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14.1 Introduction

Notation and terminology used in this paper are entirely adopted from Part I of
this study [1].

We begin with the following lemma which gives the combinatoric charac-
terization of divergent permutations used throughout the current paper.

Lemma 14.1. If p ∈ D then, for any k,n ∈ N, there exists an interval I such
that

(i) I > k and p(I)> k,
(ii) the set p(I) is a union of at least n MSI,
(iii) the set p(I) contains an interval J having the cardinality ≥ n.

Proof. Let k,n ∈ N. Let us choose some t ∈ N such that

(1) p(T )> k,

(2) p−1 ([min p(T ),+∞))> k,

where T := [t,+∞).
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Since p ∈D then there exists an interval U∗ ⊂ N such that the set p(U∗) is
a union of at least (t−1+n(2n−1)) MSI. Hence, the set p(U) is a union of
at least n(2n−1) MSI, where U := T ∩U∗.

Suppose that the set p(U) does not contain any interval having the cardinal-
ity ≥ n. Then there exists an interval I satisfying the conditions:

(3) minU = min I,
(4) the set p(I) includes an interval having the cardinality ≥ n,
(5) for any proper subinterval J of the interval I, if U ⊂ J then the set p(J)

does not contain any interval of the cardinality ≥ n.

Notice that the set p(I) includes precisely one interval having the cardinality
≥ n. At worst, this interval could be constructed inserting a natural number
between two intervals, both having the cardinality (n−1). Hence, any interval
contained in p(I) has the cardinality ≤ 2n−1. On the other hand, we have

card p(I)> card p(U)≥ n(2n−1).

This clearly implies that the set p(I) is a union of at least n MSI. Moreover,
we obtain

I ⊂ T ⊂ p−1([min p(T ),+∞))> (by (2)) > k

and

p(I)≥min p(T )> (by (1)) > k,

i.e. I > k and p(I)> k. So, I is the desired interval which terminates the proof.
ut

Remark 14.1. There exists a permutation p ∈D such that, for any interval I,
the set p(I) contains at most one interval J having the cardinality > 1 (see
Example 1.3 in Part I).

Remark 14.2. More subtle, than the one given in Lemma 14.1, combinatoric
characterizations of the divergent permutations are given in papers [2] and [3].

14.2 The description of the families A◦B for A,B= CC, CD, DC

or DD

In this section three main theorems of this study will be presented.
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Theorem 14.1. The product DC◦DC is equal to DC.

Proof. Let p,q ∈DC. Then

p−1,q−1 ∈ C and (pq)−1 = q−1 p−1 ∈ C

because C is a semigroup. Suppose that pq ∈ C. Then also

(pq)q−1 = p ∈ C,

which is impossible. So pq ∈DC and the inclusion below holds true

DC◦DC⊂DC.

Now let p ∈ DC. We show that there exist permutations p1, p2 ∈ DC such
that p2 p1 = p. Let us start with choosing two sequences Ik and Jk, k ∈ N, of
intervals of N, satisfying, for every k ∈ N, the following assumptions:

(1) Jk < Jk+1,
(2) Ik < p−1(Jk)< Ik+1,
(3) the set p(Ik) is an union of at least k MSI,
(4) there exists an interval Gk ⊂ p−1(Jk) such that the set p(Gk) is an union

of at least k MSI.

Next we define the permutation p1. Let p1 be an increasing map of the set⋃
k∈N

p−1(Jk) onto the set
⋃

k∈N
Jk and let p1(n) = p(n) outside the set

⋃
k∈N

p−1(Jk).

Then the permutation p2 is given by p2 = pp−1
1 .

By assumption (2), we have

p−1(Jk)< p−1(Jk+1),

for every k ∈ N. Therefore, from assumptions (1) and (4) and from the defini-
tion of p1, we see that the set p1(Gk) is an interval for every k ∈ N. Further-
more, from assumption (2) and from the definition of p1, we have

p1(Ik) = p(Ik), k ∈ N.

