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5.1 Introduction

There are known sufficient conditions for existence of convolution in various
spaces of functions and generalized functions. They are often given in the form
of suitable assumptions concerning the growth of generalized functions.

There exist also conditions of another type, formulated without any restric-
tion on the growth, but expressed in terms of supports of generalized functions
and called compatibility conditions (see e.g. [1], p. 124-127). We discuss this
notion in some spaces of functions, distributions and ultradistributions and
present theorems on existence of the convolution assuming compatibility of
supports of the considered functions or generalized functions.

As a matter of fact, we will present conditions of compatibility which are
not only sufficient for existence of convolution in the considered spaces of
generalized functions, but also necessary in some sense (namely, in the sense
of S.Yu. Prishtshepionok who posed in 1977 certain problems concerning the
convolution in D′ and in S ′); for suitable results we refer to [10], [11], [15].
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We will show certain new situations, in which the convolution of gener-
alized functions exists, delivering interesting cases of compatibility of sup-
ports. In particular, we show that there is a variety of sets in Rd , that we call
spiral, such that functions, distributions or ultradistributions having supports
contained in such sets are convolvable in the corresponding spaces, in spite of
the fact that the supports are unbounded in each direction of Rd .

5.2 Notation

We use the standard multi-dimensional notation in Rd and Nd
0 as well as the

standard notation concerning the known spaces of real- or complex-valued
functions on Rd : Lr(Rd) for r ∈ [1,∞] (with the norm denoted by ‖ · ‖r),
L1

loc(Rd), C(Rd), C∞(Rd), E(Rd), D(Rd), S(Rd) as well as the spaces D′(Rd)

of distributions and S ′(Rd) of tempered distributions onRd with the respective
topologies (cf. [25], [1]).

For a given set E ⊆ Rd and a function φ on Rd , we will use the following
convenient notation: E @ Rd if E is a compact subset of Rd and

E4 := {(x,y) ∈ R2d : x+ y ∈ E}; φ
4(x,y) := φ(x+ y), x,y ∈ Rd .

In sections 5.6 and 5.7, we will consider the space D′(Mp) (Rd) of Beurling
ultradistributions and the space S ′(Mp) (Rd) of Beurling tempered ultradistribu-
tions for a given sequence (Mp) of positive numbers satisfying the following
three conditions:

(M.1) M2
p ≤Mp−1Mp+1 for p ∈ N;

(M.2) Mp ≤ AH p MqMp−q for p, q ∈ N, 0≤ q≤ p;

(M.3) ∑
∞
p=q+1 Mp−1M−1

p ≤ AqMqM−1
p for q ∈ N,

where A > 0 and H > 0 are certain constants.
It will be convenient to extend the sequence (Mp) (for p ∈ N0) to its multi-

dimensional version (Mk) (for k ∈ Nd
0) in the following way:

Mk := Mκ1+...+κd for k = (κ1, . . . ,κd) ∈ Nd
0 .

By the associated function for the sequence (Mp) we will mean the func-
tion M : [0,∞)→ [0,∞) given by M(t) := sup

p∈N0

log+(t
p/Mp) for t > 0, where

log+ := max{log t,0} for t > 0 and M(0) := 0.
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5.3 Compatibile sets

We formulate certain equivalent forms of the known condition, connected with
the existence of the convolution of distributions, for given closed sets in Rd :

Proposition 5.1 (see e.g. [6], p. 383). Let A,B ⊆ Rd be arbitrary closed sets.
The following conditions are equivalent:

(Σ ) (A×B)∩K4 @ R2d for every K @ Rd;
(Σ ′) A∩ (K−B)@ Rd for every K @ Rd;
(Σ ′′) (K−A)∩B@ Rd for every K @ Rd .

The meaning of the conditions for d = 1 can be seen on Fig. 5.1 (for X = Y =

R).

