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1. INTRODUCTION

One of the strongest assumptions of econometric analysis is 
the assumption of the existence of structural relation with pa
rameters that are constant (in time, for all groups of indivi
duals, for all observations etc.). The opposite assumption would 
allow them to vary freely from observation to observation without 
any specific pattern.

The former, in spite of its restrictivity, has a deep pragma
tic sense. It organizes the way of thinking and research. The con
stant parameter model explains the behavior of a variable (y) by 
the behavior of other variables (x-es). A parameter b^, associa
ted with explanatory variable x^ ( k  = 1, . K) characterizes the 
strength of the influence of x^ on y. Thus we have clear-cut dif
ferentiation between causes (explanatory variables) of the changes 
in у and measures (parameters) of the strength of their influen
ce. The assumption of constant parameters, as a crude approxi
mation of the reality, should rather be interpreted that the pa
rameters change, but the changes are tolerably small, where the 
tolerance is determined by the purpose of the research (or by the 
outcome of tests for parameter constancy).
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The latter assumption may be closer to reality, however, it 
allows for everything. From pragmatic point of view its total 
flexibility seems to lead to nowhere. One cannot operatively in
vestigate parameter changes without some idea about their cha
racter.

The intermediate versions of flexible parameter assumption allow 
for changes in structural parameters accordingly to some specific 
pattern. Changes may be deterministic or stochastic, continuous 
or discrete, with known or unknown breaking point, may cover some 
or all structural parameters. The pattern of changes is to be 
specified a priori by the researcher. This usually leads to some 
reparameterization of the original model in terms of new, con
stant hyperparameters.

In the panta rei world, where everything is in continuous mo
vement, there exists certain risk associated with the flexible para

meter assumption. Namely, too much flexibility in parameters may 
explain too much, leaving nothing to be explained by the model 
variables.

Modeling a changing economic structure by allowing response parameters 
to vary over observations may be a realistic approach, but the chances 
for misspecifications are many ( J u d g e  et al. 1980, p. 398).

One may thus suggest a pragmatic principle that allows for the 
varying parameter assumption, provided that the knowledge a priori 
justifies such approach (i.e. we know or have good reasons to 
expect that the parameter changes are outside the tolerance li
mits of the constant parameter model).

The alternative approach, based much more on the sample infor
mation, calls for testing the parameter constancy and/or testing 
for the period!s) of structural change (if discrete) or the 
functional form (the "transition law" for the changing parame
ters, if continuous).

The changing pattern (instability) of parameters of the model 
under test need not be an inherent property of the modeled system. 
It may as well result from model misspecification - for example 
inadequate functional form or omitting an important variable 
( D z i e c h c i a r z  1989 discusses the problem in wider con
text). Testing for parameter constancy may thus lead to testing 
for the misspecification rather, than to a model with changing



structural parameters. Testing stays outside the scope of this 
paper. The works H а с к 1 (ed.) (1989) and K r ä m e r ,  
S o n n b e r g e r  (1986) provide extensive material on this 
topic, H a c k l ,  W e s t l u n d  (1985) present also an ex
cellent bibliography.

2. MODEL WITH STRUCTURAL CHANGE IN INTERCEPT

We consider the simplest case of structural change in linear 
model - namely the estimation of discrete changes in intercept 
only (illustrated at Figure 3). Furthermore - we allow for mul
tiple changes of intercept i.e. for more than two regimes.

The standard linear model

У- = bn + £  bR xtk + eť.
k-1

t = 1, T

we rewrite for our purpose as follows:
M
V o mm-1 4 m + + 6t' t = i, , T

(2.1)

(2 .2 )

tmwhere: m - index of the regime, M - total number of regimes, u 
dummy variable associated with the m-th regime, assuming value 1 
for this regime, zero otherwise1.

The model can be rewritten in the matrix form as follows:
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XT о ro

y l U 0 ... 0 *i • V
y 2 s 0 u ... 0 CM

X * • + e 2
e a , , , b .
• • • • • OM •

y m
0 0 ... U XM b

_ V

(2.3)

where:
e - vector with zero mean and a scalar covariance matrix о I;

To simplify our formulas we assume equal number (Q) of observations 
associated with each regime. Hencefore T * Q x И. The results stay valid 
for the nonequal case, as well, provided that the smallest subsample contains 
enough observations (roughly speaking not less than the number of parameters 
that supposedly undergo the structural change in given regime).



