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1. INTRODUCTION

When a wave collides with the interface of two materials having distinct 
thermo-electro-magnetoelastic properties, various reflected and transmitted 
(refracted) waves are generated, which have different coupled fields from those of 
the incident wave. At the same time, discontinuities o f the fields across the 
interface and the surface quantities are induced or influenced by the collision of 
the wave. General laws are presented which govern such interactions.

2. GENERAL BASIC EQUATIONS FOR 
THERMO-ELECTRO-MAGNETOELASTIC MATERIALS

In order to investigate intrinsic characters of the above phenomena, we start 
from a set o f general basic equations. Let a singular surface S denote 
a discontinuity surface of the fields, a boundary surface or an interface. In the 
reference configuration, the basic equations can be expressed as, respectively, at 
a point except on S and at a point on S,

r x+Di\<Px+ K*=o,  / ,; + о 1 Х Ф ; + х ; + м - [ Ф “] = о ,  (i)

Ż r + R O T  4>r+Lr = 0,  Ż f + ROT, !P /+ L i4 M  х [ У г] = 0 ,  (2)

DIV Z r + M r = 0 ,  D I V jZ ^ + M f+ M -fZ ']  = 0 ,  (3)

( ij  +  D I V ß  +  N  =  0 ^ 0 ,  Ü .+ D I V .ß .  +  N . +  M C ß ^ O .^ O ) ,  (4)

where Г а ( a = I , . . . ,M )  are scalars or components of vectors, Z r  (Г =  I , . . . ,N) 
vectors, M  a unit normal vector to S, cf. Pao [1 ] and Kosiński [2 ] . Eq. (4) 
corresponds to the second law of thermodynamics. A quantity with subscript 
s indicates a surface quantity such as the surface charge, the surface current, the
surface entropy production. Let a = (y a, £r ) be the state variables (a =  l ......M ,
Г  =  1......N). A homogeneous thermo-electro-magnetoelastic material is defined



by the constitutive equations for the quantities in (l)-(4) expressed in terms of the 
state variables a.

3. WEAK DISCONTINUITY WAVE

Let us consider a plane weak discontinuity wave I  which satisfies the 
conditions: (i) a has finite jump discontinuities in its first derivatives across Г, (ii) 
a is uniformly constant over I  at each instant, (iii) the surface quantities vanish on 
Г. The compatibility conditions for a continuous function / (X , t) across Г are

[ / ]  = - # .  lf,l=7N„ 7« [ / , ] * „  (5)
where i denotes a derivative with respect to X', [  • ]  the jump o f a quantity, U  the 
normal speed ,/the amplitude and N  the unit normal vector to Г in the direction 
of propagation. Applying (5) to (1)—(3), we have

( -  UP£.'+ Q (N )£ )äa' = 0 ,  (Г1, A' —I , ..., M  +  3N) (6 )

0 , (7)
where

Ч 2 Й  R ( ^ [ £ ? ™  ( 8 )

and A —H  are derivatives o f the constitutive functions. In many cases, the matrix 
P  has an inverse, and the normal speed U  and the amplitude â are determined by 
(6 ). For a wave и ф 0, (7) is fulfilled automatically.

4. REFLECTION AND REFRACTION OF AN OBLIQUE INCIDENT WAVE

We consider the case where a plane wave collides with the interface between 
two materials. Let M  be a unit normal vector to the interface, and N „  Ul and à, 
the propagation direction, the speed and the amplitude of the incident wave. We 
assume that the surface quantities except K “, L’s, M / vanish and the distribution of 
the state variables is two-dimensional associated with the incidence plane 
spanned by M  and N v  This imposes that the propagation direction N  o f any 
reflected or transmitted wave lies on the incidence plane. Let p  be the number of 
all reflected waves and q the number of all transmitted waves. The speeds of the 
reflected and the transmitted waves are written as U ^ \ U ^ \  Ulj \  ..., U%\ Other 
quantities are also distinguished by similar super- and subscripts.