Fig. 5.1
In general, without the assumption that the sets A and B are closed, we have

the following equivalence:

Proposition 5.2 (see [11]). Let A,B⊆Rd be arbitrary sets. The following con-
ditions are equivalent:

(Σb) (A×B)∩K∆ is bounded in R2d for every bounded set K in Rd;

(Σ ′b) A∩ (K−B) is bounded in Rd for every bounded set K in Rd;

(Σ ′′b ) (K−A)∩B is bounded in Rd for every bounded set K in Rd;

(M) if xn ∈ A and yn ∈ B for n ∈ N, then |xn|+ |yn| → ∞ as n→ ∞

implies |xn + yn| → ∞ as n→ ∞.
If A,B are closed, then each of the above conditions is equivalent to any of
conditions (Σ)-(Σ ′′).
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Definition 5.3 (see [17], [1], [11]). Sets A, B⊆Rd are called compatible if any
of equivalent conditions (Σb)-(M) is satisfied.

There are two well known particular cases of compatible sets A,B in R1:
1◦ at least one of the sets A, B is bounded (see the lower part of Fig. 5.2);
2◦ both sets A, B are bounded from the same side: both from the left or

both from the right (see the upper part of Fig. 5.2).

Fig. 5.2

Case 1◦ extends clearly to Rd for d > 1 and case 2◦ can be described in Rd

in the following form: A,B ⊂ Rd are (or are contained in) suitable cones with
vertices at 0 such that A is an open convex cone and B ⊂ A∗, where A∗ means
the cone dual to A (see [2], pp. 4-6; [1], pp. 129-130; [29], pp. 63-64). For
d = 2, case 2◦ is illustrated on Fig. 5.3.

Fig. 5.3
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Fig. 5.4

That condition (Σ ′b) is satisfied in this case can be seen from Fig. 5.3 and
5.4 (to simplify presentation we show on Fig. 5.4 the set A∩ (c−B) only for
B := A, with A as on Fig. 5.3, and for a specific c ∈ R2, but a general case is
easily seen).

There exist, however, another case of compatible sets in R1, not so well
known as 1◦ and 2◦:

3◦ both sets A, B in R1 are unbounded from both sides: unbounded both
from the left and from the right.

Fig. 5.5

The set presented in each of the three parts of Fig. 5.5, let us denote it by
the common symbol A, is a union of countably many intervals of length 1
situated in three different ways on R1. The set A in the two lower parts of Fig.
5.5 is compatible with itself and the set A in the upper part of Fig. 5.5 is not
compatible with itself (for details see [7], [8] and [15]).
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Fig. 5.6

Fig. 5.7

Case 3◦ can be extended to Rd in various manners. An interesting extension
are sets which can be described as infinite spirals or helices with a suitable
way of developing their coils in Rd . Notice that compatible sets which are
unbounded in each direction of Rd can be obtained in this way (see [15]).

On Fig. 5.6 and 5.8 particular examples of such a spiral set A in R2 which is
compatible with itself are shown. On Fig. 5.7 and 5.9 (analogously to Fig. 5.4)
we show only the set A∩ (c−A) for specific vectors c ∈ R2.
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Fig. 5.8

Fig. 5.9

Compatibility of supports of two tempered distributions, elements of the
subspace S ′(Rd) of the space D′(Rd), does not guarantee that their convolu-
tion inD′ is again a tempered distribution (see section 5.5). Similarly, compat-
ibility of supports of two tempered ultradistributions, elements of the subspace
S ′(Mp)(Rd) of the space D′(Mp)(Rd), does not guarantee that their convolution
in D′(Mp) is again a tempered ultradistribution (see sections 5.6 and 5.7). This
is a consequence of Theorem 5.9 formulated in the next section.

Therefore the notion of compatibility requires suitable modifications in the
spaces S ′(Rd) of tempered distributions and S ′(Mp)(Rd) of tempered ultradis-
tributions.

In [7], [8], the following modifications of compatibility, corresponding to
the mentioned spaces were introduced.
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Definition 5.4 (see [7], [8], [10]). Two sets A, B ⊆ Rd are polynomially com-
patible if there is a positive polynomial p on [0,∞) such that the following
implication holds:

x ∈ A, y ∈ B⇒ |x|+ |y| ≤ p(|x+ y|)

or, equivalently, if there are C > 0 and k ∈ N0 such that

x ∈ A, y ∈ B⇒ |x|+ |y| ≤C (1+ |x+ y|)k.