From this and from assumptions (3) and (4) we conclude that any of the fol-
lowing sets:

p1(Ik) and p2 p1(Gk) = p(Gk)

is a union of at least k MSI, for every k ∈ N. This shows that the permutations
p1 and p2 are both divergent.
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Now, let s ∈ N be given so that the set p−1(I) is a union of at most s MSI
for any interval I. Then, by the definition of p1 and by the equality

p−1
1 (Jk) = p−1(Jk), k ∈ N,

the set p−1
1 (I) is a union of at most s MSI, whenever I is a subinterval of Jk for

some k ∈ N. Moreover, in view of the definition of p1 we have

p−1
1 (I) = p−1(I),

for each interval I such that

either I ⊂

(
N\

⋃
k∈N

Jk

)
or I = Jk for some k ∈ N.

As the result we have that the set p−1
1 (I) is a union of at most 3s MSI, for every

interval I. Thus p−1
1 ∈ C.

To prove that p−1
2 ∈ C let us notice that

(i) p−1
2 (n) = n for every n ∈

(
N\

⋃
k∈N

Jk

)
,

(ii) the set p−1
2 (I) = p1 p−1(I) is a union of at most s MSI whenever I is

a subinterval of Jk for some k ∈ N,
(iii) p−1

2 (Jk) = Jk for each k ∈ N.

Hence we easy deduce that p−1
2 (I) is a union of at most (2s+1) MSI for every

interval I. So p−1
2 ∈ C. The proof is completed. ut

Corollary 14.1. We have CD◦CD=CD. More precisely, from the above proof
it follows that for every p∈ CD there exist permutations p1, p2 ∈ CD such that
p = p1 p2, c(p2)≤ 3c(p) and c(p1)≤ 1+2c(p), where, for every convergent
permutation q ∈P, we set

c(q) := sup{c(q; I) : I ⊂ N is an interval},

where c(q;A) := card(J), J is the family of MSI defined by the relation q(A) =⋃
J for every A⊂ N.

Theorem 14.2. We have

DC◦DD=DD◦DC=D

and

CD◦DD=DD◦CD= CD∪DD.
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Proof. First of all we note that if p∈DD and q∈DC then pq,qp∈D. Indeed,
suppose that either pq ∈ C or qp ∈ C. Then

p = (pq)q−1 = q−1(qp) ∈ C◦C= C i.e. p ∈ C.

This is a contradiction. So, both pq and qp are elements of D. In other words,
the following conclusions hold:

DC◦DD⊂D and D⊃DD◦DC

and

CD◦DD⊂ CD∪DD and CD∪DD⊃DD◦CD.

To prove the converse inclusions we consider four cases.
First, suppose that p ∈DD. We shall show that p = p2 p1, for some permu-

tations p1 ∈DC and p2 ∈DD. Suppose that the intervals Ik and Jk, k ∈ N, are
chosen so that:

(1) min I1 = 1,
(2) 1+max Ik = minJk and 1+maxJk = min Ik+1,
(3) cardJk = 2k,
(4) there exist intervals Ek ⊂ Ik and Fk ⊂ p(Ik) such that any of the two fol-

lowing sets:

p(Ek) and p−1(Fk)

is a union of at least k MSI.

Let us put p1(n) = n, for n ∈
⋃

k∈N Ik, and

p1(i+minJk) =

{
2i+minJk for i = 0,1, ...,k−1,
2(i− k)+1+minJk for i = k,k+1, ...,2k−1,

for k ∈ N, and let p2 = pp−1
1 .

From this definition it results easily that p1 ∈DC and that p2 p1 = p. More-
over, from conditions (2) and (3) we get that any of the two following sets:

p2(Ek) = p(Ek) and p−1
2 (Fk) = p−1(Fk)

is a union of at least k MSI, for every k ∈ N. Hence, we have p2 ∈ DD as it
was claimed.

