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1. INTRODUCTION

The paper is devoted to the problem of sample sensitivity of 
least squares (LS) estimates in the case of bad-conditioned data 
for linear econometric model. Sensitivity is understood as the 
response of estimates to marginal changes in observation matrix 
and is measured by the values of first derivatives of estimates 
with respect to values of observations. As representative value 
characterizing LS sensitivity for given set of data the sensiti­
vity coefficient with highest magnitude is chosen. This approach 
described in details in K o n a r z e w s k a  (1986), К o- 
n a r z e w s k a ,  M i l o  (1987), K o n a r z e w s k a  (1988) 
is useful for the purpose of regression diagnostics. Sensitivity 
of parameter estimates on small changes in data matrix is closely 
connected with three types of problems occuring in sample data:
- multicollinearity of explanatory variables resulting in bad con­
ditioning of data matrix X;

- existence of influential observations, that is, rows of data 
matrix X situated far from other rows in a space of observa­
tions on explanatory variables;
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- existence of so called outliers, that is, points of observations 
on the dependent variable Y situated far from other.

All three situations mentioned above can be potential reasons 
of sensitivity of regression results - estimates of parameters, 
predictions.

We would like to present shortly the idea of measuring sensi­
tivity and the results of Monte Carlo experiment conducted to 
give a review of sensitivity coefficients behaviour in different 
model conditions.

2. DEFINITION OF THE MODEL 
AND SOME IMPORTANT CHARACTERISTICS

The following linear model is considered:
Y = ß'X + S
X = (XL, ..., Xk ), S I X )  = w e Ä kxl, *><X) * I  e * kxk (1)

4
A. = C*\0,  o \), cov (X, :) = 0 6  £ kXl 

Jcx 1ßeÄ - a vector of parameters 
where:

3, Ä  - operators of expected value and variance-covariance 
matrix respectively,

cov - operator of covariance between random variables or ran­
dom variable with random vector,

& nxk - n x к space of real numbers.
The model formulated above is theoretical one - for the pur­

pose of parameter estimation we need sample observations on ex­
planatory variables X^, i = 1, к and on the dependent variable Y. 
The model (2) given below is a sample version of (1) when we 
assume that the matrix X of observations on X^ is nonstochastic.

'Y = Xß + H
• X e jenxk, r z (X ) = к (2)

0 e £ kxl, 5t>_ = &П0, a l l )

where denotes probability distribution of the random vector H.
The quality of the model (1) can be measured by the explana­

tion level of the model defined as



2 _ Гcov(Y . B'*l2 (3)
£(Y) JS(ß'X)

The measure p2 is equal to the squared multiple correlation 
coefficient between Y and a set of explanatory variables X ^  
Under the assumptions of the model (1) we obtain

p2 = 1 ‘ f m  (4)
The equivalent to p2 for the model (2) is, so called, deter­

mination coefficient R2, which is a squared sample correlation 
coefficient between variable Y and Ý = X'B, where В is an estima­
tor of vector ß. When В is an LS estimator, that is В = BLg, 
where

BLS * (X'X)-1X'Y (5)

then
Y - X(X'X)_1X'Y = HY
H = X(X"X)_1X ’, H € tfnXn (6)

Taking for Y its sample realization y e $ nxl, the sample analog
2of explanation level p is 

,2 = ___ LY.'M Ну )2R y M yy H M Ну

M = In - l/n j j', j = [1, 1, 1], M e (7)

Sample vectors for Ф and BLS are denoted by ý e £5nx  ̂ and

bLS e £fckxl. A vector ý = XbLg is called LS predictor and e =

= y - ý is a vector of LS residuals.
We accept also the following notation:
X X  = 3£ = [ X i j ]

( X ' X ) -1  = X " 1 = [ x i j ] .

The problem of multicollinearity is closely connected with 
sensitivity of estimates; sensitivity on small changes in data 
is one of its possible effects. The useful measure applied in 
multicollinearity diagnostics is the condition l e v e l of the obser­
vation matrix defined as

к (X ) = ^  (8)
^min



where nmax and Mmin denote maximal and minimal singular values
of X (see: G o l u b ,  R e i n s c h  (1971) on Singular Value 
Decomposition - SVD)1. This measure is being used in examining 
the solutions of linear equations systems. The condition level 
k(X) is strictly dependent on scale - variables should be scaled 
identically to have unit lengths, for instance, standardized. 
Following B e l s l e y ,  K u h ,  W e l s c h  (1980) we say 
that matrix is bad-conditioned if tc(X) I  15.

