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Abstract

During modeling of short-run exchange rate fluctuations, there is usually a need for taking
into consideration some random-type conditions, i.e. it is necessary to abandon the fundamental
exchange rate theories in favor of probabilistic modeling. Among stochastic models, of special
interest are Markov models. The main advantages of Markov models include a relative simplicity
of construction, easy inferences, well-known estimation methods and especially consistence of
properties of these models with the observed properties of many real phenomena. Application
of switching models is based on a general assumption that the examined time series can be
presented as sequences of random variables of a known type of conditional distribution in
all regimes. Known from literature propositions concerning the modeling of exchange rate
with the use of switching models did not provide sufficiently good forecasts of the future
exchange rate levels because of, among others, low frequency of data used for the construction
of the model (quarterly or monthly data). The authors are going to continue the examination
of the PLN exchange rate fluctuation with the use of Markov models that was started in
this paper. The next stage of their work will be connected with conducting empirical research
concerning the occurrence of calendar anomalies in the Polish currency market. For this
purpose, a new method based on the Markov chains theory will be applied, which offers
a new perspective to this problem. Testing of the calendar time hypothesis has been considered
so far mostly in the aspect of comparison of daily expected values and variances of exchange
rate return rates. Then, on the basis of the data concerning exchange rates for high measurement
frequency, a Markov switching model will be constructed and used for description of the
PLN depreciation and appreciation period.
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I. INTRODUCTION

Recently, some significant changes have taken place in financial markets.
According to Jajuga (2000), the most important of these changes include:
technological development, globalization of financial markets, resignation
from mediation in financial markets, dynamic development of financial
innovations, rise and development of risk transfer market and integration
of various segments of the financial market. These events resulted in an
increase in the fluctuation of exchange rates. Similar transformations could
also be observed in the Polish foreign currency market, especially after the
year 1995, when the process of a gradual elasticizing of the rate mechanism
started. The new regulation of the law of the foreign exchange, a new
currency basket based only on EURO and dollar and a PLN floating
exchange rate favored bigger and more frequent currency lluctuations. In
spite of the fact that, on 14 January, 2002, 12 national currencies have
been replaced by EUR, the information about the exchange rate fluctuations
will remain one of the most important pieces of information.

The setting of the exchange rate is explained by, among others, such
economic theories as the Purchasing Power Parity theory, the law of one price,
the International Fisher Effect theory, and the Interest Rate Parity theory.
Using the criterion of time as a basis, it is possible to divide the exchange rate
theories into those that explain changes occurring over a long period of time
(PPP), those that refer to a medium period (connected with the NBP - Polish
National Bank policy) and those that approach the rate from the point of
view of short-term changes (the overshoot theory) (discussed in Chrabonszcze-
wska et al.,, 1996). According to this distinction, the level of exchange rate
during a long period is determined by many economic factors, among others
by the GNP increase rate, inflation rate, the central bank interventions,
situation of the balance of payments or the economy development level and
structure. In the short run, the exchange rate level may be also influenced by
psychological and political factors that can suddenly increase the demand for
a given currency, therefore strengthening its exchange rate. It is often believed
that the exchange rate changes are caused by rational expectations of the
investors. It means that occurrence in the currency market of information
about a factor that should cause an increase in the exchange rate in the future
results in a short-term appreciation of the exchange rate. The rational
expectations theory and its application to finance was described by M. Osifska
(2000). The exchange rate may also be influenced by unpredictable factors,
such as disturbances in international exchange markets that can have a pas-
sing, but important influence on the exchange rate and to a large extent are
connected with the phenomenon of globalization of financial markets.



For example, losses suffered by international investment banks in one
market are compensated by taking appropriate investment actions in other
markets. One should also bear in mind that short-term investors, in making
their decisions, seldom rely upon an assessment of the economic situation
and balance of payments of a given country. They take investment actions
on the basis of information, sometimes unreliable, that appear in the exchange
market, using at most some technical analysis instruments.

Therefore, for some time we have been able to observe a significant
increase in the scope of a conducted research concerning the use of a rich
apparatus of stochastic processes for the forecasting of exchange rate behavior
in time. The authors of this paper present a proposal concerning the use
of Markov models for detecting and describing regularities that govern the
process of exchange rate fluctuation. In the first part of the paper, the
Markov chains theory will be used for examination of calendar anomalies
connected with the weekend effect that occur in the exchange market. This
article also describes a method based on the Markov chains theory that
can be used for examination of mutual relationships between business volume
volatility and price volatility for futures. In the second part of the paper,
presented will be some problems connected with construction and estimation
of switching parameters of Markov models that can be used for the forecasting
of exchange rate fluctuations.

