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SOME PROPERTIES OF THE ROBUST TREND TESTS 
 

Abstract. Formal testing of whether a time series contains a trend is greatly complicated by 

the fact that in practice it is not known whether the trend is embedded in an I(0) or I(1), series, that is, 

within a weakly or strongly autocorrelated series. In this article we would like to present the proper-

ties of behavior of the robust (to the order of integration of the data) trend tests of Bunzel and Vogel-

sang (2005), Harvey et al. (2007) and Perron and Yabu (2009). These statistics are termed ‘robust’ in 

the sense that the asymptotic critical values for testing hypotheses on the trend coefficient.  
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INTRODUCTION 
 

In time series analysis, autoregressive integrated moving average (ARIMA) 

models have found extensive use since the publication of Box and Jenkins 

(1976). Regression models are also frequently used in finance and econometrics 

research and applications. As “factor” models for empirical asset pricing re-

search and for parsimonious covariance matrix estimation in portfolio risk mod-

els. Often ARIMA models and regression models are combined by using an 

ARIMA model to account for serially correlated residuals in a regression model, 

resulting in REGARIMA models. In reality, most time series data are rarely 

completely well behaved and often contain outliers and level shifts, which is 

especially true for economic and financial time series. The classical maximum 

likelihood estimators of both ordinary regression model parameters and ARIMA 

model parameters are not robust in that they can be highly influenced by the 

presence of even a small fraction of outliers and/or level shifts in a time series. It 

is therefore not surprising that classical maximum likelihood estimators of RE-

GARIMA models also lack robustness toward outliers and/or level shifts. 

Formal testing of whether a time series contains a trend is greatly compli-

cated by the fact that in practice it is not known whether the trend is embedded 

in an I(0) or I(1), series, that is, within a weakly or strongly autocorrelated se-

ries. If one knew that the shocks were I(0)  then one could test for the presence 

of a linear trend using levels data. Similarly, if it were known that the shocks 

were I(1) then one could perform tests on the first differences of the data 

(growth rates). However, tests based on growth rates display very poor power 

properties relative to those based on levels when the shocks are in fact I(0).  
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In this article we would like to present the properties of sample behavior of 

the robust (to the order of integration of the data) trend tests of Bunzel and Vo-

gelsang (2005), Harvey et al. (2007) and Perron and Yabu (2009). These statis-

tics are termed ‘robust’ in the sense that the asymptotic critical values for testing 

hypotheses on the trend coefficient.  

 
I. ROBUST CHANGE DETECTION 

 

1.1.ARMA(p, q) Models 
 

A very rich and practically useful class of stationary and ergodic processes is 

the autoregressive-moving average (ARMA) class of models made popular by 

Box and Jenkins (1976). ARMA(p, q) models take the form of a p
th
 order sto-

chastic difference equation 

 

 qtqttptptt yyy ...)(...)( 1111  (1) 

t ~ WN(0, 
2
) 

 

ARMA(p, q) models may be thought of as parsimonious approximations to 

the general Wold form of a stationary and ergodic time series.  

The presentation of time series models is simplified using lag operator nota-

tion. The lag operator L is defined such that for any time series {yt}, Lyt = yt 1. 

The lag operator has the following properties:  

L
2
yt = L ·Lyt = yt 2, 

L
0
 = 1 and L

1
yt = yt+1.  

The operator  = 1  L creates the first difference of a time series: yt = (1  

L)yt = yt  yt 1. The ARMA(p, q) model may be compactly expressed using lag 

polynomials.  

Define 

(L) = 1  1L  · · ·  pLp and (L) = 1+ 1L + · · · + qLq .  

Then ARMA(p, q) model may be expressed as 

 

 tt LyL )())((  (2) 

 

ARMA(p, q) models often arise from certain aggregation transformations of 

simple time series models. An important result due to Granger and Morris 

(1976) is that if y1t is an ARMA(p1, q1) process and y2t is an ARMA(p2, q2) proc-

ess, which may be contemporaneously correlated with y1t, then y1t + y2t is an 

ARMA(p, q) process with p = p1 + p2 and q = max(p1 + q2, q1 + p2). For exam-
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ple, if y1t is an AR(1) process and y2 is a AR(1) process, then y1 + y2 is an 

ARMA(2,1) process.  

