
Bulletin of the Section of Logic
Volume 45/2 (2016), pp. 79–91

http://dx.doi.org/10.18778/0138-0680.45.2.02

Mitio Takano

AXIOMATIZATION OF A BASIC LOGIC

OF LOGICAL BILATTICES

Abstract

A sequential axiomatization is given for the 16-valued logic that has been pro-

posed by Shramko-Wansing (J Philos Logic 34:121–153, 2005) as a candidate for

the basic logic of logical bilattices.
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1. Introduction

As a candidate for the basic logic of logical bilattices, Shramko-Wansing [5]

proposed the 16-valued logic that originates from the bilattice SIXTEEN2,

instead of the logic of Arieli-Avron [1] originating from the bilattice FOUR2.

The latter has the elegant cut-free sequent calculus GBL in [1].

The main result of this paper is to give a sound and complete sequent

calculus for the former logic. But regrettably, cut plays the central role in

our calculus, and so refinements are expected. By the way, it is noted that

Shramko-Wansing’s logic can be considered to be the expansion of Arieli-

Avron’s one by the connective ∼f for f -inversion (cf. Subsection 4.1).

The language without propositional constants is considered first, and

the one with them is mentioned in the last section. As with [6], this work

was highly motivated by Odintsov [3].

For logical bilattices, see Arieli-Avron [1].
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2. Validity and provability

The unary connective∼b is introduced to represent the concatenation ∼f∼t

for brevity’s sake. So, formulas are constructed from propositional variables
by means of the unary connectives ∼t, ∼f , ∼b and the binary connectives

∧t, ∨t, ∧f , ∨f . Propositional variables, formulas and finite sets of formulas

are denoted by p, q, . . . , A,B, . . . and Γ,∆, . . . , respectively.
As the representation of semantics of the logics, the one presented in

Odintsov [3] is adopted as with [6].

Definition 2.1 (Shramko-Wansing [5], Odintsov [3]). (1) A valuation is

a function from the set of the propositional variables into the set

{1, 0}4 of the quadruplets consisting of the classical truth values 1

(truth) and 0 (falsity).

(2) A valuation v is extended uniquely to the set of the formulas by the

following recursion, where v(A) = (n, f, t, b), v(B) = (n′, f ′, t′, b′),
and ∧ (respectively, ∨) denotes the conjunction (respectively, dis-

junction) operator on 1 and 0:

v(∼tA) = (t, b, n, f);

v(∼fA) = (f, n, b, t);

v(∼bA) = (b, t, f, n);

v(A ∧t B) = (n ∨ n′, f ∨ f ′, t ∧ t′, b ∧ b′);

v(A ∨t B) = (n ∧ n′, f ∧ f ′, t ∨ t′, b ∨ b′);

v(A ∧f B) = (n ∧ n′, f ∨ f ′, t ∧ t′, b ∨ b′);

v(A ∨f B) = (n ∨ n′, f ∧ f ′, t ∨ t′, b ∧ b′).

When v is a valuation and v(A) = (n, f, t, b), the classical truth values

n, f, t and b are denoted by vn(A), vf (A), vt(A) and vb(A), respectively.
According to Shramko-Wansing [5, DEFINITION 6.7], the designated

truth values are T , NT, TB and NTB, and these correspond to our

quadruple truth values (0, 0, 1, 0), (1, 0, 1, 0), (0, 0, 1, 1) and (1, 0, 1, 1), re-
spectively. So, the following definition of the set des of the designated truth

values is posed:

des = {(n, 0, 1, b) | n, b ∈ {1, 0}}.
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Definition 2.2 (Shramko-Wansing [5]). The entailment relation |=bl is

defined as follows: A |=bl B, iff for every valuation v, if v(A) ∈ des then

v(B) ∈ des.

A sequent is an expression of the form Γ ⇒ ∆, while Γ and ∆ are

its antecedent and succedent respectively. The expression A ⇐⇒ B is the

abbreviation for the two sequents A ⇒ B and B ⇒ A.

