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Abstract. In this paper an analysis of the time series on the Day Ahead Market (DAM)
of the Polish Power Exchange is presented. In this analysis Generalized Autoregressive
Conditional Heteroscedasticity (GARCH) models are used to describe the time series of rates
of return of price of electric energy on DAM. This analysis is based on the data from July

2002 to June 2004.
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1. INTRODUCTION

The Day Ahead Market (DAM) was the first market, which was es-
tablished on the Polish Power Exchange. This whole-day market consists
of the twenty-four separate, independent markets where participants can
freely buy and sell electricity. The breakthrough in the development of the
Polish Power Exchange was made 1st July 2000, when the first transaction
was completed on the DAM. Advantage of the Exchange is that all the
participants of market can buy and sell electric energy, independently
whether there are producers or receivers of electric energy.

Since 14 July 2002 Balance Market (BM) - technical market, which
looks after balance on Polish energy market, has introduced additional
price: Price Accounting Deviations of sale PADs and |Irice Accounting
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Deviations of purchase PADp. These prices should helpin expectation future
demand for the electric energy on whole-day and futures market.

2. METHODOLOGY

A lot of the empirical results show that the time series of rates of
return aren’t dependent only on the firs moment of the data:

- the volatility of rates of return is characterizes with volatility clustering,
it is cause of heteroscedasticity and the growing of variance of terror term,

- the rates of return have the leptokurtic distribution and the fat-tailed,
the distribution of the returns data have the substantially heavier tails than
a normal distribution,

- the volatility of rates of return is inverse correlation with the volatility
of their variance - leverage effects,

- the long memory processes in the series of variance, the squares
returns data are characterizes with the significant autocorrelation coefficients.

R. F. Engle (1982) introduced the Autoregressive Conditional Hetero-
scedasticity (ARCH) model, which incorporated into variance equation some
of the stylized characteristics common to the second of moment of financial
basset price information.

The ARCH(q) model is defined as

Zt=p + y/'htet (D
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where:
N - mean of rates of return,
noise e, ~ N(0,1),

N(0A),
¢, - coefficient, c0,cq>0, ¢c,>0 (i=1,...,q—1),

if £ ct< 1, then the time series Z, is strict stationary,

ht - conditional variance.



A more generalized version of ARCH, the Generalized Autoregressive
Conditional Heteroscedasticity GARCH, was formulated by Engle’s graduate
student T. Bollerslev (1986). In comparison to the ARCIlI model, the
GARCH model allows a potentially more complete representation of the
dynamic nature of the process by which the conditional variance in financial

market data may evolve.
The GARCH (p, q) model is defined as

Z, = In+\Ih,E, (3)

where c0, cq bp> 0 and otherwise coefficients are nonnegativees,

it £c,+ ilfy<I> then the time serieS Z S StriCt stationary

im0

The process GARCH is characterizes with return to mean. lhe mean
long-term variance of this process is defined as

V= e e — 5)

An effective method used to estimate the coefficients in ARCH(qg) and
GARCHQ?, g) models is maximum likelihood method (ML). 'l he coefficients

are the results of maximum of a function
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where Z ,,..., ZN arc empirical rates of return.

A lot of different model selection criteria are proposed in selecting an
optimal ARCH model. The most of the standard class of these model
selection procedures involve minimizing some loss function.

One of the most popular models is H. Akaike’s (1973) information

criterion, which takes the form



AIC =-21nL + 2k (?)

where k is number of the coefficients.
G. Schwarz (1978) developed a consistent criterion based on Bayesan
arguments

B1C = -21nL + 2k\nN ®)

where N is the sample size.

E. J.. Hannan and B. G. Quinn (1979) proposed the consistent
criterion for the order of an autoregressive Rusing the law of the iterated
logarithm

HQ = -In L 4 2cin (In N)) ©

J. J. Rissanen (1987) developed a model selection criterion, which is
a sample approximation to a measure of stochastic complexity

(10)

The Akaike’s (7) and Schwarz’s (8) criterions are most popular and
very often used. H. Mitchell and M. McKenzie (2003) resumed and
compared a lot of the used criteria. The results of their work, based on
simulated data suggest, that HQ and RCL provide a superior level of
performance for ARCH and GARCH process compared to the more com-
monly used criteria.

3. EMPIRICAL ANALYSIS

In this part of paper the results of estimation of ARCH and GARCH
models are presented. To analysis the hourly logarithmic rates of return of
price of electric energy on DAM were noted from 01.07.2002 to 30.06.2004
are used. The programs such as: EXCEL, GRETL and STATISTICA are
used to calculate. The volatility of rates of return on DAM is characteristics
with volatility clustering (Fig. 1).
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Fig. 1. Time series plot of rates of return of price of electric energy 1.07.02-30.06.04.

Source: author’s own computations.

The rates of return have the leptokurtic distribution (Fig. 2) and fat-tailed
(Fig. 3).
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Fig. 2. Histogram of logarithmic rates of return of price of electric energy

Source: author’s own computations.



normal distribution
zl (price) = 2.7515E-6+0.0749X

Theoretical quantile

Fig. 3. Quantile-quantile plot of logarithmic rates of return of price of electric energy

Source: author’s own computations.

Figure 4 shows autocorrelation for 168 lagged variables and their
square. The price of electric energy is characterize with daily, weekly and
yearly seasonal. The significant autocorrelation coefficients mean also,
that the logarithmic rates and square of logarithmic rates of return of
price of electric energy have the long memory processes in the series of
variance.

In Tab. 1-3 the results of estimate the ARCH(q) and GARCH(p, q)
models, by GRETL program, are presented. For q> 1 and p> 2 these
models can obtain convergence.

