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1. INTRODUCTION

In medical applications, e.g. clinical statistics: relatively 
few patients are spread over a large number of cells in a con­
tingency table. Then independence, homogeneity or other hypothe­
ses (esp. in higher - dimensional tables) become hardly to reject 
with reasonable confidence because small accidental changes in 
the observed frequencies will dramatically change the pattern of 
frequencies at all.

E x a m p l e .  In an investigation in the relation of the 
prognosis of Multiple Sclerosis (classified into four categories) 
to the results of a liquor analysis (classified into six cate­
gories) the distribution of n = 51 patients has arisen as shown 
in Table 1.

The often used in practice asymptotic X2 test of independence 
gives a nonsignificant result (P(X^ S 13.933) = 0.469 on the 
commonly used significance levels.

In the Neyman-Pearson theory of statistical testing the rela­
tion between significance level, sample size, and some measure of 
the "distance" between null and alternative hypotheses determines 
the power of the test, i.e. the probability of rejecting the 
null hypothesis if the alternative is true. As the power of a
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T a b l e  1 
Results of liquor analysis and prognosis of 51 patients 

with multiple sclerosis

Result Prognosis nii 2 3 A
1 2 1 0 0 3
2 0 0 2 1 3
3 3 6 1 1 11
A 10 9 5 2 26
5 2 1 0 0 3
6 2 2 1 0 5

19 19 9 A n “ 51

S o u r c e :  The author's calculations.

statistical test in general is increasing with increasing sample 
size one could ask how large should the sample size be to make the 
detection of an association of the two responses safe enough.

Most simply one could say: if the observed relative frequen­
cies remained stable also with larger sample sizes then, at least 
for n = 51 x 24.996/13.933 » 92 (24.996 being the upper 5% value 
of the chisquared distribution with 15 degrees of freedom) the 
observed relations in the table would yield a significant associa­
tion between the responses. This is equivalent to the determina­
tion of the required sample size to achieve the prespecified 
length of a confidence interval (e.g. B r i s t o l  1989). Here, 
the value of power is not taken into account. As it indicates the 
probability of right rejection of the null hypothesis is addi­
tionally used for determining the necessary sample size.

This paper considers the calculation of power for tests of 
independence and homogeneity in two-way contingency tables. After 
an overview of the known theoretical results a discussion of 
practical aspects connected with the power calculations on the 
introductory example follows. The special results obtained for 
2 x 2  tables will not be discussed here (cf., e.g., S u i s s a 
and S h u s t e r  1985). Also higher - dimensional tables 
will not be considered (cf. 0 1 e r 1985), and other designs 
like the McNemar test. or the Mantel-Haenszel procedure are exclu­
ded from discussion.



2. TESTS IN TWO - WAY TABLES

The calculation of power for the test of independence or ho­
mogeneity in a two - dimensional contingency table depends on the 
sampling situation from which the table arises. If the observa­
tional units are independent from each other three different si­
tuations are traditionally distinguished. Probably, for the first 
time B a r n a r d  (1947) described them for a 2 x 2  table, 
and - R o y  and M i t r a  (1956) extended the concept to 
a x b tables. The respective formulations will be given now for 
the general a x b table, a, b > 2.

CASE 1. One sample of size n is drawn, and the objects are 
classified corresponding to two categorical responses A and B. 
That means for the cited example that at first 51 patients have 
been randomly chosen from all accessible patients with Multiple 
Sclerosis and then they have been classified according both to 
results and prognosis. The mathematical model is a multinomial 
distribution

Р((п13) = (n± j )) = <nn  ... nab) ;  TT pAj lj,(nn  ?..nab) = 
--- / i-1 j-1

nl a b
XI p.

nllln121‘*-n16ln211'’'"ab1 i-1 j-1 ^  
"multinominal coefficient" (2.1)

Under the hypothesis HQl of independence of A and В we have

pij° = pi. P.j* 1 = Hl)a, j = l(l)b (2.2)

where the (pL ) and (p ^) have to be specified otherwise (deter­
mined from further information or estimated from the data). The­
refore, they are called nuisance parameters.

