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CLASSIFICATION TREE BASED ON  
RECEIVER OPERATING CHARACTERISTIC CURVES

Abstract. The paper deals with a new classification algorithm for discriminating between 
two populations. The proposed algorithm uses properties of a receiver operating characteristic 
function ROC(v) and a  goodness-of-fit statistic proposed for testing the null hypothesis
H0 : ROC(v) =  v against H , : ~  H0.

Key words: classification tree, Receiver Operating Characteristic curve, goodness-of-fit test.

Consider the problem o f classifying individuals into one o f two popu­
lations nQ or 7c1. We assume that values o f s continuous random variables 
X 1, X 2, . . . , XS are observed. Variables X lt X 2, X 3 will be called -  diag­
nostic variables.

Let as assume that an individual is to be classified to the population n0 
if X j  exceeds a threshold x 0j for some j  =  1 , 2 , s, Assume the following 
notation

1. THE MAIN IDEA AND NOTATION

Zj  X j \tii, j  1 , 2 , . . . ,  s, 

Cj  “  X j |7Гд, j  — 1 ,2 ,. .. ,  5,

(1)
(2)

and

(3)

(4)

(5)
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where У is a binary (response) variable indicating whether an observation 
[Jfj, X 2, X J  comes from n0 or n v  Thus,

Y _  Г0, if an observation [Xj, X 2, ..., X J comes from n0,
[ 1 , otherwise.

It follows that У =  1 in (4) and У =  0 in (5).
The cumulative distribution function (CDF) o f Xj  in the populations 

71q and will be denoted by Fj and Gj, respectively. Using the notation 
(l)-(2 ), Fj is a CDF o f a random variable Cj and Gj is a CDF of a random 
variable Zj.

Assume that we have the learning data which comprise a sequence of 
n independent copies o f the vector (3) given X comes from the population 
я 1, and another sequence o f m independent copies o f (3) given X comes 
from n0 Using the notation (4)-(5), both sequences (random samples) will 
be denoted in the following form

Zj, Z2, ..., Z„, (7)

and

C j,C 2, ...,C m. (8 )

The proposed classification algorithm uses properties o f a receiver ope­
rating characteristic function ROC(v) and a goodness-of-fit statistic used for 
testing the hypothesis H 0 : ROC(v)  =  v against : ~  H 0.

The ROC  curve and some o f its properties are studied in Section 2, 
the proposed goodness-of-fit statistic is described in Section 3. The clas­
sification procedure is presented in Section 4.

2. TH E RECEIVER OPERATING CHARACTERISTIC CURVE

For simplicity, let us assume one diagnostic variable X,  with a CDF 
F if X  comes from л0 or with a CDF G if X  comes from n v  Using the 
notation (l)-(2 ) F is a CDF of a random variable С  and G is a CDF of 
a random variable Z.

The receiver operating characteristic curve is a plot o f  1 — F(x) against 
1 — G(x) as x  varies over the support of X.  In other words, it is a plot 
o f P(X  > x | 7t0) against P(X  > х |я 1) or a plot of P (C > x )  against P ( Z > x )  
as the threshold x  varies. The ROC  curve can be also defined as a set of 
points o f the form



{(1 -  G(x),  1 -  F(x)): x e ( - c c ,  oo)}

In statistical terms, the ROC  curve displays the trade-off between power 
and size o f a test with a rejection region P (X  >  x) as x is varied. In the 
biomedical context n0 is often a disease group and n x is a control group. 
The power P(X  > х |я 0) is then the probability o f a true positive diagnosis 
and the size P (X  > x |n t) is the probability o f false positive diagnosis (Green, 
Swets 1966; Thomas, Myers 1972; Lloyd 1998, 2002).
If X  is continuous, then ROC  depends on F, G via the formula

ROC(v) =  1 — F(G~ *(1 — v)), v e [ 0 ,1]. (9)

Indeed, let us denote

v — 1 — G{x),

then

G(x) =  1 — v and x(v) =  G _1(l — v).

Thus

ROC(v) =  1 -  F(x(v)) =  1 -  F(G -1 (1 -  v)) and v e [ 0 ,1].