Let us set again that p ∈ DD. We will construct two permutations p1 ∈
DD and p2 ∈ DC such that p2 p1 = p. Assume that sequences Ik and Jk, k ∈
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N, of intervals obey the conditions (1)-(3) from above and, additionally, the
following one:

(5) for each k ∈ N, there exist intervals

Gk ⊂ Ik and Hk ⊂ p−1(Ik)

such that any of the two sets

p(Hk) and p−1(Gk)

is a union of at least k MSI.

Let us set

p2(i+minJk) =

{
2i+minJk for i = 0,2, ...,k−1,
2(i− k)+1+minJk for i = k,k+1, ...,2k−1,

for k ∈ N and p2(n) = n, for every n ∈
⋃

k∈N Ik.
The permutation p1 is given by p2 p1 = p. The verification that p1 ∈DD and

p2 ∈DC may be peformed in a similar way as previously and will be omitted
here.

Let us consider now the case p ∈ CD. We shall express p as the product
p2 p1 of members p1 ∈ CD and p2 ∈ DD. We start by choosing the intervals
In, Jn and Kn, n ∈ N, which form a partition of the set N and are such that

(6) In < Jn < Kn < In+1,
(7) min p−1(In)< min p−1(Jn)< min p−1(Kn)

and
max p−1(In)< max p−1(Jn)< max p−1(Kn),

(8) max p−1(Jn)< min p−1(In+1)

and
max p−1(Kn)< max p−1(Jn+1),

(9) cardJn ≥ 2n,
(10) moreover, there exist the subintervals Gn of In and Hn of Kn such that any

of the following sets:

p−1(Gn) and p−1(Hn)

is a union of at least n MSI and, additionally, the inclusion holds:
(11)

[
min p−1(Gn),max p−1(Gn)

]
⊂ p−1(In),

for every n ∈ N. Next, we define the permutations p1 and p2.



14. New properties of the families of convergent and divergent permutations, II 219

Let us assume that p1 is an increasing map of the following sets:

p−1 ({2i+minJn : i = 0,1, ...,n−1}) ,
p−1 (Jn \{2i+min In : i = 0,1, ...,n−1})

and

p−1(In)

onto the intervals [minJn,n−1+minJn], [n+minJn,maxJn] and In, respectively,
for every n ∈ N. Moreover, we set p1(m)= p(m) for each m ∈

⋃
n∈N

p−1(Kn).

Since p1 ∈P, we may define the permutation p2 by putting

p2(n) = pp−1
1 (n), n ∈ N.

First we show that p1 ∈ CD. Let L be an interval. In view of the conditions (7)
and (8) we may write

L = L∩ p−1 (I∪J∪K∪L) ,

where any of the following sets I and J is a union of at most three elements of
the sequences {In} and {Jn}, respectively. The set K is a union of at most four
elements of the sequence {Kn}, and L is an interval of N, which is a union of
the successive elements of the sequence {In∪ Jn∪Kn} such that p−1(L)⊂ L.

Since p1 p−1(U) =U , for any interval U = In, Jn or Kn, n ∈ N, then the set
p1(L) may be expressed in the form

(12) p1(L) = L∪ p1
(
L∩ p−1(I)

)
∪ p1

(
L∩ p−1(J)

)
∪ p1

(
L∩ p−1(K)

)
.

