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ON THESES WITHOUT ITERATED MODALITIES
OF MODAL LOGICS BETWEEN C1 AND S5. PART 2

Abstract

This is the second, out of two papers, in which we identify all logics between C1
and S5 having the same theses without iterated modalities. All these logics can
be divided into certain groups. Each such group depends only on which of the
following formulas are theses of all logics from this group: (N), (T), (D), "(T)VvOq™,
and for any n > 0 a formula "(T) V (alt,)”, where (T) has not the atom ‘q’, and
(T) and (alt,) have no common atom. We generalize Pollack’s result from [1],
where he proved that all modal logics between S1 and S5 have the same theses
which does not involve iterated modalities (i.e., the same first-degree theses).

Keywords: first-degree theses of modal logics; theses without iterated modal-
ities; Pollack’s theory of Basic Modal Logic; basic theories for modal logics
between C1 and S5.

5. Auxiliary facts

The facts given in this section provide a basis for proofs of main theorems
of the paper, given in the next section.

FAcT 5.1. Let A be a modal logic such that C1 C A C S5 and A SZ
S0.5°[Talty]. Then cither (T) € A or (D) € A.

PROOF: Suppose that A ¢ S0.5°[Talto] and A C S5. Then there is
¢ € 1A such that ¢ ¢ S0.5°[Talty]. Hence, by Theorem 2.9, ¢ is false in
some model from M U M?, but ¢ is true in all models from M*%? since
p €A, 1A C 1S5 = 1S0.5. Therefore ¢ is false in some t-normal model
M? = (w¥, A?, V¥) with A¥ = @.
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In MCNF (see p. 115 in Part 1) there is a formula o~ :="A7_| 77
such that "N = ¢ € C1 and every conjunct of ¢~ belongs to 'A and has
one of the forms (a)—(d) given in Lemma 2.8. Since ¢~ € 1A and ¥ ¥ pN,
so there is k. € {k¥,...,Kx¢} such that s, € A and IM¥ ¥ k.. Now we
show:

CrLAM. The conjunct k. satisfies the following conditions:

1. K« & Forg.
2. K+« has no disjunct of the form "O~™.
3. K« has one of the following forms:
(i) "OB7, where B € Taut,
(ii) "V OB, where "V 7 € Taut, but « ¢ Taut.
Proof of Claim. Ad 1. Since M¥ ¥ k., so k. ¢ Taut; but k. € A and
For,; N A = Taut, by Corollary 2.15.
Ad 2. All formulas of the form "y are true in 9%, but M ¥ k..
Ad 3: By items 1 and 2, and Lemma 2.8, . has one of two forms (b) or
(¢) with k = 0 given in this lemma. So we use Lemma 2.2(1,3). Moreover,
in the case 3 we have o ¢ Taut, since s, ¢ Taut. <

Thus, by Claim, there are only two alternative forms of k. described
in item 3.

In case 3, ks, = "QpB7, for some 8 € Taut. So (D) € A, since (D) =
OB e CL1.

In case 3 we have k, = "a VvV OB, for some a, 5 € Forg such that
Fa Vv 7 € Taut and a ¢ Taut. We consider three subcases.

The first case, when "—a" € Taut. Then "057 € A, since "—a D (ks D
0p)7 € PL. Moreover, 8 € Taut, since "oV 87 € Taut. So (D) € A, since
(D) = ¢p" € C1.

The second case, when "—a™ ¢ Taut and 8 € Taut. Then for some
uniform substitution s both "s(a) = ¢ and s(3) belong to Taut. Hence
Fs(kse) = (g Vv 0s(B))7 € C1. So "qV ¢s(B) € A, since s(k.) € A. Hence
both ‘gV T and ‘—¢V T belong to A. So also ‘0T and (D) belong to A.

The third case, when "—a ™ ¢ Taut and 8 ¢ Taut. Then, by Lemma A.2
with & = 0, there is a uniform substitution s such that both "s(a) = p”
and "s(8) = —p belong to Taut. Hence "s(k.) = (p VvV O—p)? € C1,
ie, "s(ky) = (pVv O-—p)7 € C1. So ‘pV —Op’ belongs to A, since
‘Op = O-—p’ belongs to C1. Therefore (T) € A. O

Lemma A.2 is proved in the Appendix on p. 215.



On Theses without Iterated Modalities ... Part 2 199

FACT 5.2. Let A be a modal logic such that C1 C A C S5 and A Q
S0.5°[D]. Then either (T) € A or for some n > 0 we have (Talt,) € A.

PROOF: Suppose that A ¢ S0.5°[D] and A C S5. Then there is ¢ € 'A
such that ¢ ¢ S0.5°[D]. Hence, by Theorem 2.9, ¢ is false in some model
from M*, but ¢ is true in all models from M%?, since ¢ € A, 1A C 1S5 =
1S0.5. Therefore ¢ is false in some t-normal model MM = (w?, A® V¥)
with w? ¢ A¥ £ .

In MCNF there is a formula o :="A{_| 77 such that "pN = ¢ €
C1 and every conjunct of ¢N belongs to A and has one of the forms
(a)—(d) given in Lemma 2.8. Since N € A and M¥ ¥ ¢N, so there is
ki € {kY,..., K¢} such that k. € 'A and IM¥ ¥ k.. Now we show:

CrAM. The conjunct k. satisfies the following conditions:

1. ks ¢ Forg,.
K« has no disjunct of the form "Ovy7 with v € Taut.
K« has no disjunct of the form "B with § € Taut.
K« has no disjunct of the form "0 vV Oy with "BV~ € Taut.
K« has one of the following forms:
(i) "Ta Vv OB, where "V 57 € Taut, but a, 8 ¢ Taut,
(ii) T V OB Vv \/f=1 O~ ", where k > 1 and "a VvV 7 € Taut, but
a, 3 ¢ Taut and "5V ;" ¢ Taut, for any j € {1,...,k}.

Proof of Claim. Ad 1. As in the proof of the case 1 of Claim of Fact 5.1.

Ad 2-4. If k, had a disjunct of the form "Oy™ (resp. "057, "OSV Oy ™)
with v € Taut (resp. § € Taut, "g VvV 7 € Taut), then k, would be
true in M?, since "y (resp. "OL7, TOS V Oy ) would be true in IM¥.
A contradiction.

Ad 5. By Lemma 2.8, k. has one of the forms (a)-(d) given in this
lemma. First, by Lemma 2.2(2), if s, had the form (a) then either a €
Taut or x. would have some disjunct of the form "y, with ~; € Taut.
However, this is excluded due to items 1 and 2. Second, by Lemma 2.2(3),
if k. had the form (b), then either § € Taut or it would have some disjunct
of the form "0 VvV Oy, with "V ;7 € Taut; this is contrary to item 3
or 4. Third, by Lemma 2.2(4), if k. had the form (d) then k. would have
some disjunct of the form "[Jvy; " with ~; € Taut; what is contrary to the
item 2. Thus, k. has the form (c¢) with ¥ =0 or £ > 0. By Lemma 2.2(1)
and the item 4, we obtain "V 87 € Taut. Moreover, «, 3 ¢ Taut, by
items 1 and 3. Finally, in the case 5 we have k > 1, by the item 4. <

CL W
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Thus, by the claim, there are only two alternative forms of x, described
in its item 5.

In case 5 we have k, ="V ¢ and "—a " ¢ Taut. Therefore we can
prove that (T) € A, as in the proof of Fact 5.1, when we considered the
third subcase of the case 3 of the form of x..

In case 5, when "a VvV ()B\/\/f:1 O, ", where k > 1 and "aV 87 € Taut,
but «, § ¢ Taut, we consider two subcases.