Хщ • g by К matrix of values of nonstochastic explanatory va
riables in m-th regime;

Ут < effi * 0 by 1 vectors of values of dependent variable and 
disturbances, respectively, in m-th regime; 

u - Q by 1 vector of ones;
b  - К by 1 vector of slope parameters,the same for all regimes; 
bQ - M by 1 vector of varying intercepts, its m-th value bQm 

represents the intercept in the regime m.
Using the Kronecker product, denoted by •, we may rewrite (2.3) 

as follows:
b„

y « U  • u I X] * [r-] + e (2.4)

where I denotes the unit matrix.
The least squares estimator of the parameters of (2.4) is 

given by the following formula:

(I »U)'(I » U l x d  • U) X -1 (I • u) у
X ' (I « u) X X X уOLS est {[jp])

Direct calculations show, that (A • В) « (C • D) = AC » BO 
T h e i 1 1971, section 7.2), thus we have:

b0OLS est {[jp]} =

(2.5) 

(see

and finally:

OLS est {[jj£]) =

• (u u) (I • u)'X -1 (I • u)'y
(I • u) X X X r

x 0 (I • u) X -1 (I • u )"y
(I • u) X X X y

(2 .6 )

(2.7)

since u'u = Q. Under the standard assumptions it is the best li
near unbiased estimator (BLU) of b Q and b  in (2.4).

Let us introduce a matrix A~ л defined as follows:

A = I - u u (2 .8 )

For an observation matrix Z0 „ we have:

AZ = Z - U(l/Q u'Z) = (г<, - 1/Q £  z.,),
i-1

i = 1, ..., Q. j = 1, ..., К



i.e. A transforms observations in columns of 2 into their devia
tions from the column mean.

We shall transform the nondummy variables of our model into 
deviations:

AX, (Xij,l - *j «- i 2 1 / • • • , Q
W = A X2

•

s (XiJ,2 ' XJ»2 ’ 4- i S 0 + 1, . 2 0  
•

a ’*m .(Xij,M ' XjV . i =
•

(M - 1)0 + 1, ..., T
j s 1, •••, К •

(2 .1 0 )

(similarly v
А / 1 
A y,

A Yu

from their regim e means x, . Using the formula for the inverseJ
of a block-diagonal matrix :

E f~-1 E-1(I + FD_1GE~1) -E-1FD-1"
G H -D_lGE'1 D_1

where D = H - GE F (provided E and D are nonsingular), after ne
cessary rearrangement, we may write (2.7) as follows:

b = [X'(I • A )X]~1 X '(I • A)y = [X'(I • A ) " (I • A)X]_1
X (I • A) '(,1 • A)y (2.11)

or
b = (W'W)_1W'v (2.12)

for the slopes3 and
b„_ = ym - x m b, m = 1, ..., M (2.13)0m *m ",m 

for the intercepts,

2 Compare J u d g e  et al. (1982), p. 480, G o l d b e r g e r  (1963),
p. 27.3 Computer estimates of residual variance based on (2.11) will be e ’e/(MT-K) 
rather, than appropriate, resulting from the direct application of (2.7) 
e e/(MT - (M + K)). It is thus advisable to recalculate it, along with the 
proper adjustment of such expressions as standard errors of estimation, inter
val estimates, t-statistics and so on.



where:
ym - the mean of the у in the m-th regime;
x „ - К by 1 vector ,m in the m-th regime,

with elements x.
of the means of x-es

'j,m' j = l > K -
This is a generalization of the classical result that the 

least squares estimate of slopes b depend solely on the variabi
lity (deviations from mean) of the model variables, while the in- 
tercept(s) assume value(s), that makes the mean residual equal4zero . Consistent estimation of, changing from regime to regime, 
intercepts of (2.3) requires consistent estimation of slopes. As

A

we have shown - BLU estimators of the latter (contained in b) de
pend s o le ly on the variability of у and x-es calculated for 
each regime separately (variability around respective regime means), 
while the changing intercept assume value making the mean residual 
equal zero within each regime'’.

