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1. Introduction

From the end of the 1990s, Functional Data Analysis (FDA) has become increas-
ingly popular and is now one of the major research fields in statistics. In FDA, the
theory and practice of statistical methods are studied in situations where the avail-
able data are functions. Such data appear and are analized in different fields of ap-
plications, including economics (e.g., the GDP per capita, Gorecki, Lazniewska,
2013; the level of income, Jaworski, Pietrzykowski, 2014), meteorology (e.g., the
temperatures, pressure, etc., in a given location, Collazos, Dias, Zambom, 2016),
and many others (see, for example, Ramsay, Silverman, 2002, where the illustration
of certain FDA methods through the study of specific case studies with real data
is given). Particular problems of FDA considered in the literature are as follows:
analysis of variance (Zhang, 2013; Gorecki, Smaga, 2015; 2017), canonical cor-
relation analysis (Krzysko, Waszak, 2013), classification problem (James, Hastie,
2001; Gorecki, Krzysko, Wotynski, 2015), cluster analysis (Giacofci et al., 2013),
nonparametric analysis (Ferraty, Vieu, 2006), outlier detection (Febrero-Bande,
Galeano, Gonzalez-Manteiga, 2007; 2008; Hubert, Rousseeuw, Segaert, 2015),
principal component analysis (Ramsay, Silverman, 2005; Kayano, Konishi, 2009;
Horvath, Kokoszka, 2012), regression analysis (Chiou, Miiller, Wang, 2004; Chiou,
Yang, Chen, 2016; Matsui, Konishi 2011; Collazos, Dias, Zambom, 2016).

In this paper, we consider one of the main problems of FDA, namely, the bina-
ry classification problem of multi-dimensional functional data. Recently, Gorecki,
Krzysko, Wotynski (2015) studied this problem by using multivariate functional
regression techniques, e.g., functional logistic regression model, which performed
best on real data examples. It is worth noting that for estimation of unknown pa-
rameters, they used standard maximum likelihood estimation method. However,
in the presence of outliers, this method may behave poorly, which probably ad-
versely affects the classification process. In this article, we propose an extension
of the method of Gorecki, Krzysko, Wotynski (2015). More precisely, we study
a more general representation of the functional logistic regression model and use
the robust estimation methods in logistic regression. Numerical results indicate
that the new classification rules behave promisingly and may be reasonable com-
petitors to existing methods. The binary classification rules can be extended for
multi-label classification problems by using existing techniques (see, for instance,
Krzysko, Wotynski, 2009).

The rest of the present paper is organized as follows. In Section 2, we intro-
duce a binary classification problem for multivariate functional data. Section 3
contains the construction of the functional logistic regression model and its re-ex-
pression based on the basis functions representation of coefficients and explana-
tory variables. The classification rule based on this model is also presented there.
In Section 4, we review robust estimation methods in logistic regression model.
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The accuracy of the proposed methods and their comparison with existing ones
is demonstrated using two real functional data sets in Section 5. Section 6 con-
cludes the article.

2. Binary classification problem for functional data

In binary classification problem, we have to determine a procedure assigning a giv-
en object to one of two populations. Classically, the objects are characterized
by p scalar features, and then the observations are p-dimensional random vectors.
In functional data analysis, the features are given by functions observed at pos-
sibly different time points. Below, we precisely formulate the problem of binary
classification for multi-dimensional functional data.

Assume that we have the learning sample {(x(?), Y): i = 1, ..., N}, where
x,(0)=(x,®, ..., x, (0) are p-dimensional vectors of random functions describing
the objects, and Y, € {0, 1} are the labels of classes to which the objects belong. The
functions x,@),i=1,..,Nare supposed to belong to the Hilbert space of square
integrable functions over 7; = [aj, bj], a, bj € R,j=1, ..., p. This space will be de-
noted by L(T),j=1,...p.

To solve the classification problem described above, the Bayes rule can be used.
This rule assigns x to class Y= k with the maximum posterior probability given x,
denoted by P(Y = k|x), k = 0, 1. The Bayesian classifier then takes the form (see,
for example, Krzysko et al., 2008):

@ ={y i S h o n
\ =1|x) < P(Y = 0]x).

In classical classification problem, it is well known that P(Y = 1|x) = E(Y|x) = (x),
where 7(x) is the regression function of the random variable Y with respect to the
random vector X. Then the classifier (1) can be rewritten as follows:

1, r(x)=1/2,

d(x) = {n, r(x) < 1/2. @

Different regression functions as well as their estimates are able to be used
in classifier (2), e.g., linear or logistic regression function.