The first case 5(a), when "5V \/f=1 ~;' ¢ Taut. Then, by Lemma A.2
for k > 0, there is a uniform substitution s such that both "s(a) = p™ €
Taut, "s(8) = —p"' € Taut, and for any ¢ € {1,...,n + 1} either "s(y;) =
—p' € Taut or "—s(7;)" € Taut. Hence either "s(k.) = (pvVO-pVO-p)T €
C1, or "s(k«) = (pVO—pVO-pVvOLT € C1,0r "s(ky) = (pvVO—pVvOL)" €
C1. Thus, since s(ks) € A and C1 C A, either ‘Op D (p v O-p)’, or
‘Op D> (pvO-pvOLY, or ‘Op D (pVv OL) belongs to A. Therefore
(Talto) € A (see Lemma 2.6).

The second case 5(b), when "3V \/f:1 ~; ' € Taut. For the application
of Lemma A.3(1) notice that the following implications belong to 1A:?

(manO-p) D \/f:1 Oy;
> O-BAVL, Oy
o Vit B8 A )
Hence "ar VvV O V Vf:i O(=B A7) € *A. Thus, by Lemma A.3(1), there
are n € {1,...k — 1} and non-empty different subsets I'y, ..., I'yyq of T
such that I' = U?Ill I'; and for some uniform substitution s we have:

e "s(a) =pTand "s(8) = —p™ belong to Taut;

e forany v € I'l: "s(=8 A7) D q1 " belongs to Taut;

o forallie {1,...,n} and v € Iiy1: "s(=B A7) D (Aj1 45 D git1)”

belongs to Taut.
Therefore we also have:

e "Os(B) =0—pT e Cl.

e For any v € I'l: "Os(=8 Av) D 0Og ' € C1.

e Foralli € {I,...,n} and v € I "Os(=f A7) D O(Aj_, 45 D

(]H,l)j e C1.
Thus, both "pV-0OpVvOq VV_, D(/\;:1 ¢; O ¢i+1)" and (Talt,) € A. O

2Lemma A.3 is proved in the Appendix on p. 216.
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FACT 5.3. Let A be a modal logic such that C1 C A C S5 and A Q
1S0.5°[D, Talt,]. Then either (T) € A or (Talt,) € A.

PROOF: Suppose that A ¢ 1S0.5°[D, Talts] and A C S5. Then there is
¢ € YA such that ¢ ¢ 1S0.5°[D, Talt,]. Hence, by Corollary 2.17, ¢ is false
in some model from M U (MS! N M*). But, by Theorem 2.9, ¢ is true
in all models from M*?, since ¢ € 1A, 1A C 1S5 = 1S0.5. Therefore ¢ is
false in some t-normal model M¥ = (w¥, A¥, V¥) with CardA¥ = 1. Thus,
we can repeat the proof of Fact 5.2. Hence there are only two alternative
forms of k, described in the item 5 of the claim in that proof.

Now we show that either x, = "a VvV 07 or for some k > 0 we have
ke =Ta VOBV \/f:1 Ovy;"and "8V \/f’:1 ~;1 ¢ Taut.

Indeed, if k£ > 0 and '—ﬁ\/\/f:1 v; ' € Taut, then MY F r<>ﬂ\/\/f:1 Oy,
since CardA¥ = 1. Hence also 9% F k.. So we obtain a contradiction,
because IM? ¥ k.

Thus, as in the proof of Fact 5.2, we obtain that either (T) € A or
(Talto) € A. O

Fact 5.4. Let A be a modal logic between C1 and S5. Then for anyn > 0,
if 1A C 1S0.5°[D, Talt,] and *A ¢ *S0.5°D, Talt,;4], then (Talt,) € A.

PROOF: Letn > 0. Suppose that *A ¢ *S0.5°[D, Talt,;4], A C 1S0.5°[D,
Talt,], and A C S5. Then there is p € A such that ¢ ¢ 1S0.5°[D, Talt,].
Hence, by Corollary 2.17, ¢ is false in some model from MS2U(MS"*T1nM™*).
But, by Theorem 2.9, ¢ is true in all models from MU (MS™ M), since
v €A, 1A C 1S5 = 1S0.5. Therefore ¢ is false in some t-normal model
M = (w?, A?, V¥) with CardA¥ = n + 1. Thus, we can repeat the proof
of Fact 5.2. Hence there are only two alternative forms of k, described in
the item 5 of the claim in that proof.

However, since (T) ¢ A and (Taltg) ¢ A, so cases 5 and 5(a) of Claim
in the proof of Fact 5.2 will not occur. So we have only case 5(b).

Let A = {a1,...,an41}, where a; # a;, f 1 < i < j < n+ 1L
Since M? ¥ k., so we have V¥(w¥ k,) = 0. Therefore V¥(ay,8) =
-+ = V%(aps1,8) = 0 and for any v € T := {7y1,...,7%} there is an
i€{1,...,n+ 1} such that V¥(a;,v) = 0. For any i € {1,...,n+ 1} we
put ¥, := {y € I' : V¥(a;,v) = 0}. Of course, I' = U;jll ¥;. Since K, is
true in all models from MS®" N M*, so ¥; # &, for any i € {1,...,n+ 1}.
(Indeed, otherwise k. would be false in some n-element model.)
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Foranyi € {1,...,n+1} we put ¢; := \/ ¥;. Because "gV\/T'" € Taut,
so also "8 Vv \/;jll ;| € Taut. Since (M) € C1, so "ky D (aV OBV
\/?:11 ;)" belongs to C1. Hence "ar V O V \/?:11 Oy, ' € A. Thus,
as in the second subcase of 5 in the proof of Fact 5.2, we can show that
'—oc\/OB\/\/?:f O(=BAv;)" € A. Thus, by Lemma A.3(1,2), as in Fact 5.2,
we obtain that (Talt,) € A. O
FacT 5.5. Let A be a modal logic between C1 and S5. Then for anyn > 0,
if *A ¢ 1S0.5°[D, Talt,| then either (T) € A or (Talty) € A, for some
some k € {0,...,n—1}.

PrOOF: Let n > 0. Suppose that A ¢ 'S0.5°[D, Talt,] and A C S5.
This proof is done by induction on n. By Fact 5.3 the given fact holds for
n=1.

Inductive step. We prove that for any n > 1: if the given fact holds
for n — 1, then it holds for n.

For n > 0 we suppose that 1A g 150.5°[D, Talt,]. We may also suppose
that A C 1S0.5°[D, TAlt,_4], since otherwise — by inductive hypothesis —
either (T) € A, or (Talty) € A, for some some k € {1,...,n — 2} we have
(Talty) € A. However, in such case, we have (Talt,) € A, by Fact 5.4. [

FAcCT 5.6. Let A be a modal logic between C1 and S5. Then for anyn > 0,
if 1A C 1S0.5°[Talt,] and A ¢ 1S0.5°[D, Talt, 4], then (Talt,) € A.