The probabilities (2.1) with (2.2) may be cumulated according 
to their increasing values. Then the "unconditional" critical re­
gion consists of all points (ni;.) on the a x b - dimensional lat-

a b
tice which fulfill the side condition £  2  n,. = n with cumu-

i-1 j-1 13
lative probability smaller then or equal to the chosen signifi­
cance level alpha. Of course, this critical region depends on 
the values of the nuisance parameters (p, , p .). The exact un-1 . • J



conditional power is then the sum of (1.1) with p ^  * Pij1* 
£  £  Pij1 e i< over the critical region.

Really, the hypothesis tested in this way is not exactly Hol
but a somewhat more restrictive H ,:01

pij° = pi. P .J'
and

Pi. = Pit°, P j = P -,0 , i = l(l)a, j = l(l)b, (2.3)

(Pi.°) and (p j°) being the specified values of the nuisance 
parameters.

The practical determination of the critical region and the 
calculation of power is a difficult task in all but the simplest 
cases because of the large computational amount. So almost always 
approximations with the chisquared distribution are used.

CASE 2. For each category A^ of A one sample of size n^ is 
drawn (n^ fixed before sampling) independent from the others 
and classified according to the response B. For the cited medical 
situation in this case before conducting the experiment it has 
been decided to sample 3 patients with results "1", 3 patients 
with results "2" etc., and 5 patients with results "6". On sam­
pling they all would be classified into the categories of B. 
Mathematically, the common distribution of all the pro­
duct of "a" multinomial distributions

e lli b lit j b
P((nlj> * = TT ( ) тг pl1 13, £  p.. = 1,

— 1 J 1-1 пи ...п1ь j-l 13 j-l 13

i = l(l)a (2.4)
One can test the homogeneity of the distributions over В for 

the categories of A. The hypothesis Hq2 may be formulated as

pij° = P.j' Í = Kl)b (2.5)

Now the (p j) are nuisance parameters for which the respective 
statements are valid as in Case 1. With specified values (p j0 ) 
°f (P,j) an analogous procedure is possible as in the former 
case: construct a critical region from (2.4) with (2.5) and cal­
culate the exact power from (2.4) with



Similarly the null hypothesis then contains not only the homo 
geneity of distributions but also the specification of the para

so extensive as in Case 1 but yet too large for most practical 
situations. So it is again necessary to use approximations.

CASE 3. Another possibility in Cases 1 and 2 for determining 
the values of (pt ) and/or (p 4) is the estimation from the1 • • J
sampled data. For instance, maximum likelihood estimation yields

Then one can consider the distribution of conditional
on the observed (n^ ) and/or (n^).

This is the same distribution as if the values (n± ) and (n^) 
were fixed in advance and the objects are sampled so that 
exactly n^ of them fall in class A^ and at the same time n^j 
in class for all i and j. Practical applications of this sam­

pling situation are seldom found, the classical example being

the "lady tasting tea" problem cited by F i s h e r  (1966).
The distribution is called hypergeometric distribution because 

its generating function is connected with the hypergeometric 
function. Under the hypothesis H0j of independence of A and В 
the probabilities are given by

Again a critical region can be constructed from these proba­
bilities, and it is a conditional one. Even in this case the 
testing procedure is often practically not feasible because of 
the same reason as before. The fastest known algorithm for calcu­
lation of the actual size of the test (ba M e h t a  and P a- 
t e 1 1986, and further developed by J o e  1988) uses some 
shortcuts to reduce the amount of computation.

meter values (p .°). The amount of computations involved is not• J

n i = 1(1 )a, j = l(l)b (2 .6 )

a b
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The conditional power function is determined by the extended 
hypergeometric distribution which may be written as

P((n^) = (n±j)) = Р К П ц )  = (nrs) I (ni ), (П j), ( X ^ 1)) =

a-1 b-1 . a b
= {exp (X £  n X )/ TT TT n,,l}/ 

r-1 s-1 rs rs 1-1 j-l 13

a-1 b-1 a-1 b-1 - a b
/{ T. £  exp(£ £  n X )/ TT TT n, ц 1 > (2.8)

г-l s-1 r-1 s-1 rs rs 1-1 j-l 13

The noncentrality parameters ( X * )  are connected with the
1(Pjj ) in the following way:

^  = ln ‘Prs1 Pab1/Prbł Pas1’' r = 1(1)a ' 8 ж 1l1>b " *
(2.9)

and called "odds ratios". The null hypothesis Hq3 may be expres­
sed as

Xrs =0, r = 1(1)a - 1, s = 1(1)b - 1 (2.10)

The power calculation is even more extensive than the calcu­
lation of the size of the test, and no shortcuts for speeding up 
the computations as in the latter case are known till now. There­
fore the situation is analogous to those in the other both cases.