Gorecki, Krzysko, Wotyniski (2015) applied the above idea to the classification
problem for multi-dimensional functional data. They used four functional regres-
sion methods as r(x), i.e., multivariate linear regression, logistic regression, local
linear regression smoothers and Nadaraya-Watson kernel estimation method. The
best numerical results were obtained by applying the functional logistic regression
model. Therefore, we consider this method and propose possible improvement of it
in the next Sections.
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3. Functional logistic regression model

In this Section, we present the functional logistic regression model in more gen-
eral form, as in Gorecki, Krzysko, Wotynski (2015). Using this model, we then
propose the classification rule for functional data.

Let us introduce the functional logistic regression model by using the assump-
tions and notation of Section 2. The variables Y, i = 1, ..., N are assumed to be
independent Bernoulli response variables. The components of the vector x (¢) are
considered as explanatory functional variables. Let observations follow the func-
tional logistic regression model of the form:

exp [ED+E?:Lfrjx[j(r}ﬁj(r}:ir}

P(Y. =1|x.) = :
'l: i I!j 1+exp|:EB+E?:Lf-r;_x[j(r}ﬁjl:r}:ir}

3)

where £ is the intercept and ,b’j(t) eL(T),j=1,...,pare the unknown coefficient
functions.

The model (3) can be rewritten by using the basis functions representation
as described below. Since x,(2), ﬁj(t) eL(T).j=1,....p, these functions can be ap-
proximated arbitrarily well by a linear combination of a sufficiently large number
of basis functions {(p jm}:: L of Ly (T]) (Ramsay, Silverman, 2005). Thus, assume
that the functions xl./.(t) and ﬂj(t) can be represented as follows:

B; l;
xij(t) = X, Wijm®Pjm(t) = wi;@;(2),

ﬂ](t) Zm 1 ]m(p]m(t) bjl'(pj(t)rt €T,

4)

where
i=1,. . Nj=1,..,p,wj= (Wijp ...,wiij) and b; = (bjl, ...,bjB].)
are the vectors of unknown coefficients, and
@5(®) = (@.(), -, 9ja, (D))

are the vectors of basis functions. For eachj =1, ..., p, the vectors W, can
be estimated by using the functional observations xy(t) i=1, N and
the least squares method (see Krzysko, Waszak, 2013). The truncatwn
parameters B, and the basis functions ¢ may be chosen in such a way
to improve the solution of the problem under consideration, e.g., reduce
the classification error of a particular classifier. By (4), the model (3) can
be re-expressed as follows:
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exp(ﬁo +38_, [ T].wi’ @i (Db jdt)

i i 1+exp(ﬁo+25’=1 ijw;j¢j(t)¢;(t)bjat)

eXp(B°+25)=1wi’jij<Pj(t)<P}(t)dtbj)

eXp(BO+Z§)=1W{jl(p]b])

1+exp(ﬁ0+25’=1w{j]¢jbj)

_ exp(Bo+w;b)
"~ 1+exp(Bo+w/b)’

where i =1, ..., N, Jy, = ij(pj(t)<p}(t)dt,j =1, ..., p, W = (Wil - Wiplg,)
and b’ = (by, ..., b;,?x.) The matrix J_ is the B, x B, cross product matrix correspon-
ding to basis {(p jm}mzl, j=1, ..., p!For an orthonormal basis (e.g., Fourier basis),
this matrix is the identity matrix.!

Thus, we re-expressed the functional logistic regression model (3) as the logis-
tic regression model (5), where (53, b")"is the (1 + E? =, B;) X 1vector of unknown
parameters. We can use this relationship for estimation problem in functional logis-
tic regression model (3) by using estimation methods for the logistic regression
model (5). Let (£, b")’ be the estimator of (B, b’)’ obtained under the model (5).
Thus we have the following estimator of the regression function:

- __ exp [ﬁn-l-wri::l 6

T‘{X] o 1+Erp[§n+wri::| ' ( )

By (2) and (6), we obtain the following classifier for the binary classification
problem for functional data presented in Section 2:

Exp[ﬁn-l-wri::l
_—— =
PR e e )
x exp(B,+w'h) = 1/2
14exp| B 4+w'h) /2.

