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EUCLIDEAN ALGORITHM AND POLYNOMIAL EQUATIONS

AFTER LABATIE

E.R. GARCÍA BARROSO AND A. P LOSKI

Abstract. We recall Labatie’s effective method of solving polynomial equa-

tions with two unknowns by using the Euclidean algorithm.

Introduction

The French mathematician Labatie1 published in 1835 a booklet on a method of
solving polynomial systems of equations in two unknowns (see [Fin1]). He used the
polynomial division to replace the given system of equations by the collection of
triangular systems. Labatie’s theorem can be found in some old Algebra books: by
Finck [Fin2], Serret [Se] and Netto [Ne], but as far as we know, not in any Algebra
text book written in the twentieth century.

In this paper we recall Labatie’s method following Serret [Se] (pp. 196-206). Then
we give, in a modern setting, an improvement of Labatie’s result due to Bonnet
[Bo].

Let K be a field of arbitrary characteristic. We shall consider polynomials with
coefficients in K. If W = W (x, y) ∈ K[x, y] then we denote by degy W the degree
of W with respect to y. We say that a non-zero polynomial W is y-primitive if it
is a primitive polynomial in the ring K[x][y], that is, if 1 is the greatest common
divisor of all the non-zero coefficients that are dependent on x. If V , W ∈ K[x, y]
satisfy the condition 0 < degy V ≤ degy W then there are polynomials Q (quotient),
R (remainder) in K[x, y] and a non-zero polynomial u = u(x) ∈ K[x] such that
uW = QV + R, where degy R < degy V or R = 0.
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The greatest common divisor of polynomials V , W may be computed using the
Euclidean algorithm, see [Bô] chapter XVI. Recently Hilmar and Smyth [H-S] gave
a very simple proof of Bézout’s theorem for plane projective curves using as a main
tool the Euclidean division.

1. Euclidean algorithm

Let V1, V2 ∈ K[x, y] be coprime and y-primitive polynomials such that 0 <
degy V2 ≤ degy V1.

Using the polynomial division we get a sequence of y-primitive polynomials V3, . . . ,
Vn+1 of decreasing y-degrees 0 < degy Vn+1 < · · · < degy V3 < degyV2 such that

u1V1 = Q1V2 + v1V3,

u2V2 = Q2V3 + v2V4,

...

un−1Vn−1 = Qn−1Vn + vn−1Vn+1,

unVn = QnVn+1 + vn,

where u1,. . . , un, v1,. . . , vn are non-zero polynomials of the ring K[x]. Let be
Vn+2 = 1 and write the above equalities in the form

(1)i uiVi = QiVi+1 + viVi+2 for i = 1, . . . , n.

In what follows we call n the number of steps performed by the Euclidean algorithm
on input (V1, V2). We will keep the above notation in all this note.

2. Labatie’s elimination

Let us define two sequences d1, . . . , dn and w1, . . . , wn of polynomials in x de-
termined by the sequences u1, . . . , un and v1, . . . , vn in a recurrent way. We let
d1 = gcd(u1, v1), w1 = u1

d1
and di = gcd(wi−1ui, vi), wi = wi−1ui

di
for i ∈ {2, . . . , n}.

It is easy to see that wi = u1···ui

d1···di
in K[x] for all i ∈ {1, . . . , n}.

For any V , W ∈ K[x, y] we let {V = 0,W = 0} = {P ∈ K2 : V (P ) = W (P ) = 0 }.

Theorem 2.1 (Labatie 1835). With notations and assumptions given above we
have

{V1 = 0, V2 = 0} =

n⋃
i=1

{
Vi+1 = 0,

vi
di

= 0

}
.

We present the proof of the above theorem in Section 4.

Labatie’s theorem shows that the system of equations V1(x, y) = 0, V2(x, y) = 0 is
equivalent to the collection of triangular systems
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Vi+1(x, y) = 0,
vi
di

(x) = 0 (i = 1, . . . , n).

Labatie’s theorem fell into oblivion for a longtime. At the beginning of the 1990’s
Lazard in [La] proved that every system of polynomial equations in many unknowns
with a finite number of solutions in the algebraic closure of K is equivalent to the
union of triangular systems, which can be obtained from Gröbner bases. Kalk-
brener in [Kalk1] and [Kalk2] developed the theory of elimination sequences based
on the Euclidean algorithm. His method of computing solutions of systems of poly-
nomials equations turned out to be very efficient if applied to systems of two or
three unknowns (see [Kalk2] and the references given therein for the comparison
with Gröbner basis methods). Neither Lazard nor Kalkbrener mentioned Labatie’s
work. Only Glashof in [Glas] recalled Labatie’s method after Netto [Ne] and com-
pared it with Kalkbrener’s approach to polynomials equations. In what follows
we need the notion of multiplicity of a solution of a system of two equations in
two unknowns. The definition we are going to present is quite sophisticated. The
reader not acquainted with it may assume the five properties of multiplicity given
below as axiomatic definition of this notion.

