Andrzej Szwankowski

ADDENDA TO MY WORK: "ESTIMATION OF THE FUNCTIONAL |a₃ - αa₂² | IN THE CLASS S OF HOLOMORPHIC AND UNIVALENT FUNCTIONS FOR α COMPLEX"

In this paper there has been investigated a set of values of a mapping connected with a maximal value of the functional $|a_3 - \alpha a_2^2|$ in the well-known class S of functions holomorphic and univalent in the unit disc were α is a complex parameter [5].

At the XIII Rolf Nevanlinna-Colloquium in Joensun, Finland, in August 1987, during his lecture "On the functional $a_3 - \alpha a_2^2$ in the class S" [2], Prof. A. Pflüger pointed out a gap in the proof of Lemma 4 of my paper [5]. This lemma has an essential meaning for the estimation of the functional $|a_3 - \alpha a_2^2|$ in the class S for a complex parameter α [5]. Since the Lemma was directly applied in the paper by H. Siejka [3] and indirectly by H. Siejka and O. Tammi in [4], I felt obliged to explain this problem.

The present paper completes the gap as well as indicates a more general method of proceeding which can be applied not only in the task given in paper [5].

Let us now repeat some notations and definitions from papers [5], p. 162-165.

Let us set

B = { (ρ , ψ) : 0 < ρ < 1 and $-\frac{\pi}{2} < \psi < \frac{\pi}{2}$ }.

By B' and B we denote the parts of the set B lying in the plane ρ , ψ above and below the abscissa axis.

Let

 $G = C - (E \cup \{(x, y) : x \ge 1 \text{ and } y = 0\},$

where C is the complex plain and E a set consisting of the segment <0, 1> of the axis 0x and closed segments parallel to the axis 0y such that their terminal points are defined by the conditions $y = \pm y(x)$, $0 \le x < 1$, where y = y(x) is the function given by the equation

(i)
$$[(1 - x)^{2} + y^{2}] / \frac{2[1 - \frac{1 - x}{(1 - x)^{2} + y^{2}}]}{1 - e} + \frac{1 - \frac{1 - x}{(1 - x)^{2} + y^{2}}}{1 - e} + \frac{1 - \frac{1 - x}{(1 - x)^{2} + y^{2}}}{1 - \frac{1 - x}{(1 - x)^{2} + y^{2}}} = 0.$$

The graph of the function contains the point (0, 0) and besides this point, it is contained in the half-plane y < 0 and in the disc $|\alpha - \frac{1}{2}| < \frac{1}{2}$ where $\alpha = x + iy$, with that $\lim_{x \to \infty} y(x) = 0$ ×+1 ([5], p. 165).

Let us denote by G^+ and G^- the sets in the plane x, which are parallel to B⁺ and B⁻.

Let now a be a mapping of B in the plane x, y defined as a some 20 follows ([5], p. 163):

(ii) $\alpha = 1 +$

$$2 + (\rho + \frac{1}{\rho})e^{2i\psi}$$

$$\left[2 + (\rho + \frac{1}{\rho})e^{2i\psi}\right] \log \frac{2 + (\rho + \frac{1}{\rho})e^{2i\psi}}{(\frac{1}{\rho} - \rho)e^{2i\psi}} + (\rho + \frac{1}{\rho} + 2e^{2i\psi}) \log \frac{1 - \rho}{1 + \rho} - 4$$

The following lemma and its proof were given in paper [5], p. 165.

LEMMA. The set of values of mapping (ii) for $(\rho, \psi) \in B$ is identical with the set G.

Professor A. Pflüger remarked in Joensun that the justification of the non-obvious inclusion $\,\delta G \subset \,\delta \alpha(B)\,$ is missing in the

168

proof of the Lemma, while it contains the justification of the opposite inclusion.

The justification of both the inclusions and the conclusion that $\alpha(B) = G$ can be carried out with the help of the following observations.

1. The functional α from (ii) enlarges in a continuous manner onto three boundary segments: $0 < \rho \leq 1$, $\psi = 1$, $\rho = 1$, $0 < < \psi < \frac{\pi}{2}$; $0 < \rho < 1$, $\psi = \frac{\pi}{2}$; maps them onto: the graph of the function y = 0, $-\infty < x \leq 0$, the graph of the function y = y(x)0 < x < 1, defined by (i); the graph of the function y = 0, $1 \leq x < \infty$, all of them lying in the plane of variables x, y.

We obtain this immediately for the points on the segments where the right-hand side of (ii) is defined; for the remained points (1, 0) and $(1, \frac{\pi}{2})$ we easily evaluate that there exist limits (ii) equal to (0, 0) and (0, 1), respectively.

In an analogous manner we show the product $\rho\alpha$ enlarges in a a continuous manner onto the fourth boundary segment: $\rho = 0, 0 \leq \leq \psi \leq \frac{\pi}{2}$ and takes there the values $e^{2i\psi/4}$. Consequently, for the points (ρ, ψ) tending to the point $(0, \psi_0)$ on the considered segment, the corresponding α tends to ∞ , and the ratio $\alpha/|\alpha|$ tends to $e^{-2i\psi_0}$.