PROOF: By Fact 5.5, either (T) € A or (Talty) € A, for some k €
{1,...,n}. But (T) ¢ A, (Talty) ¢ A, and (Talty) ¢ A, for any k €
{1,...n—1}. So (Talt,) € A. O

6. Main theorems

In the light of lemmas from previous section we obtain the main results of
this paper.
THEOREM 6.1. For any modal logic A between C1 and S5:
1. 'A ¢ 'E1, 'A ¢ 1S0.5°[Talty and 'A ¢ *S0.5°[D, Talt,]
iff A = nB} = B.
1A C'E1, '"A ¢ 1S0.5°[Talt,] and *A ¢ 1S0.5°[D, Talt]
iff 1A =B},
2. 'A ¢ 'E1, *A C 'S0.5°[Talty| and *A ¢ S0.5°[D, Talt,]
iff A =nB°.
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1A C 'E1, 'A C 'S0.5°[Talt,] and *A ¢ 1S0.5°D, Talt,]
iff A = rB°.
3. A ¢ 'E1, 'A ¢ 'S0.5°[Talt,], 'A C 'S0.5°[D, Talt,] and ‘A ¢
1S0.5°[D] iff (3n > 0) A = nBy.
1A C 'E1, A ¢ 'S0.5°[Talty], 'A C 'S0.5°[D, Talty] and ‘A ¢
1S0.5°[D] iff (3n > 0) 'A = rBy.
4. TAZ'E1, *AC'S0.5°[Talte) N *S0.5°[D, Talt,], and *AZ*S0.5°[D]
iff (3n > 0) A =nB".
1A C'E1N'S0.5°[Talto) N 1S0.5°D, Talty] and *A ¢ 1S0.5°(D]
iff 3n > 0) A =rB".
5. 'A ¢ 'E1, *A ¢ 1S0.5°[Talty| and *A C *S0.5°[D] iff A = nBy°.
1A C'E1, '"A ¢ 1S0.5°[Talte| and *A C 'S0.5°[D] iff A = rBy°.
6. *A ¢ 'E1 and 'A C *S0.5°[Talt,] N 1S0.5°[D] iff A = nB>.
1A C'E1N1S0.5°[Talte] N 1S0.5°[D] iff A = rB™.

Thus, either *A = nB>, or 1A = B>, or 1A = nB;°, or A =rBy°, or for
some n > 0 either 1A =nB", 1A =rB", or 1A =nBy, or A =rBy.

For items 3 and /4, for any n > 0, we have the following particular
cases:

7. 'A = nB} iff 'A ¢ 'E1, 'A C 'S0.5°[D, Talt,], 'A ¢ 'S0.5°[D,
Taltyi4], and A ¢ 1S0.5°[Talt).

A =By iff 'YA C'E1N'S0.5°D, Talt,), 'A ¢ 1S0.5°[D, Talt,y4],
and *A ¢ 1S0.5°[Talt,).

8. 1A = nB" iff A ¢ 'E1, 'A C 'S0.5°[Talt,] and A ¢ 'S0.5°D,
Taltyiq] A = nB"iff 'A ¢ *E1, 'A C 'S0.5°[Talt,] and 'A ¢
ISO.5O[Taltn+1].
1A =rB" iff *A C 'E1N'S0.5°[Talt,] and *A ¢ 1S0.5°(D, Talt,4]

iff A C'E1N'S0.5°[Talt,) and 'A ¢ *S0.5°[Talt, 4].

PrOOF: The proofs of all “<”-parts of items 1-6 are obvious. We shall
only go through the “=-"-parts.

Ad 1. Suppose that (i) A ¢ 1S0.5°[Talte] and (i) *A ¢ *S0.5°[D,
Talty]. Then, by (i) and Fact 5.1, either (T) € A or (D) € A. Moreover,
by (ii) and Fact 5.3, either (T) € A or (Talty) € A. So (T) € A, because
S0.5°[D, Talte] = S0.5°[T]. Hence if *A ¢ *E1 then 'S0.5°[T] = 1S0.5 C
1A C 1S5 = 1S0.5 = B, by Fact 2.19 and Theorem 4.1 (or Theorem 3.4).
Moreover, if 1A C 'E1 then 'E1 = 1C1[T] C A C !C1]D, Talt,| = 'E1 =
rBy, by Theorem 4.1.
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Ad 2. Let (i) A C 'S0.5°[Talto] and (ii) A ¢ 'S0.5°[D, Talt].
Then, by (ii) and Fact 5.3, either (T) € A or (Talty) € A. But (T) ¢ A,
by (i). So (Talte) € A. Hence if A ¢ *E1 then 'S0.5°[Talt,] C 'A C
180.5°[Talto] = nB°, by Fact 2.19 and Theorem 4.1. Moreover, if A C
'E1 then 'C1[Talt,] C A C 'E1N1S0.5°[Talt,] = 'C1[Talt] = rB°,
by Theorem 4.1.

Ad 3. Let (i) A ¢ 'S0.5°[Talt,], (ii) *A C 'S0.5°[D, Talt,], and
(iii) *A ¢ 'S0.5°[D]. Then, by (i) and Fact 5.1, either (T) € A or (D) €
A. Moreover, by (iii) and Fact 5.2, either (T) € A or (Talt,) € A, for
some n > 0. But, by (ii), (Taltg) ¢ A and (T) ¢ A. So (D) € A and
(Talt,) € A, for some n > 0. We put n, := min{n > 0 : (Talt,) € A}.
Note that A C 1S0.5°[D, Talt,, |, since otherwise, by Fact 5.5, we obtain
a contradiction: (T) € A or (Talty) € A, for some k € {0,...,n, — 1}.
Hence, by Fact 2.19, if A ¢ E1, then 'S0.5°D,Talt, ] C 'A. Thus,
1A = 1S0.5°D, Talt,,] = nBj*. Moreover, if A C E1 then 1C1[D,
Talt,,] C 'A C 'S0.5°[D, Talt,, ] N *E1 = 'C1[D, Talt,,| = rBf".

Ad 4. Let (i) A C 1S0.5°[Talt,], (ii) *A C 1S0.5°|D, Talt,], and (iii)
'A ¢ 1S0.5°[D]. Then, by (iii) and Fact 5.2, either (T) € A or (Talt,) € A,
for some n > 0. But (T) ¢ A and (Talto) ¢ A, by (i) and (ii), respectively.
So (Talt,) € A, for some n > 0. We put n, := min{n > 0: (Talt,) € A}.
Note that A C 1S0.5°[Talt,, ], since otherwise, by Fact 5.5, we obtain a
contradiction: (T) € A or (Talty) € A, for some k € {0,...,n,—1}. Hence
if A ¢ 'E1 then 'S0.5°[Talt,, ] C 'A. Thus, *A = nB"*. Moreover, if
1A C 'E1 then 'C1[Talt,,] C 'A C 1S0.5°[Talt,, |N*E1 = 'C1[Talt,,].
Thus, A = rB™.

Ad 5. Let (i) *A € 1S0.5°[Talt,] and (ii) *A C *S0.5°[D]. Then, by (i)
and Fact 5.1, either (T) € A or (D) € A. But (T) ¢ A, by (ii). So (D) € A.
Hence if A ¢ 'E1 then 'S0.5°[D] C 'A C 'S0.5°[D]. So 'A = nB°.
Moreover, if 1A C 1E1 then C1[D] C 'A C 'S0.5°[D] N *E1 = C1[D]. So
1A = rBy°.

Ad 6. If 'A ¢ 'E1 and A C 1S0.5°[Talto] N 1S0.5°[D], then S0.5° C
A and nB™ = 180.5° C A C 180.5°[Talt,] N 1S0.5°D] = nB® N nBy° =
nB°°, by Fact 2.19 and theorems 4.1 and 4.2(5), respectively. Moreover, if
1A C 'E1Nn'S0.5°[Talte]N*S0.5°(D] then, by theorems 4.1(2,4) and 4.2(5),
rB> = 1C1 C 'A C 1S0.5°[Talto] N 1S0.5°[D] N 'E1 = C1[Talty] N
C1[p] = rB° N rB° = rB>.

The proofs of “=-"-parts of items 7 and 8 are obvious. For “<"-parts
we have:
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Ad 7. Let (i) *A C 'S0.5°[D, Talt,], (ii) *A ¢ *S0.5°[D, Talt,y4), and
(iii) A ¢ 'S0.5°[Talte]. Then (T) ¢ A and (Talt,) € A, by (i), (ii),
and Fact 5.4. Hence (D) € A, by (iii) and Fact 5.1. So if A ¢ *E1 then
180.5°[D, Talt,] = A = nBj. If 1A C 'E1 then 'C1[D,Talt,] C A C
180.5°[D, Talt,] N *E1 = C1[D, Talt,| = rB.

