is an algebraic element satisfying all assumptions of Lemma 2.5 and that

$$V(t) = \sum_{j=0}^{s} A_{j} t^{s-j}$$

is a polynomial with coefficients in X_o satisfying the following conditions

 $V(t_1) = V(t_n); V(t_1) \neq V(t_i)$ for i = 2, 3, ..., n - 1 $V(t_i) \neq 0; i = 1, 2, ..., n.$ (2.10) If V = V(S) then $P_V(t) = [t - V(t_1)]^{\alpha_1} \prod_{j=2}^{n-1} t - V(t_j)^{r_j}$ where $\alpha_1 = \max(r_1, r_n)$.

Proof. From (2.10) we can write:

 $V(t) - V(t_1) = (t - t_1) (t - t_n) V(t, t_n)$ (2.11) where V(t, t₁, t_n) = $A_0 \delta_{s-2} + A_1 \delta_{s-3} + ... + A_{s-2}$

$$\delta_{\mathbf{k}} = \frac{\delta_{\mathbf{k}}(\mathbf{t}, \mathbf{t}_{1})}{\mathbf{t}_{1} - \mathbf{t}_{n}} - \frac{\delta_{\mathbf{k}}(\mathbf{t}, \mathbf{t}_{n})}{\mathbf{t}_{1} - \mathbf{t}_{n}}; \quad \delta_{\mathbf{k}}(\mathbf{t}, \mathbf{t}_{j}) \text{ are given by (2.3).}$$

 $V(t_1))^{\alpha_1} \prod_{j=1}^{n-1} (t - V(t_j))^{r_j}$ by P(t). From (2.11) we Denote (t which is a contradiction and the proof is complete

get

$$P(V) = [V(S) - V(t_1)]^{\alpha_1} \prod_{j=2}^{n-2} [V(S) - V(t_j)]^{r_j}$$

=
$$P_{s}(s) \cdot [(s - t_{1} I) (s - t_{n} I)]^{\alpha_{1} - I_{1}}$$
.

$$\cdot \left[\mathbf{v}(\mathbf{s}, \mathbf{t}_1, \mathbf{t}_n) \right]^{\alpha_1} \cdot \prod_{j=2}^{n-1} \left[\mathbf{v}(\mathbf{s}, \mathbf{t}_j) \right]^{r_j} = 0.$$

To end the proof it is enough to show α_1 is the smallest positive integer possessing the above property.

By Theorem 2.1, without loss of generality, we consider the polynomial

$$P_{1}(t) = [t - v(t_{1})]^{\alpha} \prod_{j=2}^{n-1} [t - v(t_{j})^{r_{j}}; \alpha < \alpha_{1}]$$

and suppose that $P_i(V) = 0$ i.e:

$$[v(s) - v(t_1)]^{\alpha} \prod_{j=2}^{n-1} [v(s) - v(t_j)]^{r_j} = 0$$

(s - t_1 I)^{\alpha} · (s - t_n I)^{\alpha} \prod_{j=2}^{n-1} (s - t_j I)^{r_j} · G(s) = 0

where

LIBBER 2.7.

$$G(s) = [v(s, t_1, t_n)]^{\alpha} \prod_{j=2}^{n-1} [v(s, t_j)]^{r_j}$$

By assumptions

$$V(t_j, t_1, t_n) = \frac{V(t_j) - V(t_1)}{(t_j - t_1)(t_j - t_n)} \neq 0$$

for j = 2, 3, ..., n - 1,

$$V(t_1, t_1, t_n) = \frac{V'(t_1)}{t_1 - t_n} \neq 0; \quad V(t_n, t_1, t_n) = \frac{V'(t_n)}{t_1 - t_n} \neq 0.$$

Hence V(S, t_1 , t_n) possesses the same properties as V(S) in Lemma 2.4. From this and P₁(V) = 0 we get

$$(s - t_1 I)^{\alpha} (s - t_n I)^{\alpha} \prod_{j=2}^{n-1} (s - t_j I)^{r_j} = 0$$

which is a contradiction and the proof is complete.