Let P ∈ K2. We define the local ring of rational functions regular at P to be

K[x, y]P =

{
R

S
: R,S ∈ K[x, y], S(P ) 6= 0

}
.

The ring K[x, y]P is a unique factorization domain. The units of K[x, y]P are
rational functions R

S such that R(P )S(P ) 6= 0.

Let (V,W )P be the ideal generated by polynomials V and W in K[x, y]P . Following
[Ful], we define the intersection multiplicity iP (V,W ) to be the dimension of the
K-vector space K[x, y]P /(V,W )P . We call also iP (V,W ) the multiplicity of the
solution P of the system V = 0, W = 0.

Let us recall the basic properties of the intersection multiplicity which hold for any
field K (not necessarily algebraically closed):

(1) iP (V,W ) < +∞ if and only if P 6∈ {gcd(V,W ) = 0},
(2) iP (V,W ) > 0 if and only if P ∈ {V = W = 0},
(3) iP (V,WW ′) = iP (V,W ) + iP (V,W ′),
(4) iP (V,W ) depends only on the ideal (V,W )P .

Intuitively: iP (V,W ) does not change when we replace the system V = 0,
W = 0 by another one equivalent to it near P .
Moreover, it is easy to check that

(5) if P = (a, b) is a solution of the triangular system W (x, y) = 0, w(x) = 0
then iP (W,w) = (ordaw)(ordbW (a, y)), where ordcp denotes the multi-
plicity of the root c in the polynomial p = p(x) ∈ K[x]. By convention
ordcp = 0 if p(c) 6= 0.
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The following example may be helpful to acquire an intuition of intersection
multiplicity. Let us consider the parabola y2 − x = 0 over the field of
real numbers. Applying Property 5 to the triangular system y2 − x = 0,
x − c = 0 we check that the axis x = 0 intersects the parabola in (0, 0)
with multiplicity 2 but the line x− c = 0, where c > 0 intersects it in two
points (c,

√
c) and (c,−

√
c), each with multiplicity 1. If c → 0+ then the

two points coincide.

x = 0 x− c = 0

•
•

•

Note also that the system of equations y2 − x = 0, x − c = 0 has for c 6= 0 two
complex solutions, which are arbitrary close to the origin for small enough complex
c. This observation leads to the dynamic definition of intersection multiplicity for
algebraic complex curves (see [Te], Section 6).

The following theorem due to Bonnet [Bo] is an improvement of Labatie’s result:

Theorem 2.2 (Bonnet 1847). For any P ∈ K2 we have

iP (V1, V2) =

n∑
i=1

iP

(
Vi+1,

vi
di

)
.

Bonnet, like Labatie, considered polynomials with complex coefficients and used
the definition of the intersection multiplicity in terms of Puiseux series. In Section 5
we present a short proof of Theorem 2.2 based on Labatie’s calculations (Section 3)
and the properties of the intersection multiplicity listed above.

Example 2.3. Let V1 = y5 − x3, V2 = y3 − x4. Using the Euclidean algorithm
we get y5 − x3 = y2(y3 − x4) + x3(xy2 − 1), x(y3 − x4) = y(xy2 − 1) + y − x5

and xy2 − 1 = (xy + x6)(y − x5) + x11 − 1. Hence we have (u1, u2, u3) = (1, x, 1),
(v1, v2, v3) = (x3, 1, x11 − 1) and (d1, d2, d3) = (1, 1, 1). By Labatie’s theorem, we
get

{y5 − x3 = 0, y3 − x4 = 0} =

{y3 − x4 = 0, x3 = 0} ∪ {xy2 − 1 = 0, 1 = 0} ∪ {y − x5 = 0, x11 − 1 = 0}.

Therefore the systems V1 = 0, V2 = 0 has two solutions (0, 0) and (1, 1) in K and
ten solutions in the algebraic closure of K. To compute the multiplicities of the



EUCLIDEAN ALGORITHM AND POLYNOMIAL EQUATIONS AFTER LABATIE 45

solutions we use Bonnet’s theorem:

i0(y5−x3, y3−x4) = i0(y3−x4, x3)+i0(xy2−1, 1)+i0(y−x5, x11−1) = 3·3+0+0 = 9.

