ACTA UNIVERSITATIS LODZIENSIS
FOLIA OECONOMICA 194, 2005

Jan Zotowski*

APPLICATION OF PROBIT MODELS
AND SELECTED DISCRIMINATION ANALYSIS METHODS
FOR CREDIT DECISION EVALUATION

Abstract

Retail banking deals with servicing consumer credits and it constitutes one of the major
banking activities. A customer applying for the credit fills in the application which is basis
to evaluated of his creditworthiness.

The paper considers the problem of evaluation to which of the two groups the person
applying for a credit should be assigned to: a) those who possess the creditworthiness; b)
those who do not possess the creditworthiness. It analyses the possibility of applying the
probit models and the discrimination analysis methods using the quadratic and linear
discrimination function. An evaluation of the correctness of the classification based on the
real data from a commercial bank is conducted.

Key words: Bayes discrimination methods, quadratic discrimination function, classification
function, probit model.

I. INTRODUCTION

Among various types of activities performed by banks, retail banking is
one, which deals with the issue of consumer credits. Each bank acts according
to previously established regulations regarding credit granting and repaying.
A client applying for a consumer credit fills out a credit application, which
constitutes a basis for the client’s creditworthiness evaluation. Data from
the credit application are processed into scoring, which allows to assign
the applicant to one of the two groups: a) able to repay a credit, b) unable
to repay a credit.



Therefore, a problem arises whether, and if so, how we can predict
which of the two groups the credit applicant will be assigned to, based on
the statistical data pertaining to credit granting and on the information
about the client. Also, how can we establish which values of the socio-
cconomic clicnt characteristics assure an appropriate scoring level?

A credit decision made by a bank can be described by a binary variable:

Y _ [1, when a credit was granted
jo, when a credit was not granted

Regression models are commonly used in the causality relationship analysis.
One of them is the following linear regression model:

Yt= x{a + £, for t=1,.,T, 2)

where: x, is a vector of exogenous variables, a - a vector of parameters,
£ - an error term with the expected value of O.

Let us consider a case, in which the endogenous variable Y is binary with
probability distribution function given by:

p(Tr=1)=nv P(Yt=0)= 1—s, and 5,e(0,1) )

Hence E(Yt) = nt. Moreover, based on the assumptions and the model
specification E(Y( = x/a. 1lhe existence of a binary endogenous variable
in the regression model causes a particular interpretation of the theoretical
values Y, = x/& obtained from model (2). Specifically, they are not unbiased
estimators of probabilities P(¥Y(=1) = a(, if E(a) = a. As a result, it is
necessary to select a method, which while estimating the parameters of
model (2) satisfies the following condition: Y, = xrae (0,1). A probit model
is one of such methods. After having estimated its parameters, one can
estimate the probability P(Y, = 1) also for other values of the exogenous
variables.

The problem of a bank, decision prediction analysed above can also be
considered as classification issue. A population M of credit applicants can
be divided into two sub-populations MO i Hj. Assigning an applicant to
the sub-population MO is equivalent to denying a credit, while assigning
him or her to the sub-population corresponds to granting a credit.
A bank decision is made after the analysis of the client’s ability to repay
the credit. The assignment to one of the two described above groups is
based on values of m statistical characteristics describing client’s socio-
economic situation. A vector xe R mwill represent them. The space of values



of the characteristics can be divided (based on their values for the elements
of the learning set) into two disjoint regions and X x= R™vX0. A situation
in which vector x belongs to the region X0 is equivalent to assigning
a credit applicant to the sub-population HO.

This study examines an application of both approaches in the prediction
of credit granting decisions based on the example of a branch of a certain
bank.

II. PROBIT MODELS1

Let’s assume that we have a large sample (obtained from an independent
sampling) and that we divide the set of observations into M subsets. For
each of the subsets we can derive the frequency of the variable Y taking
a value of one. Let each k-lh subset (i= 1,2,....,M) with nk elements have
mk number of ones. Then the empirical probability can be computed as

frequency We assume that with the accuracy of the error ek it is equal

to the theoretical probability nk, which can be interpreted as the value of
the cumulative distribution function of a certain distribution, i.e.:

k= F(xJa).
Therefore:
(4)
where:
Hence,
®)
1 Models with discrete exogenous variable are discussed by Jajuga in chapter 8 of works

by S. Bartosiewicz (1990).