If one calculates the estimate (2.12) on the basis of matrices 
X and у expressed as deviations from the global column means x^ =

-T= 1/T (as opposed to the formula
are calculated from the regime means x

1
HX

i
(Xij,l

1 XI
I—
I.

1

i f = Kj. *2 S (xij,2 - xj(

V (Xij,M - Xj)

j,m

(2.10)
, one gets

where deviations 
6

See for example G o l d b e r g e r  (1963), p. 182-184. If T Is suf
ficiently large - one can estimate separate regressions for each regime (the 
approach similar to that of Chow in his test for parameter stability, see 
C h o w  1960). Observe that in this approach the mean residual equals zero 
in each regime separately. The trouble with the separate regressions is the 
lack of guarantee, that the estimates of coefficients that do not undergo the 
structural change will assume the same values in different regimes.

The result is closely related to the question of intra-class and inter- 
-class variability in the analysis of variance, see for example K l e i n  
(1972), p. 109-116, G o l d b e r g e r  (1963), p. 227-231.

The symbol reminds that thie A matrix is of order T rather than Q 
as in (2.10).



(xij,l ■ xj,1} ~(*jfl - Sjf
= (Xij,2 ‘ xj,2) ■f (Xj,2 - Xj)

(xij,M - XJ,M> (xj M  - Xj)

(Xij,l • u (x1 - X)'

(XiJ , 2 - XJ/2 > u (x2 - x)'

<Xij,M * Xj,M> U (Xjj - x)'

where: x = - vector of global means, and

1 ,m
*2,т -vector of means calculated for the m-th regime;

K,m

R is a matrix conformable with W, in which the observations 
of W are replaced by the respective difference between the glo
bal mean and the regime means.

Now the OLS estimator (2.15) uses W and v (defined analo
gously to W):

b = (tiľW)_1W'v = (W'W > R'R)_1(W'y + R'y) =
= (W'W + R R)-1W y + (W'W + R R)_1 R'y (2.15)

For a nonsingular matrix A and a matrix В = R'R we may write:

(A + B)'1 = A -1 - A_1R'(I + R A ^ R ' ) _1RA_1 (see R a о (1973)).



Thus we have:

b = t(W'W)"1 - (W W )_1R [I + RA_1R']’1 R(W'W)-1] W'y +

+ t(W'W)'1 - ( W W ) * 1R'[I + RA*1R']"1 R(H'W)"1] R'y ■
= (W W)_1W'y - (W W)_1R [I + R A ^ R ' ] " 1 R(W'W)'1 W у +
+ [(W K)-1 - ( W W ) _1R [I + RA_1R ‘]"1 R(W'W)"1] R'y *

= b - { (W W) -1R ” [I + RA"1R']“1R(WW)"1 W у +
+ [ (W'W)“1 - (W W)_1R ’ [I + R A ' V ] " 1 R(W'W)'1] R'y) (2.16)

We have proven, that the OLS estimator b based on global me
ans differs from the OLS estimator fc based on the regim e means 
(let us remind - the BLU one) by quite complicated expression. 
Thus, in general, the former is biased, even asymptotically, i.e. 
inconsistent; it depends also on the inter-regime variability of

A

the regime means of variables. On the other hand, b does depend 
solely on the intra-regime variability while the inter-regime dif
ferences in means are reflected in changing intercepts. Only in 
very special cases b may be consistent.

We may summarize the results obtained insofar:
(i) the OLS estimator £ (2.5) is best linear unbiased (BLU);
(ii) the OLS estimator (2.12) is identical with the OLS esti

mator (2.5), and thus is the best linear unbiased (BLU);
(iii) one gets the same BLU estimator fc, if one introduces re

levant dummy variable for each regime (compare 2.7 and 2.12) into 
model, without transforming the other variables into deviations;

(iv) if the nondummy variables of the model are expressed as 
deviations from global (to be precise - other than regime means), 
the OLS estimator (2.15) of slopes is, in general, biased and in
consistent;

(v) thus if one does not introduce the dummy variable for each 
regime, one obtains biased and inconsistent OLS estimator of the 
type (2.16), dependent, inter alia, on the intra-regime variabili
ty of the regime means around the global means.



3. INTERACTIVE VARIABLES AND MODEL 
WITH OVERLAPPING REGIMES OF STRUCTURAL CHANGE

In the following we shall assume, that thte structural change 
manifests itself in changes of slope (i.e. there exists a change 
in the response of у with respect to the unit change of some x) 
in known time period.