Definition 2.3. A sequent Γ ⇒ ∆ is bl-valid, iff for every valuation v,
either v(A) 6∈ des for some A ∈ Γ, or v(B) ∈ des for some B ∈ ∆.

Clearly, A |=bl B iff the sequent A ⇒ B is bl -valid. It is to be noted

that the sequent A ∨t B ⇒ A, B is not necessarily bl -valid, since it is

possible that vf (A) = vt(A) = 1 and vf (B) = vt(B) = 0 for some A,B and

some valuation v; this causes the difficulty of axiomatizing bl -validity.
Before presenting our system, the formulas Xi and Yi (i = 1, 2, . . . , 21)

are defined by the following table:

i Xi Yi i Xi Yi

1 ∼t∼tA A 12 ∼t(A ∧f B) ∼tA ∧f ∼tB
2 ∼t∼fA ∼bA 13 ∼t(A ∨f B) ∼tA ∨f ∼tB
3 ∼t∼bA ∼fA 14 ∼f (A ∧t B) ∼fA ∧t ∼fB
4 ∼f∼tA ∼bA 15 ∼f (A ∨t B) ∼fA ∨t ∼fB
5 ∼f∼fA A 16 ∼f (A ∧f B) ∼fA ∨f ∼fB
6 ∼f∼bA ∼tA 17 ∼f (A ∨f B) ∼fA ∧f ∼fB
7 ∼b∼tA ∼fA 18 ∼b(A ∧t B) ∼bA ∨t ∼bB
8 ∼b∼fA ∼tA 19 ∼b(A ∨t B) ∼bA ∧t ∼bB
9 ∼b∼bA A 20 ∼b(A ∧f B) ∼bA ∨f ∼bB
10 ∼t(A ∧t B) ∼tA ∨t ∼tB 21 ∼b(A ∨f B) ∼bA ∧f ∼bB
11 ∼t(A ∨t B) ∼tA ∧t ∼tB

It is easy to see v(Xi) = v(Yi) for every valuation v (i = 1, 2, . . . , 21)
(Takano [6, Lemma 3.2]).

Definition 2.4. Our system Lbl consists of the axioms and the inference

rules.

First, the axioms are as follows.

(A1) A ⇒ A ∨t B

(A2) A ∨t B ⇒ B ∨t A
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(A3) (A ∨t B) ∨t C, C ∨t D ⇒ D, A ∨t C, B ∨t C

(A4) A ∨t C ⇒ (A ∨t B) ∨t C and B ∨t C ⇒ (A ∨t B) ∨t C

(A5) (A ∧t B) ∨t C ⇒ A ∨t C and (A ∧t B) ∨t C ⇒ B ∨t C

(A6) A ∨t C, B ∨t C ⇒ (A ∧t B) ∨t C

(A7) ∼bA, A ⇒

(A8) ∼bA ∨t C, A ⇒ C

(A9) A ∨t C ⇒ A, ∼bA ∨t C

(B1) (A ∧f B) ∨t C ⇐⇒ (A ∧t B) ∨t C

(B2) (A ∨f B) ∨t C ⇐⇒ (A ∨t B) ∨t C

(Ci) Xi ∨t C ⇐⇒ Yi ∨t C (i = 1, 2, . . . , 21)

The inference rules, on the other hand, are as follows.

(Extension)
Γ ⇒ ∆

Γ, Π ⇒ ∆, Λ
(Cut)

Γ ⇒ ∆, A A, Π ⇒ Λ

Γ, Π ⇒ ∆, Λ

Provability of a sequent (in Lbl) is defined in the standard way.

Remark 2.5. The sequent ∼bA, A ⇒ C is obtained from Axioms (A1)

and (A8) by an application of (Cut). But, now that sequents with the

empty succedents are allowed, Axiom (A7) (or another axiom with the

empty succedent) is indispensable in Lbl, since every provable sequent has

the non-empty succedent without it (cf. Remark 5.2 (2)).

Now, the main result of this paper is formulated as the following theo-

rem.

Theorem 2.6. A sequent is bl-valid iff it is provable in Lbl. In particular,
A |=bl B iff the sequent A ⇒ B is provable.