In [14], a certain modification of compatibility condition, corresponding to
the space S ′(Mp)(Rd), was given via the associated function M for the sequence
(Mp). We present it here in a slightly relaxed form:

Definition 5.5 (cf. [14]). Two sets A, B ⊆ Rd are M-compatible, if there is a
constant a > 0 such that

M(|x|)+M(|y|)≤M(a|x+ y|)+a

for all x ∈ A and y ∈ B.

5.4 Existence of convolution in L1
loc

Definition 5.6. Let F and G be Lebesgue measurable functions on Rd . For a
given x ∈ Rd we define

(F ∗G)(x) :=
∫
Rd

F(x− t)G(t)dt, (5.1)

saying that (F ∗G)(x) exists, whenever the function under the integral sign in
(5.1) is Lebesgue integrable as a function of t for the fixed x. If (F ∗G)(x) exists
for all (almost all) x ∈Rd , we say that the convolution F ∗G exists everywhere
(almost everywhere) on Rd .

Definition 5.7 (see [15]). Let F and G be functions in L1
loc(Rd). We say that

the convolution F ∗G exists in L1
loc if F ∗G exists almost everywhere on Rd

and |F | ∗ |G| ∈ L1
loc(Rd).

Let us recall the known particular case (Young’s theorem) of the existence
of the convolution in L1

loc of functions from suitable subspaces Lp(Rd) and
Lq(Rd) of the space L1

loc(Rd):
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If F ∈ Lp(Rd) and G ∈ Lq(Rd) for p,q ∈ [1,∞) such that 1/p+ 1/q ≥ 1,
then the convolution F ∗G exists almost everywhere in Rd and F ∗G∈ Lr(Rd),
where r = (1/p+1/q−1)−1. In particular, if F, G ∈ L1(Rd), then the convo-
lution F ∗G exists almost everywhere in Rd and F ∗G ∈ L1(Rd).

The convolution in L1
loc of two locally integrable functions may not exist,

but it exists if the supports of the functions are compatible (see section 5.3):

Theorem 5.8 (see e.g. [1], p. 124). If F, G ∈ L1
loc(Rd) and the supports of the

functions F and G are (contained in) compatible sets, then the convolution
F ∗G exists in L1

loc.

However the existence of the convolution of functions in L1
loc (similarly,

the existence of the convolution of distributions or of ultradistributions in the
respective spaces, see sections 5.5 and 5.6) does not guarantee any restriction
of growth of the convolution. For instance, the convolution of two measurable
slowly increasing functions may exist in L1

loc but their convolution may be a
function of arbitrarily fast increase. As a matter of fact, the following much
stronger result was proved in [7] (see also [8] and [15]):

Theorem 5.9 (see [7], [8], [15]). Let F ∈ C(Rd) be an arbitrary continuous
nonnegative function (of an arbitrary increase). Then there exists a nonnega-
tive smooth function φ ∈ C∞(Rd) such that its support is compatible with itself
and the convolution ϕ ∗ϕ satisfies the inequality (φ ∗ φ)(x) > F(x) for each
x ∈ Rd . Moreover, lim|x|→∞ φ(x) = 0.

Due to its strong formulation the above theorem can serve as a universal
counter-example in considerations concerning the existence and the growth of
the convolution of functions, distributions and ultradistributions.

5.5 Existence of convolution in D′ and in S ′

There are several general definitions of the convolution of distributions in D′
given consecutively by C. Chevalley [3], L. Schwartz [26], R. Shiraishi [27],
V. S. Vladimirov [28], [29], P. Dierolf - J. Voigt [4], A. Kamiński [9] and S.
Mincheva-Kamińska [19], [20] (see also [32], [5], [30], [31], [21], [18] and
[15]). These general definitions allow one to define the convolution f ∗g in D′
for arbitrary distributions f ,g ∈ D′(Rd) and to determine, for each pair ( f ,g)
of distributions, whether the convolution f ∗g exists inD′ (then f ∗g∈D′(Rd))
or not. Most of the mentioned definitions are equivalent (for details see e.g.



