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Abstract. By numerical experiments the relative efficiency of Quenouille 
and filtration estimators was established. Assymotry of distribution of estima­
tors and Masodness are the reasons for suggestion of weighting method.
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1. INTRODUí.TION

The CES function is the most general of the production func­
tions with low substitution flexibility. This is from where most 
of its advantages come: if does not assume in advance the shaping 
of substitution flexibility parameter, , or the level of production 
homogenity, it allows direct determination of values of as many as 
four parameters having good economic interpretation.

Also the analysis conducted by [ S a t o  (1969)] with the 
aggregation theory shows that in many cases, aggregated production 
function can be shown directly in from of the CES function, or ap­
plied with positive results in the local approximation of the VES 
aggregated function. The result is that the CES function is worth 
considering in terms of economic theory.
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Empirical investigations of the production models conducted by 
many authors [see i.e. K l e p a c z ,  Ż ó ł t o w s k a  (1990), 
K u d r y c k a  (1973), S a t o  (1969), Ż ó ł t o w s k a  
(1989)], show difficulties in obtaining reliable information about, 
among others, capital series and the level of utilization of the 
production capacities. It allows us to assume that one of the ex­
planatory variables, namely the value of the fixed assets К in the 
two factor CES production function of type

Y = a [6 K'p + (1 - 6)L_p]"v/p ee (1)
where: Y, K, L - are respectively: production, fixed assets and 

employment, 
a, í, v, p - structural parameters,
£ - random component,

is measured with error. Assuming that the errors л of measurement 
are random (independent from the random component t) one can say 
that

К = К • en (2)
There are a lot of methods of estimation of the model parameters 
(1). In the case, when the elasticity of substitution is expected 
to be close to one, one takes advantage of Kmenta transformation 
derived from the development of CES function into a power series 
in the vicinty of p = 0. After an adequate grouping of its 
initial terms the model parameters aQ, a ^  a2, a3 are estimated 
from

InY = aQ + aL(lnK - InL) + a2(lnK - InL)2 + a3lnL + o(p2) + e
(3)

where:
aQ = lna
a, = vfi

< (4)ar = -0.5v6(l - 6)p
a3 = v

and, generally, the influence of component o(p2) on the values of 
the explanatory variables is omitted. Estimators of parameters a, 
ó, v, p are determined on the basis of estimators aQ, a^, a2, a3 
and relation (4). Let us notice, that due to the non-observability 
of the value of variable K, model (3) cannot be estimated directly.



2. BASIC ASSUMPTION FOR THE CES FUNCTION PARAMETERS ESTIMATION 
METHOD ON THE BASIS OF JACKKNIFING

The starting point is model (3) and relation (2) [ K l e p a c z  
(1988), K l e p a c z ,  Ż ó ' ł t o w s k a  (1987)], from which, 
by determining InK, we obtain

InK = InK - n j j j
Inserting this dependence into (3), skipping o(p2) and grouping 

suitably components we obtain, from (3), the formula
у = a0 + a121 + a2X2 ♦ a3X3 + E* (6)

in which:
' у * 1пУ 
X1 = InK - InL

• X, = (InK - InL)2 ,, .
X3 * InL
с* = e - alE - 2a2(lnK - lnL)n - a2n2

This model, however, does not satisfy the assumptions of the 
least squares method as its random component c* does not have zero 
expectation and variables 5^ and X2 are random, щ  paper [К 1 e-
p a c z (1988)] it was proposed to determine estimators of pa­
rameters for the relation of the first differences instead of 
estimating parameters of model (6),

Д у = a j Ą  + а2ЛХ2 + а3йХ3 + tz* (7)
where:
ty, ДХ.̂ , ДХ2, ДХ3 are increments of respective variables. There 
was also discussed a detailed presentation of the method of de­
termining the-estimation of the free term aQ there, with applica­
tion of jackknifing. To achieve this estimation, there was applied 
Quenouille method, producting a series of estimations { ф ,  and
also {a*} i {a3>. These fractional results served to construct two 
types of jackknife estimators:

1) on the basis of aj, a|, a* estimators, B1, c1, R1 are 
calculated by formulas (4), for each of the subsamples in i-th 
subsample, and then direct jackknife estimators: BJ , cJ , RJ of 
<5, v, p parameters are built;



2) on the basis of aj, a1, a* estimators, jackknife esti-
J J Jmators a^, a2, a3 of a1# a2, a3 parameters are built, and then,

from formulas (4), indirect jackknife estimators: , CpJ, R ^  of
6, v, p parameters are determined;

3) on the basis of a^, a2, a3 parameters estimators derived
from the whole sample, B, C, R estimators are constructed accor­
ding to formulas (4).

Properties, of these three groups of estimators and estimator A 
of parameter о are presented on the basis of Monte Carlo experi­
ments in [ K l e p a c z  (1989)].

