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COM PARATIVE ASSESSMENT OF SOM E SELECTED M ETHODS OF 
DETERM INING TH E NUMBER OF CLUSTERS IN A DATA SET

Abstract. This paper is an attempt to compare the performance o f  an algorithm for 
determining the number o f  clusters in a data set proposed by the author with other methods 
o f determining the number o f clusters. The idea o f the new algorithm is based on the 
comparison o f pseudo cumulative distribution functions o f a certain random variable. For 
a fixed window size we draw К  different points and for every point we find the corresponding 
limiting point in the mean shift procedure. Then we check if  the distance (e.g. Euclidean) 
between every pair o f  the limiting points is greater than the window size. Analogously we 
determine the pseudo cumulative distribution functions for different numbers К  ol clusters. 
Out o f  all pseudo cumulative distribution functions we pick the proper one i.e. the last one” 
(with respect to K )  which has a horizontal phase. Other methods ol determining the number 
o f  clusters in a data set are compared with the proposed algorithm in a number of examples 
o f  two dimensional data sets for different clustering methods (/с-means clustering and minimum 

distance agglomeration).
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The new algorithm is based on the sample mean shift method used to 
estimate the local maxima of the density function of a random vector. I he 
idea o f this method proposed by D. C o m a n i c i u  and P. M e e r  (1999)
is as follows. Let ... be a set of n  points from d im e n s io n a l
Euclidean space. The kernel estimator of multivariate density function with 
kernel K ( x ) and window size h is given by the formula

1. IDEA OF NEW  ALGORITHM
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The optimal kernel in the sense of minimum square error is the Epanech- 
nikov kernel given by the formula

е д  =  Г с' ,<‘, + 2 ><1 - л >' i f „ A < 1  P )Ł [0, otherwise

where cd is the volume of a unit sphere in d-dimensional Euclidean 
space. It is easy to find an estimator of the gradient o f the density 
function

=  P )nhd ,

For the Epanechnikov kernel we will arrive at the formula
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The quantity
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is called the window/sample mean shift. The mean shift always moves the 
sample in the direction of the greatest increase in density, therefore, if we 
keep on moving the sample by the vector given by formula (5) we will get 
convergence towards the centre of the local density maximum (see: C o -  
m a n i c i u ,  M e e r  (1999)). By the limiting point of a given starting point 
we will understand the centre of the last window in the sequence of the 
mean shift procedures.

In connection with the algorithm proposed below it is im portant 
to remark that the window is shifted at every step of the procedure 
in the direction of the nearest local density maximum. The location 
of this maximum depends on the size h of the window. The smaller 
the value of h the more local is the character of the maximum, the 
greater the value of h the more global is the maximum. In particular, 
if the window size h is greater than the greatest distance between any 
two data points every data point will be shifted towards the same limiting 
point.



Formally, the algorithm can be described in the following steps.
Step 1. For К  =  2 we draw dependently 2 data points and for each 

point we find the corresponding limiting point in the mean shift procedure 
for a fixed window size h.

Step 2. We check if among all pairs of limiting points (for К  =  2 there 
is only one pair) there exists at least one pair of points with the distance 
smaller than h.

Step 3. We repeat step 1 and step 2 10000 times in order to find the 
probability of meeting the condition from step 2.

Step 4. We repeat steps 1, 2 and 3 for all window sizes h from interval 
(0, max. distance) with h increasing discreetly by small increments e.g. 
1/1000 of the maximal distance. As a result we get a pseudo cumulative 
distribution function for к = 2.

Step 5. We repeat steps 1, 2, 3 and 4 for К  =  3 ,4 ,5 ,..., (e.g.) 20.
The proper number of clusters that is picked up with the help of the 

above presented algorithm is the one equal to the greatest К  that cor­
responds to the curve possessing a “horizontal phase” significantly below 
than 1. Horizontal phase is defined in the following way: it is a part of 
the curve of the length of at least 1/20 of the median ol all distances 
between pairs of points and each point of this part corresponds to a pro­
bability smaller or greater by ко more than 0.01 than the probabilities 
for all other points from the part preceding the point. The numbers 1/20 
of the median and 0.01 were found by the method of trial and error 
and obviously are not to be changed -  are supposed to be working for 
an arbitrary data set. The horizontal phases are usually very evident and 
if the numbers 1/20 and 0.01 were slightly different it wouldn’t change 
the algorithm’s performance. The appearance of the median of all pairwise 
distances makes it necessary to estimate it. 1 he following way of estima­
ting it was adopted. If  the data set has less than 200 elements we com­
pute all pairwise distances and pick up the median. If the set is larger 
we draw without replacement 300 pairs of elements and take the median 
of the found 300 pairwise distances. The idea behind this algorithm is as 
follows.