One of the most commonly used form of asymptotic tests for 
the null hypothesis in the three distinguished cases is that ba­
sed on the chisquared statistic

2
■) a b (n, . - e. . )

Xf = £  £  = Ц . --- (2.11)
i-1 j-l eij

with

•ij = n Pij° for Hol(1} (2.12)

eij = ni. p .j° for Ho2 (2ЛЗ)
and

6ij = ni. n .j/n for Ho3' 1 = H D * »  Í = K D b  (2.14)

This statistic is asymptotically distributed as a central chis­
quared variate under the null hypothesis. The degrees of freedom 
are equal to



a x b - 1 in the case of (2.15)

a(b - 1) in the case of (2.16)
(a - 1)(b - 1) in the case of Hq3 (2.17)
The likelihood ratio statistic
t a b

Y_ = S  £  2 n,j In (Пл j /e,.) (2.18)i-1 j-i
and the Freeman-Tukey statistic

2 a b  _____v _____ _
T_ = 4n £  £  ( У п 77/n - У ё 7 7 /n) (2.19)i-1 j-i

are asymptotically equivalent to the statistic X^.
The following discussion will be concerned with the statistic

2X , but analogous results are valid for the other two statistics.
The limiting chisquared distribution of X2 under H , can be de-—  оз
rived as conditional or as marginal distribution under the hy­
potheses of independence in Cases 1 and 2. B i s m a r c k  (1988) 
gave a systematic overview over the existing literature on the 
relation between the exact and asymptotic methods cited above to­
gether with the results of own investigations concerned with this 
problem.

3. APPROXIMATE POWER CALCULATIONS

A general formulation of the asymptotic power of tests based
2on X was given by M i t r a  (1958). Mitra considered alter­

natives of Pitman type, i.e. that tend to the null hypothesis 
with sample size increasing to infinity.

M e n g  and C h a p m a n  (1966) published a general 
formulation covering the Cases 1 and 2. Although presented 
without proof, the formulas given in C o h e n  (1977) refer to 
Case 3. An explicit derivation of the noncentral chisquared di­
stribution with the respective noncentrality parameter as the li­
miting distribution for the extended hypergeometric distribution 
is not known to the author from the literature.

The results given in the above cited papers may be formulated 
as follows:



Under the alternative hypothesis of Cases 1, 2, and 3, resp., the 
statistic X_ is asymptotically distributed as a noncentral chis­
quared variate with degrees of freedom v as in the central case 
and noncentrality parameter Л. This parameter is given by the 
following expressions:

CASE 1.

, .  „ [Í £  (,ц ‘ - í  lp‘-1 • -
i-1 J-l Pj^ p .j i-1

Ь (P a1 - P .°)2 
+ Z  ----------J --- 1 (3.1)

with

J-l P.j°

0/1 - í  P,,o/1, i = 1( 1 )api. = jfipii '

P . j 0 / 1  B =  P i j 0 / 1 * J -  K l ) b .

CASE 2.

Л = n • { Z  - i -  [Ž Q. (p,,1 - p .°)2 +
J-l p j0 i-1 1 13 °

- [= °i ÍPij1 - P.j0 »]2] ł <3-2>

b
Qi = n. /n, i = 1(1)а, Г  p = 1.

j - l  °

CASE 3.

1 2 2 , а b (p.. - n. n ./n )
Л = n2 [S S  — Ü ----- L .-- J ----- ] . (3.3)

i-l j-i nlt П ĵ

The probability function of a noncentrally chisquared distribu-
12ted variate x__ i

buted one through
12ted variate x may be computed from that of a centrally distri-



p ( x ^ 2 $ x 1 2 [ V, Л) = P ( x 12j  V, Л) =

= j- e Л/2 . ШЛ1Г p( x121 v + 2r) (3.4) 
r-0 rl

( A b r a m o w i t z  and S t e g u n 1966).
Tables of the noncentral chisquared distribution for several 

values of v and Л have been published by H a y n a m, G o- 
v i n d a r a j u l u  and L e o n e  (1970) and again by 
H a y n a m et al. (1982, 1983).