High order ARMA(p, q) processes are difficult to identify and estimate in 

practice and are rarely used in the analysis of financial data. Low order 

ARMA(p, q) models with p and q less than three are generally sufficient for the 

analysis of financial data. 

 

1.2.ARIMA(p, d, q) Models 
 
The specification of the ARMA(p, q) model (1) assumes that yt is stationary 

and ergodic. If yt is a trending variable like an asset price or a macroeconomic 

aggregate like real GDP, then yt must be transformed to stationary form by 

eliminating the trend. Box and Jenkins (1976) advocate removal of trends by 

differencing. Let  = 1 L denote the difference operator. If there is a linear 

trend in yt then the first difference yt = yt yt 1 will not have a trend.  

If there is a quadratic trend in yt, then yt will contain a linear trend but the 

second difference 
2
yt = (1  2L+L

2
)yt = yt  2yt 1 +yt 2 will not have a trend. 

 The class of ARMA(p, q) models where the trends have been transformed 

by differencing d times is denoted ARIMA(p, d, q) . 

 

1.3 REGARIMA Models 
 

The REGARIMA model takes the following form: 

 

  ttt xy '
, for t = 1,….,T     (3) 

 

where xt is a k  1 vector of predictor variables, and  is a k  1 vector of regres-

sion coefficients. The error term t follows a seasonal ARIMA process: 

 

  t
s

t
Dsd uLLLLL )()1()1()1)(( *

 (4) 

 

where: 

L is the lag (or backshift) operator,  

d the number of regular differences,  

D the number of seasonal differences,  

s the seasonality frequency,  

(L) = 1  1L  · · ·  pL
p
 a stationary autoregressive operator of order p, 

(L) = 1  1L  · · ·  qL
q
 a moving average operator of order q  

 a seasonal moving average parameter.  
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Note that currently only one seasonal moving average term is allowed in the 

discussions in this chapter. The innovations ut are assumed to be identically in-

dependent distributed random variables with distribution F. In practice, observed 

time series data are rarely well behaved as assumed in the REGARIMA model 

(3) and (4). An observed time series *
ty  is usually some kind of variant of yt in 

equation (3). When the observed time series *
ty  might be influenced by some 

outliers, the classical maximum likelihood estimates are not robust. Furthermore, 

it will detect three kinds of outliers in the original data *
ty : 

 

Additive outliers (AO):  

An additive outlier occurs at time t0 if ,
00

*
cyy tt  where c is a constant. 

The effect of this type of outlier is restricted to the time period t0. 

 

Innovation outliers (IO): 

 An innovation outlier occurs at time t0 if cvu tt 00
, where 

0t
v  is gener-

ated by the distribution F. Usually it is assumed that F is the normal distribution 

N(0, 
2
). Note that the effect of an innovation outlier is not restricted to time t0 

because of the structure of an ARIMA model. It also has influence on the subse-

quent observations. 

 

Level shifts (LS):  

If one level shift occurs at time t0, the observed series is cyy tt
*  for all  

t  t0, with c being a constant. Note that if the series *
ty  has a level shift at t0, the 

differenced series *
1

*
tt yy  has an additive outlier at t0. 

 

In all those three cases c is the size of the outlier or level shift. Without any 

potential confusion, the general term “outlier” may refer to any of the three types 

of behavior. 

 

Controlling Outlier Detection 
The outlier detection procedure is similar to those proposed by Chang, Tiao 

and Chen (1988) and Tsay (1988) for ARIMA models. The main difference with 

those procedures is that we use innovation residuals based on the filtered  – 

estimates of  and , instead of the classical maximum likelihood estimates. 

To detect the presence of an outlier at a given time t0, the outlier detection 

procedure we compute: 
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 },,max{max ,,, 000
0

IOtLStAOt
t

TTT  (5) 

where IOtLStAOt TTT ,,, 000
,,  are the statistics corresponding to AO, LS and IO at 

time t0 respectively. 