2. The boundary δG^{-} is the image of the three boundary segments described above, by means of the mapping α . This follows immediately from the definition of the set G^{+} and the definition of G^{-} .

3. The image $\alpha(B^{+})$ is open. This follows from the fact that the Jacobian of the mapping α is different from zero ([5], p. 163).

4. For an arbitrary angle Δ in the plane of x, y with the vertex at 0, for the rest entirely lying above the real axis, the points of the set Δ sufficiently large do not belong to the image $\alpha(B^+)$. Consequently, the complement of the set $\alpha(B^+)$ contains the interior points.

Really, in opposite case there would exist a sequence of points (ρ_n, ψ_n) , n = 1, 2, ... of the set B⁺ converging to a limit (ρ_n, ψ_n) and a sequence of corresponding values α_n from

169

Andrzej Szwankowski

(ii) lying in A, above the real axis and tending to ∞ . Then, according to 1, there would be $\rho_0 = 0$, $0 \leq \psi_0 \leq \frac{\pi}{2}$, simultaneously, the sequence $\alpha_n/|\alpha_n|$ should tend to the limit - $e^{2i\psi_0}$ and this limit should lie in A, while it is lying below or on the real axis.

5. The boundary $\delta \alpha(B^+)$ disconnects (cuts) the plane x, y i.e. its complement is not connected. This follows immediately from the fact the complement of the boundary is the sum of disjoint open sets: the interior of the image $\alpha(B^+)$ and the interior of the complement of this image, both of them being nonempty according to 3 and 4.

6. The boundary of the image δα(B⁺) is contained in the boundary δG⁻. This easily follows from 1, 2, 3.
7. No proper subset of the boundary δG⁻ disconnects the

7. No proper subset of the boundary δG disconnects the plane, i.e. its complement is a connected set. This follows immediately from the structure of this set, being in the light of 2 and 1, the sum of three graphs [1].

8. The image $\alpha(B^+)$ and the domain G⁻ have some points in common. Really, according to 1, for every ρ , ψ sufficiently close to 0, ψ_0 where $\psi_0 \neq 0$, $\frac{\pi}{2}$, the corresponding image α is lying in the plane of x, y, arbitrary far and the ratio $\alpha ||\alpha|$ -arbitrary close to $e^{-2i\psi_0}$; consequently, α is lying beyond the set E and below the real axis. Thus α belongs to G⁻. From the observations made above, it follows finally that the boundary $\delta\alpha(B^+)$ is identical with the boundary δ G⁻.

Indeed, in the opposite case, according to 6 the boundary $\delta \alpha(B^+)$ would be a proper subset of δG^- and, according to 7, would not disconnect the plane, contrary to 5. From this and 8, it follows at last that $\alpha(B^+) = G^-$ and analogously $\alpha(B^-) = G^+$. Putting together these relations and taking into account, according to 1, the behaviour of the mapping α on the segment $0 < \rho \leq 1$, $\psi = 0$, we arrive at last to the required relation $\alpha(B) = G$.

It is a pleasure to thank Prof. Z. Charzyński for having outlined the idea of this note as well as for his many helpful remarks during the preparations of the paper.

170

REFERENCES

- [1] Kuratowski C., Topologia, Vol. 2, Warszawa 1952, 358.
- [2] Pflüger A., On the Functional $a_3 \alpha a_2^2$ in the Class S, Comp. Variab., 10 (1988), 83-95.
- [3] Siejka H., On estimation of the functional $|a_3 \alpha a_2^2|$, $\alpha \in C$, in the classes of bounded univalent functions, Demonst. Math., 16/1 (1983).
- [4] Siejka H., Tammi O., On maximizing a homogeneous functional in the class of bounded univalent functions, Ann. Acad. Sci. Fenn., Ser. Math., 6 (1981), 273-288.
- [5] S z w a n k o w s k i A., Estimation of the functional $|a_3 \alpha a_2^2|$ in the class S of holomorphic and univalent functions for α complex, Acta Univ. Lodz., Folia math., 1 (1984) 151-177; Abstracts Conference on Analytic Functions, Kozubnik 1979, 54.
- [6] Charzyński Z., Sur les fonctions univalentes bornées, Colloq. Math. 2, (1948).

Institute of Mathematics University of Łódź

Andrzej Szwankowski

PEWNE UWAGI DO PRACY: "OSZACOWANIE FUNKCJONAŁU |a₃ - α a²₂| W KLASIE S FUNKCJI HOLOMORFICZNYCH I JEDNOKROTNYCH DLA ZESPOLONYCH LICZB α"

W niniejszym artykule badamy zbiór wartości pewnego odwzorowania związanego z maksimum wartości funkcjonału $|a_3 - \alpha a_2^2|$ w znanej klasie funkcji holomorficznych i jednokrotnych w kole jednostkowym, gdzie α jest parametrem zespolonym.