It is routine to check the ‘if’ part of the theorem (soundness), and proof

of the ‘only if’ part (completeness) is given in the next section.

Lemma 2.7. Suppose Γ 6= ∅. If Γ ∨t C ⇒ B ∨t C is provable for every C,
then Γ ⇒ B is provable, where Γ ∨t C = {A ∨t C | A ∈ Γ}.

Proof: Suppose Γ = {A0, A1}, for simplicity. Then, the conclusion fol-

lows from the following derivation:
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1. A0 ⇒ A0 ∨t ∼bA0 (A1)

2. A1 ⇒ A1 ∨t ∼bA0 (A1)

3. A0 ∨t ∼bA0, A1 ∨t ∼bA0 ⇒ B ∨t ∼bA0 assumption

4. A0, A1 ∨t ∼bA0 ⇒ B ∨t ∼bA0 1, 3, (Cut)

5. A0, A1 ⇒ B ∨t ∼bA0 2, 4, (Cut)

6. B ∨t ∼bA0 ⇒ ∼bA0 ∨t B (A2)

7. A0, A1 ⇒ ∼bA0 ∨t B 5, 6, (Cut)

8. ∼bA0 ∨t B, A0 ⇒ B (A8)

9. A0, A1 ⇒ B 7, 8, (Cut)

Note that the Grundsequenz A ⇒ A is out of use in the above derivation

(cf. Lemma 2.9).

The following is an immediate corollary by Axioms (A5), (A6), (B1),

(B2) and (Ci), respectively.

Corollary 2.8. The following sequents are provable.
(1) A ∧t B ⇒ A and A ∧t B ⇒ B
(2) A, B ⇒ A ∧t B
(3) A ∧f B ⇐⇒ A ∧t B
(4) A ∨f B ⇐⇒ A ∨t B
(5)i Xi ⇐⇒ Yi (i = 1, 2, . . . , 21)

Lemma 2.9. The sequent A ⇒ A is provable.

Proof: A ⇒ A follows from A ⇒ A ∧t A and A ∧t A ⇒ A, which are

instances of Corollary 2.8 (2) and (1) respectively, by (Cut).

3. Completeness

The proof of the ‘only if’ part of Theorem 2.6 (completeness) is given in

this section.
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Definition 3.1 (Maehara [2]). A set α of formulas forms a complete con-
sistent system, iff the sequent Π ⇒ Λ is unprovable for every finite sets Π

and Λ of formulas such that Π ⊆ α and Λ ∩ α = ∅.

Lemma 3.2 (Maehara [2, Theorem 1]). If a sequent Γ ⇒ ∆ is unprovable,
then there is a complete consistent system α such that Γ ⊆ α and ∆∩α = ∅.

Proof: Beginning with Γ ⇒ ∆, add each formula one-by-one to the an-

tecedent or succedent while keeping its unprovability. Then, the set of all

formulas in the antecedents forms a desired one.

Then, the ‘only if’ part of Theorem 2.6, namely, validity implies prov-

ability, immediately follows from Lemmas 3.2 and 3.6 below. For, given an

unprovable sequent Γ ⇒ ∆, take a complete consistent system α such that

Γ ⊆ α and ∆ ∩ α = ∅ by Lemma 3.2, then under the valuation v0 defined

in Definition 3.4, A ∈ Γ implies v0(A) ∈ des by Lemma 3.6 since A ∈ α,
while B ∈ ∆ implies v0(B) /∈ des by Lemma 3.6 again since B 6∈ α, and so

Γ ⇒ ∆ is not bl -valid.
So, let α be a complete consistent system, and be fixed in the rest of

this section. Moreover, if it is the case that

A ∨t B ∈ α implies A ∈ α or B ∈ α, for every A and B, (*)

then let F (p) be p itself. If otherwise, fix a pair C,D such that C ∨tD ∈ α
but C,D 6∈ α, and let F (p) be p ∨t C. So, F (A ∧t B) denotes A ∧t B or

(A ∧t B) ∨t C accordingly, for example.