 

The test statistic is defined as follows: 

 

 
2/1)ˆ(ˆ

ˆ

V
T  (6) 

 

where ˆ  is an estimate of , the size of the outlier, based on the residuals of the 

filtered  estimates and )ˆ(V̂  an estimate of its variance. If  > , where  is 

a conveniently chosen critical value, one declares that there is an outlier. The 

time t0 where the outlier occurs and the type of the outlier are those where the 

double maximum is attained. 

 

The critical value  is similar to the constant used by Chang, Tiao and Chen 

(1988). They recommend using  = 3 for high sensitivity in outlier detection,  = 

3,5 for medium sensitivity and  = 4 for low sensitivity, when the length of the 

series is less than 200. The critical value  is specified by the optional argument, 

the default value is set as follows: 

 

  =

if

 if

  T if 3

,  

 

More details of this procedure can be found in Bianco, Garcia Ben, Martinez 

and Yohai (1996, 2001). 

 

1.4. ARARMA Models 
 

This is a non-parametric linear model posed by Grambsch and Stahel (1990) 

modeling and forecasting time series. These time series were characterized by 

downward sloping trends and step jumps. The median based estimate of trend is 

designed to be uninfluenced by outliers. In ARIMA notation for a time series, Xt, 

the model is 

 tt aXB 0)1(  (7) 
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an ARIMA (0,1,0) with a constant, i.e. a random walk with a deterministic trend, 

and the {aj} are independent, identically distributed stable random variables. The 

robustness of the estimate of the deterministic trend parameter, for 0 , is due to 

its being based on the median of the median based estimate of trend is designed 

outliers that are particularly common in the rather than the arithmetic mean. This 

protects the estimate of the trend parameter from being contaminated by the 

outliers that are particularly common in the telecommunications data. The details 

of forecasting and trend estimation are given here. At time T, the k step ahead 

 

TTKT kXX
0

ˆˆ  

 

where 
T0

ˆ  is the estimate the trend At the time T. The robust estimate of the 

trend is 

 
T

t T

TTT
TT

m

MZ

T

m
M

2

0
ˆ , 

 

where Zt = (1  B)Xt, MT is the median of (Z2,…, ZT) and mT is the median of  

( Z2  MT ,…, ZT  MT ). 

The response function  is of a “three part re-descending” type: 

 

]0,
3

2,1,
3

2
max[min)()(

xx
xsignx  

 

The design of the response function gives the method its robustness by pre-

venting very large deviation from affecting the trend adjustment. 

 

ARARMA stands for auto regressive moving average. This methodology 

proposed by Parzen (1982). For a times series Xt,, the first transformation is from 

long memory to the short memory: 

 

  ttt XXZ  (8) 

 

where  and   are chosen to minimize 
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T

t

t

T

t

tt

X

XX

Err

1

2

1

)(

)( . 

 

To achieve the transformation of the data to stationarity, Parzen preferred 

a long memory AR filter to the “harsher” differencing used ARIMA.   

For seasonal series, the data were deseasonalised by routines provided by 

Hibon, the forecasts prepared and then reseasonalised. In order to distinguish 

between series that exhibit seasonality and those whose observations are merely 

monthly or quarterly the following procedure was adopted. The last six available 

observations were forecast out of sample under the assumptions that series was 

seasonal and that the series was non-seasonal. The assumption that provided the 

better mean absolute percentage error was used to provide the final forecast.  

 

II. ROBUST TEST FOR TREND 
 
We present a simple test procedure (Harvey et al. 2007) for a linear trend 

which does not require knowledge of the form of serial correlation in the data, is 

robust to strong serial correlation, and has a standard normal limiting null distri-

bution under either I(0) or I(1) shocks
1
. In contrast to other available robust lin-

ear trend tests, our proposed test achieves the Gaussian asymptotic local power 

envelope in both the I(0) and I(1) cases. For near- I(1) errors our proposed pro-

cedure is conservative and a modification for this situation is suggested. An es-

timator of the trend parameter, together with an associated confidence interval, 

which is asymptotically efficient, again regardless of whether the shocks are I(0) 

or I(1), is also provided. 