M. PROPERTIES OF THE RATE OF RETURN
OF EXCHANGE RATE DISTRIBUTION

Over a longer period of time, exchange return rates are characterized by
the following properties (discussed in Jajuga, 2000):

1. Occurrence of the volatility clustering phenomenon - both large and
small changes of exchange rates occur in series. After a large volatility
period, there occurs a period of smaller volatility. This dependence is also
known under the name of data concentration effect. In the case of long
time series and data of high observation frequency it usually results in an
increased random factor variance in appropriate classic models.

2. Exchange return rate distributions are leptokurtic. The probability of
occurrence of untypical (very large or very small) exchange rate fluctuations
is higher than in the case of normal distribution. In the literature, another
term for this phenomenon is also used, i.e. occurrence of “thick tails” in
the rates of return of exchange rates distribution.

3. These distributions are in many cases skew, which means that the
rate of return distribution is not symmetrical around the average.



4. Exchange rate fluctuations are negatively correlated with the chan-
geability of their variance. Process variance depends on the previous rates
of return, so when the exchange rate drops, there is a tendency towards
an increase in the rates of return. This dependence is known as the lever
effect.

5. There is a relationship between the variance of the exchange return
rate and autocorrelation. The autocorrelation usually accompanies a small
exchange rate variance and large volatility results in the lack of autocor-
relation.

6. Long-run data dependence, which means that after significant increases
there are further increases, after which sudden decreases occur, followed by
further decreases.

Such setting of exchange rates is a result of the nature of the very
processes taking place in the currency markets. Among the causes that
result in, among others, occurrence of the phenomenon of exchange rates
volatility clustering, it is necessary to mention the specificity of information
inflow to the market and their subjective interpretation by individual market
participants who also set the exchange rate (psychological factor). The inflow
of information usually occurs in an irregular way, in special cases in scries
which means that they can be correlated. That is why their meaning and
power of influence on the change of market exchange rates are diversified.
As a result, it is possible to observe sub-periods of decreased and increased
exchange rates volatility. Exchange rates volatility depends on expected new
information, among others on the decisions of Rada Polityki Pienieznej
(the Financial Policy Council), messages about the macroeconomic situation
(e.g. concerning the inflation level, interest rates, gross national product,
etc.). Their announcement dates are usually known in advance, and the
uncertainty that concerns them results in an increase of the rates of return
variance. This situation has a direct influence on the demand and supply
of foreign exchange and currency and results in an increased exchange rate
volatility. Such behavior of exchange rates requires the use of special methods
that would take into account the dependencies discussed above. The authors
of this paper suggest that Markov chains and switching regression be used
for examination of volatility of exchange rate.

I11. MARKOV PROCESSES

Price models (or return rates) of financial instruments are usually
considered in the category of stochastic processes. In the financial practice,
we usually deal with stochastic processes with discrete time, as the values



of this process are observed at specific moments, e.g. once a day or once
a minute.

Markov processes belong to a class of stochastic processes, where the
past and the future - with a fixed present, are independent, or the future
depends on the past only through the present. According to losifescu (1988),
the following Markov chain definition is given:

Let the stochastic process X(t) be a process with discrete time, i.e.
a sequence of random variables X0, Xy... It is assumed that the value of
random variable Xk (k = 0,1,...) defines the state of the process at moment k.

The sequence of random variables X 0, Xy, X 2... constitutes a Markov
chain if for any i, j, n and for any real numbers xI,x2,..., the following
relation is true:

i.e. conditional distribution X(tn) with given values of X(ty),...,X(t,,-y)
depends only on X(t,_j) and does not depend on the previous process course.
Construction of Markov chains is based on three basic qualities:

a) finite set S, the elements of which, called states, are assumed to be
numbered in a certain specified way;

b) probability distribution p = [/2(0) = PIA® = iLes on S, called initial
probability;

¢) stochastic matrix P = [Pij(n,s)]i,j6s. the elements of which, called
transition probability, are defined in the following way:

Pu (n,s)= P{X,,=j/Xt=1i} for n>s. 2)

The above relationship defines conditional probability of the fact that
the process is in state j at moment n on condition that, at moment s, it

was in state i.
A homogeneous Markov chain is such a Markov chain {Ar}neN that
for n, keN, the following equality is true:

P{X,, = j/Xn_V = I} = P{Xn+*: J/X n+k/\ = |} = PIJ (3)

Therefore, for a homogeneous Markov chain, the transition probabilities

between states in one step are constant in time and independent of the
process duration time.