LEMMA 2.7. Suppose that S satisfies all assumptions of Lemma 2.4 and that

$$V(s) = \sum_{i=0}^{m} A_{j} s^{m-j}$$

is a polynomial satisfying the following conditions:

(i)
$$V(t_1) = V(t_n)$$

(ii) $V(t_1) \neq V(t_i) \neq V(t_j)$ for $i \neq j$, i, $j = 2, 3, ..., n - 1$
(iii) $V'(t_j) = ... = V^{\binom{s_j}{j}}(t_j) = 0$; $V^{\binom{s_j+1}{j}}(t_j) \neq 0$;
 $j = 1, 2, ..., n$.

Then

$$P_{v}(t) = [t - v(t_{1})]^{\alpha_{1}} \prod_{j=2}^{n-1} [t - v(t_{j})]^{\alpha_{j}}$$
(2.12)

where

 $\alpha_{i} = \begin{cases} \beta_{i} \text{ when } \beta_{i} \text{ is an integer} \\ [\beta_{i}] + 1 \text{ otherwise.} \end{cases}$ $\beta_{1} = \max \left\{ \frac{r_{1}}{s_{1} + 1}; \frac{r_{n}}{s_{n} + 1} \right\}; \quad \beta_{j} = \frac{r_{j}}{s_{j} + 1} \text{ for } j = 2, 3, \dots, n - 1. \end{cases}$ Proof. From the conditions (i) - (iii) we obtain $V(S, t_j) = (S - t_j I)^{S_j} V_j(S, t_j)$ for j = 2, 3, ..., n - 1 $V(S, t_1, t_n) = (S - t_1 I)^{S_1} (S - t_n I)^{S_n} V_1(S, t_1, t_n)$ where $V_j(S, t_j)$ and $V_1(S, t_1, t_n)$ possesses the same properties as V(S) in Lemma 2.4

Suppose that $P(t) = \int_{j=1}^{n-1} [t - V(t_j)]^{\lambda_j}$. From the above argument P(V) = 0 if and only if

$$P_{1}(V) = [(S - t_{1} I) (S - t_{n} I)]^{\lambda_{1}} (S - t_{1} I)^{\lambda_{1}S_{1}} (S - t_{n} I)^{\lambda_{n}S_{n}} \cdot Q(S) = 0$$

with $Q(S) = \prod_{j=2}^{n-1} (S - t_j I)^{(1+s_j)\lambda_j}$.

Hence λ_i satisfy the conditions

$$\lambda_{1} + \lambda_{1} s_{1} \ge r_{1}$$

$$\lambda_{1} + \lambda_{1} s_{n} \ge r_{n}$$

$$\lambda_{i} + \lambda_{i} s_{j} \ge r_{j}, \quad j = 2, 3, \dots, n - 1.$$

From these inequalities it follows that the formula (2.12) is proved.

We proceed to prove Theorem 2.3.

By hypothesis we obtain the characteristic roots of the element $V(S): R_1, R_2, \ldots, R_m$. Hence, the characteristic polynomial of V is a polynomial of the form

$$P_{V}(t) = \prod_{i=1}^{m} (t - R_{i})^{\beta_{i}}.$$

According to Lemmas 2.5-2.7 we get $\beta_i + \beta_i s_{ij} \ge r_{ij}$. From these inequalities it follows that the formula (2.9) is valid. The proof of Theorem 2.3 is complete.

3. SINGULAR INTEGRAL EQUATIONS WITH ROTATION

Let Γ be an oriented system. Suppose that Γ is invariant with respect to rotation through an angle $2\pi/n,$ where n is an arbitrary positive integer.

Now consider the following operators

$$(M\varphi)(t) = \frac{1}{\pi i} \int \frac{P(\tau, t)}{\Gamma \tau^{n} - t^{n}} \varphi(\tau) d\tau \qquad (3.1)$$

where $P(\tau, t) = \sum_{j=0}^{n-1} a_j \tau^j t^{n-1-j}; a_j \in C$

$$(M_{j} \varphi) (t) = \frac{1}{\pi i} \int_{\Gamma} \frac{\tau^{j} t^{n-1-j}}{\tau^{n} - t^{n}} \varphi(\tau) di \qquad (3.2)$$

and

$$K = \sum_{j=0}^{m} a_{j}(t) M^{j};$$
 (3.3)

where a;(t) are invariant with respect to rotation:

$$a_j(\epsilon_1 t) = a_j(t); j = 0, 1, ..., m; \epsilon_1 = \exp(\frac{2\pi i}{n}).$$