¥

Now, we have to take into account the estimation problem in the logistic re-
gression model (5). This problem is discussed in the next Section.

! For a non-orthonormal basis (e.g., B-spline basis), it can be approximated, for example,
by using the function inprod from the R package fda (Ramsay, Hooker, Graves, 2009; Ramsay
et al., 2014; R Core Team, 2017).
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4. Robust estimation in logistic regression

For estimating the vector of parameters y = (8, b’)" in the logistic regression mod-
el (§), the maximum likelihood estimator (MLE) is classically used, which is the
most efficient estimator (asymptotically). It is defined as

Fape = arg max,In L(y;w,, ¥, i = 1,...,N) =

= arg min, X', d((L,w))y: ¥;),

where In denotes the natural logarithm,

®)

InL(y;w,¥,i=1,..,N) =X, I(y;w.,Y)

i i

is the conditional In-likelihood function,
EIF'[[ l..wlr :|‘Ir']'

[ ee(awy) P S S
z{v;wﬂ’ej‘}?'“(um[u,w;:w})”l W (Hm(“«wﬁ'ﬂ)

and d(( 1,w)y; Y;) = —I(y; w,, ;) is the deviance component. To find ¥suve,
one has to solve the likelihood score equation

E-‘EF[[ J...‘i'l-’l-r :|‘Il']'

vy - —— = 9
::1(1’: Hm[[l’w”?})(l,w:] 0. )

The equations (9) can be solved iteratively by using, for example, the New-
ton-Raphson method.

Unfortunately, the MLE may behave very poorly in presence of outliers.
In functional data, the outliers may also appear, and in particular they may have
a negative effect on performance of the classifier (7), when the MLE is used to es-
timate the parameters of the model (5). To avoid possible drawback of the MLE,
it seems to be reasonable to consider robust estimators in classifier (7). For ex-
cellent overview and comparison of robust estimation in the logistic regression,
we refer to the survey paper by Ahmad, Ramli, Midi (2010). In the remainder
of this Section, we describe ideas of robust estimation and certain robust estima-
tors in the logistic regression, which will be compared to the MLE in numerical
experiments of Section 5.

The first alternative approach to the MLE is based on weighting the likeli-
hood score function in equation (9), i.e., a robust estimator is the solution of

N

Z o exp((w)y)

= E 1+exp((l,w{]v)

- c{wi,(l,w!.':]'y:] {lrwir]rmf =0,
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where ¢(w;, (1,w,)y) is a debiasing factor, i.e., a correction function defi-
ned to ensure consistency, and «w, are the weights depending on w,, Y, or both.
When the weights depend only on the design, i.e., w, = w(w,, (1,w;)y), and
c(w,, (1,w;)y) = 0, the estimator obtained in such a way is an MLE computed
with weights and is called MALLOWS estimator (Mallows, 1975). For example,
the robust Mahalanobis distance of the regressors is a particular weight function
o, i.e., [(w, — w)'S$™(w, — w)]"/% where W and S are the robust estimators of the
center and scatter matrix of the regressors. If the weights depend on the regressors
and the response, i.e., @; = w(w;, (1, w;)y,¥,), the estimators are in the Schwep-
pe class, and they are also known as the conditionally unbiased bounded influence
function (CUBIF) estimator (Kiinsch, Stefanski, Carroll, 1989). In such weights,
the differences ¥, — exp((1,w;)y)/[1 + exp((1, w!)y)] are usually used.

The other alternative robust approach is based on modification of the func-
tion d in (8). Bianco and Yohai (1996) constructed a consistent (BY') estimator de-
fined by

Ty = argming T2 [p (d( L)y 7)) 4
+6G (F(( 1,w;]v)] +G (1 - F({l,w;]v))],

(10)

where

pl(x) = (x —x* /(2 _ () + (c/2) ] o) (),

¢ is a tuning parameter,

G(x) = fxp'{—ln{u]]du, F(x) = exp(x)/[1+ exp(x)].

and / stands for the usual indicator function on the set 4 (/ (x) =1 ifx € 4 and
0 otherwise). In (10),

G (F(( warj’i')) +G (1 - F((lr w:'r]Y))

is a bias correction term. Bianco and Yohai (1996) also stressed that other
choices of the bounded function p are possible. To reduce the influence of out-
liers in the regressor space, Croux and Haesbroeck (2003) proposed to include
the weights in (10). The resulting weighted BY (WBY) estimator is given
by the formula