 

                                                 
1
 {yt} is an integrated process of order 1 denoted yt ~ I(1), if it has the form 

ttt uyy 1 where tu I s a stationary time series. The first difference is stationary 

ttt uyyy 1 . Because of this property I(1) is called difference stationary 

process. Starting at y0 the yt can be representing as an integrated sum of stationary inno-

vations 

t

j

jt uyy

1

0 . The integrated sum 

t

j

ju

1

is called stochastic trend. In contrast 

to deterministic trend are not perfectly predictable. Since the stationary process ut does 

not need to be differenced, it is called an integrated process of order zero and is denoted 

ut ~ I(0). 
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2.1. Motivation for the test procedure 
 
To fix ideas, we start with a highly simplified model and testing problem. 

Consider, therefore, the Gaussian AR(1) model 

 

  tt uty , t = 1,…T  

 

  ttt uu 1 , t = 1,…T , 11u  (9) 

 

where t  is assumed to be NIID(0; 
2
).  

We suppose that the I(0) scenario for ut is represented by  = 0 and the I(1) 

scenario by  = 1, with no other possibilities assumed to exist for the present.  

Our interest centers on testing  

 

H0:  = 0 

 

against either a two-sided alternative, 

 

H1:   0, 

 

or either of the two one-sided alternatives  

 

H1:  > 0 or H1:  < 0, 

 

but without assuming knowledge of whether ut in (9) is I(0) or I(1). The case of 

leading empirical relevance is the no trend null hypothesis, given by 0 = 0, al-

though other values of 0 may also be of practical interest, for example testing 

whether the growth rate in a particular country coincides with some hypothetical 

or desired growth rate. As is customary in this kind of testing problem, we parti-

tion H1 into two scaled components H1;0 :  = 0 + T 
–3/2

 when ut is I(0) and  

H1;1 :  = 0 + T 
–1/2

  when ut is I(1), where  is a finite constant, which provide 

the appropriate Pitman drifts on  under I(0) and I(1) errors, respectively. Notice 

that both H1;1 and H1;0 reduce to H0 when  = 0. 

If ut is known to be I(0) then ut = t, t = 1, . . . ,T, and a test which rejects for 

large values (large positive or large negative values for a two-tailed test, large 

negative (positive) values for a lower- (upper-) tailed test) of the (centred)  

t-ratio, associated with the OLS estimator of  in the estimated model (9), is an 

optimal (uniformly most powerful in the case of one sided alternatives and uni-

formly most powerful unbiased in the case of the two-sided alternative) test of 

H0 against H1;0, and is consistent against fixed alternatives.  
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Letting ˆ  and ˆ  denote the OLS estimators from (9), this t-ratio is there-

fore given by 

  
0

0
0

ˆ

s
z  (10) 

 

T

t

u

tt

s

1

2

2

0

)(

ˆ
 where 

)2(

ˆ

ˆ 1

2

2

T

u
T

t

t

u  and tyu tt
ˆˆˆ . 

 

Standard results we show H0: z0  N(0,1) while under H1;0 : z0  /( 12) 

+ (N(0,1) 

Correspondingly, if ut is known to be I(1)  then the optimal test of H0 against 

H1;1 is based on the t-ratio associated with the (centered) OLS estimator of  in 

model (9) estimated in first differences 

  

 tt vy  t = 2; . . . ;T,  (11) 

 

where vt =: ut = t,.  

 

The t-ratio is therefore given by  

 

 
1

0
1

~

s
z ,  (12) 

1

~2

1
T

s v  

 

where 
~

 is the OLS estimator of  in (11): 
)1()1(

~ 11

T

yy

T

y
T

T

t
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)
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(
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Once more, standard results show that under H0: z1  N(0,1), while under  

H1;1 : z1  /  + N(0,1). Again the test is consistent against fixed alterna-

tives. 