If the change takes place with respect to slopes of all (non
dummy) explanatory variables in the same periods - one may ac
cordingly divide the sample into as many subsamples as there are 
regimes and write the model as a direct continuation of the ori
ginal model with changing intercept (2.3):

yl u 0 • • • 0 0 • • • 0 b02 "el"

y2 S 0 u • • • 0 i 0 X 2 • • • 0 w • + *2• • • . 11 • •
• • t • • 1 ' • b0M •
•

V 0
•
0

•
• • • u

1 * 
i 0
1

0 XM
*1
2 eM

However, the size of the vector b increases considerably, accom
panied by a rapid decrease of degrees of freedom.

In a more general and realistic approach changes in different 
slopes happen in different time periods, producing the model with 
overlapping regimes (for different x-es regimes change in different 
periods). One can still apply the model (3.1). However the as
sumption, that the regime for the whole model changes whenever 
a t least one parameter undergoes structural change, decreases de
grees of freedom at a dramatic rate. There is also no guarantee, 
that the estimates of the parameters, that stay unchanged in seve

ral regimes will assume tne same values in all these regimes (some 
estimation with constraints on parameters may be necessary).

The model shown below seem to be more appropriate for this
case



yl~ U u ... u
Í Z1 zi ... zx i X1

y2 s 0 u ... u 1 0 Z2 ... Z 2 1 X2
• . • • . • 1 • • i •
* • • • • • ZM-l| •

ум 0 0 ... u 1 0 0 ... 0 XM

J01
S02

OM
»1
*2

ľM-l
b

(3.2)

or:
У = [5 : ž : it] [6] + [*] (3.3)

zi‘ r xil
Z2 X2

where
• denotes a submatrix of the matrix •

Zm V
. 0

containing only those variables (columns) of the latter which
have parameters, that shift in the regime m. The dummies, indi
cating the observations covered by the m-th regime7, are collected 
in the first submatrix of the right hand side of (3.2)8. We shall 
write it down analogously to the formula (2.2)

M
yt = b0M + E  p0,m ' ut,m + S  S  ßk,m m-1 9 9 m-1 keN ' (ut,m * xtk,m> +

к
+ £  b 

k-1 k Xtk + efc, t = 1, ..., T (3.4)

where: Nm - set of indices of those variables, whose coef
ficients undergo structural change in the regime m, the product

For sake of simplicity we assume in (3.2) that all regimes start in the 
first period. This assumption can easily be relaxed, 

g
Thus one can first select the columns (variables) of X associated with 

parameters that are expected to change in the regime m, and tfifen multiply them 
observation after observation, by the respective dummy of the regime m to get 
the submatrix Z as a result of interaction between dummy and the chosen co
lumns of X.



(u. • x . ) defines the interactive variablen that allow for the tm tK,m
change in the slope«.

The interpretation is similar to that of alternative repara
meterization of the dummy variables in the model with changing 
intercepts. The element ßk m of the vector ßm measures the dif
ference between the slope, associated with the variable xk in the 
basic regime m^ (in our case = M) and in the regime m, while
ö„ accounts for the induced intercept change (to be interpretedurn
in the same way as the difference of two intercepts). If for some 
variable xk several regimes overlap

u*. „ * u. _ = u. =1, for t e (t,, t_), t ' 3 1 ^

then in the overlapping subperiod (-t̂ , tj) coefficient associated 
with xk differs from the base one by ß , ^  + ß ^  + ß , ^ .

Comparison of (3.1) and (3.2) reveals the main gain of the
latter specification. In the former one has to use M dummies and
(M - 1) x К interactive variables, while in the latter we use the

M ,
same dummies, but only £  к interactive variables (where km is

m-1
the number of indices in Nm , i.e. the number of structural chan-m
ges undergoing in the given regime. This approach implicitly im
poses the mentioned earlier equality constraints on the parameters 
that stay stable in several regimes.

The OLS estimator of (3.4) - as a special case of the BLUE 
(2.3) it is BLUE itself.

Along with the case:
(i) 3 contains some dummy variables of binary type, associated 

with different regimes; 1 indicates that the related observation 
belongs to some regime, 0 otherwise (one gets multiregime model 
with parameters changing in a discrete manner),
- the one discussed above, we may distinguish further important 
cases:

(ü  > и contains a special dummy variable - namely the time 
trend (or some function of it, say, quadratic one yq + y1 x t + 

+ у 2  * t2)» one 'Jets time-varying parameter model with structural 
changes continuously shifting in time.