The properties of Markov chains:

Pi(n) = P{X(n,w) = i}, ieS (4)



£Pi(") = 1 (5)

leS

P(n,s)”0, 1i,jesS (6)
Epu(n,e) = 1 for teS )
JesS
p/») = Zpi(5 'pu(n>s) for JeS 8)
ieS

The formuta (8) defines an unconditional probability distribution for reaching
state y by a homogeneous Markov chain at moment n: pj(n) = P(Xn=j).
This dependence was derived from the formula for total probability. I-verse
of the matrix P

Pi = [Pil Pi2 mmPir]
is a conditional probability distribution of variable Xn on condition that

The Markov chain is definite if the transition probability matrix P = (pU
is given and initial probabilities p, = P{X0= i}, i= 0,1,2,..., are given, which
is dealt with by the following theorem (sec Sobczyk, 1973):

Theorem 1. Let us have a countable set S and sequence {p,} and matrix
P = (p,j) that meet the following conditions:

Pi>°. IP/= Pij>°> ZJ= P*v=1
|

Then there exists probabilistic space (I', F, P) and a Markov chain {Xn}n>0
defined in this space. The chain has state space S, initial probabilities p;
and transitional probability matrix P = (pij).
Depending on the characteristic values of matrices P, a sequence of powers
P" has different properties at n —moo that are the basis for inference about
the chain behavior in a long period of time.
In Podgdrska et al. (2000), the following characteristics for matrix P are given:
1. Stochastic matrix PeM(n, n) is called an irreductible matrix, if the
characteristic value ).y = 1 is a single root of the characteristic equation of
this matrix.
2. Stochastic matrix PeM (n, n) is called an aperiodic matrix if the
characteristic value = 1 is the only root of the characteristic equation
with the module 1



3. The irreducible and aperiodic matrix is called a regular matrix.
Under the Fréchct theorem (this theorem can be found in, among others,
Josifescu, 1988), there is a limit

limPn= 11 9
M

where Il denotes a stochastic crgodic matrix (of identical rows).
Because of the above properties of regular matrix, the following theorem
(Podgédrska et al., 2000) is true.

Theorem 2. If transition probability matrix P of a finite homogeneous
Markov chain is regular, then the chain is ergodic, which means that there
is a limit

limp'j=nj for 1i,jeS
T»@®

where

YJij=1 and O0<Uj< 1

jes

In this way, a row vector of probabilities of reaching balance states
n=(n{, n2, 713, ..., nr) was defined. It meets the following relation:

a = aP. (10)

On the basis of the definition of the long-term probabilities vector, it
is possible to infer that, regardless of the state of process at moment 0,
the chances of reaching a given state stabilize with time and equal individual
elements of vector 4.

The notion of a Markov chain can be extended to the case of multiple
Markov dependence.

We can say that the sequence of random variables (Xnn*0 with the
values in (finite or countable) set S is a multiple sccond-order Markov
chain (double Markov chain) then and only then, if:

P(Xn+1—i,+i/X,,—in, ..., X0 —2) —P(Xn+j —in+i/Xn—in, X,,- 1 —i,-1)

(11)



for all i0,i j, i B+tleS, whereas the last conditional probability depends on
i, and It is easy to notice that if (Xnn>0 % a double Markov chain,
then the sequence (Xt Xi+1)i>0 is a simple Markov chain of state space
S2= {(»/): UjeSs).

In this way, with any multiple Markov chain, a certain single chain
can be connected. Therefore, in some cases, investigation of a multiple
Markov chain can be reduced to investigation of simple Markov chains.

The process of estimation of a transition probability matrix P that is
usually unknown can be based on two types of data: microdata or macrodata.
For estimation of these probabilities, a ordinary or generalized restricted
least squares method with may be used. The maximum likelihood method
may also be used.