Now consider the behavior of the statistic z0 of (10) when ut is in fact I(1). It 

is entirely straightforward to establish that under both H0 and H1;1, z0 is of 

Oe(T
1/2

). That is, it diverges regardless of whether H0 or H1;1 is true.  

As for the behavior of z1 of (12) when ut is I(0), it is easy to show that under 

H0 and H1;0, z1 is of Op(T
–1/2

) and, hence, converges in probability to zero, again 

regardless of whether H0 or H1;0 holds. The pertinent features of these findings 

are that z0 does not control size under H0 when ut is I(1) (its asymptotic size is 

unity), and z1 does not control size when ut is I(0) (its asymptotic size is zero). 

 

2.2. The model and robust trend tests 
 

Here we pursue an approach based on a data-dependent weighted average of 

z0 of (10) and z1 of (12) where the weights used are based on a consistent estima-

tor of d {0; 1}, the (unknown) order of integration of ut. The estimator of  

d which we propose is constructed from unit root and stationarity test statistics. 

In generic notation, let U denote some unit root statistic used for testing the I(1) 

null that  = 1 against the I(0) alternative, which corresponds to  = 0 in the 

present simplified context.  

Similarly, let S denote some stationarity statistic for testing the I(0) null that 

 = 0 against the I(1) alternative  = 1.  

 

Consider the case where we have a sample of T observations generated ac-

cording to the data-generating process (DGP): 

 

 tTt uty , t = 1,….,T  (13) 

 

 ttTt uu 1 , t = 1,….,T  (14)  

 

The statistics we consider to test the null hypothesis T  = 0 against T   0 in 

(13) are the z  statistics of Harvey et al.(2007), the t
RQF

b statistic of Perron and 

Yabu (2009), and the Dan-J statistic of Bunzel and Vogelsang (2005). 

 

The z  statistic of Harvey et al. (2007) employs a switching-based strategy 

that attains the local limiting Gaussian power envelope for this testing problem 

(under the assumption of an asymptotically negligible initial condition) irrespec-

tive of whether ut is an exact I(1) process or is I(0), the latter occurring where  
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 =  with | | < 1. The test statistic is also asymptotically standard normal under 

the null in both cases. It is calculated as: 

 

  1
*

0
*)1(: zzz  (15) 

 

 

T

t

u

T

tt

z

1

2

2
0

)(

ˆ

ˆ
 and 

)1(

~

~

2
1

T

z

v

T   (16) 

 

In equation (4), T
ˆ  denotes the ordinary least square (OLS) estimator of T 

from equation (13) and 2ˆ
u  is a long-run variance estimator formed using 

tyu Ttt
ˆˆˆ , ˆ  the corresponding OLS estimator of  from equation (13), 

whereas 
~

 is the OLS estimator of  from equation (13) estimated in first dif-

ferences, that is, from tTt vy , t = 2,….,T and 2~
v  is a long-run variance 

estimator based on Ttt yv
~~ . 

The weight function 
*
 is defined as: 

 
2

* 00025.0exp
KPSS

ERS
 

 

where ERS is the with-trend local generalized least squares (GLS) unit root test 

statistic of Elliott et al. (1996) and KPSS is the with trend stationarity test statis-

tic of Kwiatkowski et al. (1992). 

 

The the tRQF
b statistic of Perron and Yabu (2009) takes the form of an auto-

correlation-corrected t-ratio on the OLS estimate of T obtained from the quasi-

GLS regression 

 

 )~()]1(~[)~1(~
11 tMStMSTMStMSt uuttyy  (17) 

 

for t = 2,….,T, along with .11 uy T  Here MS
~  is defined according to 

rule 
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otherwise

Tif

TWS

MS
MS ~

1~1~
2/1

 

 

where TWS
~ is an autocorrelation robust-weighted symmetric least squares esti-

mate of q (based on the OLS residuals tû ) with one of two truncations applied 

as described by Roy and Fuller (2001) and Roy et al. (2004). The t
RQF

b statistic is 

asymptotically standard normal under the null hypothesis when ut is either exact 

I(1) or is I(0), and, has the same local asymptotic power as the z  statistic of 

Harvey et al. (2007) in the local-to-unity autoregressive root environment.  