Let us pay attention to a neighborhood of the intersection point of the 
interface and the incident wave in the incidence plane at f = 0 . It follows from 
a trivial identity that for any quantity /

[ Л |+ С Я в -  Ź m (R°+ i  С Я У + [ Я г .  (9)
1=1 J= 1



where a quantity on the interface without or with prime denotes its value at 
t =  — 0  and t — + 0 , respectively. Eq. (9) means that the total o f the jumps o f / i s  
conserved just before and just after the collision of the wave. Applying the 
propagation conditions (6 ) and (7) to each wave and combining the result with the 
time derivatives o f (1)1—(3)x, we have

ö(M)-{L/,«r  £ ед}+1=с(м)+{ £ ицщ+Ь'„ (к»
t= i }= x

(11)

where superscript — or -I- denotes a quantity for the first or the second material, 
respectively, and

b = ( K \ L r ). (12)

In many theories o f electromagnetic materials, surface quantities K “ and Lr, 
are given by smooth functions of M rt . Then (11) implies that

b =  b'„ b = h , .  (13)

As in the case o f linear waves in isotropic materials, we can derive a Snell law 
for thermo-electro-magnetoelastic waves

U. U $  l/ü) 
sin0i~sin0jiP —sinfljj?* ’ (‘ _ 1 ......P’ j = l > ">9) (14)

where 0 is the angle made by N  and M ,  cf. Borejko [3 ]  for elastic materials. Since 
U  depends on 0, (14) cannot determine 0. To do it, we write the propagation 
direction N  of a wave as

N = c o s O l M + ( U s in O l/ U l) L ,  (15)

where L  is the unit tangential vector to the interface which makes a sharp angle 
with N ,. Substituting (15) into (6)', we have

{ —X(P —sin 9l/ U l Q  (L)) +  Q  (M)} e  =  0 , (16)

where Я =  U/cos 0. Thus (16) determines Я and the amplitudes o f the reflected and 
the transmitted (refracted) waves. The amplitudes have ambiguity with respect to 
scalar multiplication. With the aid of (14), the speed of a wave is then given by

U 2 =  Я2/(1 +  Я2 sin2 0j/C/f) (17)

and the propagation direction is obtained by substituting (17) into (15). The 
magnitude of the amplitude of each wave can be determined by (10)—(13).

As a result, the amplitudes of the reflected waves are influenced by the tensor 
Q  (M) + for the second material. Thus we can get information on the properties or 
the state o f the material on the other side by observing the amplitudes o f the 
reflected waves.



5. EXAMPLE OF A THERMO-MAGNETOELASTIC MATERIAL

A linear thermo-magnetoelastic material proposed by Kaliski [4 ]  is governed 
by the field equations

pv =  d i \  a + j  x B0 , pT0 's= — d iv g , xq + q = - K g r & d T + n j ,

Ù  =  io t  H —j ,  Ô =  — rot E , d iv D = 0 , d ivB  =  0

and the constitutive equations

a  — 2Ge +  A(tre) 1 — a0 7 1 , B =  p H , D = t ( £  +  r x B0) ,

j=(r}/<p)(E +  v x B 0) +  K/(Kip)q, ps =  cc0(tre) +  ß 0 T , 1̂9)

where e is the infinitesimal strain, <p =  1 +  кп/К, H  is the magnetic field, j  the 
electric currcnt vector, В magnetic induction field, E the electric field, D  the 
electric induction field, u the displacement a  the stress, q the heat flux, T  the 
temperature, s the entropy. We assume that both materials are governed by the 
above equations but the material constants are different. The state variables are

a = ( v , e , q , T , E , H ) .  (20)

We can show that there may exist four kinds o f waves in each material, i.e., an 
electroacoustic wave, a fast and a slow thermoacoustic waves and an electromagnetic 
wave.

Oblique incident electroacoustic wave

Let us consider an incident electroacoustic wave which satisfies

», =  (0 , 0 , ü3), E ,=  ß o Ü3 sin(OB- 0 [)N j, (2 1 )

where the incidence plane is Ar1 - X 2 plane and the interface is A', = 0 . A reflected 
and a refracted electroacoustic waves are generated.

"  G*/iVEA> +  G"/A, '' ( )

If the incidence angle is small, a reflected and a refracted electromagnetic waves 
are also generated. We have

wem)_ _  _  2P ~ Uf Hj > sinOB0<+ s in 0^A)—p~  sin#,)_________ .
l/kEM)(p+ ^VEA)+ P “ f/,) (^ + cos 0VEM) -  H " U f M) cos ^ Ш)) Cl ' ( )

The amplitudes of the other fields can be calculated from (22) and (23). The 
electromagnetic waves are not induced when the magnetic field is perpendicular 
to the interface or when the incidence angle is not small.
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