From the formula of the probability function of a noncentral 
chisquared variate or these tables it can be seen that the power 
of the considered tests is generally increasing with increasing 
value of Л. In all of the above cited cases the noncentrality 
parameter depends on the sample size n and some measure of the
"distance" between null and alternative hypotheses related to the2measure given by the statistic X . That is power is really in­
creasing with increasing n and/or increasing "distance".

L a c h i n (1977) examined the determination of sample si­
zes given (asymptotic) power for a x b contingency tables in 
cases 1 and 2. In detail he considered the situation that

(51) P j 0 = £  P ij1/a (3.5)

(52) P j° = Pjtj1 f°r some It, 1 < к (. a (3.6)

and

(53) p  °  = pij1 Q (3.7)

for Case 2. In the latter situation the p j° are also functions 
of the sample fractions so that the sample allocation must be 
optimized which yields a nonlinear programming problem. In clini­
cal trials the situation may be additionally constrained by the 
demand for the comparison of one placebo group with a-1 equally 
sized treatment groups. Then the total number assigned to the 
a-1 treatment groups ought to be minimized. Lachin offered the 
solutions as analytical procedures and APL programs.

Unfortunately, even the known computer program for calculating 
sample sizes in the analysis of two - dimensional contingency



tables does not seem to distinguish between the several possible 
sampling situation (S a y n and M e г к 1 e 1989) what is 
necessary from the theoretical arguments cited above.

The value of the asymptotic power depends on the values of 
sample size and noncentrality parameter, i.e. the specified al­
ternative hypothesis. Little is known about guidelines for the 
determination of Л under practical aspects. It may be determi­
ned from further information about the practical situation in 
which the statistical test should be applied. But in the medical 
context this is generally a difficult task and can only be done 
in cooperation between the statistician and the doctor.

C o h e n  (1977) gave some hints what small or large de­
viations from H mean. He introduced a so - called "effect sizeо
index" w = /л/п which is a function of the distance between 
both hypotheses. Then he proposed the following scale:

distance effect size index contingency coefficient
small w = 0.10 С = 0.100
medium w = 0.30 С = 0.287
large w = 0.50 С = 0.447

The "effect size index" and Pearson's coefficient of contingency 
С are related by

Now the consequences of the determination of Л will be explai­
ned on the introductory example. What kind of hypothetical va­
lues should be chosen as alternatives to independence between 
liquor results and prognosis?

If the observed frequencies were taken as alternative to inde­
pendence then л = X2 = 13.933, i.e. w = 0.523. For a = 0.05 this 
gives a power value of 0.635 from formula (3.4) of the noncen­
tral chisquared distribution (cf. Table 2).

4. ABOUT PRACTICAL POWER CALCULATIONS

(4.1)



T a b l e  2
Observed and expected (under Independence) relative frequencies

Result
Prognosis

£
obs.

1
exp. obs.

2
exp. obs.

3
exp.

4
obs. exp.

1 3.9 2.2 2.0 2.2 0 1.0 0 0.5 5.9
2 0 2.2 0 2.2 3.9 1.0 2.0 0.5 5.9
3 5.9 8.0 11.8 8.0 2.0 3.8 2.0 1.7 21.6
4 19.6 19.0 17.6 19.0 9.8 9.0 3.9 4.0 51.0
5 3.9 2.2 2.0 2.2 0 1.0 0 0.5 5.9
6 3.9 3.7 3.9 3.7 2.0 1.7 0 0.8 9.8
£ 37 3 37 3 17.6 7.8 100.0
S o u r c e :  The author s calculations.

The following minimal sample sizes are necessary to achieve 
higher power values:

Power a - 5Z a - IX
2/3 60 85
0.80 77 104
0.90 96 126

(taken from Cohen's table for the conservative values v = 16 
and w = 0.5).