A detailed description of procedures used for estimation of elements of
a transition probability matrix can be found in, among others, Lee et al.
(1997) and Podgoérska et al. (2000).

IV. USE OF MARKOV CHAINS FOR EXAMINATION
OF CALENDAR ANOMALIES

Research conducted on effective markets has revealed some anomalies
present in these markets. These anomalies include the day-of-the-week-effect,
the January effect, the scale effect and other effects.

During analyzing of exchange rate quotations in the interbank ma-
rket, one can notice a stabilizing of the exchange rate level in the non-
trading periods on the Warsaw Stock Exchange, especially in the se-
condary market, i.e. during weekends and holidays. At the same time
it is known that the information hidden during the period when the
market is closed affects the value of exchange rates immediately after
the market has been opened (see in Dunis et al.,, 2001). If the info-
rmation accumulated linearly, the variance within the period from the
closure of the market on Friday to its closure on Monday should be
three times higher than, for example, variance within the period from
the closure of the market on Monday to its closure on Tuesday. Ho-
wever, the research results show that the information flows in more
slowly during periods when the market is closed (the weekend effect
or the Monday effect) (see in Fama, 1965). Therefore, the following
hypotheses can be verified:

a) fluctuations of exchange rates occur in accordance with the flow of
calendar time,

b) fluctuations of exchange rates occur in accordance with the flow of
session time (passing over non-transaction days).



The hypothesis involving calendar time should be confirmed by the
occurrence of different distributions of “one-day” return rates in situations
when consecutive transaction days are separated by non-transaction days
(weekends, holidays) in comparison with sessions taking place on con-
secutive calendar days. However, if the price changes occur, in accordance
with the session time hypothesis, only during the market activity period,
the distributions of the “one-day” return rates should be similar, regardless
of whether there were non-transaction days between the transaction days
or not.

The original data set consists of quotations of exchange rates in the
interbank market. 24-hour volatility was defined as absolute return rates
from quotations of the exchange rates in accordancc with the following
formula:

Vv, = [In(P,/P,-1)| (12)

where:

Pt is opening (closing) price on the day t.

Pt-x is closing (opening) price on the day t—1.

The data set obtained in this way was grouped into three volatility
states: // for a high volatility state; N for a normal volatility state and
L for a low volatility state. Grouping was carried out in such a way as
to obtain a more or less equal number of volatility states in each of the
groups. The above criterion was used for determination of the limits of
three intervals: high, normal and low volatility, that is, for a correct selection
of the values of parameters and k2 that are shown in Table 1

Table 1. Limits of intervals of the high, normal and low volatility

State Meaning Volatility limits for exchange rate
A High volatility v,> F, + kid
N Medium volatility -kjd and v,>vt-k 2d
L Low volatility w<v,-fc2a
Where:

v, - mean absolute rate of the exchange rate change
d - mean absolute deviation of v,

The subject of the analysis will be a daily structure of the exchange
rate fluctuation, to which the Markov chain theory was applied. The authors
of this paper made an attempt to show a nonclassical method of verification
of the hypothesis according to which fluctuations of a given exchange rate
occur in accordance with the flow of calendar time. The calendar time



hypothesis assumes that the volatility distributions for days following the
weekend are different.

According to this pattern, the market is more active and volatilities are
higher on Monday than on other weekdays. That is why high volatility
states should occur more often on Mondays after high volatility states than
after high volatility states on other working days.

Therefore, we should assess with what probability the transition between
pairs of adjacent states occurs, e.g. HH or HN, where, for instance, HN
denotes a state of low volatility occurring after a state of high volatility.

In this paper, a model of a long-run probability distribution was used
for investigation of daily structure of transition between states, obtained
on the basis of the methodology of second-order Markov chains. A second-
order Markov chain was constructed for volatility of exchange rates. In
the model presented, the second-order Markov chain was used for obtaining
a long-run, finite probability distribution of occurrence of pairs of adjacent
states of the UN type. As a result of this action, wc obtain the following
P matrix: the matrix of second-order transition probability.