After having expanded the function F 1 into Taylor series about the point
nk we obtain the following model:

F -~ W a -U* (6)

where:

J2(nx_ *>0~ 4
f(xjot)' W [ 2 (xf <9ni

Model (6) is called a probit model2 and it is a model, in which the error
term is heteroscedastic. Such a model can be estimated with the generalised
least squares method or with the maximum likelihood method.

Ul. SELECTED BAYES DISCRIMINATION METHODS

A selection of the discrimination method based on the theory of statistical
decision functions and a procedure in the case, in which there exist two
sets of elements MO0 and 111, depend on the information regarding the prior
probabilities pO and pj of a certain element belonging to a particular set
and of the distribution of the variables X = [Xt, X 2,..., X JT characterising
the elements of the population3. Applying Bayes classification rule, we can
choose one of the alternative decisions regarding whether the element belongs
to a certain sub-population.

Let,

li(x) = (2n) 2(det £) exp _p(x ~ Yx-7) @)

be the probability density function of the random variable X, when the
analysed clement Oell, dla f= 0,1.

S*(x) = pJ fa), i= 0, 1can be used as the classification function provided
that the loss is constant when an element is misclassified. More than one

2 Interesting examples of the application of probit analysis can be found for example in
publication by: Wisniewski (1986), Pruska (2001).
3 Methods suggested in such cases were gathered by K. Jajuga (1990), p. 40-41 in Table 1



particular classification function can be chosen, sincc the classification will not
be altered, when function Sf(x), is replaced with:

Sj(x) = g(8T(x)), ®)

where g is any increasing function.
Sf(x) = In(Pi/,(x)) may be applied as the classification function, i.e.

S*(x) = v 1n(2) - 2(detLj)-~(x-u/E T 4% - ft) + InPi- ©)

Since the first element in the formula (9) is constant with respect to i we
can ignore it and the equivalent classification function is as follows:

St(x) = - 2(x- u)TEf4x - fij)- \ (detzj)+ Inp,, for i=0, L (10)

The function (10) contains a quadratic form of a vector (x-u,), and as
a result it is called a quadratic classification function. Its value for a given
x depends upon the prior probability p, and upon the parameters ol the
distribution of (i; and £ (.

Applying Bayes classification rule with respect to a prior distribution
(Po, P1), we include an observation x in the population M, for which the
classification function S,(x) takes the biggest value for i = 0, 1. Classification
regions are determined using the Bayes rule and take the following form:

X0= {x:SO0(x)"S Ux)}. (11)

0

The inequality in formula (11) can be substituted with the following equivalent
inequality:

(SO(X) - Inp0)- SKX)- Inpj)>In (12)
Po

Denoting the left-hand side of the inequality (12) by SOi(x) and taking into
consideration formula (10) we receive the following function:

Soi(x) = L[(Xx- uUr"ET Y x-w)- (X- WoNe (x - fio)+b £ ]I (13)

which is independent of the prior probability p, and called a quadratic
discrimination function.



Quasi-Bayesian estimator is a consistent estimator of the quadratic disc-
rimination function (13). It is obtained based on the normal distribution
probability density function estimator of the following form (sec: Krzysko,
1990: 53):

VM =y Intl+ -y In[e+ D° N +Inc*
(14)
where:
‘ r—)
Ci —~Tktz— T\ — ——-—i? —————————— and  phm 0. In|—XJ—»
X »l
D?(x) = (x —X)TE f x(x —Xj), for i=0,1. (15)

Statistics from the sample are usually used as estimators of the parameters
in the formula:

) 1 NI n 1 N<
= | = ~ N *p H _
A=xi=gr | x., I /rp/;_;I' Z!( u- xi)xu- X(. (16)

Employing the estimator S0i(x) of a quadratic discrimination function given
by the formula (15), we assign an observation x to the sub-population MO

according to the Bayes classification rule when S01(x) s5 In11 where p0O and
Po
px are prior probabilities estimators.

Also, in the discrimination analysis one considers the problem of
a reduction of the number of variables characterising elements subject to
classification. The set of the original variables X u X 2, ..., Xm is divided into
disjoint subsets and a new variable, called a discrimination variable, is
assigned to each of the subsets. The discrimination variable constitutes
a linear combination of the variables contained in a particular subset.
Searching for the discrimination variables, one should aim at Ut, U2, ..., Ur
which are not mutually correlated, which have unit variances and maximise
the selected distribution measure4.