(iii) Ö contains some variables from X (or - generally spea
king - some other variable or function - in the simplest case po
wers of some x-es) one gets the model with parameters varying 
along with these variables or functions, the structural changes 
have continuous character implying that у depends on x-es in a 
continuous, nonlinear fashion.

Combination of the above cases leads us to very flexible mo
del, in which the interactive variables allow for discrete, con
tinuous and/or time-dependent structural change.

4. SHIFTS IN INTERCEPTS INDUCED 
BY SHIFTS IN SLOPES - A GRAPHICAL PRESENTATION

We shall devote a section to a graphical illustration of a
phenomenon associated with the case when one of the factors for-

oming interactive variables is a binary (zero-one) variable .

Fig. 1. Observations generated by a relationship working in two regimes

9
In this paragraph we follow some earlier work of G a j d a  (1985). The 

general formulas for the analysis of misspecification bias apply here: for

ges are harder to demonstrate within such framework.



Figure 1 illustrates one of the most frequently encountered 
cases of discrete structural change (with known regime changing 
point) - the case when the slope associated with some expla
natory variable xk (i.e. the response parameter) changes. To cap
ture the phenomenon the following function is frequently chosen: 

у = bQO + bn  * (x Uj) + b12 * ( x u 2) + e  (4.1)

where u^ is a binary dummy, having 1 in the first regime, u2 - 
analogously defined dummy for the second regime.

Л shift in the value of the coefficient of a predetermined variable 
does not cause special problems. If, say, only one shift occurs, one de

fines two predetermined variables to replace the original one. The vector 
of observations for the first of these consists of the observations on 
the original variable, with the exception of those observations for which 
the second value Is supposed to hold. These latter observation4 are re
placed by zero's. The vector of observations on the second variable Is 
simply the difference between the vector of observations for the original 
variable and the one for the first variable State B a r t e n  and 
B r o n s a r d  1970.

One may use an alternative parameterization of (4.1)s 
у = bQO + bĵ  x x + Abĵ  x ( x u 2) + e  (4.2)

where b^ represents the slope for the first regime, and ib^ re
presents the chansre in the slope after the first regime ends. 
One finds b12 of (4.1) as bx + Ab.̂ .

Figure 2 shows the same data with the two true regression li
nes - yl and y2 in respective regimes. Comparing lines yl and y2 
one clearly sees, that the change in the slope induces implicit 
change ДО of intercept, the reeearcher may be unaware of. If one 
overlooks that fact (as Barten and Bronsard did) one estimates 
the model represented on the Figure 2 by the (solid) line fitted, 
obtaining (sometimes severely) biased estimators, since the above 
formulas incorrectly assume, that lines of both regimes have the 
same intercept. The case illustrated on Figures 1 and 2 stresses, 
that whenever there exist the structural break in slope and the 
regression line is assumed to be continuous in the sample, a change in

Compare the problem of Joint points in J u d g e  et al. (1980), 
p. 387-388.
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Fig. 2. Observations of Figure 1 with true regimes and fitted values 
of model with single interactive variable (no dummy)

the intercept is to be expected, as well. We call it the implicit 
intercept change, as it is implied by the change in the slope. 

The data generating mechanism for our charts is as follows:

Г 30 + 0.5xfc + e for t = 1, ..., 24 

1-30 + 1.5xt + et for t = 25, ..., 50

et~N(0,15), xfc = (t - 1) x 3.

The estimation of variant (4.1) i.e. with intercept of both 
segments forced to be the same, gives the following result:

ý = 20.82 + 0.71 x x + 0.34 x (x u,) (4.3)
(t) (4.1) (5.5) (3.5)

R2 = 0.9314, MAPE = 15.94, SE = 13.4U ,
while the results for the model with dummy included are:

11 2R - coefficient of determination, MAPE - mean absolute percentage er
ror, SE standard error of regression. The use of Clopper Almons s multipur
pose econometric software package "G" for IBM-PC (see A 1 m o n 1988), is 
gratefully acknowledged.

--- y2 (true у •
* -30*1.5кх

y1(true у = 
: 30*0.5»x

fitted 
eq.(4.3 I



у a 29.67 + 0.52 * x - 62.5 * U2 + 1.002 * (x u2> (4.4)

(t) (6.9) (4.8) (5.4) (7.0)
R2 = 0.9583, MAPE = 13.49, SE * 10.48.