The remaining multiplicities are equal to one. Thus the system V1 = 0, V2 = 0 has
9 + 11 = 20 solutions counted with multiplicities.

3. Auxiliary lemmas

Recall that the polynomials wi and vi
di

are coprime.

Lemma 3.1. There exist two sequences of polymomials G0,. . . , Gn and H0,. . . ,
Hn in the ring K[x, y] such that

(2)i wi−1V1 = Gi−1Vi + Gi−2Vi+1
vi−1

di−1
,

(3)i wi−1V2 = Hi−1Vi + Hi−2Vi+1
vi−1

di−1

for i ∈ {2, . . . , n + 1}.

Proof. We proceed by induction on i. Let’s check the first identity. From the
equality u1V1 = Q1V2 + v1V3 it follows that d1 = gcd(u1, v1) divides the product
Q1V2 and consequently the polynomial Q1 since V2 is y-primitive. Letting G0 = 1,
G1 = Q1

d1
we get w1V1 = G1V2+G0V3

v1
d1

that is (2)2. Suppose now that 2 ≤ i < n+1

and that for some polynomials Gi−1 and Gi−2 the identity (2)i holds. Multiplying
the identity (2)i by the polynomial ui we get

wi−1uiV1 = uiGi−1Vi + uiGi−2Vi+1
vi−1

di−1
.

Let us insert to the identity above uiVi = QiVi+1 + viVi+2. After simple computa-
tions we get:

wi−1uiV1 =
(
Gi−1Qi + uiGi−2

vi−1

di−1

)
Vi+1 + Gi−1viVi+2.

Since di = gcd(wi−1ui, vi) and the polynomial Vi+1 is y-primitive we get that

Gi := Gi−1Qi

di
+ Gi−2

uivi−1

didi−1
is a polynomial and we have

wiV1 = GiVi+1 + Gi−1Vi+2
vi
di
,

which is the identity (2)i+1. This proves the first part of the lemma.

To prove the identity (3)i note that

w1V2 = H1V2 + H0V3
v1

d1

if we let H0 = 0 and H1 = u1

d1
. This proves (3)2. To check (3)i we proceed

analogously to the proof of (2)i : it suffices to replace Gi by Hi.
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Remark 3.2. The polynomials Gi are defined by G0 = 1, G1 = Q1

d1
, Gi = Gi−1Qi

di
+

Gi−2uivi−1

di−1di
and the polynomials Hi by H0 = 0, H1 = u1

d1
and Hi = Hi−1Qi

di
+

Hi−2uivi−1

di−1di
.

Lemma 3.3. With the notations of Lemma 3.1 we have the identities

(4)i (−1)i
v1 · · · vi−1

d1 · · · di−1
Vi+1 = Hi−1V1 −Gi−1V2 for i ∈ {2, . . . , n + 1}.

Proof. Let Di = GiHi−1 − Gi−1Hi for i ∈ {2, . . . , n}. Consider the system of
equations (2)i, (3)i as a linear system with unknowns Vi, Vi+1

vi−1

di−1
with determinant

equals Di−1. Using Cramer’s rule we get

Di−1Vi = wi−1 (Hi−2V1 −Gi−2V2) ,

Di−1Vi+1
vi−1

di−1
= −wi−1(Hi−1V1 −Gi−1V2).

Replacing in the first equality i by i + 1 we obtain

(1) DiVi+1 = wi(Hi−1V1 −Gi−1V2).

Multiplying the second equality by ui

di
we get

(2) Di−1Vi+1
vi−1

di−1

ui

di
= −wi(Hi−1V1 −Gi−1V2).

Comparing the left sides of (1) and (2) and cancelling Vi+1 we have Di =
−vi−1ui

di−1di
Di−1. Moreover D1 = G1H0 −G0H1 = −u1

d1
and by induction we have

Di = (−1)iwi
v1 · · · vi−1

d1 · · · di−1

which inserted into formula (1) gives the identity (4)i.

4. Proof of Labatie’s theorem

We can now give the proof of Theorem 2.1: fix a point P ∈ K2. If Vi(P ) =
vi−1

di−1
(P ) = 0 for a value i ∈ {2, . . . , n + 1} then from Lemma 3.1 it follows that

V1(P ) = V2(P ) = 0 given that wi−1(P ) 6= 0 since wi−1, vi−1

di−1
are coprime.

Suppose now that V1(P ) = V2(P ) = 0. From the identity (4)n+1 of Lemma 3.3 we
get v1···vn

d1···dn
(P ) = 0. Therefore at least one of polynomials v1

d1
,. . . , vn

dn
vanishes at P .