Ywey = arg min, Xt o [P (d(( Lw;)y; }:)) TG (F((l,wi'jy)) +
+6(1-F((Lw)y)) - 6(1)],
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where for instance, w; = I{_., 2 n.q:s]{(RMDi]:] , Xmoars is the 0.975-quantile
of the central chi-squared distribution with m = Z?:l B; degrees of freedom, and
RMD,; is the robust Mahalanobis distance obtained by using the minimum cova-
riance determinant estimator (see Rousseeuw, 1985, and Section 4 of Croux, Ha-
esbroeck, 2003, for description and more details). Since the weights depend sole-
ly on the regressors, the WBY estimator remains consistent without any further
distribution assumptions. However, the weights used may be too restrictive, resul-
ting in a loss of efficiency of this estimator.

The MLE and four methods of robust estimation in logistic regression model
are compared in the next Section in terms of performance of the classifier (7) for
functional data.

5. Numerical experiments

In order to test the performance of the classifier (7) described in Section 3, we con-
ducted computational experiments on real functional data sets?>. The problem
of interest is to compare the behavior of this classification rule based on differ-
ent methods of parameter estimation. More precisely, we consider the MLE and
its four robust competitors, i.e., the MALLOWS, CUBIF, BY and WBY estima-
tors, described briefly in Section 4°. In this Section, we present the classification
results for only two real data sets, since for the other ones the conclusions of the
results were very similar.

The first data set under consideration is the Canadian weather data set (see
Figure 1), commonly used in the literature and available in the R package fda
(Ramsay, Hooker, Graves, 2009; Ramsay et al., 2014). In this data set, the daily
temperature and precipitation records of 35 Canadian weather stations averaged
over 1960 to 1994 (365 days) are included. Thus, this data set contains 35 two-di-
mensional discrete functional observations observed on 350 design time points.
These observations are assigned to one of two groups in a natural way. The first
(resp. second) group consists of 5 Northern (resp. 30 Eastern and Western) weath-
er stations located at higher latitudes (resp. at lower latitudes than these from the
first group).

2 It is worth noting that the outlying observations are present in all functional data sets con-
sidered. This was checked by the functional outlier detection method of Febrero-Bande, Galeano,
Gonzalez-Manteiga, (2007; 2008) implemented in the function outliers.depth.trim() avail-
able in the R package fda.usc (Febrero-Bande, Oviedo de la Fuente, 2012).

3 The numerical experiments were performed in the R programming language (R Core Team,
2017). In this program, the implementations of the estimators in the functions glm, glmRob and
glmrob from the packages stats, robust and robustbase, respectively, were used (Wang et al.,
2014; Maechler et al., 2016).
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As the second data set, we consider the ECG data set originated from Olsze-
wski (2001) and investigated by Gorecki, Krzysko, Wotynski (2015) (see Figure 2).
In this data set, two electrodes are used to collect data during one heartbeat. Each
of 200 heartbeats is described by a two-dimensional discrete functional observa-
tion, and it is assigned to normal or abnormal group. Abnormal heartbeats are rep-
resentative of a cardiac pathology, which is known as supraventricular premature
beat. The normal (resp. abnormal) group consists of 133 (resp. 67) observations,
which were observed at different design time points. For this reason, both discrete
functional variables of this data set were extended to the same length of the longest
one by using the method of Rodriguez, Alonso, Maestro (2005). The final common
number of design points is 152.

Temperature - Eastern and Western Stations Precipitation - Eastern and Western Stations

Temperature - Northern Stations Precipitation - Northern Stations

Figure 1. Canadian weather data

Source: the authors'research

Classifying the observations in both data sets is the binary classification prob-
lem for multi-dimensional functional data. The classifier (7) based on estimation
methods described above is applied to this problem. The basis functions representa-
tion (4) of the observations was obtained by using the orthonormal Fourier basis
and the least squares estimation method (see, for example, Krzysko, Waszak 2013).
For simplicity, equal truncation parameters for all variables were considered, i.e.,
B, = B, = B. More precisely, we only present the results for B=3, 5, ..., 13 and B=3,
5, ..., 81 for the Canadian weather and ECG data, respectively, since for greater val-
ues of B the classification error of all methods was very high (There was probably
too many variables in the model (5) to obtain sensible estimation). Odd values of B
are dictated by implementation of the Fourier basis in the R package fda (Ramsay,
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Hooker, Graves, 2009; Ramsay et al., 2014), which we used. Unfortunately, due to the
low number of observations, the WBY estimator could not be used for the Canadian
weather data set. This is to illustrate the limitation of the new methods, i.e., more ob-
servations may be needed to conduct the robust methods than for standard one.