In this case the power is relatively fastly increasing with 
increasing sample size so that a not very much larger sample 
would yield better or even sufficient power. But a larger power 
value does not automatically induce a significant test result for 
the relations among the observed frequencies projected to the 
larger sample size as can be shown for

a = 5%, A = Xx2 = 13.933:

n 1 - ß *> X2 P(X2)
60 2/3 60/51 x Xj2 - 16.391 0.643 < 0.95
77 0.80 77/51 x Xj2 - 21.035 0.864 < 0.95
96 0.90 96/51 x Xj2 - 26.226 0.964 > 0.95



The extreme case for the alternative, i.e. strong dependence
would indicate that each class of liquor result is connected with
one and only one class of prognosis. Assuming that in this case
results "1" and "2" together yield prognosis "1" and results "5"
and "6" yield prognosis "4" the probabilities are concentrated
on the main diagonal of a 4 x 4 table.

If rows 1 and 2 and 5 and 6, resp., are merged the degrees of
9 2freedom are v * 9, the observed X = 4.988 with P(X ) = 0.165

under H ,. For the observed relative frequencies as percentages03
under the alternative in Case 2 the following noncentrality pa­
rameters and "effect size indexes" result for several choices of 
the marginal distribution (p j°) and n = 51:

Л w 1 - P 
a - 0.05

I (19/51, 19/51, 9/51, 4/51) 4.988 0.313 0.280
II (6/51, 11/51, 26/51, 8/51) 6.060 0.345 0.342
III (0.25, 0.25, 0.25, 0.25) 4.830 0.308 0.271

This is an example for medium "effect size indexes" in the sense 
of Cohen.

Under the alternative of strong dependence the following ta­
ble of percentages would have been expected:

Result Prognosis I V1 2 3 4

1+2 1.0 0.0 0.0 0.0 1.0 6
3 0.0 1.0 0.0 0.0 1.0 11
4 0.0 0.0 1.0 0.0 1.0 26
5+6 0.0 0.0 0.0 1.0 1.0 8

The observed margins contradict the conditions of Case 3 above 
so that only sampling situations of the other two cases are pos­
sible. In Case 2 we get for this alternative:



The last table indicates that under strong dependence as ex­
treme form of alternative the given sample size is large enough 
for reaching sufficiently high power. Indeed, the second line of 
the table shows as "effect size index" /b-1 which is at least
1 for b > 2 and therefore "large" in the sense of Cohen as the 
other "effect size indexes", too.

Perhaps a more realistic notion of dependence assigns every 
50% to the cells in the main diagonal and 50/3 = 16.7% to the 
cells outside the main diagonals

Result Prognosis T.
1 2 3 4

1+2 0.50 0.167 0.167 0.167 1.0
3 0.167 0.50 0.167 0.167 1.0
4 0.167 0.167 0.50 0.167 1.0
5+6 0.167 0.167 0.167 0.50 1.0

In the three considered cases of hypothetical marginal distribu-
tion of prognosis we find:

(P.j0) Л w 1 - ß 
a *= 0.05

I 21 732 0.653 0.929

II n • (c-2)2
4(c-l) - 17 0.577 0.839

III n • ( ^ ) 2c-1 • f  • (1 - £ P2 ,0) 4 j 14.850 0.540 0.774



Even now the "effect size index" is "large", but the power 
values are not so high as in the former case.

An analogous discussion with corresponding results might be 
carried out for Case 1.

This example indicates that further examination of the rela­
tions between dimensions of the table, "effect size index" and 
sample size seems to be necessary resulting in more detailed sug­
gestions for practical applications,
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Malte Bismarck

STATYSTYCZNE PLANOWANIE EKSPERYMENTÓW 
ZWIĄZANE Z ANALIZA TABLIC WIELODZIELNYCH

Artykuł zawiera przegląd znanych teoretycznych wyników związanych z obli­
czeniami mocy testów niezależności i jednorodności w tablicach wielodzielnych 
a x b. Przedstawiono również wyniki obliczeń obserwowanych i oczekiwanych 
względnych częstości, przy założeniu niezależności elementów próby losowej. Po­
dano także wyniki obliczeń empirycznych mocy ww. testów przy poziomie istot­
ności 1Z i 5%.