48 Andrzej Kamiński, Svetlana Mincheva-Kamińska

[9]). We will recall only one of them, the sequential definition of Vladimirov
[28], [29], based on the notion of strong approximate unit.

Definition 5.10 (see [28], [29], [4], [9]). A sequence (ηn) of elements of
D(Rd) is said to be a strong approximate unit on Rd if for every K @ Rd

there exists an n0 ∈N such that ηn (x) = 1 for x ∈ K and n≥ n0 (hence ηn→ 1
in E(Rd)) and, in addition,

sup
n∈N
‖η

(k)
n ‖∞< ∞ for every k ∈ Nd

0 .

We denote the set of all strong approximate units on Rd by U(Rd).

Definition 5.11 (see [28], [29], [4], [9]). For given f ,g ∈ D′(Rd) the convolu-
tion f ∗g in D′ is defined by

〈 f ∗g, ϕ〉 := lim
n→∞
〈 f ⊗g, ηn ϕ

4〉, ϕ ∈ D(Rd),

whenever the above limit exists for every strong approximate unit (ηn) ∈
U(R2d) and ϕ ∈ D(Rd). We say then that the convolution f ∗g exists in D′.

Recall that the space S ′(Rd) of tempered distributions is a subspace of the
space D′(Rd) of distributions. Analogously to and independently of the above
Definition 5.11, one may define the convolution of tempered distributions in
S ′ in various ways (see e.g. [27], [4], [9] and other references given earlier).
We present below only one of several equivalent definitions of the convolution
in S ′, namely the respective counterpart of the above sequential definition of
Vladimirov (cf. [28], [29]):

Definition 5.12 (see [4], [9]). For given f ,g ∈ S ′(Rd) we define the convolu-
tion f ∗g in S ′ by

〈 f ∗g, ψ〉 := lim
n→∞
〈 f ⊗g, ηn ψ

4〉, ψ ∈ S(Rd),

whenever the above limit exists for every strong approximate unit (ηn) ∈
U(R2d) and ψ ∈ S(Rd). We say then that the convolution f ∗g exists in S ′.

For existence of the convolution in D′ of two distributions f ,g ∈ D′(Rd)

the condition, introduced in section 5.4, of compatibility of their supports is
sufficient. Namely

Theorem 5.13 (see [1]; cf. [6], [28], [29]). Let f ,g ∈ D′(Rd) be distributions.
If the supports of f and g are (contained in) compatible sets in Rd , then f ∗g
exists in D′ and f ∗g ∈ D′(Rd).
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In [27], R. Shiraishi posed the problem whether the assumption that the con-
volution f ∗g of two tempered distributions f ,g∈ S ′(Rd) (⊂D′(Rd)) exists in
D′ implies that the convolution f ∗g exists in S ′, in particular, whether the ex-
istence in D′ of the convolution f ∗ g of tempered distributions f ,g ∈ S ′(Rd)

implies that the convolution f ∗ g not only belongs to D′(Rd), but is even a
member of S ′(Rd).

The negative answer to the problem of Shiraishi follows directly from The-
orem 5.9 recalled in section 5.4, proved in [7], [8] (see also [15]), and from
the paper [4]. In [4], an example of two tempered measures f , g is given, con-
centrated on a countable set in R1, such that the convolution f ∗g exists in D′,
but f ∗g /∈ S ′(R1). Theorem 5.9 is much stronger than the result from [4] and
stands for a counter-example concerning the convolution in various spaces of
functions and generalized functions.

In particular, it follows from Theorem 5.9 that the counterpart of Theorem
5.13 for tempered distributions is not true under the assumption of compatibil-
ity of their supports. However, if one replaces this assumption by polynomial
compatibility of supports of given tempered distributions, the result concerning
their convolution in S ′ is analogous:

Theorem 5.14 (see [7], [8], [10]). Let f ,g∈ S ′(Rd) be tempered distributions.
If the supports of f and g are (contained in) polynomially compatible sets in
Rd , then the convolution f ∗g exists in S ′ and f ∗g ∈ S ′(Rd).