Lemma 3.3.

(1) F (A ∧t B) ∈ α, iff F (A) ∈ α and F (B) ∈ α.
(2) F (A ∨t B) ∈ α, iff F (A) ∈ α or F (B) ∈ α.
(3) F (A ∧f B) ∈ α, iff F (A) ∈ α and F (B) ∈ α.
(4) F (A ∨f B) ∈ α, iff F (A) ∈ α or F (B) ∈ α.
(5)i F (Xi) ∈ α, iff F (Yi) ∈ α. (i = 1, 2, . . . , 21)
(6) A ∈ α, iff F (A) ∈ α but F (∼bA) 6∈ α.

Proof: Recall that, since α forms a complete consistent system, if the

sequent Π ⇒ Λ is provable, then either Π 6⊆ α or Λ ∩ α 6= ∅.

Case 1. (*) is the case, and so F (p) is p: (1) By Corollary 2.8 (1)

and (2). (2) By the assumption (*) and Axioms (A1), (A2). (3) By (1)
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and Corollary 2.8 (3). (4) By (2) and Corollary 2.8 (4). (5)i By Corol-

lary 2.8 (5)i. (6) By Axiom (A7).

Case 2. (*) is not the case, and so C ∨t D ∈ α but C,D 6∈ α, and F (p)
is p∨tC: (1) By Axioms (A5) and (A6). (2) The ‘only if’ part follows from

Axiom (A3) and the assumption that C ∨t D ∈ α but D 6∈ α. While the

‘if’ part follows from Axiom (A4). (3) By (1) and Axiom (B1). (4) By (2)

and Axiom (B2). (5)i By Axiom (Ci). (6) The ‘only if’ part follows from

Axioms (A1), (A8) and the assumption C 6∈ α. While the ‘if’ part follows

from Axiom (A9).

Definition 3.4. Let v0 be the valuation such that for every propositional

variable p:

v0n(p) = 1 iff F (∼tp) ∈ α; v0f (p) = 1 iff F (∼bp) ∈ α;

v0t (p) = 1 iff F (p) ∈ α; v0b (p) = 1 iff F (∼fp) ∈ α.

Lemma 3.5. The following properties hold for every formula E.

v0n(E) = 1 iff F (∼tE) ∈ α; v0f (E) = 1 iff F (∼bE) ∈ α;

v0t (E) = 1 iff F (E) ∈ α; v0b (E) = 1 iff F (∼fE) ∈ α.

Proof: By simultaneous induction on the construction of E.

Case 1. E is a propositional variable: Evident by the definition.

Case 2. E is ∼tA: v0t (∼tA) = 1, iff v0n(A) = 1, iff F (∼tA) ∈ α
by induction hypothesis; v0n(∼tA) = 1, iff v0t (A) = 1, iff F (A) ∈ α by

induction hypothesis, iff F (∼t∼tA) ∈ α by Lemma 3.3 (5)1; the remainder

are similar.

Cases 3–4. E is ∼fA or ∼bA: Similar to Case 2.

Case 5. E is A ∧t B: v0t (A ∧t B) = 1, iff v0t (A) = 1 and v0t (B) = 1,

iff F (A) ∈ α and F (B) ∈ α by induction hypothesis, iff F (A ∧t B) ∈ α by

Lemma 3.3 (1); v0n(A ∧t B) = 1, iff v0n(A) = 1 or v0n(B) = 1, iff F (∼tA) ∈
α or F (∼tB) ∈ α by induction hypothesis, iff F (∼tA ∨t ∼tB) ∈ α by

Lemma 3.3 (2), iff F (∼t(A ∧t B)) ∈ α by Lemma 3.3 (5)10; the remainder

are similar.

Cases 6–8. E is A ∨t B, A ∧f B or A ∨f B: Similar to Case 5.
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Lemma 3.6. A ∈ α iff v0(A) ∈ des, for every formula A.