Table 1
ARCH (1) model results for 17 276 observations
Coefficient Std. error (-statistic p-value
-0.001 709 0.000 656 -2.605 600 0.009 179
0.005 092 0.000 193 26.409 400 <0.000 01

a 0.314 082 0.033 003 9.516 800 <0.000 01



p,p = 1...168)

(¢

rank

The autocorrelation

1 +.041
13 +.010
25 +.129
37 +.009
49 4115
61 +.011
13 4117
85 +.019
97 +.103
109 +.022
121 +.114
133 +.019
145 +.116
157 +.011
Source:

Fig. 4. Autocorrelation plot of logarithmic rates
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Table 2

GARCH (1,1) model results for 17 276 observations

Coefficient Std. error (-statistic p-value

0.000 441 0.000 472 0.933 200 0.350 734
co 0.000 005 0.000 003 1.623 200 0.104 570
Cc1 0.015 065 0.004 710 3.198 100 0.001 386
ft, 0.984 006 0.005 129 191.843 500 <0.000 01

Source: author’s own computations.

Table 3
GARCH (2,1) model results for 17 276 observations
Coefficient Std. error t-statistic p-value
A 0.000 302 5 0.000 461 6 0.655 300 0 0.512 266 0
c0 0.000 010 9 0.000 006 9 1.573 100 0 0.115 714 0
d 0.031 981 8 0.009 984 6 3.203 100 0 0.001 362 0
ft, 0.194 275 0 0.026 399 3 7.359 100 0 <0.000 01
ft2 0.771 826 0 0.031 379 6 24.596 500 0 <0.000 01
Source: author’s own computations.
Table 4
Model selection results for 17 276 observations
ARCH(I) GARCH(1, 1) GARCH (2, 1)
Sum of coefficients 0.317 5 0.999 5 0.998 4
Log-likelihood 19 323.58 22 192.37 22 244.39
AlC -38 643.17 -44 378.75 -44 480.77
B1C -38 608.14 -44 326.21 -44 410.72
HQ -19 314.47 -22 178.71 -22 226.16
RCL -19 311.05 -22 173.71 -22 219.50
\% 0.007 4 0.005 5 0.005 7

Sv 0.086 2 0.074 0 0.075 4



All parameters in ARCH(I) model are significance. In GARCH models
significance are only these coefficients, which are responsible for the lagged

variables of volatility.
In Tab. 4 we compare these three models based on criterions, which

were presentedin second part of this paper. In all models the sums of the
coefficients are less then one, so all models are strict stationary. The
GARCH(2, 1) model has the smallest loss function. We can write the

GARCH(2, 1) model based on results from Tab. 3:
Z,=0.000 302 5+ V Vt,
ht = 0.000 010 9+ 0.031 918 8Z®i + 0.194 575 0/jt_,+ 0.771 826 Oht_2

The mean long-term variance of this process equals 0.0057, so the hourly
residuals standard deviation of rates of return for this data set equals 7.54%.
In the next step the rests of GARCH(2, 1) model are analyzed. On the

Fig. 5 the residuals plot against time is presented.

Time in hours from 1VII 2002 to 30 V 12004 (i)

Fig. 5. Residuals plot against time the GARCH(2, 1) model

Source: author’s own computations.

The empirical rates of return are described well by the generalized
autoregressive conditional heteroscedasticity, if time series

N(0.1) (11)

where ht, fi - are the characteristics, which are estimated on base the Z,
process.



The GARCH models describe well the real process Zt, if the time series
of residuals (11) have normal distribution.

Unfortunately the time series of residuals of GARCH(2, 1) model have
the leptokurtic distribution (Fig. 6) and fat-tailed (Fig. 7).
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Source: author’s own computations.
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The parameters of residuals series (Tab. 5) demonstrate the difference
between normal distribution and the distribution of empirical residuals. The
residuals have the right asymmetry and leptokurtic distribution. Standard
deviation is close to one but mean of residuals equals -0.0067.

Table 5

Parameters of distribution of time series £,

Parameters Values
Mean -0.006 7
Median -0.006 2
Mode :
Standard deviation 1.000 3
Kurtosis 4.556 9
Skewness 0.540 0

Source: author’s own computations.

4. CONCLUSION

This empirical exercise shows, that the hourly rates or return of price of
electric energy depend on the lagged variables of volatility. Although that,
the classical GARCH models aren’t well described the rates of return, they
are better than models, which establish the const variance at time. The
sensible difference between empirical and theoretical distribution means that
the Generalized Autoregressive Conditional Heteroscedasticity models based
on normal distribution shouldn’t be used to describe the rates of return of
prices of electric energy. In an attempt to capture the leptokurtosis common
to financial returns data, the ARCH family of models may be extended to
assume some other density. Typically modification to the standard class of
model GARCH involves replacing the standard normal density with some
other assumed distribution for example r-density or the GED density.
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Alicja Ganczarek

MODELE GARCH SZEREGOW CZASOWYCH NA RDN

W pracy zostata przedstawiona analiza szeregéw czasowych stép zwrotu cen energii
elektrycznej notowanych na rynku dnia nastepnego (RDN) Towarowej Gietdy Energii SA od
lipca 2002 do czerwca 2004 r. za pomocg modeli GARCH. Celem pracy jest odpowiedZ na
pytanie, czy modele GARCH efektywnie opisujg ksztattowanie sie cen energii elektrycznej na
parkiecie polskiej gietdy energii i czy mozna je wykorzystywaé do modelowania szeregéw
czasowych stép zwrotu cen energii elektrycznej.



