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RINGS OF CONSTANTS OF POLYNOMIAL DERIVATIONS

AND p-BASES

PIOTR J ↪EDRZEJEWICZ

Abstract. We present a survey of results concerning p-bases of rings of con-

stants with respect to polynomial derivations in characteristic p > 0. We

discuss characterizations of rings of constants, properties of their generators
and a general characterization of their p-bases. We also focus on some special

cases: one-element p-bases, eigenvector p-bases and when a ring of constants

is a polynomial graded subalgebra.

Introduction

In Section 1 we introduce the notation and definitions concerning derivations,
rings of constants and p-bases. Then we discuss characterizations of rings of con-
stants in Section 2 and we present some basic information on the number of gen-
erators for rings of constants of polynomial derivations in Section 3. For a wider
panorama of contemporary differential algebra we refer to the book of Nowicki
([41]), and for problems connected with locally nilpotent derivations we refer to
the book of Freudenburg ([10]).

Next two sections contain a general characterization of p-bases of rings of con-
stants with respect to polynomial derivations, based on the author’s paper [26].
In Section 4 we present generalizations of Freudenburg’s lemma (Theorems 4.7
and 4.8). The main theorem (Theorem 5.4) and its motivations are presented in
Section 5. In Section 6 (based on the results of [23] and [18]) we discuss analogies
and differences between single generators of rings of constants in zero and posi-
tive characteristic, and we focus on some special cases. Section 7, based on [24],
is devoted to specific properties of eigenvector p-bases (Theorem 7.2). Finally, in
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Section 8 (based on the paper [28], joint with Nowicki) we describe rings of con-
stants of homogeneous polynomial derivations in positive characteristic, which are
polynomial algebras.

1. Basic definitions and notation

Throughout this article, by a ring we mean a commutative ring with unity, and
by a domain we mean a commutative ring with unity, without zero divisors. If K is
a ring, then by K[x1, . . . , xn] we denote a polynomial K-algebra. If R is a domain,
then by R0 we denote its field of fractions.

Let A be a domain. By A∗ we denote the set of all invertible elements of A. We
call two elements a, b ∈ A associated and denote it by a ∼ b, if a = bc for some
c ∈ A∗. An element a ∈ A is called square-free if b2 - a for every b ∈ A \A∗.

Let A be a domain of characteristic p > 0. Then

Ap = {ap; a ∈ A}
is a subring of A. Let B a subring of A, containing Ap. An element a ∈ A is called
B-free if b - a for every b ∈ B \ A∗. If A = k[x1, . . . , xn] is a polynomial algebra
over a field k of characteristic p > 0, then k[xp1, . . . , x

p
n]-free elements are called

shortly p-free.

If A is a domain of characteristic p > 0 and B is a subring of A, containing Ap,
then for elements f1, . . . , fm ∈ A we define the following subring of A:

CB(f1, . . . , fm) = B0(f1, . . . , fm) ∩A = B0[f1, . . . , fm] ∩A.
Note that the equality B0(f1, . . . , fm) = B0[f1, . . . , fm] can easily be proved di-
rectly, but it also follows from the fact that the field extension B0 ⊂ B0(f1, . . . , fm)
is algebraic.

Let A be a ring. An additive map d : A→ A satisfying the Leibniz rule

d(fg) = d(f)g + fd(g)

for f, g ∈ A, is called a derivation of A. The set

Ad = {f ∈ A : d(f) = 0}
is called the ring of constants of d; it is a subring of A. Moreover, if A is a field,
then Ad is a subfield of A.

If A is a K-algebra, where K is a ring, then a K-linear derivation d : A → A
is called a K-derivation. In this case Ad is a K-subalgebra of A. When K is a
subring of A, d is a K-derivation if and only if K ⊂ Ad.

If d is a K-derivation of a polynomial algebra K[x1, . . . , xn], where K is a ring,
then

d(f) =
∂f

∂x1
d(x1) + . . .+

∂f

∂xn
d(xn)
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for every f ∈ K[x1, . . . , xn].

On the other hand, for arbitrary polynomials g1, . . . , gn ∈ K[x1, . . . , xn] there
exists exactly one K-derivation d of K[x1, . . . , xn] such that

d(x1) = g1
...

d(xn) = gn

and this derivation is of the form

d = g1
∂

∂x1
+ . . .+ gn

∂

∂xn
.

Let A be a domain. Then every derivation d : A→ A can be uniquely extended
to a derivation δ : A0 → A0, which is defined by the formula

δ

(
f

g

)
=
d(f)g − fd(g)

g2

for f, g ∈ A, g 6= 0. If A is a K-domain (that is, a K-algebra and a domain), where
K is a domain, and d is a K-derivation, then δ is a K0-derivation.

If A is a domain of characteristic p > 0 and d : A → A is a derivation, then
d(ap) = 0 for every a ∈ A, so Ap ⊂ Ad. If A is also a K-algebra, where K is a
domain of characteristic p > 0, and d is a K-derivation, then KAp ⊂ Ad, so d is a
KAp-derivation. For example, if A is a polynomial K-algebra: A = K[x1, . . . , xn],
where charK = p > 0, then Ap = Kp[xp1, . . . , x

p
n] and KAp = K[xp1, . . . , x

p
n].

Lemma 1.1. Let K be a domain of characteristic p > 0, consider a polynomial
f ∈ K[x1, . . . , xn]. Then f ∈ K[xp1, . . . , x

p
n] if and only if ∂f

∂xi
= 0 for i = 1, . . . , n.

Recall the definition of a p-basis. We restrict our interests to finite p-bases, see
[35], 38.A, p. 269, for a definition of a p-basis of arbitrary cardinality.

Definition 1.2. Let R be a domain of characteristic p > 0 and B a subring of R,
containing Rp. Let f1, . . . , fm ∈ R.

a) The elements f1, . . . , fm are called p-independent over B if the elements of the
form fα1

1 . . . fαmm , where α1, . . . , αm ∈ {0, . . . , p− 1}, are linearly independent over
B.

b) We say that the elements f1, . . . , fm form a p-basis of R over B if R is a free
B-module with a basis of the form

fα1
1 . . . fαmm ,

where α1, . . . , αm ∈ {0, . . . , p− 1}.
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Note that the elements f1, . . . , fm form a p-basis of R over B if and only if they
are p-independent over B and generate R as a B-algebra. If the elements f1, . . . , fm
form a p-basis of R over B, then every element f ∈ R can be presented in the form

f =
∑

06α1,...,αm<p

aαf
α1
1 . . . fαmm ,

where aα ∈ B, and this presentation is unique.