Ad 8. Let 'A C 1S0.5°[Talt,] and A ¢ 1S0.5°[D, Talt,y4]. Then
(Talt,) € A, by Fact 5.6. Hence if 'A ¢ *E1 then 'S0.5°[Talt,] = A =
nB". Moreover, S0.5°[Talt,] N S0.5°D,Talt,s] = S0.5°[Talty1], by
Corollary 2.13. Hence if A C 'S0.5°[Talt,] and A ¢ 1S0.5°[Talty 4],
then 'A ¢ 1S0.5°[D, Taltyy4].

If'A C 'E1 then 'C1[Talt,] C 'A C 1S0.5°[Talt,|N'El = 'C1[Talt,]
= rB". Moreover, C1[Talt,] N C1[D,Talt,i] = C1l[Talt,i4], by Corol-
lary 2.18. Hence if 'A C C1[Talt,] and *A ¢ C1[Talt,,4], then 'A ¢
Cl[D,Taltn+1]. O

The following theorem shows that for any modal logic A between C1
and S5 we are able to indicate a basic theory which corresponds to A (see
figures 1-3). The proof of this theorem we obtain by theorems 3.4, 4.1, 4.2,
6.1. and facts 2.19, 5.1-5.5.

THEOREM 6.2. For any modal logic A such that C1 C A C S5:

1. '"A=nB} iff
(N) e A, (D) € A, and (Talty) € A iff (N) € A and (T) € A.
A=rB) iff

(N) ¢ A, (D) € A and (Talty) € A iff (N) ¢ A and (T) € A.
2. 1A =nB" iff () € A, (D) ¢ A, and (Talt,) € A.
IA=rB? iff (N) ¢ A, (D) ¢ A, and (Talt,) € A.
3. For anyn > 0: 1A =nBy iff
(N) € A, (D) € A, (Talty) € A, and (Talty—4) ¢ A.
For any n > 0: A =By iff
(N) ¢ A, (D) € A, (Talty,) € A, and (Talt, 1) ¢ A.
4. For any n > 0: A =nB" iff
(N) e A, (D) ¢ A, (Talty) € A, and (Talt,_) ¢ A.
For anyn > 0: A =rB" iff

() gé A, (D) ¢ A, (Talt, ) € A, and (Talt,_1) ¢ A.
5. A =nBy° iff (N) € A, (D) € A, and (Vn > 0) (Talt,) ¢ A.
IN=rBy° iff (N)¢ A, (D) € A, and (Vn > S 0) (Talt,) ¢ A.
6. 1A =nB> iff (N) € A, (D) ¢ A, and (Vn > 0) (Talt,) ¢ A.
IN=rB> iff (N)¢ A, (D) ¢ A, and (Vn > 0) (Talt,) ¢ A.
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PRrooOF: For all “="-parts we use Theorem 4.1. For “<"-parts we have:?

Ad 1. If (N),(T) € A, then S0.5 C A. So we use Theorem 3.4. More-
over, if (N) ¢ A and (T) € A, then 'E1 = 'C1[T] C 'A C 'S0.5 N 'E1 =
1E1, by Fact 2.19. Thus, 'A = rB]%7 by Theorem 4.1.

Ad 2. Suppose that (Taltg) € A and (D) ¢ A. If (N) € A then
180.5°[Talty] C A and (T) ¢ A. So A C 1S0.5°[Talt,], by Fact 5.1.
Thus, A = nB°, by Theorem 4.1. If (N) ¢ A then *C1[Talt,] C A and
(T) ¢ A. So A C 1S0.5°[Talte]NTE1 = C1[Talt,], by facts 2.19 and 5.1.
Thus, A = rBY, by Theorem 4.1.

Ad 3. Let n > 0. Suppose that (D) € A, (Talt,) € A, and (Talty,_1) ¢
A. Then (T) ¢ A and (Talty) ¢ A, for any k € {0,...,n — 1}. If
(N) € A then 'S0.5°D,Talt,] C 'A C 1S0.5°[D,Talt,], by Fact 5.5.
Thus, 'A = nB[, by Theorem 4.1. If (N) ¢ A then 1C1[D, Talt,] C A C
1S0.5°[D, Talt,] N 'E1 = 1C1[D,Talt,], by facts 2.19 and 5.5. Thus,
1A = rBf, by Theorem 4.1.

Ad 4. Let n > 0. Suppose that (Talt,) € A, (D) ¢ A, (Talt,_1) ¢ A.
Then A ¢ 1S0.5°[D], (T) ¢ A, and (Talt,) ¢ A. So *A C 1S0.5°[Talt,|N
1S0.5°|D, Talt,], by facts 5.1 and 5.4, respectively. Therefore, by Theo-
rem 6.1(4), for some ng > 0 either A = nB"™ or A = rB™. If (N) € A
then nB" = 1S0.5°[Talt,] C A = nB™, since (Talt,) € A. Moreover,
nB"~! = 180.5°([Talt, 4] ¢ 'A = nB™, since (Talt, 1) ¢ A. So, by The-
orem 4.2, nB™ C nB™ !, Thus, nB" C nB™ C nB""!; so n = ng. Thus,
1A = nB", by Theorem 4.1. Similarly, if (N) ¢ A, we obtain 1A = rB".

Ad 5. Suppose that (D) € A and (Talt,) ¢ A, for any n > 0. Then
also (T) ¢ A. If (N) € A then S0.5°[D] C A. Moreover, A C 1S0.5°[D], by
Fact 5.2. Thus, 1A = nB°, by Theorem 4.1. If (N) ¢ A then C1[D] C A C
150.5°[D] N *E1 = C1[D], by Fact 2.19. Thus, A = rB;°, by Theorem 4.1.

Ad 6. Suppose that (D) ¢ A and (Talt,) ¢ A, for any n > 0. Then, also
(T) ¢ A. Hence, by theorems 4.1 and 6.1, either 1A = nB> or 1A = rB*.
Thus, if (N) € A (resp. (N) ¢ A) then A = nB™ (resp. 'A = rB*), by
Theorem 6.1 and Fact 2.19. O

In the light of theorems 4.1 and 6.2, there is a correspondence between
all “normal basic theories” and well known normal logics included in S5.
We present graphically this correlation in Figure 3, showing a comparison
of very weak t-normal logic and normal logics. (Note that KB4 = KB5 =
K5 @ (Talty); see p. 120 in Part 1.)

3For the cases 1-3 we can provide other proofs using Theorem 6.1.
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K4 ¢ (Taltg)KB @ (Taltg) KD5 &

24 T

KD4,KDB

Fig. 3. Location of S0.5°, S0.5°[Talt;], S0.5°[Talty], S0.5°[D],
S0.5°[D,Talt,], S0.5 (= S0.5°[D,Talty] = S0.5°[T]) among some normal
logics.

Similarly — in the light of theorems 4.1 and 6.2 — we can assign all
“regular basic theories” to respective properly regular logics included in
S5. We can make the following exchanges in Figure 3:

e cach of the very weak t-normal logics is replaced corresponding to its
t-regular logic,

e any normal logic A, is replaced by the properly regular logic CFNA,,.
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A. Some auxiliary facts from classical logic

In the proof of the auxiliary facts from Section 5 we have used the follow-
ing lemmas A.2 and A.3, while in the proofs of these lemmas we will use
Lemma A.1.

LEMMA A.1. Letn >0 and Vo, ..., Vag1 be different valuations on Fore.
Then there is a uniform substitution s such that for any 0 € Forg and any
cl-valuation V' on Forg the following conditions (Co)—(Cpy1) hold.