ROC(v) is always a non-decreasing function on the unit space, as shown 
in the example 1 (cf. Figure 3). Estimation o f ROC(v)  is usually based 
on replacing F and G by their empirical versions Fm and G„ defined as 
follows

Ся(х) =  - Е 1 (2 ; < х ) ,  (1 0 )
n i= i

З Д  =  - Х Ж < х ) ,  (1 1 )
m (=l

where 1(A) denotes a characteristic function o f an event A.
The empirical ROC  curve will be denoted by RÔC.  It is a plot of  

1 — Fm(x) against 1 — G„(x). In other words, an empirical ROC  curve is 
a set o f points

{(1 - G „ (x ) ,  1 - F m(x)): x e ( - o o ,  со)}.



Example 1

Fig. 1. Cumulative distribution function G(x) o f X  in я ,

Fig. 2. Cumulative distribution function F(x) o f X  in n0

1 -  G(x) 

Fig. 3. The ROC  curve



It is easy to check that the area under the ROC  curve (AUC)  equals 
to the probability P ( Z < Q  Let us first calculate AUC.  From (9) we have 

t i  i t  
A U C  =  JROC(v)dv =  J[1 - F ( G _1(1 -  v)]dv =  \ d v -  JF ÍG ^O  -  v))dv =

o o  o o

-  1 +  JF(G~ l (v))dv =  1 -  \ f (G~ l (v))dv =  1 -  J F(c)dG(c).  (12)
1 0 -oo

Now, we find the probability P(Z <  C). Denote by f ( z , o ( z , c )  the two- 
dimensional density function o f (Z, C) and by g, f  -  the marginal density 
functions o f Z, C, respectively. From independence o f Z and С we get
/<z.o(z, c) =  g(z)f(c).  Thus,

P(Z < C) =  P(2 .o {(z , c ) : z < c }  =  ÍJ((*lC):i<c}/(z.o(z, c)dzdc =

= №{it.c).i<c}g(z ) f ( c )dzdc  =  Ы  ] g ( z ) d z ] d c  =
-00 L-® J

=  ] f ( c ) G ( c ) d c  =  J G(c)dF(c) =  1 -  J F(c)dG(c).  (13)
— 00 — 00 — 00

Comparing the results (12) and (13) we receive the equality

A U C  =  P ( Z < C ) .  (14)

It follows from (14) that the ROC  curve summarizes the separation between 
two distributions F and G. The higher is the ROC  curve, the greater the 
prediction accuracy o f the diagnostic variable X.  If the plot o f ROC(v) lies 
on the diagonal у  =  v than there are no difference in distributions o f the 
populations n0 and n v  In the case o f an empirical ROC  curve we may 
state that the more significant is the difference between the empirical ROC  
curve and a diagonal line on the interval [0 , 1], the more significant is the 
corresponding diagnostic variable X  with respect to its prediction accuracy. 
This concept constitutes the background for the / 2 goodness-of-fit test 
discussed in details in the next section.

3. TH E GOODNESS-OF-FIT TEST FOR ROC

Consider the null hypothesis o f the form

H0 : V R0C(v)  =  v, (15)
DC-10. 1]

against the alternative

H ,  : ~ H Q.



Let us notice that ROC(v) defined in (9) is a CDF o f the random variable

for we have

P ( W <  v) =  P( 1 -  G(C) <  v) =  P(G(C) >  1 -  v) =  P(C >  G ~ \ \ -  v)) =

=  1 -  P (C < G _1(1 -  v)) =  1 -  F (G ~‘(1 -  v)) =  ROC(v),  v e [ 0 ,1]

It follows, that testing (15) can be reduced to the problem o f testing the 
hypothesis that W  (or equivalently G(C)) has the uniform distribution on 
the unit interval. Hence, the null hypothesis (15) can be reformulated 
equivalently as

Unfortunately, in order to test (17) we would need to observe a random 
variable G(C), what is usually impossible without any parametric assum­
ptions concerning the cumulative distribution function G. For this reason 
we will consider the empirical cumulative function G„ defined in (10) 
instead o f G.

It is easy to notice, that the random variable G„(C) has a discrete 
distribution, for it takes the values from the finite set

We will find the probability distribution of G„(C). Let R, F be CDFs  of 
G(C) and C, respectively. Let us also denote by r and /  respective density 
functions o f G(C) and C. For any ie { 0 , l , . . . ,n }  we have

W =  1 -  G(C), (16)

H 0 : G(C) ~  Uniform on [0,1]. (17)

f lG .( C )  =  -
-  OO

j G‘(jc)[1 -  G(x)]n~if (x)dx.