Other important consequencies of bad conditioning for LS 
estimator properties are the following:

a) high variances and high TMSE (Total Mean Square Error) re­
gulated by a value of explanation level,

b) estimator of squared length of parameter vector - squared 
length of LS estimates - is always biased and the amount of this 
bias depends also on k (X) regulated by explanation level or o?.

3. LEAST SQUARES ESTIMATES SAMPLE SENSITIVITY

We propose to measure sample sensitivity of estimates by va­
lues of first derivatives of estimates over changes in data ma­
trix X. Applying some known theorems from matrix differential 
calculus it was shown in K o n a r z e w s k a ,  M i l o  (1987), 
K o n a r z e w s k a  (1988) that in the case of LS estimation 
method we obtain

3bLS , __ __
9x^ ~ ^ êt^l ” x^abi], t = 1,n, 1 = 1,к (9)

where:
xfc* - t-th row of X matrix,
b.̂  - 1-th element of bLS vector,
et - t-th residual, 

łcx Xj^e & “ a vector of zeros except 1-th element equal to one.

The theorem which connects a value of condition level of X with sensiti­
vity of diagonals of X"1 given in B e l s l e y ,  K u h ,  W e l s c h  
(1980, p. 174-176) shows that к (X) constitutes an upper limit for the ratio 
of relative change of x** caused by marginal relative change of x , i, 
s » l,k, r ■ l,n.



Elementwise representation for each i = 1,1c is given as

gx~ • = (x^ ) ' m ti< i = 1,1c, t = l,n, 1 = 1,1c (10)

where
m tl = [_xtlb ľ  "xt2b ľ  •**' et " xtlbľ  •**' -xtkb l^'

(X^*) ” - i-th row of X 1.
lex XThe elements of the vector multiplier m txe &  depend on

position (t, 1) and do not depend on b,. The formulas (9) and 
(10) show strong dependence between sensitivity and values of ЭС 
matrix diagonals and the way in which multicollinearity can re­
sult in sensitivity of estimates. The influence of residuals 
with high magnitudes (symptoms of outlier existence), and of lar­
ge values of H matrix diagonals (see (6) - symptoms of existen­
ce of influential observations) on estimates sensitivity is not 
clear in general and depends on individual sample.

4. THE CONSTRUCTION OF MONTE CARLO EXPERIMENT

The aim of Monte Carlo study was to check a behaviour of LS 
estimator when small changes in observation matrix were introdu­
ced. The following model characteristics were considered:

a) condition level of X; moreover, three schemes of location 
of its singular values in the range ymax^ were distin­
guished;

2b) explanation level p of the model;
c) the parameter vector ß in k-dimensional space - two cases 

were considered - parallel to eigenvector connected with smallest 
and largest eigenvalue of XX.

Experiment was undertaken to give a review, not detailed nu­
merical information.

4.1. GENERATION OF X MATRIX

The X matrices of dimension 20 x 4 were generated according 
to the following algorithm.

1. First we generated a matrix X* of dimension 20 x 4. Each of 
four columns of the matrix X* was generated using random number



generator from uniform distribution on the range [-1, 1]. Three 
different X* matrices were generated.

2. Each of X* matrices was decomposed using SVD decomposition 
( G o l u b ,  R e i n s c h  (1971))

X* = UD*V', 
where:

U e - a matrix of normalized eigenvectors of XX' con­
nected with its к nonzero eigenvalues;

D* = diagtyj, ..., y£) - diagonal matrix with singular values 
of X (equal to nonnegative square roots of eigenvalues) on the 
main diagonal;

kxkV e Ä  - orthogonal matrix of normalized eigen vectors of 
XX, V'V = W '  = 1^.

3. Let к be the desired value of condition level of X and 
> M2 ž М3 i  V4 be singular values of X. Then ŷ  ̂ are calcula­

ted according to one of the methods:

1° Pj = tc yj, ^  = yj, i = 2, 3, 4;

у *
2° yx = ic yj, у2 = yx —  / Ui • mJ* i = 3, 4;

M1
* *о м 2 ^33° yŁ - * у*, у2 = ух - г ,  у3 = ух ^Т, у4 = у*.

4. The elements of X matrix were calculated from the formula
X = U D V',

where D = diag (у^, ..., y4).
According to the algorithm described above we generated 54 ma­

trices X for 6 condition levels (k = 5, 10, 30, 50, 100, 500). 
Three ways of calculating y^ allows us to obtain matrices with 
the same condition levels but differing by the relations among 
singular values. These different relations can be interpreted in 
extreme situations of singularity of X as different ranks - in 
the case 1° r(X) = 1, 2° r(X) = 2, 3° r(X) = 3.