(Co)  If V(p) = 0 then V(s(0)) = Va(0)-

If n =0 then:
(C1)  If V(p) =1 then V(s(0)) = VA (0).
If n > 0 then:

(C1) IfV(p)=1and V(q1) =0 then V(s(0)) = V1(0).
If n=1 then:
(C2)  If V(p) =1 =V(q) then V(s(0)) = V2(6).
If n > 2 then:
(C;) Foranyi€{2,....,n}: if V(p)=V(qr) =+ =V(gi=1) =1 and
V(gi) =0, then V(s(0)) = V;(0).
(Cosr) If V(D) = V@) =+ = V(ga) = 1 then V(s(6)) = Vas1(60).
PrOOF: We make the following substitution s for atoms. For any a € At
the formula s(a) will be dependent on the values Vy(a), Vi(a), ..., Viti(a).
We will consider six classes of valuations.
1. Vo(a) = Vi(a) = -+ = Vy41(a) = 1: Then we put s1(a) :=pV —p.
2. Vo(a) =Vi(a) = -+ = Vy11(a) = 0: Then we put sz(a) :=p A —p.
3. Vo(a) = 0 and V,,41(a) = 1: Then inductively we construct the
following sequence Q3, ..., Q3 of formulas or «blanks» (further for the
«blank formula» we use the symbol ‘0’). First we put:

Q= qn i Viu(a)=0
" 0 if Vo(a) =1
Second, if n > 1 then for any ¢ =1, ..., n — 1 we put inductively:
G ANQYyy i Vi(a) =0
Q=14 —qV Q?H if Vi(a) =1 and Q?H #0
0 if Vi(a) =1and Q% , =0
Finally, we put sz(a) := "p A Q37. So if Vi(a) = -+ = V,(a) = 1 then
sz(a) == ‘p.
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4. Vo(a) = 1 and V,,11(a) = 0: Then as s4(a) we will put "—s3z(a)”
calculated for the values V/(a) = 1 —V;(a). Thus, inductively we construct

the following sequence Q7, ..., Q* of formulas or «blanks». First we put:
Q4 — qn if V (a) -
" p  if Vi(a) =
Second, if n > 1 then for any ¢ = 1,...,n — 1 we put inductively:

G NQt,  if Vi(a) =1
Qi =~V Qi ifVi(a)=0and Qs #0
0 if Vi(a) =0 and Q;+1 =0

Finally, we put s4(a) :="=(p A Q)7 So if Vi(a) = -+ = V,,(a) = 0 then
34(a) = ‘ﬁp’.4

5. Vo(a) = 0 = Vp41(a) and there is an ¢ € {1,...,n} such that
Vi(a) = 1: If n = 1 then we put s1(a) :== p A —¢g;. If n > 1 then we
construct inductively the following sequence Q3, ..., Q> of formulas or
«blanksy. First we put:

5. ) 'n if Vo(a) =1
@ _{(Z) it Vi,(a) =0

Second, if n > 1 then for any ¢ = 1,...,n — 1 we put inductively:

Q5 — Qi/\Q?Jd ifvi(a) 0
Tl v @, V@ =1

Finally, we put s5(a) :="pA Q7.

4We see that for n = 0 we obtain the following uniform substitution s for any a € At:

pV-p if Vo(a) =1=Vi(a)
s(a) _)p if VO(U«) 0 and Vl(a) =1
o -p if VO(G) 1 an d Vl(a) =0

) )

pA-p if Vo(a

So for n = 0 by induction on the complexity of formulas it is easy to show that (Cp)
and (C7) hold.
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6. Vo(a) = 1 = Vp41(a) and there is an ¢ € {1,...,n} such that
Vi(a) = 0: Then as sg(a) we will put "=s5(a)™ calculated for the values
V/(a) = 1 —=Vi(a). Thus, if n = 1 then we put s1(a) := —=(p A ~q1). If
n > 1 then we construct inductively the following sequence QY ..., QS of

formulas or «blanks». First we put:

O = g, i Vi(a)=0
" 0 if V,(a) =1
Second, if n > 1 then for any ¢ = 1,...,n — 1 we put inductively:

QF = {qi ANQY . if Vi(a)

1
Y ma v QS if Vi(a) =0

Finally, we put sg(a) :="=(p A Q%)™
Now as s(a) we take respectively si(a), ..., sg(a), depending on to
which of the classes 1-6 the atom a belongs.

By induction on the complexity of formulas we can prove that for any
0 € For; and any cl-valuation V the conditions (Cq)—(C,,+1) hold.

Now we show the inductive hypothesis for atoms. Let a € At. For
classes 1 and 2 of valuations the conditions (Cp)—(C,+1) are obviously
met. Next, note that for some k € {3,4,5,6} and i € {1,...,n}, Q¥ may
be 0, even if it is not explicitly determined.

For class 3, where Vp(a) = 0 and V,,41(a) = 1, we have:

For (Cyg): Suppose that V(p) = 0. Then V(s3(a)) = V(p A Q3) = 0.

For (Cy): Suppose that V(p) = 1 and V(q1) = 0. First, if Vi(a) =0
then either Q3 = ‘g1 or Q3 = "1 A Q37, if n > 1. So either V(83(a)) =
V(pAq) =0or V(ss(a)) =V(pAq AQ3) = 0. Second, if Vi (a) = th
either Q = "q1VQ3 7 or Q3 = 0. So either V(s3(a)) = V(p/\(—\ql V@3)) =
or V(ss(a)) =V(p) =1.

For (C,+1): Suppose that V(p) = V(q1) = --- = V(¢n) = 1. Note that
Q3 =g, or Q2 = 0. So, in the first case, V(Q3) = 1. Moreover, if n = 1
then either V(s3(a)) = V(p) = 1 or V(s3(a)) =V(pAQ@3) =1. Ifn>1
then for j =1, ..., n—1 either Q% =0, or Q% ="¢;7, or Q% ="¢; AQ3, ",
or Q? =g Vv Qj+1 , where Qj+1 £ 0. So in the last two cases, we can
show inductively that V(Q;’) = 1. Therefore either V(ss(a)) = V(p) =1

or V(ss(a)) = V(p A Q) = L.
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If n > 1 then we show inductively that (C,,) holds. Indeed, assume
that V(p) =V(q1) =+ =V(gn—1) = 1 and V(g,) = 0. First, if V;,(a) =0
then Q3 ="q,". Hence Q3 | = "qu 1 Agn ' or Q2 | ="=qu_1Van
So V(Q2_,) = 0. Moreover, if n = 2 then V(s3(a)) = V(p A Q3) = 0.
If n > 2 then for j = 1, ..., n — 2 we can show that Q?H # 0, and
either Qf = "g; A Q3+1j or Q3 = T=q; vV Q3 i+1 s and V(Qf) = 0. So
V(s3(a)) = V(p AQ3) = 0. Second if V,(a ) =1 then Q3 = 0. Hence

3 1=0or Q3 | ="q, 1. SoQ3_, =0or V(Q2_,) = 1. Moreover,
1f n = 2 then either V(s3(a)) = V(p) =1 or V(s3(a)) = V(p A Q3) = 1.
If n > 2 then for j =1, ..., n — 2 we can show that either Q;’ =0, or

QF="q; 7 or QF="g; ANQ3 7, or QF =gy V Q3,7 where Q3 # 0;
so, in the last three cases, V(Q?) = 1. Thus, either V(s3(a)) = V(p) =1
or V(ss(a)) =V(pAQT) = 1.

If n > 2 then for i = 2, ..., n — 1 we show inductively that (C;)
holds. Indeed, assume that V(p) = V(q1) = -+ = V(g;—1) = 1 and
V(g;) = 0. First, if Vi(a) = 0 then either Q? = "¢,  or Q¥ ="¢; ANQJ, ;™.
So V(Q3) = 0. Moreover, Q3 ; = "g;_1 A Q37 or Q;{ =g V Q3.