THEOREM 3.1. If Γ is an oriented system and invariant with respect to rotation through an angle $2\pi/n$, then M_j are algebraic operators with characteristic polynomials:

 $P_{M_{j}}(t) = t^{3} - t.$

Proof. Observe that

$$\frac{\tau^{k} t^{n-1-k}}{\tau^{n} - t^{n}} = \sum_{j=1}^{n} \frac{\varepsilon_{j}^{k}}{\omega(\varepsilon_{j})} \cdot \frac{1}{\tau - \varepsilon_{j} t}$$

where $\varepsilon_j = \varepsilon_1^j$; $\varepsilon_1 = \exp(\frac{2\pi i}{n})$; $\omega(t) = t^n - 1$;

and $\sum_{k=1}^{n} \frac{\varepsilon_{k}^{j}}{\omega(\varepsilon_{k})} = \begin{cases} 1 & \text{when } j = 1 - n \\ 0 & \text{when } j = 0, 1, \dots, n-2. \end{cases}$

We can write

$$M_{j} = \sum_{k=1}^{n} \frac{\varepsilon_{k}}{\omega(\varepsilon_{k})} \delta W^{k} = S P_{n-1-k}$$

where

$$S\varphi$$
) (t) = $\frac{1}{\pi i} \int_{\Gamma} \frac{\varphi(\tau)d\tau}{\tau - t}$; $P_{n-i-k} = \frac{1}{n} \sum_{j=1}^{n} \varepsilon_{n-1-k}^{j+1} W^{n-1-j}$

 $(W\varphi)(t) = \varphi(\varepsilon_1 t).$

It is easy to see that $P_{n-1-k}^2 = P_{n-1-k}$; $S P_{n-1-k} = P_{n-1-k} S$. Thus, $M_j^2 = S^2 P_{n-1-j}^2 = P_{n-1-j}$ and $M_j^3 = M_j$ which was to be proved.

Suppose that $X_0 = \{a \ I + b \ S, a, b \in C \}$. Then X_0 is a commutative linear ring with unit I. It is easy to verify that W is X_0 -stationary and X_0 -linearly independent. Hence, from Lemma 2.1 we can formulate the following

THEOREM 3.2. Let M be of the form (3.1) and $X_0 = \{a \ I + b \ S\}$. Then M is an algebraic element over X_0 with characteristic roots belonging to $\{a_0, a_1, a_2, \ldots, a_{n-1}\}$. Suppose that:

 $a_1 = a_2 = \dots = a_{n_1} = b_1$

 $a_{n_1+1} = \dots = a_{n_2} = b_2$

 $a_{n_{s-1}+1} = \dots = a_{n_s} = b_s$

where $b_i \neq b_j$ if $i \neq j$. Then the characteristic polynomial of the operator M over X_0 is of the form $P_M(t) = \bigcap_{i=1}^{S} (t - b_j)$.

COROLLARY 3.1. Put $P(t) = \prod_{j=0}^{n-1} (t^2 - a_j^2)$. Then

1) P(M) = 0

2) M is invertible if and only if $a_i \neq 0$, \forall_i and

 $M^{-1} = \sum_{i=0}^{n-1} a_{j}^{-1} S P_{n-1-j} \qquad (P_{n} \equiv P_{o}).$

Proof. It is easy to verify that P(M) = Q(W, S) is even divisible by $\prod_{j=1}^{n} (W - \varepsilon_j I)$. This implies P(M) = 0. On the other hand, $\sum_{j=0}^{n-1} a_{j} S P_{n-1-j} \sum_{j=0}^{n-1} a_{j}^{-1} S P_{n-1-j} = \sum_{j=0}^{n-1} a_{j} a_{j}^{-1} S^{2} P_{n-1-j}^{2} =$ $= \sum_{j=0}^{n-1} P_{n-1-j} = I$

which was to be proved.