Let us consider a two dimensional data set (see Fig. 1) consisting of 
three equally spaced identical unimodal clusters — each cluster centre e.g. 
80 pixels away from each of the other clusters. Every drawn point will be 
shifted in the mean shift procedure to the very centre of its cluster because 
the cluster density increases with getting close to cluster s centre. 1 herefore, 
if we draw 2 points the probability of meeting the step 2 condition is equal 
to the probability of drawing 2 points from the same cluster and should 
stay constant no m atter if the window size h is equal to 20, 30 or 70 
pixels. If the window size exceeds 80 pixels the probability jumps to 1 on



a short segment of the horizontal axis because all set points (including the
2 drawn) correspond to the same limiting point. Similar situation will take 
place in the case of drawing 3 points with the horizontal phase (the 
constant probability) being obviously higher. When we draw 4 points the 
probability of meeting step 2 condition has to be equal to 1 even for very 
small window sizes because some 2 points have to belong to the same 
cluster and therefore have the same limiting point. From  the graph 
presenting the curves for the considered data set it is evident why we 
should pick the curve that is the last to possess the horizontal phase. The 
length of the horizontal phase is connected with the distance between the 
clusters’ centres and the height on which the horizontal phase is placed is 
connected with the number of points in the cluster due to which the phase 
is created.

Fig. 1. An exemplary set o f  three identical, equally spaced clusters from a two dimensional 
Euclidean space (on the right) and an approximate graph o f pseudo cumulative distribution

functions (on the left)

2. OTHER M ETH O D S OF DETERM INING THE NUM BER OF CLUSTERS

There is some difficulty in comparing the algorithm described in the 
previous section with other methods of determining the number of clusters 
in a data set because all methods which can be found in literature determine 
the optimal number of clusters for a given clustering method. We chose 
four methods whose performance is better than that of other methods 
( S u g a r ,  J a m e s ,  2003). In the following formulae К  denotes the number 
of clusters which have to be constructed by some method, B(K) and W(K)  
denote, respectively, the between and within cluster variance. The first



method is the Caliński-Harabasz index for which we should choose К  that 
maximizes the value given by the formula

B(K)/(K  - 1 )

(6)

The second method is the Krzanowski-Lai index given by formula (7)

DIFF(K)
К Ц К )  =

where

DIFF(K+  1) (V)

DIFF(K) = ( K -  1)21“Щ К  -  1) -  K 2'JW(K)  (8)

and again we should seek К  that maximizes this index. The third method is 
the Hartigan index given by formula (9)

* ( « - ( » - К í j - 1)  (9)

in connection with which we should choose smallest К  for which the index 
is smaller or equal to 10. The forth method is based the silhouette index 
which for the i-th element is given by the formula

b(i) — fl(i) 
max{a(i), b(i)}

where a(i) is the average distance between the i-th element and all other 
points in its cluster b(i) is the average distance to points in the nearest 
cluster. We should choose К  that maximizes the average value of s(i).

Ail four methods will be checked for two quite different in nature 
clustering methods i.e. /с-means clustering and nearest neighbour agglome­
ration algorithm.

3. PERFORM ANCE ANALYSIS

We will try to compare how all five methods perform for six different 
two dimensional data sets. The sets were either created or chosen so 
as to represent well separated clusters, badly separated clusters, clusters with 
similar numbers of elements and clusters with different numbers of elements.
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Fig. 2. Six investigated two dimensional sets o f points 

S o u r c e :  sets 1-5 -  own constructions, set 6 -  G o r d o n  1999.



T a b l e  1

Numbers o f clusters as shown by the four compared indices 
for the six analysed data sets

Set

fc-means clustering Minimum distance agglomeration

Silhouette
index

Caliński—
Harabasz

Hartigan
Krzanowski

-Lai
Silhouette

index
Caliński—
Harabasz

Hartigan
Krzanowski

-Lai

1 2 7 > 8 5 > 1 5 5 3

2 3 5 > 7 5 > 7 3 3 3

3 5 8 > 9 4 > 8 5 5 5

4 4 7 > 8 7 > 8 5 3 5

5 10 10 > 1 2 10 6 4 4 4

6 4 6 > 7 2 3 5 2 2

S o u r c e :  own calculations.
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For Set 1 which consists of quite evident 4 clusters the algorithm proposed 
showed unquestionable 4 clusters. However, for this seemingly easy to handle 
set all other methods give wrong indications for both clustering methods.