The notion of a p-basis is a specific positive characteristic analog of a transcen-
dental basis. It fits into the same abstract notion of dependency, see [52], II.12,
p. 97 and II.17, p. 129.

Example 1.3. The elements x1, . . . , xn form:

a) a p-basis of K[x1, . . . , xn] over K[xp1, . . . , x
p
n],

b) a p-basis of k(x1, . . . , xn) over k(xp1, . . . , x
p
n),

c) a p-basis of K[[x1, . . . , xn]] over K[[xp1, . . . , x
p
n]],

where K is a domain, k is a field, charK = char k = p > 0.

Theorem 1.4. ([15], p. 180)
If M is a subfield of a field L of characteristic p > 0, such that Lp ⊂M , then there
exists a p-basis (possibly infinite) of L over M .

Various conditions for existence of p-bases of ring extensions have been studied
for a long time (see, for example, [46] and its references).

Given polynomials f1, . . . , fm ∈ K[x1, . . . , xn], whereK is a ring, and j1, . . . , jm ∈
{1, . . . , n}, by jacf1,...,fmj1,...,jm

we denote the Jacobian determinant of f1, . . . , fm with

respect to xj1 , . . . , xjm . If m = n, then the Jacobian determinant of f1, . . . , fn with
respect to x1, . . . , xn we denote by jac(f1, . . . , fn).

It is convenient to introduce the following notion of a differential gcd of polyno-
mials f1, . . . , fm ∈ K[x1, . . . , xn], where K is a UFD:

dgcd(f1, . . . , fm) = gcd
(

jacf1,...,fmj1,...,jm
, j1, . . . , jm ∈ {1, . . . , n}

)
.

We put dgcd(f1, . . . , fm) = 0 if jacf1,...,fmj1,...,jm
= 0 for every j1, . . . , jm.

Note that dgcd(f1, . . . , fm) is defined up to a factor from K∗. We have

dgcd(f) ∼ gcd

(
∂f

∂x1
, . . . ,

∂f

∂xn

)
for a single polynomial f ∈ K[x1, . . . , xn] and

dgcd(f1, . . . , fn) ∼ jac(f1, . . . , fn)

for n polynomials f1, . . . , fn ∈ K[x1, . . . , xn].
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From a generalized Laplace expansion we obtain the following ([26], Lemma 3.2).

Lemma 1.5. Consider arbitrary pairwise different numbers i1, . . . , ir belonging to
{1, . . . ,m}, where 1 6 r 6 m.

a) If dgcd(fi1 , . . . , fir ) 6= 0, then dgcd(fi1 , . . . , fir ) | dgcd(f1, . . . , fm).

b) If dgcd(fi1 , . . . , fir ) = 0, then dgcd(f1, . . . , fm) = 0.

Recall the following known positive characteristic analog of the well known cri-
terion of algebraic dependence in characteristic zero.

Lemma 1.6. Let K be a domain of characteristic p > 0. Polynomials f1, . . . , fm ∈
K[x1, . . . , xn] are p-dependent over K[xp1, . . . , x

p
n] if and only if jacf1,...,fmj1,...,jm

= 0 for

every j1, . . . , jm ∈ {1, . . . , n}.

2. Characterizations of rings of constants

Recall some characterizations of fields of constants with respect to derivations
of fields. The case of characteristic zero was considered by Suzuki in [49] (Theorem
1) under the assumption of finite transcendence degree and genralized by Nowicki
in [42], Theorem 4.2 (see also [41], Theorem 3.3.2).

Theorem 2.1. (Suzuki, Nowicki)
Let K ⊂ L be an extension of fields of characteristic 0. A subfield M ⊂ L such
that K ⊂M , is a field of constants of some K-derivation of L if and only if M is
algebraically closed in L.

Similarly, in the positive characteristic case, Baer considered extensions of finite
degree (see [15], IV.7, p. 185). Gerstenhaber proved the theorem in the general
case in [12] (Remark at the end of Section 1) and, explicitly, in [13], Lemma 2.

Theorem 2.2. (Baer, Gerstenhaber)
Let K ⊂ L be an extension of fields of characteristic p > 0 satisfying the condition
Lp ⊂ K. Then every subfield M ⊂ L such that K ⊂ M , is a field of constants of
some K-derivation of L.

A characterization of rings of constants with respect to derivations of domains
was obtained by Nowicki in [42], Theorem 5.4 (see also [41], Theorem 4.1.4).

Theorem 2.3. (Nowicki)
Let A be a finitely generated k-domain, where k is a field of characteristic zero. Let
R be a k-subalgebra of A. The following conditions are equivalent:

(1) R is the ring of constants of some k-derivation of A,

(2) R is integrally closed in A and R0 ∩A = R.
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The author observed in [16] and, more generally, in [19], that analogous charac-
terization (without the condition that R is integrally closed) holds in the positive
characteristic case.

Theorem 2.4. ([16], Theorem 1.1, [19], Theorem 2.5)
Let A be a finitely generated K-domain, where K is a domain of characteristic
p > 0. Let R be a subring of A. The following conditions are equivalent:

(1) R is the ring of constants of some K-derivation of A,

(2) KAp ⊂ R and R0 ∩A = R.

The implications (1)⇒ (2) in Theorems 2.3 and 2.4 hold without the assumption
A is finitely generated, and there are counter-examples to the reverse implications
([17], see Example 2.7 below).

Daigle noted ([5], 1.4) that the two conditions in (2) in Theorem 2.3 can be
replaced by one condition of algebraic closedness (in the ring sense). The author
observed in [22] that we can apply this condition to the positive characteristic case
if we modify it to separable algebraic closedness. We call R separably algebraically
closed in A, if each element of A, separably algebraic over R, belongs to R ([22],
Definition 2.1).

Theorem 2.5. ([22], Theorem 3.1)
Let A be a finitely generated K-domain, where K is a domain (of arbitrary charac-
teristic). Let R be a K-subalgebra of A. If charK = p > 0, we assume additionally
that Ap ⊂ R and we put B = KAp. The following conditions are equivalent:

(1) R is the ring of constants of some K-derivation of A,

(2) R is separably algebraically closed in A,

(3) R is a maximal element in one of the following families of rings:{
Φm = {R : K ⊂ R ⊂ A, tr degK R 6 m} if charA = 0,

Ψm = {R : B ⊂ R ⊂ A, (R0 : B0) 6 pm} if charA = p > 0,

where m = 0, 1, 2, . . .