In terms of explained variability of у the two equations do 
not differ much. However, the estimates differ considerably. When 
compared with the true parameters - the differences are well pro
nounced in the estimates of the first equation, and nonsignifi
cant in the case of the second equation.

T a b l e  I
Comparison of estimates of models with dummy and without dummy 

Explained variable: у

Parameter Estimate with dummy present Estimate with dummy absent

bo ■ 30 29.670 20.817
A bQ - -60 -62.500 none
bj - 0.5 0.520 0.709

Abj - 1.0 1.002 0.343

S o u r c e :  The author s calculation.

Fig. 3. The case of explicit intercept change discontinuity caused 
by parallel translation of the function



Flg. 4. Observations generated by a discontinuous relationship 
working In two regimes

Fig. 5. Observations generated by another discontinuous 
relationship working in two regimes

/



Figure 3 shows the case of explicit intercept change, leading 
to discontinuity. The difference of intercepts (the size of pa
rallel translation of the function) represents the e x p l i c i t inter
cept change ДЕ.

The situation complicates, when both - the translation and the 
slope change are present, since the change in the intercept is 
influenced by both effects ДО and ДЕ. These effects may have op
posite directions. After inspecting Figures 4 and 5 careful re
searcher may be inclined to allow for structural change in both
- the slope (change in the response parameter) and intercept (pa
rallel translation of the whole function), i.e. to estimate the 
parameters of the following function:

У = bOQu1 + bQlu2 + bn  x (x ux) + b12 x (x u2) + e (4.5)

or in the alternative parameterization:
у = bQo + übQlu2 + bŁ x x + ДЬг x ( x u 2) + e  (4.6)

In the second parameterization the resulting change of intercept 
ДЬ01 (being measured in the estimation process) contains both - 
the implicit and the explicit effects: йЬ(^ = ДО + ДЕ.

Fig. 6. The case of Figure 4 with the true regimes marked 
(The change of intercept seen)



Flg. 7. The case of Figure 5 with the true regimes marked 
(The intercept changes cancel out)

The true regimes are shown on Figures 6 and 7. The results of
estimation Confirm the change of intercept in the case shown on

12Figure 4, and its lack on Figure 5 , although brief visual in
spection does not suggest any special differences in the data 
plotted on figures. In the case 5 the two effects ДО and ДЕ 
simply cancel out. However, if one wants to measure the jump due 
to the discontinuity, there exists the possibility to calculate 
the explicit and implicit changes ДО and ДЕ. Figure 8 demonstrates 
the idea of such calculation. ДЕ is identified as the size of the 
parallel translation of the first regime line so, that it passes 
through the center of the second cloud of data points (i.e. the 
point (x2, y2). ДО equals to the change of intercept induced 
by the change of slope of the translated line (the difference of 
intercepts of lines y2 and y4)13 -

12 The tests for structural change are relevant in this case,see H а с к 1 
(ed.) (1989) for an extensive review. The identification of structural change 
in the case of Figures 5, 7 on statistical ground (i.e. through testing) may 
raise problems.

13 For the second cloud of data shown on the Figures 1 and 2, and the esti
mates of equation (4.4) we calculate: = 109.5, * 134.5, y^čx^) * 29.67 +



Fig. 8. Decomposition of Intercept change when both - Implicit AO 
and explicit ДЕ changes of Intercept are present

"Does a shift in the marginal propensity to consume cause (in
duce) a shift in autonomous consumption" asks a referee. As we 
have seen only values of the change in propensity from some spe
cific neighborhood (the one illustrated on Figure 7, producing 
new line with the same intercept) will generate data from which 
no significant intercept change will be estimated, the other va
lues would generate implied change. Is it change the resear
cher wants to interpret? Calculation of ДО and ДЕ may add some 
new flavour to such analyses.

The above discussion stresses that, in the estimation process, 
whenever one allows for structural breaks in slopes, one should 
take into account the possibility of the induced break in the in
tercept.

+0.52 x x2 * 86.6. The explicit change ДЕ (measuring vertically the dis
tance between the center (Sj. the second cloud and the first regime 
line equation у2 - yj(x2) “ 134.5 - 86.6 ■ 47.9. The Implicit change AD can 
be found as the difference Ab т Д1Е я -62.5 * 47.9 = -110.4.
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Fig. 9. An extreme example of forecast error due to lack of dummy 
(interactive variable works for absent dummy)

The adverse effects of neglecting the induced change of inter
cept is shown on Figure 9, based on the following data generation 
process:

e ~ N(0,15), xt = (t - 1) x 3.