Proof: A ∈ α, iff F (A) ∈ α but F (∼bA) 6∈ α by Lemma 3.3 (6), iff

v0t (A) = 1 but v0f (A) = 0 by Lemma 3.5, iff v0(A) ∈ des.

4. Two fragment logics

Digressing from the main theme, this section is devoted to fragment log-

ics. In this section only, valuations in the sense of Definition 2.1 are called

NFTB-valuations, to make a distinction from NT- and FT-valuations in-

troduced below.

4.1. The {∼t,∧t,∨t,∧f ,∨f}-fragment

Let’s ignore the connectives ∼f and ∼b, as well as the second and fourth

components of the quadruple truth values. Then, an NFTB-valuation

becomes a function w, NT-valuation, from the set of the propositional

variables into the set {1, 0}2, and is extended to the set of the formu-

las in this fragment by the following recursion, where w(A) = (n, t) and

w(B) = (n′, t′):

w(∼tA) = (t, n);

w(A ∧t B) = (n ∨ n′, t ∧ t′);

w(A ∨t B) = (n ∧ n′, t ∨ t′);

w(A ∧f B) = (n ∧ n′, t ∧ t′);

w(A ∨f B) = (n ∨ n′, t ∨ t′),

while the set des of the designated truth values becomes the set des′ =

{(1, 1), (0, 1)}, and the definition of validity of a sequent in the fragment

becomes as follows: Γ ⇒ ∆ is valid, NT-valid, iff for every NT-valuation

w, either w(A) 6∈ des′ for some A ∈ Γ, or w(B) ∈ des′ for some B ∈ ∆.

Then, the logic determined by NT-validity is nothing but the basic

logic of logical bilattices studied in Arieli-Avron [1], where the connectives

∼t, ∧t, ∨t, ∧f and ∨f correspond to their ¬, ∧, ∨, ⊗ and ⊕, respectively.

For, NT-validity of Γ ⇒ ∆ is identical with their Γ |=〈FOUR〉 ∆, and the

latter is equivalent to Γ |=BL ∆ ([1, THEOREM 3.4]).

Moreover, according to the following lemma, the logic proposed by

Shramko-Wansing [5] can be considered to be simply the expansion of the
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one by Arieli-Avron [1] by the introduction of the connective ∼f (and

so ∼b).

Lemma 4.1. For every A and B in the {∼t,∧t,∨t,∧f ,∨f}-fragment, the
following conditions (BL1)–(BL3) are mutually equivalent.

(BL1) A |=bl B.

(BL2) The sequent A ⇒ B is NT-valid.

(BL3) vt(A) = 1 implies vt(B) = 1, for every NFTB-valuation v.

It is to be noted that this lemma cannot be extended to the sequents

having plural succedent formulas, since A ∨t B ⇒ A,B is NT-valid, but is

not necessarily bl -valid.
For the proof, the following one is convenient.

Lemma 4.2 (Shramko-Wansing [5, LEMMA 4.8]). For every A and B (in
the full language), the following two conditions are mutually equivalent.

• vt(A) = 1 implies vt(B) = 1, for every NFTB-valuation v.

• vf (B) = 1 implies vf (A) = 1, for every NFTB-valuation v.

Proof of Lemma 4.1:

From (BL1) to (BL2): Suppose (BL1). Let w be an arbitrary

NT-valuation. It suffices to show that w(A) ∈ des′ implies w(B) ∈ des′.
Let w̄ be the NFTB-valuation such that w̄(p) = (wn(p), 0, wt(p), 0) for

every p. Then it is easily seen by induction that w̄(E)=(wn(E), 0, wt(E), 0),
and so w(E) ∈ des′ iff w̄(E) ∈ des (iff wt(E) = 1), for every E in the frag-

ment. So, if w(A) ∈ des′, then w̄(A) ∈ des, so w̄(B) ∈ des by (BL1), and

so w(B) ∈ des′.
From (BL2) to (BL3): Suppose (BL2). Let v be an arbitrary

NFTB-valuation, and v̂ be the NT-valuation such that v̂(p) = (vn(p), vt(p))
for every p. Then v̂(E) = (vn(E), vt(E)), and so v̂(E) ∈ des′ iff vt(E) = 1,

for every E in the fragment. So, if vt(A) = 1, then v̂(A) ∈ des′, so

v̂(B) ∈ des′ by (BL2), and so vt(B) = 1.