So V(Q3 ) = 0. If i = 2 then V(33(a)) = V(pAQ@3}) = 0. Similarly,
if ¢ > 2, then n > 3 and for j = 1, ...79 — 2 we can show that either
Q) ="g; ANQ} " or Q) =T—q; vV Q3T and V(QF) = 0. Therefore,
V(sz(a)) = V(p A Q3) = 0. Second, if V;(a) = 1 then either Q7 = 0 or
Q3 ="-qV Qz+1 , where Qz+1 # 0. In the last case we have V(Q3) = 1.
Moreover, either Q% | = 0, or Q3 | = "g; 17, or Q3 | = "gi1 A Q37

or Q3 , = "1 V Q3F7, where Q3 7é @. So, in the last three cases,

V(Q3 ) = 1. If i = 2 then V(s3(a)) = V(p AQ3) = 0. If i = 2, then
V(ss(a)) = V(p) = 1 or V(sz(a)) = V(p A Q3) = 1. Similarly, if i > 2,
then n > 3 and for j = 1, ..., i — 2 we can show that either Q? =0, or
Q? ="g;7, or Q?— =g A Qgﬂj, or Q? ="=g; V Q?H—‘, where Q?H # 0;
so in the last three cases V(Q%) = 1. Thus, V(s3(a)) = V(p) = 1 or
V(ss(a) =V(pAQT) =1

For class 4, where Vp(a) = 1 and V,,41(a) = 0, we have:

For (Cyp): Suppose that V(p) = 0. Then V(s4(a)) =V (=(pAQ7T)) =

For (C1): Suppose that V(p) = 1 and V(q1) = 0. First, if Vi(a) =0
then either Qf(a) = 0 or Q] = "—q; VQ3". So either V(s4(a)) = V(-p) =0
or V(ss(a)) = V(=(p A (=q1 vV Q3))) = 0. Second, if Vi(a) = 1 then either
Qi(a) =‘q’ or Q} ="q1 A Q3. So either V(s4(a)) =V (=(pAq))=1or
V(ss(a) = V(=(p A g1 A Q) =
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For (C,41): Suppose that V(p) = V(g1) = --- = V(g,) = 1. Note that
either Q* =g, or Q* = 0. So, in the first case, V(Q?*) = 1. Moreover, if
n = 1 then either V(s4(a)) = V(=p) = 0 or V(s4(a)) = V(=(p A QF})) = 0.
If n > 1 then for j = 1, ..., n — 1 either Q;’-‘ = 0, or Q? = Tg; ", or
Q? ="g; A Q?H—', or Q? ="=q; V Q?HT where Q?H =% (. Therefore,
in the last two cases, we can show inductively that V(Q?) = 1. So either
V(si(a)) = V(-p) = 0 or V(ss(a)) = V(=(p A QH) = 0.

If n > 1 then we show inductively that (C,,) holds. Indeed, assume
that V(p) =V(q1) =--- =V (gn—1) =1 and V(g,) = 0. First, if V;,(a) =0
then Q* = 0. Hence Q* |, = 0 or Q% | = "q,—1". So, in the last case,
V(Qi_,) = 1. Moreover, if n = 2 then either V(s4(a)) = V(-p) = 0
or V(sy(a)) = V(=(pAQF)) =0. Ifn > 2thenfor j =1, ..., n—2
we can show that either Q? = 0, or Q? =g, or Q;* =Tg; A Q?+1—'7 or
Q? =g, \/Q?H—'7 where Q?H = 0; so, in the last three cases, V(Q?) =1.
Thus, either V(s4(a)) = V(=p) = 0 or V(ss(a)) = V(=(p A Q7)) = 0.
Second, if V,,(a) = 1 then Q} = "¢,”. Hence either Q | = "g,—1 A g,
or QF | = "gi_1 Vg, So V(Q%_ ;) = 0. Moreover, if n = 2 then
V(sa(a)) = V(=(pAQF)) =1. If n > 2 then for j =1, ..., n — 2 we can
show that either Q? ="gj N\ Q;*_H—' or Q;* ="=g; VvV Q?_H—'; and V(Q?) =0.
Thus, V(s4(a)) = V(=(p A Q1)) = 1.

If n > 2 then for i = 2, ..., n — 1 we show inductively that (C;) holds.
Indeed, assume that V(p) = V(q1) = -+ = V(¢;—1) = 1 and V(g;) = 0.
First, if Vi(a) = 0 then either Q} = ¢ or Q} = "—¢; V Q;ﬂ_lj, where

#.1 # 0. In the last case we have V(Q7}) = 1. Moreover, either Q}_; =0,
or QF | ="gi 1 orQF ="q 1 AQ} or QF  ="qi_1 VvV QT where
Q% # 0; so, in the last three cases, V(Q? ;) = 1. If i = 2 then either
V(s4(a)) = V(=p) =0 or V(ss(a)) = V(=(pAQ7)) = 0. Similarly, if i > 2,
then n > 3 and for j = 1, ..., i — 2 we can show that either Q? =0, or
Q? ="rg; ", or Q? ="g; A Q;*Hj, or Q? ="=g; V Q?H—', where Q?H # 0;
s, in the last three cases, V(Qf) = 1. Thus, either V(s4(a)) =V (-p) =0
or V(s4(a)) = V(=(pAQ7)) = 0. Second, if V;(a) = 1 then either Q} = "¢,
or QF =g A Qf_HT So V(Q%) = 0. Moreover, either QF | ="g;_1 A Q}™
or QF ; = "Tgi1 VI So V(QE ) = 0. If i = 2 then V(s4(a)) =

V(=(pAQ})) = 1. Similarly, if i > 2, thenn >3 and for j =1, ...,i—2
we can show that either Q = "¢; A Q7 or Qf = "—¢; V Q] and

V(Q?) = 0. Therefore V(s4(a)) = V(~(p A Q7)) = 1.



On Theses without Iterated Modalities ... Part 2 213

For class 5, where Vp(a) = 0 = V,,11(a) and there is an i € {1,...n}
such that V;(a) = 1, we have:

For (Cyg): Suppose that V(p) = 0. Then V(s5(a)) = V(p A Q3) = 0.

For (Cyp): Suppose that V(p) =1 and V(¢1) = 0. First, if Vi(a) = 0,
thenn > 1and QF = "1 AQ35™. So V(QF) = 0and V(ss(a)) = (p/\Q5)
0. Second, if Vi(a) = 1 then either Q) = ‘~¢;” or Q} = "~q1 \/ Q37
V(55(a)) = V(p A ~a1) = 1 ot V(s5(a)) = V(p A (a1 v Q) =

For (C,41): Let V(p) = V(1) = -+ = V(gn) = 1. First, suppose
that V,,(a) = 1. Then Q5 = "—¢," and V(Q2) = 0. If n = 1 then
V(ss(a)) = V(p A —q1) = 0. Moreover, if n > 1 then for j=1,...,n—1

either Q5 = T=g; V QJ_H—‘ or Q? =g A Q?_H—‘, where Q?_H # (; and
in the last two cases we can show inductively that V(Q?) = 0. Therefore
V(ss(a)) = V(p AQ3) = 0. Second, suppose that V,,(a) = 0. Then n > 1
and Q5 = 0. Let ip be the largest i € {1,...,n — 1} such that V;(a) =1
If ip = n—1, then Q>_; = "=g,—1 " and V(Q3_;) = 0. If n = 2 then
V(ss(a)) = V(p A —q1) = 0. Moreover, if n > 2 then for j =1, ..., n—2
either Q5 = '_—\qj\/Qﬁ_1 or Q5 = rq]/\QH_1 , where Qy+1 £ 0; and we can
show inductively that V(Q3) = 0. Therefore V(s5(a)) = V(p A QF) = 0.
If ip < n—1, then n > 2, Q) = =g, ", and V(Q}) = 0. If n = 3,
then ig = 1 and V(s5(a)) = V(p A =q1) = 0. Moreover, if n > 3 then
for j =1, ..., n — 3 either Q? = Mg \/Q?_H—' or Q}r’ = Tg, /\Q?H—',
where Q% # 0; and we can show inductively that V(Q3?) = 0. Therefore
V(ss(a)) =V(pAQY) =0.