Now, let A be a domain of characteristic p > 0 and let B be a subring of A,
containing Ap. Consider arbitrary elements f1, . . . , fm ∈ A. Recall a notation

CB(f1, . . . , fm) = B0(f1, . . . , fm) ∩A = B0[f1, . . . , fm] ∩A.

If A is finitely generated as a B-algebra, then CB(f1, . . . , fm) is the smallest (with
respect to inclusion) ring of constants of a B-derivation containing the elements
f1, . . . , fm. Under this assumption, the elements f1, . . . , fm form a p-basis (over
B) of the ring of constants of some B-derivation if and only if f1, . . . , fm are p-
independent over B and CB(f1, . . . , fm) = B[f1, . . . , fm].
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Remark that the notion of the ring Ck(f), for a polynomial f over a field k of
characteristic 0, was introduced by Nowicki in [40].

Let k be a field of characteristic p > 0. Note that, if f 6∈ k[xp, yp], then f is a
one-element p-basis of k[xp, yp, f ].

Example 2.6. Let d be a k-derivation of k[x, y] such that{
d(x) = x

d(y) = −y.

Then the polynomial xy is a (one-element) p-basis of k[x, y]d:

k[x, y]d = CB(xy) = k[xp, yp, xy],

where B = k[xp, yp].

The following example from [24] (Example 4.3), motivated by Examples 6, 7
from [17], shows that in Theorem 2.4 the assumption that A is finitely generated
is necessary.

Example 2.7. Let k be a field of characteristic p > 0, let A = k[x0, x1, x2, . . . ] be a
polynomial k-algebra, put B = k[xp0, x

p
1, x

p
2, . . . ]. For i = 1, 2, . . . put fi = xrii − x0,

where ri > 1 and p - ri. Consider the ring

CB(f1, f2, f3, . . . ) = B0(f1, f2, f3, . . . ) ∩A.
Then:

a) the polynomials f1, f2, f3, . . . form a p-basis of CB(f1, f2, f3, . . . ) over B,

b) CB(f1, f2, f3, . . . ) is not a ring of constants of any B-derivation of A.

3. Generators of rings of constants

The case of characteristic zero. Let k be a field of characteristic 0.

Recall the following theorem of Zariski ([51]).

Theorem 3.1. (Zariski)
Let L be a subfield of k(x1, . . . , xn) containing k. If tr degk L 6 2, then the ring

L ∩ k[x1, . . . , xn]

is finitely generated over k.

Nowicki and Nagata in [43] (Theorem 2.6) applied Zariski’s theorem to rings of
constants of derivations.

Theorem 3.2. (Nowicki, Nagata)
Let d be a k-derivation of k[x1, . . . , xn]. If n 6 3, then k[x1, . . . , xn]d is finitely
generated over k.
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The following example was obtained by Kuroda in [30] and [31] (see [10], 7.6,
p. 175). This example is very important in the context of Hilbert’s Fourteenth
Problem. It solved the Problem for ordinary derivations, while for locally nilpotent
derivations the case of n = 4 remains open (we refer to [10] for details).

Example 3.3. (Kuroda)
Let d be a k-derivation of k[x, y, z, t] such that

d(x) = x(4x4 − y4 − z4)

d(y) = y(4y4 − x4 − z4)

d(z) = z(4z4 − x4 − y4)

d(t) = −20x3y3z3.

Then k[x, y, z, t]d is not a finitely generated k-algebra.

Nowicki and Strelcyn in [44] constructed examples of k-derivations with arbitrary
finite (minimal) number of generators of rings of constants.

Example 3.4. (Nowicki, Strelcyn)
Let n > 3 and r > 0. Then r is the minimal number of generators of k[x1, . . . , xn]d

as a k-algebra, for the following k-derivation d.

a) Let r < n. Consider a k-derivation d such that d(xi) = 0 if i 6 r and d(xi) = xi
if i > r. Then

k[x1, . . . , xn]d = k[x1, . . . , xr].

b) Let r > n. Consider a k-derivation d such that
d(x1) = x1

d(x2) = x2

d(x3) = (n− r − 2)x3

d(xi) = 0 for i > 3.

Then
k[x1, . . . , xn]d = k[f0, f1, . . . , fr−n+2, x4, . . . , xn],

where fj = xj1x
r−n+2−j
2 x3 for j = 0, . . . , r − n+ 2.

Now, recall the following theorem of Zaks ([50]).

Theorem 3.5. (Zaks)
If R is a Dedekind subring of k[x1, . . . , xn] containing k, then R = k[f ] for some
f ∈ k[x1, . . . , xn].

Using Zaks’ theorem, Nowicki and Nagata proved ([43], Theorem 2.8, [41], The-
orem 7.1.4, Corollary 7.1.5) the following.

Theorem 3.6. (Nowicki, Nagata)
If d is a k-derivation of k[x1, . . . , xn], such that tr degk k[x1, . . . , xn]d 6 1, then
k[x1, . . . , xn]d = k[f ] for some f ∈ k[x1, . . . , xn].
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Corollary 3.7. If d is a nonzero k-derivation of k[x, y], then k[x, y]d = k[f ] for
some f ∈ k[x, y].

Note also in this context Miyanishi’s theorem ([36], see [10], Theorem 5.1,
p. 108).

Theorem 3.8. (Miyanishi)
If d is a nonzero locally nilpotent k-derivation of k[x, y, z], then k[x, y, z]d = k[f, g]
for some algebraically independent f, g ∈ k[x, y, z].

The case of positive characteristic. Now, let k be a field of characteristic p > 0.

Recall the results of Nowicki and Nagata ([43], Proposition 4.1, Proposition 4.2).

Theorem 3.9. (Nowicki, Nagata)
If d is a k-derivation of k[x1, . . . , xn], then k[x1, . . . , xn]d is finitely generated as a
k[xp1, . . . , x

p
n]-algebra.

Theorem 3.10. (Nowicki, Nagata)
If char k = 2 and d is a nonzero k-derivation of k[x, y], then there exists a polyno-
mial f ∈ k[x, y] such that k[x, y]d = k[x2, y2, f ].