Let us assume, just like we did previously, that M0, M, are sub-populations
of the general population M and that x = [x,, x2, ..., x JT, whose distribution

4 This issue is discussed for example by Krzysko (1990), Chapter 3.



is multivariate normal, is the realisation of a random vector
X = [X,, X2, .., XJ7 in the sample.
Let AItA2, — r be the largest roots of the equation:

det(B —IW ) = 0, 7)
and 1,,12)...,1, vectors of length 1 satisfying the following matrix equation:
(B-1jW )i = 0, (18)
respectively for j= 1,2,...,r
where

W = (W0+ W1,
B= NO(X0- x)(x0- x)T+ N fa - x)(xx- x)T,

_ = Mixg+ N 7j
X n0+nT

The discriminatory variable Uj can be estimated from the sample as:
7j = tjx. (19)

Denoting by 0 = [Ut, U2, U rTand v,= [itji2J...jir]Tx; for i= 0,1 we
obtain the following form of the classification function:

Si(0)= - ~(0- VHT(C - V)+ Inp, (20)

Observation x is assigned to the sub-population MO0, when SO(C) > ~(U).

IV. EMPIRICAL EXAMPLE

In his or her credit application a client provides basic data (such as
personal information, address, net income, additional sources of income,
housing and other stable monthly expenses, potential obligations to serve
in the army) and supplemental data (regarding his or her housing situation,
marital status, number of members of the household, type of employer and
years worked for that employer, finally regarding the number of credits
taken or guaranteed).



The data contained in the application are transformed into scoring,
which constitutes a basis for assigning the applicant to one of the two groups:

1) with the ability to repay a credit;

2) without the ability to repay.

The second group is sometimes divided into two sections: applicants who
will be denied a credit and those who will be further considered in the
credit decision after having supplied an additional collateral.

Data conccrning received credit applications and bank decisions about
granting or denying a crcdit over a period of six consecutive months in
2001 were gathered in one of the branches of a commercial bank. It was
established at that time that, as a general rule, a credit was denied if
a client has not fulfilled his army obligations. Therefore, all the applications
in which this was the case were removed and as a result a set of 239
observations was obtained.

Those applications were divided into two groups. The first group was
created from the applications received during the first 5 months and was
treated as a learning set. This group consisted of 203 applications (including
131 cases followed by a negative decision - crcdit denial, and 72 cases
followed by a positive decision). Applications received in June (36 applications,
including 24 cases followed by a negative decision) made up the second
group (which was treated as the examined set), which was used to predict
a credit decision. This enabled us to evaluate the accuracy (fitness) of the
applied methods.

Based on the applications the following variables characterising a crcdit
applicant were singled out:

1) quantitative variables:

Xy - primary monthly net incomc [in PLZ],

X 2 - supplemental monthly net income [in PLZ],

X 3 - stable monthly housing expenses [in PLZ],

X4 - other stable monthly expenses [in PLZ],

X's - number of household members,

X 6 - period worked with the current employer [in years],
X7 - number of taken or guaranteed credits,

X B - monthly income of the co-applicant if there is one.

2) qualitative variables:

X 9 - variable specifying whether the applicant rents/owns an apartment
(a house) (Xg= 1, when a client rents or owns an apartment (a house)
and X9 = 0 otherwise),

X 10 variable specifying the applicant’s marital status (X210 = 1, if the
applicant is married and A'lo = 0 if the applicant is single),

Xyy - variable specifying the applicant’s employment status (lu = 1,
if the applicant works for a governmental company, public administration,



owns a proprietorship or is a partner in a partnership and Xu =0
otherwise).

A crcdit application decision made by a bank can be described by
a binary variable:

1, when a credit was granted
0, when a credit was nokt granted

The amount of credit requested in the application [in PLZ] is an additional
variable: Y2.

Two new variables were derived:

X 12 - net discretionary income (a sum of primary and supplemental
net income after deducting stable monthly expenses, X 12 = (Xj + X2) —
(*2 + x4y,
and

Xi2 - disposable gross income (the sum of the net income of the
applicant and the co-applicant X13 = X 2 + X 8).