From (BL3) to (BL1): Suppose (BL3). Let v be an arbitrary

NFTB-valuation. We must show that v(A) ∈ des implies v(B) ∈ des.
So, suppose v(A) ∈ des, namely, vt(A) = 1 and vf (A) = 0. The former

implies vt(B) = 1 by (BL3), while the latter implies vf (B) = 0 by (BL3)

again together with Lemma 4.2; hence v(B) ∈ des.
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4.2. The {∼b,∧t,∨t}-fragment

Now, ignore the connectives ∼t, ∼f , ∧f and ∨f , as well as the first and

fourth components of the quadruple truth values, instead. In this case,

a valuation becomes a function w, FT-valuation, from the set of the propo-

sitional variables into the set {1, 0}2, and is extended to the set of the

formulas in this fragment by the following recursion, where w(A) = (f, t)
and w(B) = (f ′, t′):

w(∼bA) = (t, f);

w(A ∧t B) = (f ∨ f ′, t ∧ t′);

w(A ∨t B) = (f ∧ f ′, t ∨ t′),

while the set des of the designated truth values becomes the set des′′ =
{(0, 1)}, and the modified notion of validity, FT-validity, is determined

accordingly. Moreover, the system Lbl becomes the subsystem that consists

of the axioms (A1)–(A9), (C9), (C18) and (C19), as well as the inference

rules (Extension) and (Cut). Then, by deleting the items concerning the

connectives ∼t, ∼f , ∧f and ∨f , as well as the first and fourth components

of the quadruple truth values, the proof of Theorem 2.6 becomes that of

the following proposition: A sequent in this fragment is FT-valid iff it is
provable in the above subsystem.

In Pietz-Rivieccio [4], this logic has been studied as Exactly True Logic

and its “Hilbert-style” axiomatization has been given.

Incidentally, if des′′ is modified to the set {(1, 1), (0, 1)} or {(0, 1), (0, 0)},
then the logic determined by the modified validity coincides with the first

degree entailment.

5. Adding propositional constants

In this section, the propositional constant c〈n, f, t, b〉 such that

v(c〈n, f, t, b〉) = (n, f, t, b), for every valuation v

is introduced for each quadruple truth value (n, f, t, b) ∈ {1, 0}4.

Definition 5.1. The system L+
bl

is obtained from Lbl by supplementing

the following axioms, where in (D6), n′′ = n ∧ n′, f ′′ = f ∧ f ′, t′′ = t ∨ t′

and b′′ = b ∨ b′:
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(D1) ⇒ c〈n, 0, 1, b〉

(D2) c〈n, 1, t, b〉 ⇒ and c〈n, f, 0, b〉 ⇒

(D3) ∼t c〈n, f, t, b〉 ∨t C ⇐⇒ c〈t, b, n, f〉 ∨t C

(D4) ∼f c〈n, f, t, b〉 ∨t C ⇐⇒ c〈f, n, b, t〉 ∨t C

(D5) ∼b c〈n, f, t, b〉 ∨t C ⇐⇒ c〈b, t, f, n〉 ∨t C

(D6) c〈n, f, t, b〉 ∨t c〈n
′, f ′, t′, b′〉 ⇐⇒ c〈n′′, f ′′, t′′, b′′〉

It will be evident that all the supplemented axioms are bl -valid.

Remark 5.2. (1) If we don’t mind too much dependence on the partic-

ular constant c〈0, 0, 0, 0〉 in the axioms, the formulas C occurring in

Axioms (D3)–(D5) and c〈n′, f ′, t′, b′〉 in (D6) can be specified to the

constant c〈0, 0, 0, 0〉. More radically, the supplemented axioms can

be replaced with the sequents in Lemma 5.3 all together.