The following facts are the direct consequence of the definition of p1. If
U is an interval then the set p1

(
U ∩ p−1(In)

)
is a subinterval of In. The set

p1
(
U ∩ p−1(Jn)

)
is a union of at most two subintervals of Jn and

p1
(
U ∩ p−1(Kn)

)
= p(U)∩Kn

for every n∈N. Hence, the set p1
(
L∩ p−1(I)

)
is a union of at most 3 MSI and

the set p1
(
L∩ p−1(J)

)
is a union of at most 6 MSI. On the other hand, if m∈N

is chosen so that the set p(U) is a union of at most m MSI for any interval U ,
then p1

(
L∩ p−1(K)

)
is a union of at most 4m MSI. Taking these observations

together, by (12), we see that p1(L) is a union of at most (4m+10) MSI. So,
p1 ∈ C. By (10), each set p−1

1 (Hn) = p−1(Hn),n ∈ N, is a union of at least n
MSI and hence, p−1

1 belongs to D. Therefore p1 ∈ CD as it was claimed.
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Now we have to show that p2 ∈DD. Take a look at the following equality:

p2 ([minJn,n−1+minJn])

= p2
(

p1 p−1 ({2i+minJn : i = 0,1, ...,n−1})
)

= {2i+minJn : i = 0,1, ...,n−1} (by the definition of p1).

We get that the set p2 ([minJn,n−1+minJn]) is a union of n MSI, for every
n ∈ N, and consequently p2 ∈ D. By using the conditions (10), (11) and the
definition of p1 we receive easily that the set p−1

2 (Gn) = p1 p−1(Gn) is a union
of at least n MSI. This implies that p−1

2 ∈D.
Let us set again p∈ CD. Now, our goal will be to construct the permutations

p1 ∈ DD and p2 ∈ CD satisfying p2 p1 = p. Before we define p1 and p2 we
need some basic assumptions. Let In and Jn, n∈N, be the increasing sequences
of intervals such that the family {In : n ∈ N}∪{Jn : n ∈ N} forms the partition
of N. Furthermore, we assume that the following conditions hold:

(13) In < Jn < In+1,
(14) min p−1(Jn)< p−1(In+1)< max p−1(Jn+1),
(15) p−1(Jn)< p−1(Jn+1),
(16) there is a subinterval Ωn of In such that the set p−1(Ωn) is a union of at

least n MSI,
(17) there exist four intervals:

En,Gn ⊂ p−1(Jn) and Fn,Hn ⊂ Jn

such that

p−1(Fn)< En < p−1(Hn)< Gn,

card(En) = card(p−1(Fn)) and card(Gn) = card(p−1(Hn))

and, additionally, any of the two following sets:

p−1(Fn) and p−1(Hn)

is a union of at least n MSI,

for every n ∈ N.
It follows from (17) that p1 may be defined to be the increasing map of the

following three sets:

En, p−1(Hn) and p−1(Jn)\
(

p−1(Fn)∪Gn
)

onto the sets:
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p−1(Fn), Gn and p−1(Jn)\
(

p−1(Hn)∪En
)
,

respectively, for every n ∈ N. Furthermore, we set

p1(i) = i for any i ∈
⋃

n∈N
p−1(In).

Since p1∈P, then the permutation p2 is well defined by the equation p2 p1 = p.
First, let us notice that, in view of the condition (17) and the definition of

p1, the permutation p1 belongs to DD. Next, since

p2(i) = p(i) for i ∈
⋃

n∈N
p−1(In)

we receive, from (16), that p−1
2 ∈D. We need only to show that p2 ∈ C. The

proof of this fact is based on the following observations. If ∆ ⊆N is an interval
then we have

p2
(
∆ ∩ p−1(In)

)
= p

(
∆ ∩ p−1(In)

)
= p(∆)∩ In

and if Γn := ∆ ∩Gn then

p2(Γn) = pp−1
1 (Γn) = p

(
p−1(Hn)∩

[
min p−1

1 (Γn),max p−1
1 (Γn)

])
(by the definition of the restriction to p−1(Hn) of p1)

= Hn∩ p
([

min p−1
1 (Γn),max p−1

1 (Γn)
])
.

Furthermore, if Φn := ∆ ∩ p−1(Fn) then, by the definition of the restriction to
En of p1, we get

p2(Φn) = pp−1
1 (Φn) = p

([
p−1

1 (minΦn), p−1
1 (maxΦn)

])
.