Tabic 2. Diagram of the matrix of second-order transition probability

Present stales
Past states

HH  HN  HL  NH NN NL LH LN LL
HH pHH.HH PHN.HH PHL.HH 0 0 0 0 0 0
HN 0 0 0 pNH.HN PNN.HN PNI..HN 0 0 0
HL 0 0 0 0 0 0 PLH.HL p1I'I.LLI. PLL.HL
N1l ‘PHH.HH EHN.NH pHL,NH 0 0 0 0 0 0
NN 0 PNH.NN PNN.NN fNL.NN 0 0 0
NL 0 0 0 0 0 0 PLH.NL PLN.NL FU..NL
LH PHH.LH PHN.LH PHI..LH 0 0 0 0 0 0
LN 0 0 0 p Pan.iN pNL.LN 0 0 0
LL Y 0 o o 0 0 PLH,LL ELN.LL PIJ..LL

In a given column, state XY refers to X as first state and ¥ as second
state, whereas in a given row, YZ refers to ¥ as second state and Z as
third state. An element in matrix P, v+z,xy indicates the probability of
transition from state ¥ to Z, on condition that in the previous step,
a transition from X to Y had occurred. The first and second state provides
information about the prior state in the Markov chain (row); the second
and third state provides information about the posterior state in the Markov
chain (column). Let vector s denotes a long-run probability distribution:

n — {nnn 71UN 7IHL. 7INil n NN n NL 71111 AI.N Kbl .¥'\



or, with additional symbols introduced: HHs 1, HN =2, 1IL =3, N11=4,
NN =5 NL=6, LI =7 LN=8, LL=9, {a;} for 7=1,...,9. According
to the relationship (10):

a = TtP

and stochastic properties of the vector n:

Yn=1 and 1,
jes

it is possible to determine a long-run distribution of states in the Markov
chain.

In order to test if nnu > 7ij, where j o HH, it is necessary to test the
null hypothesis that implies that the long-run probabilities for all transitions
between two states are identical. A test statistic is calculated:

(n.

where N is the total number of observations. Under the null hypothesis,
the x 2 statistic follows an asymptotic x2 distribution with (T —1) degrees
of freedom, where T is the number of states, in this case, T = 9. If there
is no basis to reject the null hypothesis, it means that there is no significant
difference among the long-run probabilities of reaching different states. Thus,
it is not possible to draw the conclusion that nHn>np where j*HH.

Letnh= (AALnh7.nhZnh* 1/l5nh6 nhl nH8nh9)'

where nhis the 9 x 1 limiting probability vector on day h, Nhis the sample
size and nhj denotes the limiting probability of transition j (j=HH or
HN...etc) on day h.

It is necessary to show that in the long run, there occur different
volatility distributions for days after the weekend in relation to working
days. The null hypothesis HO: —n2= .. = nb5was set, where, for example,
vector 7ii contains limiting probabilities for Monday. The null hypothesis
informs us then that
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A= = ontj= = onij= T for every j9
where denotes the limiting probability of transition j on day h
The test statistic was defined:
(15)
=X nhj

Under the null hypothesis, the %2 statistics follows an asymptotic y}
distribution with (4 —1) (I’ —1) degrees of freedom, where T is the number
of states and Il denotes the total number of days of the week. Even if
the null hypothesis should be rejected, it means that vcctor n for Monday
should be different from that in other periods, which means that in the
finance market, the weekend effect occurs. This method was used for
examination of calendar anomalies on the Warsaw Stock Exchange, where
the subject of the examination was the WIG 20 (see in Skrodzka et al.,,
2002) index; it was also used for examination of the hourly price behavior
structure volatility of cash prices and futures prices for the Nikkei index
(see in Sheyun et al., 1999).

V. ANALYZING THE RELATIONSHIPS BETWEEN VOLATILITY
AND TRADING VOLUME FOR FUTURES

The exchange rate level has a significant influence on the value of
derivative instruments applied to the exchange rate of a given foreign
exchange. The derivatives are increasingly more often used by Polish
companies and financial institutions for managing the exchange rate risk.
That is why the authors of this paper present the possibility of application
of the Markov chains for examination of the futures pricc volatility on the
stock exchange in Warsaw.

One of the most important cause-and-effect relationships occurring in
the financial markets is the relationship between stock price (indexes) and
trading volume. The opening and closing effects, also connected with calendar
anomalies, can be examined from the point of view of the relationship
between the trading volume and the stock price volatility. The calendar
anomalies hypothesis will be confirmed by proving that both the trading
volume and price volatility are higher during the periods of stock market



opening and closure that follow “non-session” days (weekend, holidays),
faking into consideration the calendar time theory, one can draw the
conclusion that a high trading volume should accompany high volatility at
the beginning and the end of the week.