Nowicki and Nagata proved that, if p > 2, the ring of constants of the Euler’s
derivation in k[x, y] is not of the form k[xp, yp, f ] for any polynomial f ∈ k[x, y]
([43], Example 4.3). Li in [34] proved that in this case p−1 is the minimal number
of generators of k[x, y]d as a k[xp, yp]-algebra.

Example 3.11. Let d be a k-derivation of k[x, y] such that{
d(x) = x

d(y) = y.

Then, for B = k[xp, yp] we have:

k[x, y]d = CB(xp−1y) = k[xp, xp−1y, . . . , xyp−1, yp].

Li in [33] (Theorem) obtained the following generalization of Theorem 3.10 for
arbitrary characteristic p > 0.

Theorem 3.12. (Li)
Let d be a nonzero k-derivation of k[x, y]. Then:

a) k[x, y]d is a free k[xp, yp]-module of rank p or 1,

b) there exist g1, . . . , gp−1 ∈ k[x, y] such that k[x, y]d = k[xp, yp, g1, . . . , gp−1].

Note also that Nowicki and Nagata gave an example of a derivation, which ring
of constants is not a free module ([43], Example 4.6).

Example 3.13. Let n > 3 and let d be a k-derivation of k[x1, . . . , xn] such that
d(xi) = xpi for i = 1, . . . , n. Then k[x1, . . . , xn]d is not a free k[xp1, . . . , x

p
n]-module.
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4. Freudenburg’s lemma

The key preparatory fact for the main characterization of p-bases of rings of
constants with respect to polynomial derivations (Theorem 5.4) is a positive char-
acteristic generalization of the following lemma, obtained by Freudenburg in [9].

Lemma 4.1. (Freudenburg)
Given a polynomial f ∈ C[x, y], suppose g ∈ C[x, y] is an irreducible non-constant

divisor of both ∂f
∂x and ∂f

∂y . Then there exists c ∈ C such that g divides f + c.

This lemma was generalized by van den Essen, Nowicki and Tyc in [8], Propo-
sition 2.1.

Proposition 4.2. (van den Essen, Nowicki, Tyc)
Let k be an algebraically closed field of characteristic zero. Let Q be a prime ideal in
k[x1, . . . , xn] and f ∈ k[x1, . . . , xn]. If for each i the partial derivative ∂f

∂xi
belongs

to Q, then there exists c ∈ k such that f − c ∈ Q.

The following example from [8], Remark 2.4, shows that the condition that k is
algebraically closed can not be dropped in the above theorem. We can, however,
make a positive conclusion, as in point b).

Example 4.3. Consider polynomials f = x3 + 3x, g = x2 + 1 ∈ R[x]. Then g is
irreducible, g | f ′ and:

a) g - f − c for any c ∈ R,

b) g | f2 + 4, where w(x) = x2 + 4 is irreducible.

Note the following generalization of the Freudenburg’s lemma for a UFD of
arbitrary characteristic.

Proposition 4.4. ([21], Theorem 3.1)
Let K be a UFD, let Q be a prime ideal of K[x1, . . . , xn]. Consider a polynomial

f ∈ K[x1, . . . , xn] such that ∂f
∂xi
∈ Q for i = 1, . . . , n.

a) If charK = 0, then there exists an irreducible polynomial w(x) ∈ K[x] such that
w(f) ∈ Q.

b) If charK = p > 0, then there exist b, c ∈ K[xp1, . . . , x
p
n] such that gcd(b, c) ∼ 1,

b 6∈ Q and bf + c ∈ Q.

Now, let K be a UFD of characteristic p > 0.

Lemma 4.5. Let f ∈ K[x1, . . . , xn] and let g ∈ K[x1, . . . , xn] be an irreducible

polynomial. If g | f and g | ∂f∂xi for every i, then g2 | f or g ∈ K[xp1, . . . , x
p
n].

In the case of a principal ideal in positive characteristic we obtain from Propo-
sition 4.4 the following equivalence.
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Corollary 4.6. Consider a polynomial f ∈ K[x1, . . . , xn] and an irreducible poly-
nomial g ∈ K[x1, . . . , xn]. The following conditions are equivalent:

(1) g | ∂f∂xi for i = 1, . . . , n,

(2) there exist b, c ∈ K[xp1, . . . , x
p
n] such that g - b, gcd(b, c) ∼ 1 and{

g2 | bf + c if g 6∈ K[xp1, . . . , x
p
n],

g | bf + c if g ∈ K[xp1, . . . , x
p
n].

Now we are going to present generalizations of Freudenburg’s lemma for an
arbitrary number of polynomials instead of one. Theorem 4.7 is a generalization
of Proposition 4.4 b), and Theorem 4.8 is a generalization of Corollary 4.6.

Theorem 4.7. ([26], Proposition 3.5)
Let A = K[x1, . . . , xn] be a polynomial K-algebra, where K is a UFD of charac-
teristic p > 0. Put B = K[xp1, . . . , x

p
n]. Let f1, . . . , fm ∈ A, m > 1, and let Q be

a prime ideal of A. If jacf1,...,fmj1,...,jm
∈ Q for every j1, . . . , jm ∈ {1, . . . , n}, then there

exist i ∈ {1, . . . ,m} and

b, c ∈ B[f1, . . . , f̂i, . . . , fm],

b 6∈ Q, such that bfi + c ∈ Q.

Proof. (Sketch.)
Consider the factor algebra A = A/Q and denote f = f +Q for an element f ∈ A,
and by T the canonical homomorphic image in A of a subring T ⊂ A.

If jacf1,...,fmj1,...,jm
∈ Q for every j1, . . . , jm ∈ {1, . . . , n}, then the rank of the matrix

∂f1/∂x1 ∂f1/∂x2 · · · ∂f1/∂xn

∂f2/∂x1 ∂f2/∂x2 · · · ∂f2/∂xn
...

...
...

∂fm/∂x1 ∂fm/∂x2 · · · ∂fm/∂xn


over the field (A)0 is less than m. From the linear dependence of the rows of this
matrix we infer that:

(∗) there exist s1, . . . , sm ∈ A, where si 6∈ Q for some i ∈ {1, . . . ,m}, such that
s1d(f1) + . . .+ smd(fm) ∈ Q for every K-derivation d of A.