(2) Axiom (A7) is superflous in L+
bl
, since it is obtained from the following

axioms by applications of (Cut):

∼bA ⇒ ∼bA ∨t c〈0, 0, 0, 0〉 (A1)

∼bA ∨t c〈0, 0, 0, 0〉, A ⇒ c〈0, 0, 0, 0〉 (A8)

c〈0, 0, 0, 0〉 ⇒ (D2)

Lemma 5.3. The following sequents are provable.

(1) ⇒ c〈0, 0, 0, 0〉 ∨t c〈1, 1, 1, 1〉

(2) c〈0, 0, 0, 0〉 ⇒ and c〈1, 1, 1, 1〉 ⇒

(3) ⇒ c〈n, f, 1, b〉 ∨t c〈0, 0, 0, 0〉 and c〈n, f, 0, b〉 ∨t c〈0, 0, 0, 0〉 ⇒

(4) ⇒ ∼tc〈1, f, t, b〉 ∨t c〈0, 0, 0, 0〉 and ∼tc〈0, f, t, b〉 ∨t c〈0, 0, 0, 0〉 ⇒

(5) ⇒ ∼fc〈n, f, t, 1〉∨tc〈0, 0, 0, 0〉 and ∼fc〈n, f, t, 0〉∨tc〈0, 0, 0, 0〉 ⇒

(6) ⇒ ∼bc〈n, 1, t, b〉∨t c〈0, 0, 0, 0〉 and ∼bc〈n, 0, t, b〉∨t c〈0, 0, 0, 0〉 ⇒

Proof: All sequents are easily obtained from supplemented axioms by

applications of (Cut), and so only a few of them are mentioned. (1) fol-

lows from the sequents ⇒ c〈0, 0, 1, 1〉 and c〈0, 0, 1, 1〉 ⇒ c〈0, 0, 0, 0〉 ∨t

c〈1, 1, 1, 1〉, which are ones of Axioms (D1) and (D6) respectively, by (Cut).

(2) are two of Axiom (D2). The latter of (4) follows from the following ax-

ioms by (Cut)’s:
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∼tc〈0, f, t, b〉 ∨t c〈0, 0, 0, 0〉 ⇒ c〈t, b, 0, f〉 ∨t c〈0, 0, 0, 0〉 (D3)

c〈t, b, 0, f〉 ∨t c〈0, 0, 0, 0〉 ⇒ c〈0, 0, 0, f〉 (D6)

c〈0, 0, 0, f〉 ⇒ (D2)

Corollary 5.4. Suppose that α forms a complete consistent system.

(1) c〈0, 0, 0, 0〉 ∨t c〈1, 1, 1, 1〉 ∈ α.

(2) c〈0, 0, 0, 0〉, c〈1, 1, 1, 1〉 6∈ α.

Proof: Immediate from Lemma 5.3 (1) and (2), respectively.

According to Corollary 5.4, the condition (*) introduced in Section 3

is not the case. So, we let F (p) be p ∨t c〈0, 0, 0, 0〉. Then Lemma 3.3 is

valid in this case too. Moreover, Lemma 3.5 and so Lemma 3.6 also hold

by Corollary 5.5 below.

Corollary 5.5. Let α be a complete consistent system, and v0 the valu-
ation defined in Definition 3.4.

(1) v0n(c〈n, f, t, b〉) = 1 iff ∼tc〈n, f, t, b〉 ∨t c〈0, 0, 0, 0〉 ∈ α.

(2) v0f (c〈n, f, t, b〉) = 1 iff ∼bc〈n, f, t, b〉 ∨t c〈0, 0, 0, 0〉 ∈ α.

(3) v0t (c〈n, f, t, b〉) = 1 iff c〈n, f, t, b〉 ∨t c〈0, 0, 0, 0〉 ∈ α.

(4) v0b (c〈n, f, t, b〉) = 1 iff ∼fc〈n, f, t, b〉 ∨t c〈0, 0, 0, 0〉 ∈ α.

Proof: Immediate from Lemma 5.3 (4), (6), (3) and (5), respectively.

Hence, we have Theorem 2.6 for L+
bl
, too.
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