Let us consider the problem of predicting, which of the two groups
a client will be assigned to based on the decisions made in the learning
set and on the data regarding the new client. We will utilise probit models
and Bayes discrimination analysis method to examine this problem.

In order to compare results of the client classification obtained with
different methods described above, we had to select variables, which can
be employed by all methods. In particular, normal distribution of all utilised
variables was assumed in Bayes discrimination. We verified that X 12 and

2
Therefore, basic variables used in all examined models were: wl= InX12
and w2 = InA'13-1n Y2

Three types of probit model were analysed:

(21)
d 1 = R0 + RIWI + Bzw2 + P3Xpg + t]2, (22)

D1 = [0+ FIWL+T2W2+ [3%9 + [4%10 + /3. (23)



where:
w, = InJf12 - logarithm of net discretionary income,

X . . . .
w2 = In" 13 - logarithm of gross disposable income and credit amount,

N2
X9 - binary variable accepting the value of 1 if an applicant rents or
owns an apartment (house),

X 10 - binary variable accepting the value of 1if an applicant is married.

After an application of a probit analysis and estimation5 of appropriate
probit models parameters (based on the data from the learning set) we
have obtained the following results:

Table 1. Accuracy of credit applications classification based on probit models

Results for the learning set Results for the examined set
Model Observed Predicted value Y, % Predicted value Y1 %
value Y, accurate accurate
0 1 class. 0 1 class.
(21) 0 117 14 89.3 19 5 79.2
1 20 52 72.2 3 9 75.0
(22) 0 121 10 92.4 22 2 91.7
1 u 61 84.7 2 10 83.3
(23) 0 124 7 94.7 20 4 83.3
1 7 65 90.3 1 il 91.7

Source: Author’s computations.

While analysing the results, we note that for the learning set, the percentage
of accurate classification based on model (21) is relatively high (89% and
72%). However, classification based on probit models (22) and (23) is more
accurate (the number of correctly predicted credit decisions increases). Models
“perform better” in terms of identifying the cases of credit denial in the
learning sample. The percentage of an accurate prediction of a credit denial
is 17 points higher than the percentage of an accurate prediction of a credit
granting decision (for model (21)). For the examined sample (unfortunately,
not very numerous) the general situation regarding the accuracy of prediction
is similar.

Using the estimator SOt(x) of a quadratic discrimination function given
by the formula (14), observation x is assigned to sub-population Moy, = 0),

according to the Bayes classification rule if S01(x)™In ,, .



The mean values, variances and a covariance of variables w,, w2 for
both sub-populations were derived from the learning set (including 203
observations from the first 5 months of 2001) and x = wU = [w”w”"]7 was
substituted in formula (14). As a result, wc have arrived at the following
form of an estimator of a discrimination function for an i-th observation:

Soi(vyU) = 36 In[1 + 0.01389 Df(w0))] —65.5 In [1 + 0.00763 Dg(wii))] - 1.0376
(24)
where:
Do(wl) = 11.6419(wV>—6.7118)2 4.78541(w"> + 1.1622)2 +
- 4.5013(wi" - 6.7118)(w”")+1.1622)

D?(w"*> = 10.8785(WV> - 7.2581)2+ 12.1320(wj/> + 0.5310)2 +
- 7.2689(WV> - 7.2581 - 0.5310)

For each elementj of the learning set (j = 1,2,..., 203) and the examined
set (j = 204, ...,239) (crcdit applicant), the values of a discrimination function
sot(w0)) were computed6 based on the estimated elements of vector

wVn
m lhen credit applications were assigned to sub-population MO0,

namely to the set of applications followed by a credit denial, when
Soi(wU)5= -0.5985

and to sub-population Mx of applications followed by a credit granting
decision otherwise. The following classifications of credit applications have
been received:

Tabic 2. Accuracy of credit applications classification based on the value of the quadratic
discrimination function estimator

Results for the learning set Results for the examined set
Observed Predicted value Predicted value
value Y, % accurate L % accurate
class. class.
0 1 0 1
0 117 14 89.3 19 5 79.2
1 14 58 80.6 2 10 83.3

Source: Author’s computations.