If v1
d1

(P ) = 0 then P ∈ {V2 = v1
d1

= 0}.
If the smallest index i for which vi

di
(P ) = 0 is strictly greater than 1 then we get,

by the identity (4)i , that Vi+1(P ) = 0 because v1···vi−1

d1···di−1
(P ) 6= 0 by the definition

of i. This proves the theorem.
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5. Proof of Bonnet’s theorem

Fix a point P ∈ K2. If v1···vn
d1···dn

(P ) 6= 0 then by (4)n+1 we get

(3) 1 ∈ (V1, V2)P

which implies iP (V1, V2) = 0.

On the other hand we have iP

(
Vi+1,

vi
di

)
= 0 since vi

di
(P ) 6= 0 for i ∈ {1, . . . , n}

and the theorem holds in the case under consideration.

Suppose now that v1···vn
d1···dn

(P ) = 0 and let i0 be the smallest index i ∈ {1, . . . , n}
such that

vi0
di0

(P ) = 0. Therefore we have wi0(P ) 6= 0 since
vi0
di0

and wi0 are coprime.

Let us check that

(4) (V1, V2)P =

(
Vi0+1, Vi0+2

vi0
di0

)
P

.

From (2)i0+1 and (3)i0+1 we get

(5) V1, V2 ∈
(
Vi0+1, Vi0+2

vi0
di0

)
P

.

On the other hand, from (4)i0 (if i0 > 1, the case i0 = 1 being obvious), we obtain

(6) Vi0+1 ∈ (V1, V2)P

and from (4)i0+1, we have

(7)
vi0
di0

Vi0+2 ∈ (V1, V2)P .

Combining (5), (6) and (7) we get (4). Equality (4) and the additive property of
intersection multiplicity give

(8) iP (V1, V2) = iP

(
Vi0+1,

vi0
di0

)
+ iP (Vi0+1, Vi0+2).

If i0 = n then (8) reduces to

(9) iP (V1, V2) = iP

(
Vn+1,

vn
dn

)
since Vn+2 = 1.

To prove Theorem 2.2 we shall proceed by induction on the number n of steps
performed by the Euclidean algorithm. For n = 1 the theorem follows from (9)
since n = 1 implies i0 = 1. Let n > 1 and suppose that the theorem holds for
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all pairs of polynomials for which the number of steps performed by the Euclidean
algorithm is strictly less than n.

We assume that i0 < n since for i0 = n the theorem is true by (9).

Let us put V j = Vi0+j , where j ∈ {1, 2, . . . , n − i0 + 2}. The number of steps

performed by the Euclidean algorithm on input (V 1, V 2) is equal to n = n−i0 < n.
We have uj = ui0+j and vj = vi0+j for j ∈ {1, . . . , n}. To relate dj and di0+j we
introduce some notation. We will write u ∼ ũ for polynomials u, ũ associated in the
local ring K[x, y]P . If u, ũ ∈ K[x] then u ∼ ũ if and only if there exist polynomials
r, s ∈ K[x] such that su = rũ and r(P )s(P ) 6= 0. Note that gcd(u, v) ∼ gcd(ũ, v)
if u ∼ ũ. We claim that

(10) dj ∼ di0+j , wj ∼ wi0+j for j ∈ {1, . . . , n}.

Let us check (10) by induction on j.

If j = 1 then d1 = gcd(u1, v1) = gcd(ui0+1, vi0+1) ∼ gcd(wi0ui0+1, vi0+1) = di0+1

since wi0 ∼ 1. Hence we get w1 = u1

d1
=

ui0+1

d1
∼ wi0ui0+1

di0+1
, which proves (10) for

j = 1.

Suppose that (10) holds for a j < n. Then we get

dj+1 = gcd(wjuj+1, vj+1) ∼ gcd(wi0+jui0+j+1, vi0+j+1) = di0+j+1

since wj ∼ wi0+j by the induction assumption, and

wj+1 =
wjuj+1

dj+1

∼ wi0+jui0+j+1

di0+j+1
= wi0+j+1.

This finishes the proof of (10).

Now we can pass to the proof of the theorem. By the inductive assumption applied
to the pair V 1, V 2 we get

iP (Vi0+1, Vi0+2) = iP (V 1, V 2) =
n∑

j=1

iP

(
V j+1,

vj

dj

)

=

n∑
j=1

iP

(
Vi0+j+1,

vi0+j

di0+j

)
=

n∑
i=i0+1

iP

(
Vi+1,

vi
di

)

since dj ∼ di0+j by (10) which together with (8) proves the inductive step and so
the theorem.
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