3. BASIC ASSUMPTIONS IN THE METHOD OF ESTIMATION OF THE CES FUNCTION 
t

PARAMETERS ON THE BASIS OF KALMAN FILTRATION ALGORITHM

In this case the starting point is model (1) and relation (2) 
from which

К = Ke"n,
after inserting in (1), leads to relationship

У = 5[6 K"p + (1 - ?) l‘p]"v/p ec (8)
where:

a = a(6(e"pn - 1) + l)"v^p,

S 6e •РП
6e‘pn + (1 - 6)

are as we see, functions of random variable r)»
Having adapted Kmenta's approach, we transformed model (8) in 

the formula
у = A j ^  + A2X2 + A0 + A3X3 + o(p2) + e (9)

analogous to (3), with 
Ał * w 6 e-pn g“1 
A2 = -0.5vp6(1 - 6)g~2
A0 ■ lna - vp-1ln£ (10)
I = i(e"pn - 1) + 1
A3 = v



Just like a, Z in model (8), parameters AQ, Aj^ Aj of model 
(9) are random variables, being function of n.

As it was shown in study [ Ż ó ł t o w s k a  (1988)] and 
[ Ż ó ł t o w s k a  (1989)], expectations of variables AQ, Aj_, A2 
are equal to parameters aQ, a^, a2 of model (6), respectively. 
Hence, dependencies between expectations: E(AQ), £(A1), E(A2) and 
parameters a, 6, p of model (1) have form (4).

To estimate model (9) there was applied Kalman filtration al­
gorithm for which the model of the system is as follows 

Z( t + 1) = Z(t) + eA (t)
• y(t) = C(t)Z(t) + E ( 1 1 )
t s 1, 2, ..., n

where:
ZT (t) = [A^t), A2(t), A0 (t), A3] (12)

is a vector of realization of random parameters at moment t,
C(t) = í5Í-̂(t), X2(t), 1, Xj(t)] (13)

is a vector of realization at moment t of explanatory variables of 
model (9),

Ед(£) = [Cj(t)» £2(t), Ej(t), 0] • (14)

is a vector, the components of which represent disturbances of 
state vector Z(t) at moment t.

Properties of estimators a, b, c, r of model (1) parameters 
<*/ 6, v, p were presented on the basis of Monte Carlo experiments 
results, in [ Ż ó ł t o w s k a  (1987)].

4. SIMILARITIES AND DIFFERENCES BETWEEN BOTH METHODS

The starting point for both methods of estimation was model 
(1), i.e. CES function with multiplicatively introduced random 
component. In both cases the same model (2) for measurement error 
was assumed ao well as the use, in the process of estimation, of 
Kmenta transformation. Both solutions lead to linear models with 
explanatory random variables. Diversified dinal results come from 
the moment of taking into consideration the occurrence of the



measurement error of the explanatory variable. Namely, taking into 
consideration condition (2) after transformation (3) results in 
model (6), in which structural parameters are non-random, and ran­
dom explanatory variables and the non-observable random compo­
nent are dependent and the expectation of the last one is dif­
ferent form zero. It resulted in the need to estimate the model 
with the first differences and, in consequence, seeking for a free 
trem on the basis of the Quenouille method results. The latter 
was also used- to construct two groups of jackknife estimators: di­
rect and indirect. Considering observable variable К in model (1) 
results in obtaining a non-linear model with random structural pa­
rameters and, after Kmenta transformation, a linear model (9), also 
with random structural parameters, in which random explanatory va­
riables and component e are independent. To obtain estimates of 
performance of the structural parameters there was built a simple 
model of the system and then the filtration algorithm was applied.

The scheme for construction of models series suitable in the 
jackknifing and filtration methods are shown in Fig. I, while a 
general presentation of both methods was included in icems 2 and 3.

5. ANALYSIS OF RESULTS OBTAINED FROM BOTH METHODS ON THE BASIS 
OF MONTE CARLO EXPERIMENTS

Comparing both ways of estimating production function let us 
focus our attention on statistical characteristics of model (1) 
parameters estimators, obtained in the performed numerical expe­
riments. We shall discuss in detail interrelations between res­
pective amounts for these spaces of samples, in which R2 = 0.99, 
RB * 0.99 with 0.95, where 1 - R2 is the share of variance t in 
variance У, and 1 - RB is the share of the measurement error 
variance n in variance K.
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Estimates of the parameter of splitting

Let uns notice first the common feature of parameter ó estima­
tions in both methods, namely, their underestimations. Its amount 
depends on the assumed level of RB, that is, on the error variance 
for variable InK. However, for a given RB one does not observe 
significant differences in the levels of estimators bias between 
individual methods. So, for RB = 0.99 estimators bias of parameter 
6 consist ca..3.3%, and for RB = 0.95 they grow up to from 8% to 
11% and they are different for different estimators. The least 
ones, can be noticed for the indirect jackknife estimator which 
might suggest its superiority over the other estimators. But the 
analysis of sizes of the variability coefficients and mean square 
errors (MSE) for individual estimators does not allow for so uni­
vocal assessment unless we restrict our investigations to appli­
cations of the considered methods to m = 1. Another fact worth 
noticing is the considerable percentage of all parameters estima­
tions below value of this parameter which grows strongly along 
with the growth in the error measurement variance, independently 
from the applied variant of estimation.