For examination of such a relationship, a Markov chain-based method
can be used, in which the information about the trading volume change is
combined with the information about price volatility in order to construct
a composite state of the first-order Markov chain. Composite states are
defined in the following way:

Table 3. Construction of composite states of the Markov chain for the price-volume relationship

HH HN HL NH NN NL LH LN LL
Av, high high high normal  normal normal  low low low
AK high normal  low high normal  low high normal  low

where: AK, = M—MWVI_1 is related to absolute daily volume of business changes,
whereas Av, = v,—v(_, is related to absolute daily price volatility increasel

In this way, it is possible to construct a composite state first-order
Markov chain. Next, a probability matrix of transition among states is
constructed, in a similar way as in the case of exchange rates. Discussing
the information models theory, one has pointed out that a high trading
volume should accompany high price volatility. In the information model
that they created, the opening and closing effects result in a concentration
of turnover in these periods, the aftermath of which is a decrease of trade
liquidity and an increase in the securities volatility rate. Because of this,
on the days on which the price volatility of the futures increases, their
trading volume should also increase. That is why in the vector of balanced
states distribution for the Markov chain, the long-run probabilities of states
111 and LL should be higher than those of other states. To check this,
we will test the null hypothesis assuming that the time proportions in all
balanced states do not differ significantly. For this purpose, the %2 test
that was discussed earlier will be used. This method was used for examination
of relationships between exchange rates and turnover for futures issued for
the Nikkei index in the years 1993-1994 (see in Shiyun et al., 1999).

An analysis of the long-run probabilities of reaching composite states
I reveals that states of high and low volatility, i.e. HH and LL occurred
much more frequently than the other states. It is also confirmed by a test

1 The limits of volatility intervals of individual states in the case of volume of business
increase and increase in volatility of the prices of futures are determined according to the
same principle as in the case of exchange rates volatility.



of distribution y}, in which the null hypothesis of an identical long-run
state distribution was rejected. On this basis, the conclusion was drawn
that in the case of futures for the Nikkei index, this method confirms the
existence of a relationship between the trading volume and the contract
price. Therefore, the days on which high changes of trading volume occur
are also the days of high price volatility changes and vice versa.

VI. MARKOV SWITCHING MODEL

Switching models belong to the class of tools that are appropriate for
description of dynamics of processes, the characteristics of which are subject
to discrete changes with time, so during their modeling, one must take into
consideration appropriate discrete parameter changes. In other words, in
an observation time series of such a process, it is possible to observe
periods, during which the process values are generated by various regimes.
In the case of switching models it is assumed that both the mechanism
that controls changes within the limits of individual regimes and the regime
change mechanism is random. As a consequencc of such assumptions, it
is impossible to decide on the current regime exclusively on the basis of
the knowledge of the process state at a given moment. Applications of
switching models are based on a general assumption that the investigated
time series can be modeled with use of stochastic processes defined as
sequences of random variables of a known conditional distribution in each
of the regimes.

In numerous applications of switching models, the stochastic process that
controls the regime changes is a homogeneous Markov chain. This category of
switching models is called in the literature “Markov switching models”.

Switching models appeared in econometric literature about 30 years ago.
The first mentions of a switching model can be found in a work by Goldfeld
and Quandt (1973), in which the authors considered a linear regression
model with coefficients that changed along with the change of the process-
controlling regime. Applications of Markov switching models examining
exchange rate fluctuations, are presented in works on, among others, Engel
et al.,, 1990, and Engel, 1992

The Markov switching model proposed by Hamilton (1989) is closely
connected with the TAR (threshold autoregression) model. The basic difference
between those two models is that in the case of the Markov switching
model, the regime changes are not determined by the process level (so-called
threshold value), but through a non-observable state variable that is usually
modeled as a Markov chain. For instance:



+ for st=1
la2+ Rzxt—1+ "1 for s, =0

(i6)

where s, is a non-observable, two-state Markov chain, with a certain transition
probability matrix P. For both regimes, xt is a first-order autoregression
process AR(1), but the parameters of this process (containing a variance
of a random component) differ in individual regimes and the regime change
is random and subject to autocorrelation.