COROLLARY 3.2. M is an algebraic operator with characteristic roots belonging to $\{\pm a_0, \pm a_1, \dots, \pm a_{n-1}\}$.

Now we consider the operator K of the form (3.3). Suppose that $a_j(t) \in H^{\lambda}(\Gamma)$ (0 < λ < 1) and $X_o = H^{\lambda}(\Gamma)$ I = {a(t) I; $a \in H^{\lambda}(\Gamma)$ }. If $a_j(t)$ are invariant with respect to rotation: $a_j(\varepsilon_1 t) = a_j(t)$ then W is X_o -stationary and S is almost X_o --stationary with respect to an ideal of compact operators [1]-[4]: S A - A S $\in \mathcal{T}$, $\forall A \in X_o$

where \mathcal{T} is an ideal of compact operators. These imply that M is almost X_o-stationary with respect to \mathcal{T} .

As a simple consequence of Theorem 2.3 we obtain the following THEOREM 3.3. Let K be of the form (3.3) and let $a_j(t)$ be invariant with respect to rotation $a_j(\epsilon_1 t) = a_j(t)$. If $X_o = H^{\lambda}(\Gamma)I$ then K is an almost algebraic element over X_o with respect to an ideal of compact operators \mathcal{T} . Moreover, the characteristic roots of K belong to the set

$$\{A_{k} = \sum_{j=0}^{m} a_{j}(t)a_{k}^{j}; k = 0, 1, ..., 2n - 1\} (a_{n+j}: = -a_{j}; j = 0, 1, ..., n - 1).$$

Suppose that

 $A_1 = A_2 = \dots = A_{n_1} = B_1$ $A_{n_1+1} = \dots = A_{n_2} = B_2$

 $A_{n_s+1} = \dots = A_{n_{s+1}} = B_{s+1}$

where $B_i \neq B_j$ if $i \neq j$. Then the characteristic polynomial of K is of the form

$$P_{K}(\lambda) = \prod_{j=1}^{s+1} (\lambda - B_{j}).$$

COROLLARY 3.3. Let K satisfy the conditions of Theorem 3.3. Suppose that B_j (j = 1, 2, ..., s + 1) are invertible. Then there exists a simple regularizez of the element K to the ideal \mathcal{T} which is given by the formula

 $R = Q(K) \left[(-1)^{S} \prod_{j=1}^{S+1} B_{j} \right]^{-1} \text{ where } Q(\lambda) = \frac{P_{K}(\lambda) - P_{K}(0)}{\lambda}$

REFERENCES

- Przeworska-Rolewicz D., Equations with transformed argument. An algebraic approach, Amsterdam-Warszawa 1973.
- [2] Frzeworska-Rolewicz D., S. Rolewicz, Equations in linear spaces, Warszawe 1968.
- [3] Gakhov R. D., Kraevye zadachi (Boundary problems), Moskov 1977.
- [4] Litvinchuk G. S., Kraevye zadachi i sygnalnye urovneniya sostvigom (Boundary problems and singular integral equations with shift), Moskov 1977.
- [5] Przeworska-Rolewicz D., On equations with rotation, Studia Math., 35 (1970). 51-68.
- [6] Van Man N., Ob algebraicheskikh svojstvakh differentsialnykh i singularnykh integralykh operatorov sostvigom (On some algebraic properties of differential and singular integral operators with shift), Diff. uravnenia, 12/10 (1986), 1799-1805.
- [7] Van Man N., Characterization of polynomials in algebraic operators with constant coefficients, Dem. Math., 16 (1983), 375-405.

Institute of Mathematics University of Łódź

Nguyen Van Man

Nguyen Van Man

CHARAKTERYSTYKA WIELOMIANÓW DLA ELEMENTÓW ALGEBRAICZNYCH Z PRZEMIENNYMI WSPÓŁCZYNNIKAMI I ICH ZASTOSOWANIA

Ten artykuł jest uogólnieniem pracy autora [7], w której określone i opisane są wielomiany charakterystyczne dla wielomianów z elementami algebraicznymi w liniowym pierścieniu przemiennym. Także przedstawione są przykłady zastosowania dla całkowych operatorów osobliwych z obrotem.