Estimates of substitution parameter

Analysis of statistical characteristics of parameter p estima­
tes proves the occurrence of both positive and negative bias of 
medium estimates of this parameter. At the same time it seems in­
teresting that these bias are smollest for the direct jackknife 
estimator. One can observe also a significant.degree of variabi­
lity for all estimators although one can notice for decreasing RB, 
a drop in the value in MSE for an estimator obtained from the fil­
tration method. Analysing the number of estimates of a parameter 
with values smaller from the parameters one can state that they 
make ca. 40% in the jackknife method, and almost 60% for the fil­
tration method, which might indicate, respectively, right side and 
left side asymmetry of distributions of respective estimators.



Estimates of scale parameter

Analising statistical characteristics adequate for parameter a 
one can state that estimates of this parameter obtained in ac­
cordance with the filtration Algorithm are more precise and accura­
te, at the same time we do not observe too significant differen­
ces in the accuracy of this estimator in the case of growing 
values 1 - RB. Bias of estimator a, obtained from the filtration 
method, are several times lower than those of estimator A. This 
result is not surprising, if one takes into account how many in­
direct estimations must be performed to determine its value within 
the method described in item 2. On the other hand, the consider­
able variability of estimates of this parameter and higher MSE in 
estimates of parameter a obtained from the algorithm of filtration 
are worth noticing.

Estimates of homogeneity parameter

Bias of medium estimates of this parameter are close to the 
considered variants of both methods and depend on the level of RB. 
For RB = 0.99 thery are kept with in 1% of the parameter value, 
drop of RB to 0.95 increases them to 35 of the parameter value. 
Taking into account the size of MSE one can state that the obser­
ved bias is not significant from the statistical point of view. 
The distribution of number of this parameter estimations shows, 
at the same time, a right side asymmetry when going to lower values 
of coefficient RB. In the ligth of characteristics obtained for 
estimates of this parameter in the performed estimations one can 
assume that both methods are equivalent.

Average errors of predictor

Average errors of variable У predictor, determined in a point 
designated for К and L, can be considered a common measure of esti­
mators accuracy for all parameters. The point was assumed to be 
determined on the basis of average values of quantities К and L 
observed with error. Hence, the point was different in each sample



of the experiment and depended on the realized values of K. Of 
course selection of such point is disputable due to the theory of 
production, although when the predictor is treated as a measure 
it is not so important. It is certain that, according to the ex­
pectations, a drop in the value of RB will result in a absolute 
increase of the predictors errors. It is characteristic at the 
same time that in most cases these errors are positive for the 
applied jackknife method, while negative for the filtration method, 
preserving, however, order of magnitude. It proves that one can 
not prefer one type of estimators to other.

Final remarks

The performed numerical experiments do not provide us with ar­
guments which might in conclusion result in the statement that one 
these two investigated methods is more effective than other, 
although estimators obtained after their application are not iden­
tical. It seems that due different asymmetries of their distribu­
tions and different bias it would be reasonable to consider new 
estimators constructed on the basis of these obtained from the 
jackknife and filtration methods as their average bias. The pro­
blem, however, is that in the choice of bias and can presumably be 
solved through experiments. One of the possibilities would be 
the construction of such bias which might minimize the weights of 
a new estimator. Then, such bias could be designated on the basis 
of information on the size of weights. Another possibility is 
the minimization of MSE of individual estimators would be dif­
ferent as it seems. Still another possibility would be such a 
choice of bias which would minimize predictors averages, it leadi, 
however to a non-linear optimization and, numerically, can be dif­
ficult to carry out.
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ANALIZA WŁASNOŚCI ESTYMATORÓW PARAMETRÓW FUNKCJI CES 
WG METOD: QUENOUILLE A I FILTRACJI

Przeprowadzone eksperymenty numeryczne nie pozwalają ustalić, która ze 
stosowanych metod estymacji (Quenouille a 1 iiltracji) jest bardziej efektyw­
na, mimo że oťrzymane w wyniku ich stosowania estymatory nie są identyczne. 
Wydaje się, że ze względu na różne asymetrie ich rozkładów i różne wielkości 
ich obciążeń, dobrze byłoby rozważyć nowe estymatory Jako ich średnie ważone.