Regime changes arc cause by factors other than those occurring in series
that arc currently being modeled (s, determined the regime, not x(), it is
seldom known in which regime the process is (s, is unobservable), but post
factum it is often possible to determine in which regime the process was,
at a certain trust level s, can be estimated by means of Hamilton filtering
process (Hamilton, 1989). Moreover, regime changes can be identified through
interactions between the data and Markov chain, not through examination
of the a priori data. Difficulties in measurement of the factor that has
a significant influence on the examined phenomenon justify treating this
variable as an unobservable one and modeling it as a Markov chain. The
Markov switching model proposed by Hamilton (1989, 1990) and Engel et
al. (1990) has the following form:

yt= Mo(l - st) + Hi's, + e, e, ~ N(O, SI,). (17)

The examined phenomenon was presented as a vector stochastic process
(yl,y2,—¥T)- The unobservable variable s, describes the state of the variable
explained at moment t. Variable s, is a Markov chain of two states and
it takes on scalar values {0, 1}. The first state (regime) describes a situation
in which an event that interests us occurred, the second regime means an
occurrence of an opposite event. When variable s, = 0, the explained variable
is subject to normal distribution of parameters 10, i20; when s,= 1, then
the explained variable is subject to normal distribution of parameters
£2V In other words, the stochastic process that generates such a phenomenon
is a mixture of two normal distributions having different averages.

The transition probabilities do not change with time and amount to:

P(s, = 0/s,-.i=0) = poo

P(S( Us,-1= O) = pOl = 1. Poo

P(s, = Os,-j = )= pt0O= 1-pn

P(S,= 1/5,-1 = 1) = Pu



The Markov switching model has a few interesting properties from the
point of view of the purpose of the investigation. As a Markov chain
describes state changes, the proccss may switch suddenly. It imitates sudden
changes in the level of the explaining variable, resulting, for example, from
the change of investors’ expectations.

The Markov switching model that is described in (17) models the explained
variable as a mixture of two normal distributions. As Titterington et al.
(1985) demonstrated, a nondcgcncratc finite mixture of two normal dist-
ributions does not have normal distribution. It is consistent with the
investigations carried out so far, that revealed that financial pricc distribution
differs from normal distribution. An additional advantage of the selected
model is that it belongs to the non-linear model class.

VIl. ESTIMATION OF PARAMETERS OF THE MARKOV SWITCHING MODEL

The discussed model can be estimated with the use of the version of
EM (Expectations Maximization) algorithm proposed by Hamilton (1990).
As a result of the estimation, a parameter vector G is obtained that contains
elements of the following matrices:

Hj — (ky~ 1) vector of mean values of explained variable in state j, where
;e{0, 1}, kK - number of components of vector yt,

il-(kxk) variance-covariance matrix,

pij - probability of transition from the state i to j,

p - probability of the fact that y, was in state s, = 0 at time £= 1

Additionally, as a result of the estimation, we obtain the probability of
the fact that the process was in state st at moment t:

(19a)

If information goes beyond moment t (e.g. the whole test t = 1,2,...,IN)
used for the probability estimation, then it would be possible to obtain
smoothened probability:

PO*,/Y1.-.¥r; 0) (19b)

One of the ways to maximize the likelihood function construed for the
requirements of this model is an application of an appropriate version of
the Expectations Maximization algorithm (discussed, among others, in
Dempster et al.,, 1977; Hamilton, 1990). The application of the EM algorithm
to the switching models class requires deriving a dependence among the



probabilities that were assessed on the basis of the available information
that observation y( was generated by regime j and the conditions imposed
on the parameters by a system of equations resulting from the need for
maximization of the likelihood functions:

T~(Y1*—>Y¥»6) —0 for k=1,2... N, 7=1,2,..

on (20)
dpkj

Z =1 for 7=1,2,...,7r.

This dcpendcncc allows us to find in the consecutive iterations of the
algorithm an increasingly better (as regards the criterion connected with
the likelihood function) estimation of the parameter vector of the model.
Hamilton (1990) proves that the estimator of the maximum likelihood method
of vector O is a solution of the following system of equations:

(for il0=iij = if)

Ey«p(s, =7/Y1.-»Yr; ()

7=0,1 (21)
tI_t p("=;7Y¥1,-.YT;°)

Z Z (- Mfot- v/ psr=dyl  ;°)

il= K=1 (22)
T
Z p(st=M -i =ilyi,-,yT,0)
- t-2
Pij — r (23)
Z p(s,-i =i lyyr;0
t=2
p = p(s! = Olyl,...yr;0) (24)

The proceddre starts from the giving of any initial values of vector 0,
that will be used for estimation of probability smoothcning (19b) (see
Hamilton, 1990).