Denote

У =  G(x),

then

x =  G \ y ) ,  dx =  [G l (y)]'dy-

Notice that

R(x) =  F(G~l(x))  for x e [ 0 ,l ]



and

r ( x ) = / ( G - 1(x ))[G -1(x)]'.

Hence

p ( g „(C) =  Л  =  J y 'd - y ľ - f t G - ' m G - ' W d y  =

(18)

If the hypothesis (17) is true then r(x) =  1 for x e [ 0 , 1] and from (18) 
we have

p ( g S C )  = = ( " ) } y ( l - y y - 4 y  = (19)

Assume that we observe a random sample

G ' i C J ,  Gn(C2), G„(Cm). (20)

Now we can use the standard %2 goodness-of-fit test for testing (17) with 
the x 2 statistic o f the form

i = o mPi

where m is the size o f the sample (2 0 ), pt represents the hypothetical 
probability (19) that G„(C) =  i/n, and m, stands for the empirical number 
of observations in (2 0 ) equal to i/n.

It is well known that the statistic (21) under H 0 has an asymptotic %2 
distribution with n degrees o f freedom. Thus, if the sample size m is large, 
we can use this statistic to test the null hypothesis (17).

4. CLASSIFICATION ALGORITHM

Using the properties o f ROC  curves and the goodness-of-fit statistic 
discussed in previous sections we will now describe a simple classification 
rule based on a continuous diagnostic variable. The rule is as follows.

From the set X t , X 2, ..., X ,  choose a variable X k, say, for which the 
goodness-of-fit statistic x 2 defined in (21) is the largest one. Construct the



corresponding empirical curve RÔCk and find such a point x =  x 0 for 
which the distance between points (1 — G„(x), 1 -  Fm(x))  and (0,1) is the 
smallest one. The threshold x 0 can be treated as the most predictive one. 
Suppose that we observe a realization x k of the variable X k coming from 
one o f  the populations n0 or n v  We will classify this observation to n0 if 
xk >  x 0 and to 7Cj, otherwise.

Now we can formulate a more complex partitioning procedure employing 
the whole set o f continuous diagnostic variables X t , X 2, ..., X s. This procedu­
re will be called a learning procedure for it uses the learning sample (7 )-{8 ). 
It leads to a classification tree that can be used to classify new individuals:

1. Determine the set o f individuals constituting the sample under 
analysis in the /-th step o f the procedure. In the first step the set Ж {|) consist 
of all the individuals o f the learning sample.

2. For each X j  calculate the x 2 goodness-of-fit statistic (21). In cal­
culations use observations o f X } for those individuals which belong to

3. Choose the diagnostic variable X k for which the x 2 statistic is the 
largest one.

4. For the RÔCk curve corresponding to X k find the most predictive 
threshold x 0(k.

5. If the realization xk o f X k for an individual from is greater 
than x 0b classify it to n0, otherwise -  to nv  Repeat the step for all the 
individuals in Jr®.

6 . Denote by the set of individuals from JfW  classified to n0 and 
by the set o f  individuals classified to л 1. If for all the individuals in 
•ЛЧ' 1 the variable У defined in (6 ) equals to 0 then treat the set as 
a terminal one. If all the individuals in have Y =  1 then treat also 
as terminal set. If one o f (or both) sets Ж|>,} and are non-homogenous 
with respect to У than take the given non-homogenous set as and 
return to the first step o f the procedure.

The procedure continues until the resulting sets contain individuals 
homogenous with respect to У.
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Agnieszka Rossa

DRZEW O KLASYFIKACYJNE OPARTE NA 
KRZYWYCH OPERACYJNO-CHARAKTERYSTYCZNYCH

(Streszczenie)

W artykule przedstawiono propozycję konstrukcji drzewa klasyfikacyjnego, wykorzystującą 
własności krzywych operacyjno-charakterystyczných oraz statystyki testu zgodności x 2 dla 
weryfikacji hipotezy zerowej H 0 : ROC(v) =  v przeciwko hipotezie H l : ~ H 0.