Firstvariable- abnorma Second variable - abnormal

Figure 2. ECG data

Source: the authors'research

The 10-fold cross-validation method was used to calculate the classification error
rates of the classifier (7) based on the MLE, MALLOWS, CUBIF, BY and WBY es-
timators. The results are depicted in Figures 3 and 4 for different values of truncation
parameter B. They suggest that both functional data sets are quite difficult to recog-
nize. Nevertheless, we can observe that the classifier (7) based on selected estimation
techniques does not perform equally well. The robust estimators work at least as good
as or even better than the MLE for most values of truncation parameter B. However,
there is no method, which is superior in all situations. For different values of trunca-
tion parameter B, different estimation methods may classify best, e.g., for the ECG
data and B =59, the BY estimator works best, while for B = 61, the WBY one. For the
Canadian weather data, the smallest 10-fold cross-validation error rate was achieved
by the CUBIF estimator for B = 5, while for the ECG data, by the MALLOWS one
for B = 33, 35. Therefore, for a given data set, the classifier (7) based on estimation
methods under consideration as well as different bases and truncation parameters
may be examined to select the method giving the smallest classification error.
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6. Conclusions

We proposed the classification rule based on the functional logistic regression mod-
el with robust estimation methods of unknown parameters which leads to a nov-
el solution of the classification problem of multivariate functional data. Numerical
experiments for two real functional data sets indicate that the new methods usually
work at least on par with the procedure of Gorecki, Krzysko, Wotynski (2015) and
may be superior to it, especially in the presence of outlying observations. The pro-
posed classifier is generic in nature, e.g., other choices of robust estimation meth-
ods in logistic regression model are also possible. The new classification rule can
also be constructed by using non-orthogonal bases in contrast to that of Gorecki,
Krzysko, Wotynski (2015). The appropriate choice of robust estimation method, ba-
sis functions, etc., should result in better performance of the proposed methods.

Canadian Weather

40

30

20

10

10CV error rate

- X= MLE — ® — MALLOWS --&--CUBIF —&—BY

Figure 3. 10-fold cross-validation error rates (as percentages) for different values of truncation parameter
B by using classifier (7) based on the MLE, MALLOWS, CUBIF and BY estimators for Canadian weather data

Source: the authors'research

ECG
35

30
25

20

10CV error rate

15

10
3 5 7 9111315171921232527293133353739414345474951535557596163656769717375777981

B
- ¥= MLE - B - MALLOWS --&--CUBIF —&—BY ---4#--- WBY

Figure 4. 10-fold cross-validation error rates (as percentages) for different values of truncation parameter
B by using classifier (7) based on the MLE, MALLOWS, CUBIF, BY and WBY estimators for ECG data

Source: the authors'research
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Zastosowanie odpornej regresji logistycznej do klasyfikacji wielowymiarowych danych
funkcjonalnych

Streszczenie: W niniejszym artykule rozwazany jest problem dwuetykietowej klasyfikacji wielowy-
miarowych danych funkcjonalnych. Zaproponowane rozwiazanie tego problemu oparto na tech-
nikach regresyjnych i modelu regresji logistycznej dla danych funkcjonalnych. Model ten zostat
przeksztatcony do szczegdlnego modelu regresji logistycznej za pomoca rozwiniecia (bedacych
funkcjami) wspotczynnikdw regresji i zmiennych objasniajacych w bazie funkcyjnej. Na podstawie
tego modelu skonstruowana zostata reguta klasyfikacyjna. W przypadku wystepowania obserwadji
odstajacych rozwazane sa rowniez metody odpornej estymacji nieznanych parametréw. Ekspery-
menty numeryczne sugeruja, ze proponowane metody moga z powodzeniem by¢ wykorzystane
w praktycznych zagadnieniach.

Stowa kluczowe: analiza regresji dla danych funkcjonalnych, estymacja odporna, model regresji lo-
gistycznej, rozwiniecie funkgji w bazie funkcyjnej, wielowymiarowe dane funkcjonalne, zagadnienie
klasyfikagji
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