Now, denote Ri = B[f1, . . . , f̂i, . . . , fm]. For every Ri-derivation δ of A there

exists a K-derivation d of A such that δ(f) = d(f) for every f ∈ A ([21], Lemma
3.2). Then, by (∗), d(fi) ∈ Q, so δ(fi) = 0. Hence, fi belongs to (Ri)0 ∩ A – the
smallest ring of constants of any Ri-derivation of A, so there exist b, c ∈ Ri such
that b 6= 0 and fi = − c

b
. �
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Theorem 4.8. ([26], Theorem 3.6)
Let K be a UFD of characteristic p > 0. Let A = K[x1, . . . , xn], put B =
K[xp1, . . . , x

p
n]. Consider arbitrary polynomials f1, . . . , fm ∈ A, where m > 1, and

denote

Ri = B[f1, . . . , f̂i, . . . , fm]

for i = 1, . . . ,m, and, if m > 1,

Rij = B[f1, . . . , f̂i, . . . , f̂j , . . . , fm]

for i, j = 1, . . . ,m, such that i 6= j.

Then dgcd(f1, . . . , fm) is divisible by an irreducible polynomial g ∈ A if and only
if at least one of the following conditions holds:

(i) g 6∈ B and g2 | bfi + c for some i ∈ {1, . . . ,m} and b, c ∈ Ri such that g - b,

(ii) g ∈ B and g | bfi + c for some i ∈ {1, . . . ,m} and b, c ∈ Ri such that g - b,

(iii) g | b1fi + c1 and g | b2fj + c2 for some i, j ∈ {1, . . . ,m}, i 6= j, and
b1, b2, c1, c2 ∈ Rij such that g - b1 and g - b2.

Proof. (Sketch.)
(⇒) If dgcd(f1, . . . , fm) is divisible by an irreducible polynomial g ∈ A, then

jacf1,...,fmj1,...,jm
∈ (g) for every j1, . . . , jm ∈ {1, . . . , n}. Hence, by Theorem 4.7, bfi+c =

gh for some i ∈ {1, . . . ,m}, b, c ∈ Ri such that g - b, and h ∈ A.

The condition (i) holds if g 6∈ B and g | h, and the condition (ii) holds if g ∈ B,
so we assume that g 6∈ B and g - h. Applying, for arbitrary j1, . . . , jm ∈ {1, . . . , n},
the Jacobian derivation di defined by

di(f) = jac
f1,...,fi−1,f,fi+1,...,fm
j1,...,jm

,

we infer that g | jac
f1,...,fi−1,g,fi+1,...,fm
j1,...,jm

. Then the condition (∗) from the proof

of Theorem 4.7 holds for polynomials f1, . . . , fi−1, g, fi+1, . . . , fm, where (one can
show that) g - sj for some j 6= i, so since g = 0, we obtain that fj ∈ (Rij)0. Recall

that fi ∈ (Ri)0, but Ri = Rij [fj ], so fi ∈ (Rij)0, and then (iii) holds.

(⇐) If bfi+c = g2h for some irreducible polynomial g ∈ A\B, some h ∈ A and
b, c ∈ Ri such that g - b, then we apply the derivation di defined above, and obtain

that g | jacf1,...,fmj1,...,jm
for arbitrary j1, . . . , jm ∈ {1, . . . , n}, so g | dgcd(f1, . . . , fm).

We proceed similarly, if (ii) holds.

If g | b1fi + c1 and g | b2fj + c2 for some irreducible polynomial g, i 6= j and
b1, b2, c1, c2 ∈ Rij such that g - b1 and g - b2, then g | dgcd(b1fi + c1, b2fj + c2), so

g | dgcd(f1, . . . , b1fi + c1, . . . , b2fj + c2, . . . , fm)

by Lemma 1.5. Then we show that

dgcd(f1, . . . , b1fi + c1, . . . , b2fj + c2, . . . , fm)
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= b1b2 dgcd(f1, . . . , fi, . . . , fj , . . . , fm)

and obtain the conclusion: g | dgcd(f1, . . . , fm). �

Let us remark that the zero characteristic analog of Theorem 4.8 for m = n
([25], Theorem 4.1) is connected with a characterization of Keller maps and an
equivalent formulation of the Jacobian Conjecture.

5. A characterization of p-bases of rings of constants

A characterization of p-bases of the whole polynomial algebra k[x1, . . . , xn] was
obtained by Nousiainen in [39], see Niitsuma, [37] or [38].

Theorem 5.1. (Nousiainen)
Given polynomials f1, . . . , fn ∈ k[x1, . . . , xn], where k is a field of characteristic
p > 0, the following conditions are equivalent:

(1) there exist k-derivations d1, . . . , dn of k[x1, . . . , xn] such that di(fj) = δij (the
Kronecker delta) for i, j = 1, . . . , n,

(2) there exist k-derivations d1, . . . , dn of k[x1, . . . , xn] such that det(di(fj)) ∈
k \ {0},

(3) the Jacobian matrix

[
∂fi
∂xj

]
is invertible,

(4) k[x1, . . . , xn] = k[xp1, . . . , x
p
n, f1, . . . , fn],

(5) the polynomials f1, . . . , fn form a p-basis of k[x1, . . . , xn] over k[xp1, . . . , x
p
n].

Note that Lang and Mandal obtained in [32], Theorem 2.2, some other equivalent
conditions in terms of Jacobian derivations.

Nousiainen’s theorem is connected with the positive characteristic version of the
Jacobian Conjecture formulated by Adjamagbo ([1], see [7], 10.3.16, p. 261).

Conjecture 5.2. Let f1, . . . , fn ∈ Fp[x1, . . . , xn]. If jac(f1, . . . , fn) ∈ Fp \ {0} and
p does not divide the degree of the field extension Fp(f1, . . . , fn) ⊂ Fp(x1, . . . , xn),
then Fp[f1, . . . , fn] = Fp[x1, . . . , xn].

Theorem 5.3. (Adjamagbo, [1], see [7], 10.3.17, p. 261)
If the above conjecture is true for all n > 1 and all primes p, then the Jacobian
Conjecture is true.

Now we present a general theorem about p-bases of rings of constants of poly-
nomial derivations. In the case m = n it extends the Nousiainen’s theorem with
the condition (3) below.
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Theorem 5.4. ([26], Theorem 4.4)
Let K be a UFD of characteristic p > 0, let f1, . . . , fm ∈ K[x1, . . . , xn], where

m ∈ {1, . . . , n}. Denote: B = K[xp1, . . . , x
p
n], Ri = B[f1, . . . , f̂i, . . . , fm] for i =

1, . . . ,m, and Rij = B[f1, . . . , f̂i, . . . , f̂j , . . . , fm] for i, j = 1, . . . ,m, such that i 6=
j.