The estimated probability is then used for estimation of the parameters
of vector 0 described by equations (21)-(24). When the initial values have
been determined for all model parameters, in each iteration of the EM



algorithm, two steps arc made. The first step (expectations) consists
in determination of probabilities P(S, =y/Y, = y( according to formula
(17). The second step (maximization) leads to determination, with the
help of a system of equations (18), of a vector that maximizes the
likelihood function. Estimation stops when a given convergence criterion
is met. In order to prevent the situation when the estimation is do-
minated by a small number of very high observations, the values that
exceed the threshold of three average absolute deviations from the sample
average were replaced with the height of this threshold. It is possible
to show (Hamilton, 1994), that a sequence of estimations obtained in
this way is convergent towards the local maximum of the likelihood
function.

VIIl. AN ATTEMPT OF APPLICATION OF MARKOV SWITCHING MODEL TO
FORECASTING OF F:XCIIANGE RATE CHANGE

In analyzing exchange rates behavior, one can notice the occurrence of
so-called long swings, i.e. periods of keeping up appreciative or depreciative
rate tendencies. This phenomenon can be explained by an inflow of
information to the currency market and their subjective interpretation by
individual participants in the market, who also set exchange rates. The
inflow of information occurs in an irregular way, in special cases in series
(which means that the information can be correlated) and their meaning
and influence on the change of the exchange rates are diverse. As a result,
there are sub-periods of decreased and increased exchange rate change
periods. Changeability of exchange rates depends on new, expected infor-
mation (e.g. messages concerning the macroeconomic situation in the
country). Dates of their announcement are usually known in advance, and
uncertainty that conccrns them results in an increase of exchange rate
fluctuation.

According to the assumptions of the Hamilton model, the empirical
series of logarithmic return rates for quotations of a given exchange rate
should be decomposed into a phase of increase and a phase of decrease
of the rate. In this way, two regimes will be distinguished: a regime
corresponding to depreciation of the rate and a regime corresponding to
appreciation of the rate. For each regime, its basic characteristics should
be determined: the expected value of the rate change (pO and //j) and the
rate change diversity (er0 and aY) that will approximate the rate change
dynamics within a given state. Transition probabilities for individual states



(Poo and puy) should also be assessed. Transition probability values are the
starting point for determination of an average length of the exchange rate
appreciation and depreciation period:

a = --———- (25)
1—Poo

(26)
1-Pit

where:
a - mean length of the appreciation period,
d - mean length of the depreciation period.
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Aneta Wiodarczyk, Tomasz Szmigiel

TEORETYCZNE ASPEKTY WYKORZYSTANIA MODELI MARKOWA
DO BADANIA ZMIENNOSCI KURSU WALUTOWEGO

Streszczenie

Prawidtowe oszacowanie kierunku zmian kursu wymiany moze zmniejszy¢ ryzyko inwestycji
w walute lub moze pozwoli¢ na osiagniecie wiekszych dochod6éw z tej inwestycji. W opracowaniu
tym autorzy przedstawiaja propozycje zastosowania modeli Markowa do wykrycia i opisania
prawidtowosci rzadzacych procesem zmienno$ci kursu walutowego. W pierwszej czesci zostata
wykorzystana teoria tancuchéw Markowa do badania anomalii kalendarzowych wystepujacych
na rynku walutowym zwigzanych z efektem weekendowym lub efektem stycznia. W artykule
przedstawiona zostata réwniez metoda oparta na teorii tancuchéw Markowa, ktéra moze
postuzy¢ do zbadania wzajemnych powigzan pomiedzy zmienno$ciag wolumenu obrotu oraz
zmienno$cig cen dla terminowych kontraktéw walutowych. W drugiej czeéci zostang przedstawione
zagadnienia zwiagzane z budowg i estymacja parametrow przetgcznikowych modeli Markowa.
W oparciu o modele przetagcznikowe mozna prognozowaé zmiany kursu walutowego. Praca
ma charakter teoretyczny. Badania empiryczne zostang przeprowadzone w po6zniejszym terminie.