5.6 Definition of spaces D′(Mp) and S ′(Mp)

We recall the definition of Beurling spaces of ultradifferentiable functions for a
fixed numerical sequence (Mp) satisfying conditions (M.1)-(M.3), formulated
in section 5.2, which will be assumed to the end of this and the next section.

We start with defining, for given h > 0 and regular compact subset K of
Rd (see [16]), the spaces E (Mp)

K,h (Rd) and D(Mp)
K,h (Rd). The space E (Mp)

K,h (Rd) is
defined to consist of all functions ϕ from E (Rd) such that

‖ϕ‖K,h := sup
k∈Nd

0

sup
x∈K

| ϕ(k)(x) |
hkMk

< ∞ (5.2)

and D(Mp)
K,h (Rd) denotes the space of all ϕ ∈ E (Rd) with the support contained

in K, satisfying inequality (5.2). Then we define the following basic spaces of
functions:
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E (Mp) (Rd) := proj lim
K ⊂⊂ Rd

proj lim
h→ 0

E (Mp)
K,h (Rd);

D(Mp) (Rd) := ind lim
K ⊂⊂ Rd

proj lim
h→ 0

D(Mp)
K,h (Rd).

The symbol K ⊂⊂ Rd above means that the sets K are regular compact (see
[16]) and grow up to Rd .

Moreover we define first D(Mp)
Ls,h (Rd), for given h > 0 and s ∈ [1,∞], as the

space of all functions ϕ from C∞ (Rd) satisfying the inequality:

‖ϕ‖s,h := sup

{
‖ϕ(k)‖s

hkMk
: k ∈ Nd

0

}
< ∞,

and then we define

D(Mp)
Ls (Rd) := proj lim

h→ 0
D(Mp)

Ls,h (Rd).

By Ḃ(Mp) (Rd), we denote the completion of D(Mp) (Rd) in D(Mp)
L∞ (Rd). For

more details concerning all the above spaces we refer to [16], [23], [24], [12],
[13] and [2].

In addition, for a fixed m > 0, we denote by S(Mp),m
2 (Rd) the space of all

smooth functions ϕ such that

σm,2(ϕ) :=

 ∑
α,β∈Nd

0

m2(α+β )

M2
αM2

β

∫
Rd

∣∣∣〈x〉β ϕ
(α)(x)

∣∣∣2 dx

1/2

< ∞,

where 〈x〉 := (1+ |x|2)1/2 for x ∈ Rd , equipped with the topology induced by
the above norm σm,2, Then we define

S(Mp) (Rd) := proj lim
m→ ∞

S(Mp),m
2 (Rd).

For more details concerning the above spaces we refer to [22], [14] and [2]).

Remark 5.15. Notice that the basic spaces E (Mp) (Rd),D(Mp) (Rd),D(Mp)
Ls (Rd)

for s ∈ [1,∞], Ḃ(Mp) (Rd) and S(Mp) (Rd) contain sufficiently many functions
(in case of the spaceD(Mp) (Rd), this is a consequence of the Denjoy-Carleman
theorem). In particular, there exists a function η ∈ D(Mp) (Rd) such that η = 1
in some neighbourhood of 0.
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The strong dual of D(Mp) (Rd), denoted by D′(Mp) (Rd), is called the space
of Beurling ultradistributions.

Notice that D(Mp) (Rd) is dense in D(Mp)
Ls (Rd) for s ∈ [1,∞) as well as

in Ḃ(Mp) (Rd); moreover, the respective inclusion mappings are continuous.
Hence the strong duals ofD(Mp)

Ls (Rd) (s∈ [1,∞)) and Ḃ(Mp) (Rd) are subspaces
of the spaceD′(Mp) (Rd) of all Beurling ultradistributions. We denote them tra-
ditionally by D′(Mp)

Lt (Rd), where t := s/(s− 1) ∈ (1,∞], and D′(Mp)

L1 (Rd), re-
spectively (see [16], [2]).

The space S ′(Mp) (Rd) of all Beurling tempered ultradistributions is meant
as the strong dual of the space S(Mp) (Rd) defined above (see [22], [14], [2]).
Since D(Mp) (Rd) is dense in S(Mp) (Rd) and the inclusion mapping is contin-
uous, so S ′(Mp) (Rd) can be embedded into the space D′(Mp) (Rd). For other
properties of the space S ′(Mp) we refer to [22], [14] and [2].