The following conditions are equivalent:

(1) dgcd(f1, . . . , fm) ∼ 1,

(2) the polynomials f1, . . . , fm form a p-basis of the ring of constants of some
K-derivation,

(3) the polynomial bfi + c is square-free and B-free for every i ∈ {1, . . . ,m} and
b, c ∈ Ri such that gcd(b, c) ∼ 1, and, if m > 1, then
gcd(b1fi+c1, b2fj+c2) ∼ 1 for every i, j ∈ {1, . . . ,m}, i 6= j, and b1, b2, c1, c2 ∈ Rij
such that gcd(b1, c1) ∼ 1 and gcd(b2, c2) ∼ 1.

Proof. (Sketch.)
(1) ⇒ (2) Assume that dgcd(f1, . . . , fm) ∼ 1. By Lemma 1.6, f1, . . . , fm are
p-independent over B. We will show that for every b ∈ B \ {0} and aα ∈ B,
0 6 α1, . . . , αm < p, the following holds:

(∗) if b |
∑

06α1,...,αm<p
aαf

α1
1 . . . fαmm , then b | aα for every α1, . . . , αm ∈ {0, . . . , p−

1}.

Denote by s the maximal sum α1+. . .+αm such that aα 6= 0. If s = 0, (∗) holds.
Assume that s > 0 and (∗) holds for s − 1. Let b |

∑
06α1,...,αm<p

aαf
α1
1 . . . fαmm .

Applying, for each i, the Jacobian derivation di defined by

di(f) = jac
f1,...,fi−1,f,fi+1,...,fm
j1,...,jm

,

we obtain that b |
∑

06α1,...,αm<p
αiaαf

α1
1 . . . fαi−1i . . . fαmm jacf1,...,fmj1,...,jm

. Then

b |
∑

06α1,...,αm<p

αiaαf
α1
1 . . . fαi−1i . . . fαmm ,

because gcd
(

jacf1,...,fmj1,...,jm
, j1, . . . , jm ∈ {1, . . . , n}

)
∼ 1, and it is enough to use the

induction hypotheses.

Now, observe that any element of the ring

CB(f1, . . . , fm) = B0[f1, . . . , fm] ∩A

is the form
∑

06α1,...,αm<p
aα
b f

α1
1 . . . fαmm , where b ∈ B \ {0}, aα ∈ B, so, by (∗), it

belongs to B[f1, . . . , fm].

(2)⇒ (3) Assume that f1, . . . , fm form a p-basis of the ring R = CB(f1, . . . , fm).
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If g2 | bfi + c for some i ∈ {1, . . . ,m}, b, c ∈ Ri such that gcd(b, c) ∼ 1, and a
noninvertible polynomial g, then one can show that the polynomial 1

gp · (bf + c)p−1

belongs to R and does not belong to B[f1, . . . , fm].

If g | bfi + c for some i ∈ {1, . . . ,m}, b, c ∈ Ri such that gcd(b, c) ∼ 1, and a

noninvertible polynomial g ∈ B, then bf+c
g ∈ R \B[f1, . . . , fm].

If g | b1fi+c1 and g | b2fj+c2 for some i, j ∈ {1, . . . ,m}, i 6= j, b1, b2, c1, c2 ∈ Rij
such that gcd(b1, c1) ∼ 1, gcd(b2, c2) ∼ 1 and a noninvertible polynomial g, then
1
gp · (b1fi + c1)p−1(b2fj + c2) ∈ R \B[f1, . . . , fm].

¬(1) ⇒ ¬(3) If g | dgcd(f1, . . . , fm) for irreducible polynomial g, then at least
one of the conditions (i), (ii), (iii) of Theorem 4.8 holds. Now, if bfi+c is divisible
by g or by g2, it is enough to take h – a product of g and all (if any) irreducible
factors of b, which do not divide c, and then bfi + c + hp remains being divisible
by g, resp. by g2, but gcd(b, c+ hp) ∼ 1. �

6. Closed polynomials and one-element p-bases

The properties of single generators of rings of constants were studied by many
authors.

Theorem 6.1. (Nowicki, Nagata, Ayad, Arzhantsev, Petravchuk)
Let k be a field, let f ∈ k[x1, . . . , xn] \ k. Denote by k the algebraic closure of k.
Consider the following conditions:

(1) k[f ] is the ring of constants of some k-derivation of k[x1, . . . , xn],

(2) k[f ] is integrally closed in k[x1, . . . , xn],

(3) k[f ] is a maximal element (with respect to inclusion) of the family {k[g]; g ∈
k[x1, . . . , xn]},

(4) for some c ∈ k the polynomial f + c is irreducible over k,

(5) for all but finitely many c ∈ k the polynomial f + c is irreducible over k.

a) If char k = 0, then the conditions (1) – (5) are equivalent.

b) If k is a perfect field, then the conditions (2) – (5) are equivalent.

c) For arbitrary field the conditions (2) and (3) are equivalent.

Nowicki and Nagata proved the equivalence of the conditions (1), (2) and (3)
in characteristic zero ([40], Theorem 2.1; [41], Proposition 5.2.1; [43], Lemma 3.1).
Ayad added the condition (4) in char k = 0 ([3], Théorème 8, Remarque), based on
the theorem of P loski ([47], see [48], 3.3, Corollary 1, p. 220), and observed that the
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equivalence (2) ⇔ (3) holds also for char k = p > 0. Arhzantsev and Petravchuk
([2], Theorem 1) considered the case of a perfect field and added the condition (5).

Note also that Nowicki and Nagata in [40] and [43] defined a closed polynomial
in characteristic zero as a polynomial f satisfying the condition (3) above.

Now, let k be a field of characteristic p > 0.

Consider the following families of subrings of k[x1, . . . , xn]:

A = {k[g]; g ∈ k[x1, . . . , xn]},

B = {k[xp1, . . . , x
p
n, g]; g ∈ k[x1, . . . , xn]},

C = {R ⊂ k[x1, . . . , xn] : k[xp1, . . . , x
p
n] ⊂ R, (R0 : k(xp1, . . . , x

p
n)) = p},

where (L : K) denotes the degree of a field extension K ⊂ L.

The family A plays its role in characteristic zero, the family B is a natural
positive characteristic analog, since rings of constants are k[xp1, . . . , x

p
n]-algebras.

The family C, however, has the property that its maximal elements are rings of
constants (see Theorem 2.5).