For Set 2 which consists of 3 (rather than 2) clusters the algorithm 
proposed showed the proper number, all other methods performing rather 
poorly.

F or Set 3 which consists of 5 (rather than 4) clusters the algo­
rithm proposed showed the proper number, all other m ethods per­
forming so-so.

For Set 4 which consists of 5 (rather than 4) clusters, differing from 
the previous set only in indistinct borders between clusters, the algorithm 
proposed showed the proper number, all other methods performing badly 
or very badly.

For Set 5 which consists of 8 clusters the algorithm proposed showed
7 clusters all other methods performing very badly.

For Set 6 which is a very fuzzy set and which can be described as 
consisting o f 3 or 4 clusters the algorithm proposed showed 4 or 5 clusters, 
all other methods performing very poorly apart from the silhouette index 
method which did better than our algorithm.
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Fig. 5. Curves o f  the new method for sets 5 and 6 

S o u r c e :  own investigations.

4. CONCLUSIONS

The examples presented in the previous section allow to formulate the
following conclusions.

1. The algorithm proposed seems to be interesting because it is entirely 
different from other methods as it does not depend on any method of 
classifying objects to particular clusters.

2. Other methods of determining the number of clusters are heavily 
dependent on the output results of the cluster construction method as one 
can see from the numbers in Tab. 1. The silhouette index performs not so 
badly for the /с-means clustering while it gives entirely erroneous results 
for the agglomeration clustering. The contrary situation is in the case of 
the Hartigan index. The other two methods are more stable with respect 
to the cluster construction method but still give indications different, in 
most cases, by 2 clusters.



3. The algorithm proposed is nonparametric i.e. does not require any 
assumptions about the data set we investigate. The only number the al­
gorithm needs is the number of replications needed to construct the curves. 
The number of 10 000 adopted in the paper seems to be sufficient for the 
sets that should be divided into not more than a dozen or so clusters. If 
the number of clusters gets higher and, in consequence, the number of 
elements in the smallest cluster gets smaller we may need more than 10 000 
to detect the smallest cluster. However, cluster analysis, in general, is not 
concerned with dividing data sets into many small clusters.

4. Horizontal phases with which the algorithm is concerned are always 
fairly evident. There are two sources of possible mistakes that can be made in 
the proposed algorithm. One is the level on which the horizontal phase should 
be considered as the “ last” one and therefore pointing to the proper number 
of clusters, the other is the minimum length of horizontal phases. The first 
problem is less dangerous because if we assume the minimum number of 
elements that the smallest cluster should consist of, it will imply the probability 
level for the “last” horizontal phase. The second problem is connected with the 
distance of two closest cluster centres and cannot be helped in any simple way, 
therefore, the only way out seems to be adopting an artificial level of this 
distance as it was suggested earlier (1/20 of the median of pairwise distances).

5. The algorithm’s speed is about 5 seconds on a 1 Mhz computer for “one 
curve” in the case of a two dimensional data set consisting of 400 elements.
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OCENA PORÓW NAW CZA WYBRANYCH M ETO D  
W YZNACZAJĄCYCH ILOŚĆ SKUPIEŃ W ZBIO RZE DANYCH

Artykuł niniejszy jest próbą oceny porównawczej algorytmu wyznaczającego ilość skupień 
w zbiorze danych, zaproponowanego przez autora, z innymi metodami wyznaczania ilości 
skupień. Algorytm autora oparty jest na porównaniu pseudodystrybuant pewnej zmiennej 
losowej dla różnych ilości skupień. Ta zmienna losowa jest zdefiniowana w następujący sposób.



D la ustalonego rozmiaru okna losujemy ze zbioru danych К  różnych punktów i dla każdego 
z tych punktów znajdujemy odpowiadający mu punkt graniczny w procedurze średniego 
przesunięcia próby. Następnie sprawdzamy, czy odległość (np. euklidesowa) pomiędzy każdą 
parą punktów granicznych jest większa od rozmiaru okna. Analogicznie wyznaczamy pseudodys- 
trybuanty dla różnych ilości К  skupień. Ze wszystkich dystrybuant za prawidłowo określającą 
ilość skupień uznajemy tę, która odpowiada ostatniej (względem K ) krzywej, posiadającej fazę 
poziomą. Inne metody określania liczby skupień w zbiorze danych są porównane z zapropo­
nowanym algorytmem na przykładach kilku dwuwymiarowych zbiorów danych dla dwóch, 
diametralnie różnych w naturze, metod konstruowania skupień.