While analysing the results we note that, the percentage of accurate
classifications for the learning set is 89% and 80%. The classification obtained
with the estimator of a quadratic discrimination function (24) “performed
better” in predicting credit denial. The percentage of accurate prediction
of credit denial is 9 points higher than that of a credit granting decision.
For the examined sample (unfortunately not very numerous) the general
situation regarding the accuracy of prediction is similar. However, the
percentage of a correct prediction of a credit granting decision increased
(by 3 points) and the percentage of a correct prediction of credit denial
decreased (by 10 points).

Variables used in the discrimination were (just like above) variables wx,
w2. Having computed their mean values, variances and their covariance for
both sub-populations we received: xx, £0, W0, x1( £ 1, W,, and then derived
for the entire learning set x, W, B.

In order to approximate a discrimination variable from the sample (,
N= tax{A L1402} was introduced, where ,,42 symbolise roots of the quadratic
equation (17), and was estimated as 2 = 0.934984. Vector I satisfying equation
(18) turned out to have the following elements 1= [0.8805 0.4741]T.

Therefore, the following linear combination of the variables Wj, w2 is
a discrimination variable form the sample:

il = 0.8805 wt + 0.4741 w2. (25)
Having computed constants vl (for the sub-population 110) and v2 (for the

sub-population TI,) we received the explicit forms of estimators of both
classification functions?.

SO() = - ~(0.8805 wx+ 0.4741 w2- 5.3581)2+ In pO,

SAU) = - *(0.8805wi + 0.4741 w2- 6.139)2+ Inpx.

On their basis the following credit applications classification was
obtained8

7 Let us note that the discrimination function estimator derived from both classification
functions would take the following form: SO01(u) = —0.6877*v, —0.3702w2+4.5963.
8 Computations obtained from Excel 5.0.



Table 3. Accuracy of credit applications classification based on the value
of the discrimination variable

Results for the learning set Results for the examined set
Scoring Observed Predicted value Y, % Predicted value Y, %
Pi value Y, accurate accurate
0 1 class. 0 1 class.
0.50 0 110 21 84.0 19 5 79.2
1 13 59 81.9 2 10 83.3
0.55 0 121 10 92.4 20 4 83.3
1 28 44 61.1 3 9 75.0
0.60 0 130 1 99.2 23 1 95.8
1 44 28 38.9 9 3 25.0

Source: Author’s computations.

Classification obtained with the discrimination variable U leads to similar
conclusions as the one obtained with properly constructed estimator of the
quadratic discrimination function SOx, if one assumes a prior probability
of 0.5. The estimation of this probability obtained from the frequency of
a credit denial decision in the learning sample amounted to 0.64. If we
take values higher than 0.5 for p0 we observe an increase in the percentage
of correct classification of the credit denial decision for both samples (over
90%). However, this increase is accompanied by a rapid decrease in the
correctly classified credit granting decisions.

V. FINAL CONCLUSIONS

The results obtained from the probit model (utilising the same variables
as Bayes methods) are similar to the ones received from Bayes discrimination,
although the percentage of correct classification is slightly lower in the
probit model. The results provided by the extended models (22) and (23)
are better as the percentage of correctly classified, both accepted and denied,
credit applications increases. In conclusion, additional exogenous variables
are relevant for the process of accurate classification. It would be interesting
to utilise the same variables in Bayes analysis. However doing so is not
trivial since wc assumed that the variables used in this model are continuously
distributed, while additional variables are binary.
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Jan Zo6towski

ZASTOSOWANIE MODELI PROBITOWYCH
| WYBRANYCH METOD ANALIZY DYSKRYMINACYJNEI
DO PRZEWIDYWANIA DECYZJI KREDYTOWE]J

Streszczenie

Obstuga kredytéw konsumpcyjnych jest jednym z rodzajow dziatalnosci bankéw. Zdolnos$¢
kredytowa klienta jest oceniana na podstawie ztozonego przez niego wniosku.

W pracy rozwazany jest problem przewidywania, do ktérej z dwéch grup klientéw,
posiadajgcych zdolno$¢ kredytowa lub nie (w ocenie banku), zostanie zaliczona osoba ubiegajgca
sie 0 kredyt. Analizowane sg tu mozliwoéci zastosowania modeli probitowych oraz metod
analizy dyskryminacyjnej wykorzystujacych kwadratowg funkcje dyskryminacyjng i zmienng
dyskryminacyjng z proby. Przeprowadzona jest takze ocena poprawnos$ci klasyfikacji danych
z pewnego banku.