Note that we do not have any implication, in general, between the maximality of
respective rings in A and in B ([23], Examples 2.1, 2.2), and even the maximality
in C does not imply, in general, the maximality in A. Moreover, the maximality in
B does not imply, in general, the maximality in C ([23], Example 2.3). The only
implication is that if an element of B is maximal in C, then it is also maximal in B.

Example 6.2. a) Put f1 = xp1x2. Then the ring k[f1] is maximal in A, and the
ring k[xp1, . . . , x

p
n, f1] is not maximal in B.

b) Put f2 = x1 + xp1. Then the ring k[xp1, . . . , x
p
n, f2] is maximal in B and in C,

and the ring k[f2] is not maximal in A.

c) Put f3 = xp−11 x2. Then the ring k[xp1, . . . , x
p
n, f3] is maximal in B, and is not

maximal in C.

Now we are going to analyze a characterization of single generators of rings
of constants. In order to understand better the condition (3) in Theorem 6.4
below, observe the following positive characteristic analog of a known property of
polynomials. Recall that k denotes a field of characteristic p > 0.

Lemma 6.3. Consider a polynomial f ∈ k[x1, . . . , xn] \ k[xp1, . . . , x
p
n]. Then

gcd

(
f,

∂f

∂x1
, . . . ,

∂f

∂xn

)
∼ 1

if and only if f is square-free and p-free.

From Theorem 5.4 in the case of m = 1 we have the following.
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Theorem 6.4. ([21], Theorem 4.2)
Let f ∈ k[x1, . . . , xn] \ k[xp1, . . . , x

p
n]. The following conditions are equivalent:

(1) gcd
(
∂f
∂x1

, . . . , ∂f∂xn

)
∼ 1,

(2) k[xp1, . . . , x
p
n, f ] is the ring of constants of a k-derivation,

(3) for every b, c ∈ k[xp1, . . . , x
p
n] such that gcd(b, c) ∼ 1, the polynomial bf + c is

square-free and p-free.

It is easy to see that

gcd

(
∂f

∂x1
, . . . ,

∂f

∂xn

)
| d(f)

for every k-derivation d of k[x1, . . . , xn] and a polynomial f ∈ k[x1, . . . , xn] \
k[xp1, . . . , x

p
n]. If d(f) = cf for some c ∈ k \ {0}, then

gcd

(
f,

∂f

∂x1
, . . . ,

∂f

∂xn

)
∼ gcd

(
∂f

∂x1
, . . . ,

∂f

∂xn

)
.

Hence, we obtain the following fact.

Corollary 6.5. Let f ∈ k[x1, . . . , xn] \ k[xp1, . . . , x
p
n]. Assume that d(f) = cf for

some c ∈ k \ {0}. Then k[xp1, . . . , x
p
n, f ] is a ring of constants of a k-derivation if

and only if the polynomial f is square-free and p-free.

Finally, observe a list of monomial derivations in two variables with one-element
p-bases of rings of constants. The motivation was connected with the paper of
Okuda ([45]), who adapted van den Essen’s algorithm ([6], see [7], 1.4, p. 37) to
positive characteristic. Recall that k denotes a field of characteristic p > 0.

Example 6.6. ([18], Example 13)
Let m, n, r, s be nonnegative integers, m,n 6≡ −1 (mod p), and let α, β ∈ k \ {0}.
Consider the following examples:{
d1(x) = αxrp

d1(y) = βysp,
k[x, y]d1 = k[xp, yp, βxysp − αxrpy],

{
d2(x) = αx

d2(y) = −αy, k[x, y]d2 = k[xp, yp, xy],

{
d3(x) = αyn

d3(y) = βxm,
k[x, y]d3 = k[xp, yp, (n+ 1)βxm+1 − (m+ 1)αyn+1],

{
d4(x) = αxrpyn

d4(y) = β,
k[x, y]d4 = k[xp, yp, (n+ 1)βx− αxrpyn+1],
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{
d5(x) = 0

d5(y) = β,
k[x, y]d5 = k[xp, yp, x],

{
d6(x) = α

d6(y) = βxmysp,
k[x, y]d6 = k[xp, yp, βxm+1ysp − (m+ 1)αy],

{
d7(x) = α

d7(y) = 0,
k[x, y]d7 = k[xp, yp, y].

Theorem 6.7. ([18], Theorem 16)
Let d be a monomial k-derivation of k[x, y]:{

d(x) = αxtyu

d(y) = βxvyw,

where α, β ∈ k. Then

k[x, y]d = k[xp, yp, f ]

for some f ∈ k[x, y] \ k[xp, yp] if and only if d = xjyl · di, where j, l > 0, i ∈
{1, 2, . . . , 7}, and the derivation di is as in Example 6.6.

7. Eigenvector p-bases

Recall the Moore’s determinant (see, for example, [14], Corollary 1.3.7, p. 8).

Lemma 7.1. Let k be a field of characteristic p > 0, let c1, . . . , cm ∈ k, m > 1.
Then ∣∣∣∣∣∣∣∣∣∣

c1 cp1 · · · c
pm−1

1

c2 cp2 · · · c
pm−1

2
...

...
...

cm cpm · · · cp
m−1

m

∣∣∣∣∣∣∣∣∣∣
=

m∏
i=1

∏
α1,...,αi−1∈Fp

(α1c1 + . . .+ αi−1ci−1 + ci).

Recall also a notation

dgcd(f1, . . . , fm) = gcd
(

jacf1,...,fmj1,...,jm
, j1, . . . , jm ∈ {1, . . . , n}

)
.

The following theorem, taking into consideration Theorem 5.4, is motivated by
Corollary 6.5.

Theorem 7.2. ([24], Theorem 3.2)
Let k be a field of characteristic p > 0, consider polynomials f1, . . . , fm ∈ k[x1, . . . ,
xn] \ {0}, where m > 1. Assume that f1, . . . , fm are eigenvectors of some k-
derivation of k[x1, . . . , xn] and their eigenvalues are linearly independent over the
prime subfield Fp. Then f1, . . . , fm are p-independent over k[xp1, . . . , x

p
n], and the

following conditions are equivalent:

(1) k[xp1, . . . , x
p
n, f1, . . . , fm] is the ring of constants of some k-derivation,
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(2) f1, . . . , fm are pairwise coprime, square-free and p-free,

(3) dgcd(f1, . . . , fm) ∼ 1,

(4) dgcd(fi1 , fi2) ∼ 1 for every i1 6= i2.