Figure 9 shows the fitted values calculated from the estimated 
model (4.7), that (incorrectly) lacks the dummy u2, along with the 
simple forecasting ex ante, to show the deterioration of the fo
recasts outside the sample. The estimated model is shown below:

ž = 34.5 + 0.44 x x + 0.75 x (x u?) (4.7)
(t) (3.5) (2.95) (6.4)

R2 = 0.7749, MAPE = 21.49, SE = 30.56, sample size 1-49, 
which we may compare with the estimates of model that allows for 
the implied change:

z = 30.26 + 0.495 x x + 758.5 x u, - 4.982 x (x U,) (4.8) 
(t) (5.4) (5.1) (10.2) Z (8.8)

R2 = 0.9308, MAPE = 16.55, SE = 16.95.

for t = 40 • • • f 50



In the case estimated without a change in intercept the para
meter estimate ДЬ1 = 0.75 represents a compromise of the two fol
lowing effects. The first one is due to the dlsperalon inside the 
second regime (the upper, negatively sloped cloud). The second is 
due to the dramatic jump in the mean value of zt for t > 39. 
Since in our case the latter dominate• the total variability of 
this subsample, the interactive variable (x-u2) serves in fact as 
a proxy for the (omitted) dunmy Uj, and thus the estimate of the coef
ficient associated with the interactive variable is highly signi
ficantly positive (rather than negative, one would have expected 
from the decreasing tendency of the second cloud)). Forecasts 
based on the correct model obviously do not exhibit such errors.

T a b l e  2
Comparison of estimates of models with dummy and without dunrniy 

Explained variable: z

Parameter Estimate with dummy present Estimate with dummy absent
b0 * 30 30.255 34.464

Д bQ “ 760 758.545 none
bj - 0.5 0.495 0.440

Abj - -5.0 -4.986 0.754

S o u r c e :  The author's calculation.

5. FINAL COMMENTS

We discussed the use of interactive variables not much discussed 
in the literature (the model with changing intercept being the 
notable exception).

Due to its flexibility the model with the interactive va
riables is a powerful extension of the constant parameter model, 
with the following distinctive properties:

(i) it can be reparameterized into some constant parameter 
model;

(ii) the reparameterized model being nonlinear in variables 
but linear in parameters can easily be estimated with standard 
estimation techniques such as least squares or its generalized 
version;



(iii) it allows for simultaneous presence in the equation both
- discrete and continuous structural changes.

We proved also that the interactive variables based on binary 
dummies should be used with care. To avoid the risk of incon
sistency of estimators both - the interactive based on dummy, and 
the respective dummy variables should be included in the initial 
version of an equation. Finally - even after finding the inter
cept change nonsignificant one - one may identify the implicit 
and explicit changes of intercept, (being in this case roughly 
of the same size, but opposite signs).
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Jan В. Gajda

ZMIANY STRUKTURALNE PARAMETRÓW REGRESJI A ZMIENNE INTERAKCYJNE



wprowadzamy w charakterze dodatkowej zmiennej objaśniającej Iloczyn takiej 
zmiennej i zmiennej zerojedynkowej. Ze względów czysto formalnych zmiana para
metru strukturalnego implikuje zmianę wyrazu wolnego. Sprawę komplikuje moż
liwość wystąpienia expllalte zmiany strukturalnej wyrazu wolnego. Te dwie 
zmiany mogą się wzajemnie znosić lub wzmacniać. Standardowe testy zmian struk
turalnych skupiają uwagę na łącznym efekcie takich zmian, podczas gdy intere
sujące mogłoby być rozważenie ich w oddzielnoścl. W artykule zawarta jest 
przestroga o konieczności włączania do estymowanego równania ze zmienną inter
akcyjną także stowarzyszonej zmiennej zerojedynkowej.

Ponadto artykuł zawiera dyskusję na temat możliwości wykorzystania sze
rzej rozumianych zmiennych interakcyjnych do modelowania zarówno dyskretnych, 
jak ciągłych zmian strukturalnych, zwłaszcza w przypadku niejednoczesnych zmian 
różnych parametrów w różnych momentach czasu.