Hence, if we choose m ∈ N in such a way that for every interval I the set p(I)
is a union of at most m MSI then any of the following three sets:

p2
(
∆ ∩ p−1(In)

)
or p2(Γn) or p2(Φn)

is a union of at most m MSI, for every n ∈ N.
Let again ∆ be an interval of N. Then we have

p2
(
∆ ∩

(
p−1(Jn)\

(
p−1(Hn)∪En

)))
= pp−1

1

(
∆ ∩

(
p−1(Jn)\

(
p−1(Hn)∪En

)))
= p

(
∆
∗∩
(

p−1(Jn)\
(

p−1(Fn)∪Gn
)))
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(by the definition of the restriction to the set p−1(Jn) \
(

p−1(Fn)∪Gn
)

of the
permutation p1, where ∆ ∗ is some interval of N)

= p
(

p−1 (p(∆ ∗)∩ Jn)\
(

p−1(Fn)∪Gn
))

= (p(∆ ∗)∩ Jn)\ (p(Gn)∪Fn) .

The following set:

(p(∆ ∗)∩ Jn)\ (p(Gn)∪Fn)

is a union of at most (2m+ 1) MSI, because the set p(∆ ∗)∩ Jn is a union of
at most m MSI and the set p(Gn)∪Fn is a union of at most (m+ 1) MSI for
every n∈N. Therefore, the set p2

(
∆ ∩ p−1(Jn)

)
is a union of at most (4m+1)

MSI.
According to the conditions (14) and (15), any bounded interval ∆ may be

written in the form

∆ = I∪J∪K,

where the set K is a union of successive elements of the sequence
{p−1(In∪ Jn) : n ∈ N},

and the set I is an intersection of ∆ and at most four sets of the form p−1(In)

satisfying the following relations:

p−1(In)∩∆ 6= /0 and p−1(In∪ Jn)\∆ 6= /0.

The set J is also an intersection of ∆ and at most three elements of the sequence
p−1(Jn),n ∈ N, such that

p−1(Jn)∩∆ 6= /0 and p−1(In∪ Jn)\∆ 6= /0.

From the definition of p1 and the above considerations it follows that p2(K)

is an interval and that the set p2(I) is a union of at most (4m) MSI and p2(J)

is a union of at most 3(4m+1) MSI. Hence, the set p2(∆) is a union of at most
(16m+4) MSI. Thus, p2 ∈ C as it was desired. ut

Remark 14.3. Some parts of the above proof can be strengthen and, in conse-
quence, the obtained conclusions can be stronger.

For example, if we replace the condition (3) with

(3’) cardJk = kt, k ∈ N,

and we set
p1(i+ sk+minJk) = i t + s+minJk,
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for every i = 0,1, ...,k− 1, s = 0,1, ..., t− 1, k ∈ N, then c∞(p−1
1 ) = t, where

for any q ∈ C we define

c∞(q) := lim
n→∞

max{c(q; I) : I ⊂ N is an interval such that I ≥ n}.

Consequently we receive the following result:
For every p∈DD and t ∈N, t ≥ 2, there exist permutations p1 ∈DC, p2, p3 ∈
DD, such that p = p2 p1 = p1 p3 and c∞(p−1

1 ) = t.

Theorem 14.3. We have

U◦CC= CC◦U= U,

for any U= CC,CD,DC or DD.

Proof. In view of the equality C◦C= C and the fact that the identity permuta-
tion on N belongs to CC, it is easy to check that

CC◦CC= CC and CD◦CC= CC◦CD= CD.

Hence, we get

DC◦CC= CC◦DC=DC and (CC◦DD)∪ (DD◦CC)⊂D.

Now, if (CC◦DD)∩DC 6= /0 then also DD∩(CC◦DC) 6= /0, i.e. DD∩DC 6= /0,
which is impossible. So, CC◦DD=DD. Similarly, we show that DD◦CC=

DD. ut
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