If n > 1 then we show inductively that (C,) holds. Indeed, assume
that V(p) = V(q1) = - = V(gn-1) = 1 and V(g,) = 0. First, if V,,(a) =
1 then Q2 = "—g," and V(Q>?) = 1. Hence Q>_, = "g,—1 A =g, or

S =""¢n_1V g, SoV(Q>_,) = 1. So if n = 2 then V(s5(a)) =
V(p A Q3) = 1. Moreover, if n > 2 then for j =1, ..., n — 2 we can show
that Q?H # ¢ and either Q? =g A Q?+17 or Q? =g V Q?_Hj, and
V(Q%) =1. SoV(ss(a)) = V(pAQT) = 1. Second, if V,,(a) = 0, then n > 1
and Q5 = 0. Let iy be the largest i €{1,...,n— 1} such that V;(a) =
If ip = n—1, then Q>_; = "—¢g,—1" and V(Q>_,) = 0. If n = 2 then
V(ss(a)) = V(p/\ —q1) = 0. Moreover, if n > 2 then for j =1, ..., n—2
either Q? = rﬁqij?+1—' or Q? = rqj/\Q;?H—', where Q?-&-l # @; and we can
show inductively that V(Q3) = 0. Therefore V(s5(a)) = V(p A QF) = 0.
If ig < n—1, then n > 2, Q?o = =g, ', and V(Q?O) =0. If n =3,
then ip = 1 and V(s5(a)) = V(p A =q1) = 0. Moreover, if n > 3 then
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for j =1, ..., n — 3 either Q? = T—g; \/Q?H—‘ or Q? = "g; /\Q?H—‘,
where Q? 41 # 0; and we can show inductively that V(Q?) = 0. Therefore
V(ss(a) = V(p A QF) = 0.

If n > 2 then for i = 2, ..., n — 1 we show inductively that (C;)
holds. Indeed, assume that V(p) = V(1) = -+ = V(¢i—1) = 1 and
V(g;) = 0. First, if Vi(a) = 1 then Q7 = "—¢; V Q7" and V(QF) = 1.
Moreover, Q? | ="q;_ 1 AQ? or Q2 | ="=q;_ 1V Q7. So V(QF ) = 1.
If i = 2 then V(s5(a)) = V(p A Q3) = 1. Similarly, if i > 2, then n > 3
and for j = 1, ..., i — 2 we can show that either Q? =g A Q?H—' or
Q? ="=g; V Q?H_‘; and so V(Q?) = 1. Thus, V(s5(a)) =V(pAQJ) = 1.
Second, if Vi(a) = 0 then Q7 = "¢; A Q7,7 and V(Q?) = 0. Moreover,

S =g 1 AQ} T or Q3 ="—qi1VQ?T. SoV(QF_;) =0. Ifi = 2 then
V(ss(a)) = V(p AQ3) = 0. Similarly, if i > 2, then n > 3 and for j = 1,
-+, 1—2 we can show that either Q7 ="¢; AQ53,, 7 or QF = "—¢; VQ7, ™
and so V(Q3) = 0. Thus, V(s5(a)) = V(p A Q3) = 0.

For class 6, where Vy(a) = 1 = V,,11(a) and there is an i € {1,...n}
such that V;(a) = 0, we have:

For (Cp): Suppose that V(p) = 0. Then V(sg(a)) = V(=(pA Q%)) = 1.

For (Cy): Suppose that V(p) =1 and V(¢1) = 0. First, if Vi(a) = 1,
then n > 1 and Q% = "¢; AQS™. So V(QF) = 0 and V(sg(a)) = V(=(p A
Q%)) = 1. Second, if V;(a) = 0 then either Qf = ‘—q;” or QF = "—q1 V Q5™
So V(ss(a)) = V(=(pA—=q1)) = 0 or V(ss(a)) = V(=(p A (=q1 V Q3))) = 0.

For (Cp41): Let V(p) = V(q1) = -+ = V(gn) = 1. First, suppose
that V,,(a) = 0. Then Q%5 = "—¢," and V(QS) = 0. If n = 1 then
V(ss(a)) = V(=(p A —¢1)) = 1. Moreover, if n > 1 then for j =1, ...,
n — 1 either Q? =g \/Q?H"' or Q? ="g; /\Q?_Hj7 where Q?H # 0; and
in the last two cases we can show inductively that V(Q?) = 0. Therefore
Vi(sg(a)) = V(=(p A QF)) = 1. Second, suppose that V,(a) = 1. Then
n > 1 and Q% = 0. Let ip be the largest i € {1,...,n — 1} such that
Vi(a) = 0. Ifig = n — 1, then Q% | = "=g,_1 " and V(Q5_,) = 0. If
n = 2 then V(sg(a)) = V(=(p A =¢1)) = 1. Moreover, if n > 2 then
for j =1, ..., n — 2 either Q? = Tgj \/Q?+17 or Q? = gy /\Q?+17,
where Q? 41 7 0; and we can show inductively that V(Q?) = 0. Therefore
V(sg(a)) = V(=(pAQF) =1. Ifig < n—1, then n > 2, QF = "—¢;, ",
and V( ?O) =0. If n =3, then ip = 1 and V(sg(a)) =V (=(pA—~q)) = 1.
Moreover, if n > 3 then for j = 1, ..., n — 3 either Q? =g V Q?Hj
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or Q% ="q; AQ%, ", where Q%,, # 0; and we can show inductively that
V(Q$Y) = 0. Therefore V(sg(a)) = V(~(p A QF)) = 1.

If n > 1 then we show inductively that (C,) holds. Indeed, assume
that V(p) = V(q1) = - = V(¢n-1) = 1 and V(g,) = 0. First, if V,,(a) =
0 then Q% = "—¢,” and V(Q8) = 1. Hence Q°_; = "¢,—1 A =g, or

6 =T¢n_1V g, SoV(QS_;) =1. So if n = 2 then V(sg(a)) =
V(=(p A Q%)) = 0. Moreover, if n > 2 then for j = 1, ..., n — 2 we can
show that Q?H = ¢ and either Q? ="g; A Q?+17 or Q? =g vV Q?_Hj,
and V(Q?) =1. So V(se(a)) = V(=(p A Q%)) = 0. Second, if V,(a) = 1,
then n > 1 and Q% = 0. Let ip be the largest i € {1,...,n — 1} such
that Vi(a) = 1. If ip = n — 1, then Q%_; = "—¢q,_1 " and V(Q%_,) = 0.

n n—1
If n = 2 then V(sg(a)) = V(=(p A ~¢1)) = 1. Moreover, if n > 2 then
for j =1, ..., n — 2 either Q? = T—gj \/Q?-H—I or Q? = "g; /\Q?_H—',

where Q? 41 7 0; and we can show inductively that V(Q?) = 0. Therefore
V(sg(a)) = V(=(pAQF) =1. Ifig < n—1, then n > 2, QF = "¢, ",
and V(Q?O) =0. If n =3, then ip = 1 and V(sg(a)) = V(=(pA—-q1)) = 1.
Moreover, if n > 3 then for j = 1, ..., n — 3 either Q% = "—=¢; V Q%"
or Qg? ="g A Q?HT where Q?_H = 0; and we can show inductively that
V(Q?) = 0. Therefore V(sg(a)) = V(=(p A Q%)) = 1.