4.2. GENERATION OF OTHER MODEL ELEMENTS 

Parameter vector ß is taken as: 

l0 * ■ 10 vmin 
2° * = 10 vmax'

where v . „ and v__ are normalized eigenvectors connected withmln max
smallest and highest eigen value of X'X.

These two orthogonal choicer of ß's are extreme cases for 
biased estimators statistical characteristics proposed when sample 
matrix is bad conditioned, as was shown in K o n a r z e w s k a  
(1988) for the case of ridge estimator.

Hundred sample realizations of E were generated using random 
number generator from multivariate normal distribution, with co­
variance matrix given as:

JB(5) = a l  I
where

5 5 J 5 1 20 *
o \  = (1 - p2), s2* = 20 <yt - У ).

2We chose 3 explanation levels othe model p = 0.8, 0.9, 0.95.

5. THE RESULTS OF THE EXPERIMENT

The main results of Monte Carlo experiment are presented on 
Figures 1-6. We present only absolute values of calculated maxi­
mal sensitivity coefficients for each set of data. Three matrices 
X* are denoted by Q, T, X; resulting X matrices are denoted by 
QA, QB, QC, ТА, ТВ, ТС, ХА, ХВ, ХС where letter A corresponds to 
the case 1° of evaluating singular values, В - to the case 2°, 
С - to the case 3°.

The following tendencies in behaviour of maximal sensitivity 
coefficients are observed:

1° Strong dependence of sensitivity on condition level.
2° These dependence is approximately linear (on graphs we ac­

cepted logarithmic scale for condition level axis).
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Fig. 3. Maximal sensitivity coefficients for the matrix T and ß'v . :min
a) TA, b) ТВ, с) ТС
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3° Performed estimation of the linear regression of maximal 
sensitivities versus condition levels showed that the strenght 
of that dependence measured by the determination coefficient is 
inversely proportional to the "rank" of observation matrix (gre­
atest determination coefficient is for QA with corresponding ap­
proximate rank equal to one; lowest determination coefficient was 
for QC with corresponding approximate rank equal to three).

4° We observed that strength of linear dependence between maxi­
mal sensitivity coefficient and condition level diminishes with 
the increase of explanation level.

5° The dependence between sensitivity coefficient and condi­
tion level is significantly connected with the parameter vector 
situation in relation to eigenvectors of X'X in k-dimensional 
space. In the case ß"vmin (parallel to the eigenvector connec­
ted with minimal eigenvalue of X'X) sensitivity increases in 
considerably far slower rate than in the case ß*v x , with ex­
ception illustrated on graph 5a where sensitivity diminishes with 
the increase of condition level.

6° Generally, experiment did not confirm the dependence be­
tween the explanation level of the model and the level of obser­
ved maximal sensitivity of estimates.
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PROBLEM UWARUNKOWANIA MACIERZY OBSERWACJI A WRAŻLIWOŚĆ OCEN 
UZYSKANYCH METODA NAJMNIEJSZYCH KWADRATÓW - WYNIKI ANALIZY MONTE CARLO

Wrażliwość ocen uzyskanych metodą najmniejszych kwadratów rozumiana jest 
jako reakcja ocen na krańcowo małe zmiany wartości elementów macierzy obser­
wacji. Miernikami wrażliwości są wartości pierwszych pochodnych ocen względem 
wartości obserwacji. W wyniku otrzymuje się trójwymiarowe macierze 
(i - numer oceny, t - numer obserwacji, 1 - numer zmiennej objaśniającej mo­
delu). Maksymalny element macierzy wskaźników wrażliwości ocen dla danego 
zbioru danych.

Przyjęte zostało założenie, że wrażliwości ocen m.n.k. są funkcyjnie zwią­
zane ze stopniem uwarunkowania macierzy obserwacji na zmiennych objaśniających 
X. Celem eksperymentu Monte Carlo było sprawdzenie, czy przyjęcie takiej hipo­
tezy jest zasadne przy zmieniających się następujących warunkach eksperymentu:
- wariancja zakłóceń modelu;
- kierunek wektora parametrów modelu względem wektorów własnych macierzy XX;
- stopień uwarunkowania macierzy X;
- struktura wartości osobliwych macierzy X.

Eksperyment pozwolił na wskazanie warunków, przy których przyjęta hipoteza 
może być uznana za prawdziwą. Wyniki eksperymentu zilustrowano wieloma wy­
kresami .