Proof. (Sketch.)
Let ∆ be a k-derivation such that ∆(fi) = cifi, where ci ∈ k for i = 1, . . . ,m, and

c1, . . . , cm are linearly independent over Fp. Consider k-derivations dj = ∆pj−1

,
j = 1, . . . ,m.

Consider the matrix

M =


d1(f1) d2(f1) · · · dm(f1)

d1(f2) d2(f2) · · · dm(f2)
...

...
...

d1(fm) d2(fm) · · · dm(fm)

 .

We have dj(fi) = cp
j−1

i fi for i, j ∈ {1, . . . ,m}, so detM = cf1 . . . fm, where c is
the value of the Moore’s determinant from Lemma 7.1, c ∈ k. Since c1, . . . , cm are
linearly independent over Fp, we have c 6= 0 and detM 6= 0.

On the other hand, one can show that

detM =
∑

j1,...,jm∈{1,...,n}

d1(xj1) . . . dm(xjm) jacf1,...,fmj1,...,jm
,

so f1, . . . , fm are p-independent over k[xp1, . . . , x
p
n] by Lemma 1.6. Moreover, we

obtain that

dgcd(f1, . . . , fm) | f1 . . . fm.

¬(3) ⇒ ¬(2) Assume that dgcd(f1, . . . , fm) is divisible by an irreducible poly-
nomial g ∈ k[x1, . . . , xn]. Then g | fi for some i.

Now we change in the matrix M the derivation dm to d′m = ∂
∂xl

, where l ∈
{1, . . . , n}, and expand its determinant with respect to the last column. Again,
using Lemma 7.1, we obtain the divisibility

dgcd(f1, . . . , fm) |
m∑
j=1

(−1)m+jcjf1 . . . fj−1
∂fj
∂xl

fj+1 . . . fm,

where cj ∈ k \ {0}. Hence, g | f1 . . . fi−1 ∂fi∂xl
fi+1 . . . fm, so g | fj for some j 6= i or

g | ∂fi∂xl
for l = 1, . . . , n, and then, by Lemma 4.5, g2 | fi or g ∈ k[xp1, . . . , x

p
n].

(4)⇒ (2) For every i1 6= i2, if dgcd(fi1 , fi2) ∼ 1, then fi1 and fi2 are coprime,
square-free and p-free by the implication (1)⇒ (3) of Theorem 5.4 (for m = 2).
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The implications (1) ⇒ (2) and (3) ⇒ (1) follow directly from Theorem 5.4.
The implication (3)⇒ (4) follows from Lemma 1.5. �

8. Rings of constants of homogeneous derivations

The motivation to describe rings of constants of homogeneous derivations being
polynomial algebras, comes from the following theorem.

Theorem 8.1. (Ganong, Daigle)
Let k be a field of characteristic p > 0, let A and R be polynomial k-algebras in two
variables such that Ap $ R $ A. Then there exist x, y ∈ A such that A = k[x, y]
and R = k[x, yp].

The above theorem was proved by Ganong in [11], in the case of algebraically
closed field k and then by Daigle in [4] in the general case. Note also that Kimura
and Niitsuma in [29] proved that, in the case of a perfect field k of characteristic
p > 0, under these assumptions, A has a p-basis over R and R has a p-basis over
Ap.

Nowicki and the author generalized the above theorem to n variables in the
homogeneous case.

Theorem 8.2. ([28], Theorem 3.1, [27], Theorem 2.2)
Let p be a prime number. Let k be a field (of arbitrary characteristic) and let
f1, . . . , fn ∈ k[x1, . . . , xn] be homogeneous polynomials such that

k[xp1, . . . , x
p
n] ⊂ k[f1, . . . , fn].

a) If char k 6= p, then

k[f1, . . . , fn] = k[xl11 , . . . , x
ln
n ]

for some l1, . . . , ln ∈ {1, p}.

b) If char k = p, then

k[f1, . . . , fn] = k[y1, . . . , ym, y
p
m+1, . . . , y

p
n]

for some m ∈ {0, 1, . . . , n} and some k-linear basis y1, . . . , yn of 〈x1, . . . , xn〉.

For proofs, we refer to two articles joint with Nowicki. The article [27] contains
the proof of the above theorem. The article [28] contains a theorem about (polyno-
mial graded) subalgebras containing k[xp11 , . . . , x

pn
n ], where p1, . . . , pn are arbitrary

prime numbers ([28], Theorem 2.1).

A k-derivation d of k[x1, . . . , xn] is called homogeneous of degree r if d(xi),
if nonzero, is a homogeneous polynomial of degree r + 1 for i = 1, . . . , n. In
this case, for every homogeneous polynomial f ∈ k[x1, . . . , xn] of degree s, the
polynomial d(f), if nonzero, is homogeneous of degree r+s. The ring of constants of
a homogeneous derivation is a graded subalgebra. As a consequence of Theorem 8.2
we obtain.
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Theorem 8.3. ([28], Theorem 4.1)
Let d be a homogeneous k-derivation of k[x1, . . . , xn], where k is a field of charac-
teristic p > 0. Then k[x1, . . . , xn]d is a polynomial k-algebra if and only if

(∗) k[x1, . . . , xn]d = k[y1, . . . , ym, y
p
m+1, . . . , y

p
n]

for some m ∈ {0, 1, . . . , n} and some k-linear basis y1, . . . , yn of 〈x1, . . . , xn〉.

A homogeneous k-derivation of k[x1, . . . , xn] of degree 0 is called linear. In this
case a restriction of d to 〈x1, . . . , xn〉 is a k-linear endomorphism. The author
obtained in [20], Theorem 3.2, a description of linear derivations with rings of
constants of the form (∗) above. Finally, we have the following.

Theorem 8.4. ([28], Corollary 4.2)
Let d be a linear derivation of k[x1, . . . , xn], where k is a field of characteristic
p > 0. Then k[x1, . . . , xn]d is a polynomial k-algebra if and only if the Jordan
matrix of the endomorphism d|〈x1,...,xn〉 has one of the following forms:

ρ1 0
. . .

0 ρn

 ,


[
ρ1 1

0 ρ1

]
0

ρ2
. . .

0 ρn−1

 ,


ρ1 1 0

0 ρ1 1

0 0 ρ1

 0

ρ2
. . .

0 ρn−2


︸ ︷︷ ︸

only p = 2

,

where nonzero ρi are linearly independent over the prime subfield Fp.
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