If n > 2 then for i = 2, ..., n — 1 we show inductively that (C;)
holds. Indeed, assume that V(p) = V(1) = -+ = V(g;—1) = 1 and
V(g;) = 0. First, if Vi(a) = 0 then Qf = "—¢; V QF, ;7 and V(Q¢) = 1.
Moreover, Q% | ="T¢;_ 1 AQ T or Q% | ="=q;_1 vV Q™. So V(QY ;) = 1.
If i = 2 then V(sg(a)) = V(=(p A Q%)) = 0. Similarly, if i > 2, then
n > 3 and for j =1, ..., i—2 we can show that either Q? =g, /\Q?_Hj or
Q% ="¢;VQS,, ; and s0 V(QF) = 1. Thus, V(s¢(a)) = V(=(pAQY)) = 0.
Second, if Vi(a) = 1 then Q% = "¢; A Q%7 and V(QF) = 0. Moreover,

S 1 =Tq1AQTor Q% | ="-q1vVQ. SoV(QY_;) =0. Ifi = 2 then
V(sg(a)) = V(=(pAQS%)) = 1. Similarly, if i > 2, then n > 3 and for j = 1,
-+, 1—2 we can show that either Q ="¢; AQ%,, 7 or QF = "—¢; V@5, ™;
and so V(Q%) = 0. Thus, V(ss(a)) = V(=(p A QF)) = 1.

The inductive steps for complex formulas are obvious. O
LEMMA A.2. Letk >0 and o, 8,71, ..., € Forg. Suppose that:
e "aV 7 € Taut, but o ¢ Taut and "5V \/;?:1 v, ' ¢ Taut.
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Then there is a uniform substitution s such that "s(a) = p7' and "s(8) =
—p belong to Taut, and for any i € {1,...,k}, either "s(v;) = —p? or
F=s(v;)" belongs to Taut.

PROOF: By both assumptions, there are two (different) cl-valuations V;
and V; such that:

o Vo(a) =0and Vp(5) =1
o Vi(B)=Vi(m1) = =Vi(w) =0and Vi(a) =1

By Lemma A.1, with n = 0, for the valuations Vj and V; we make some
substitution s which for any 6 € For., and any cl-valuation V satisfies the
conditions (Cp) and (Cy) from this lemma. In the light of these conditions
we obtain:
e "s(a) =p” € Taut.
Indeed, for any cl-valuation V: if V( ) =
by (Cy); if V(p) = 0 then V(s()) = Vo(e)
o "s(f) = —p’ € Taut.
Indeed, for any cl-valuation V: if V( ) = 1 then V(s(8)) = Vi(B) = 0,
by (C1); if V(p) = 0 then V(s(8)) = Vo(8) =1, by (Co).
e For any i € {1,...,k} either "s(v;) = —p” € Taut or "—s(y;)”
Taut.

Indeed, for any cl-valuation V: if V(p) = 1 then V(s(v;)) = Vi(vi) = 0,
by (C1). Hence "p D =s(y;) " € Taut. Moreover, since At(s(7;)) = {p}, so

1 then V(s(a)) = Vi(a) = 1,

either "—s(y;) " € Taut or "s(y;) = —p™ € Taut. O
LEMMA A3. Let k > 1 and «, B, v1, ..., Yk belong to Forg. Suppose
that:

e "oV 87 € Taut, but « ¢ Taut,
o foranyy €T :={y,...,v%} we have "5V 47 ¢ Taut.
1. Then for somen € {1,...,k — 1} there are non-empty different subsets

Iy, ..., Tphy1 of the set T such that T = U”+1 T'; and for some uniform
substitution s we have:

e "s(a) =p" and "s(B) = —p” belong to Taut;
o for anyy € T'y: Ts(mB A7) D g1 belongs to Taut;

o forallie{l,...,n} and v € T;11: "s(-8AYy) D (/\;:1 4 D Giy1)”
belongs to Taut.
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2. Moreover, for any subset ¥ of T' such that "V \/¥ 7 € Taut we can
take n = Card¥ — 1.

PROOF: Ad 1. By assumptions, there are cl-valuations Ay, ..., A such
that:

o Ap(a) =0and Ap(p) =1,

o forany i € {1,....k}: A;(y) =0= A;(5) and A;(a) =
For any ¢ € {1,...,k} both Ay(8) # A;(8) and Ap(a) # Ai(), and there
isaje{l,...,k} such that A;(v;) = 1; so A;(v;) # A;(7;). Hence among

Ay, ..., A we have at least two valuations which are different on the set I'.
Let m be the number of all such valuations. We put n := m — 1. Note that
m > 1; so n > 0. We choose n + 1 such valuations Vi, ..., V,, 11 which are

different on I'.
Now for any ¢ € {1,...,n+ 1} we put:

Li={yel:Vi(y) =0}

The sets I'y, ..., ;41 are non-empty and pairwise different and I' =
1

U:l2+1 L.
By Lemma A.1, with n > 0, for the valuations Vp, ..., V,11 we make

some substitution s which for any 6 € Fore and any cl-valuation V satisfies
the conditions (Cy)—(Cyp41) from the lemma. In the light of these conditions
we obtain.

e "s(a) =p” € Taut.
Let V be any cl-valuation. First, if V(p) = 0 then V(s(« )) Vola) = 0,

by (Co). Second, forany i € {1,...,n}: if V(p) =V(g1) ==V (gi-1)
1 and V(g;) = 0, then V(s(a)) = V;(a) = 1, by (C;). Thlrdly, if V(p) =
Vi) =-=V(gn) =1, then V(s(a)) = Vp41(a) = 1, by (Cpg1).

e "5(8) = —p? € Taut.
Let V' be any cl-valuation. First, if V(p) = 0 then V(s(ﬁ)) = W(B) =1,

by (Cp). Second, for any i € {1,...,n}: if V(p) =V(q1) = = V(¢g;i-1)
1 and V(g;) = 0, then V(s(8)) = Vi(B) = 0, by (C;). Thurdly7 if V(p) =
V(Ql) == V(Qn) =1, then V(S(B)) = Vn-‘rl(ﬁ) =0, by (Cn-‘rl)'

e For any v €TI'1: "s(=8 A7) D¢ € Taut.

Let V' be any cl-valuation and v € T';. If V(s(=8)) = V(p) = 1 and
Vig1) =0, then V(s(y)) = Vi(y) = 0, by (Cy).
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e If n > 1 then for any i € {2,...,n}: "s(=fA~;) D (/\;;11 g D q) €

Taut.
Let V be any cl-valuation, n > 1,4 € {2,...,n},and vy € T';. IV (s(=5)) =
V(p) =V(q)="-+=V(gi-1) =1and V(g) = 0, then V(s(7)) = Vi(y) =

e Forany v € Tpy1: "s(=8 A7) D (A}~ ¢ D gnt1)" € Taut.
Let V be any cl-valuation and v € T'y, 1. If V(s(=58)) = V(p) = V(1) =

<o =V(gn) = 1, then V(s(7)) = Vip1(7) = 0, by (Cpp1)-
Ad 2. Let ¥ be any subset of I" such that "5V \/ ¥ 7 € Taut. We put
m := Card¥, m > 1. Suppose that and ¥ = {1, ...,1,,}. By assumption

there are different cl-valuations Vj, ..., V,, such that:
e Vo(a) =0 and Vo(8) =1,
e foranyi € {1,...,m}: Vi(B) = Vi(¢h) = -+ = Vi(¥i—1) = Vi(¥is1) =
o= Vi(thm) = 0 and Vi(a) = 1 = Vi(3,).
Of course all valuations Vi, ..., V,, are pairwise different on the set I'. We
put n :=m — 1. So for the valuations Vg, V1, ..., V,,;1 we can repeat the
proof of the item 1. O
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