 

The Dan-J statistic of Bunzel and Vogelsang (2005) is essentially a modi-

fied version of the t-PSW test statistic of Vogelsang (1998) that employs a long-

run variance estimator based on the ‘fixed-b’ asymptotic of Kiefer and Vogel-

sang (2005). Specifically, the statistic is 

 

 )exp(
'
0 JczJDan  (18) 

 

where z’0  is z0 as defined in (16) but with the implicit long run variance es-

timator, 2ˆ
u  constructed using the Daniell kernel with a data-dependent band-

width. Specifically, the bandwidth is given by max( optb̂ T; 2), where optb̂ = 

bopt( ĉ ). Here, ĉ = T(1– ˆ ) with ˆ  obtained by OLS estimation of (2), and bopt( ) 

is a step function given in Bunzel and Vogelsang (2005). In the expressions for 

Dan-J, the z’0 statistic is scaled by a function of the J unit root test statistic of 

Park (1990) and Park and Choi (1988). The constant c  is chosen so that, at  

a given significance level, , a particular test has the same critical value under 

both I(0) and I(1) errors. The value of constant c  depends on optb̂ ; Bunzel and 

Vogelsang (2005) provide a response surface for determining c  for a given sig-

nificance level, and optb̂ . The critical values for the test also depend on optb̂ , and 

again a response surface is provided by the authors for a variety of significance 

levels. The critical values for the test also depend on optb̂ , and again a response 

surface is provided by the authors for a variety of significance levels. Because  

c is not consistently estimated using ,ĉ  Bunzel and Vogelsang (2005) only pro-

vide a limiting distribution for Dan-J when it is assumed that c is known in the 

calculation of optb̂ . That is, when optb̂ = bopt( ĉ ) is replaced by bopt(c). Although 

this strictly means that their asymptotic results are based on the limiting behav-
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ior of an infeasible test, for the purposes of making comparisons tractable, in 

what follows the limit distribution for Dan-J is that using bopt(c). 

 

CONCLUSIONS 
 

The ability to detect the presence of a deterministic linear trend in an eco-

nomic time series is an important issue in applied econometrics for a number of 

reasons. The effectiveness of both policy modeling and forecasting is, for exam-

ple, reliant on correct identification of the trend function. Correctly specifying 

the trend function is also of crucial importance in the context of unit root and 

stationarity testing. It is, for example, well known that an un-modeled linear 

trend effects non-similar and inconsistent unit root tests, while unnecessarily 

including a trend vastly reduces power to reject the unit root null under I(0)  

(weakly dependent) errors. 

We presented procedure that falls into the class of robust tests for the trend 

function. The statistic is based on taking a simple data-dependent weighted aver-

age of two trend test statistics, both conventional t-ratios, one that is appropriate 

when the data are generated by an I(0) process and a second that is appropriate 

when the data are I(1). Determined from an auxiliary statistic which consistently 

estimates the true order of integration of the data, the weights are designed to 

switch weight between the two trend statistics, depending on whether the data 

are generated by an I(0) or I(1) process. We show that the new weighted statistic 

has a standard normal limiting null distribution in both the I(0) and I(1) cases. 
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Gra yna Trzpiot 

WYBRANE W ASNO CI TESTÓW W ODPORNIEJ ANALIZIE TRENDU 
 

Formalne testowanie zagadnienia trendu w szeregu czasowym jest uzale nione od faktu zna-

jomo ci postaci szeregu, w szczególno ci stopnia zintegrowania (I(0) lub I(1)) szeregu czasowego, 

czyli od s abej lub silnej autokorelacji. W artykule przedstawimy odporne testy (na rz d integracji 

danych w szeregu czasowym) zaproponowane w pracach Bunzel i Vogelsang (2005), Harvey  

i inni (2007) oraz Perron i Yabu (2009). Testy te s  odporne w sensie asympotycznych w asno ci 

warto ci krytycznych w testowaniu warto ci wspó czynnika kierunkowego funkcji trendu.  