For given ultradistributions f ,g ∈ D′(Mp)(Rd) by their tensor product f ⊗g
we mean an ultradistribution in D′(Mp)(R2d) defined in a standard way.

5.7 Existence of convolution in D′(Mp) and in S ′(Mp)

There are various general definitions of the convolutions in D′(Mp) of Beurling
ultradistributions (see [12]) and in S ′(Mp) of Beurling tempered ultradistribu-
tions (see [14]). They are counterparts of the known general definitions of the
convolutions in D′ and in S ′ (see section 5).

That the mentioned definitions of the convolution in D′(Mp) of Beurling ul-
tradistributions are equivalent and that the corresponding definitions of the
convolution in S ′(Mp) of Beurling tempered ultradistributions are equivalent
was proved in [12] and [14], respectively (see also [2]).

We will recall here only these definitions of the convolution in D′(Mp) and
in S ′(Mp) which correspond to Vladimirov’s definition of the convolution in
D′ and in S ′, respectively. The definitions are based on the notions of strong
D(Mp)-approximate unit and strong S(Mp)-approximate unit.

Definition 5.16 (see [12], [13]). A sequence (ηn) of elements of D(Mp)(Rd) is
said to be a strong D(Mp)-approximate unit on Rd if for every K @ Rd there
exists an n0 ∈ N such that ηn (x) = 1 for x ∈ K and n ≥ n0 (hence ηn → 1 in
E (Mp)(Rd)) and, in addition, if there exists a positive constant h such that

sup
n∈N

sup
k∈Nd

0

(
hk

Mk
‖ η

(k)
n ‖∞

)
< ∞.
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We denote the set of all strong D(Mp)-approximate units on Rd by U(Mp)(Rd).

Definition 5.17 (see [13], [14]). If in the above definition the assumption ηn ∈
D(Mp)(Rd) for n∈N is replaced by ηn ∈S(Mp)(Rd) for n∈N and the remaining
assumptions are preserved, then the sequence (ηn) is called a strong S(Mp)-
approximate unit. We denote the set of all strong S(Mp)-approximate units on
Rd by U(Mp)

s (Rd).

Vladimirov’s version of the definition of the convolution in D′(Mp) of
Berling ultradistributions has the following form:

Definition 5.18 (see [12], [13]). For given Beurling ultradistributions f ,g ∈
D′(Mp)(Rd) the convolution f ∗g in D′(Mp) is defined by

〈 f ∗g, ϕ〉 := lim
n→∞
〈 f ⊗g, ηn ϕ

4〉, ϕ ∈ D(Mp)(Rd),

whenever the above limit exists for every strong approximate unit (ηn) ∈
U(Mp)(R2d) and ϕ ∈ D(Mp)(Rd). We say then that the convolution f ∗ g exists
in D′(Mp).

Analogously, the convolution in S ′(Mp) of Beurling tempered ultradistribu-
tions can be defined as follows:

Definition 5.19 (see [13], [14]). For given two Beurling tempered ultradistri-
butions f ,g ∈ S ′(Mp)(Rd) we define the convolution f ∗g in S ′(Mp) by

〈 f ∗g, ψ〉 := lim
n→∞
〈 f ⊗g, ηn ψ

4〉, ψ ∈ S(Mp)(Rd),

whenever the above limit exists for every strong approximate unit (ηn) ∈
U(Mp)

s (R2d) and ψ ∈ S(Mp)(Rd). We say then that the convolution f ∗ g exists
in S ′(Mp).

The following analogue of Theorem 5.13 is true for the convolution in
D′(Mp):

Theorem 5.20 (see [13]). Let f ,g∈D′(Mp)(Rd) be Beurling ultradistributions.
If the supports of f and g are (contained in) compatible sets in Rd , then the
convolution f ∗g exists in D′(Mp) and f ∗g ∈ D′(Mp)(Rd).

There is also a counterpart of Theorem 5.14 for the convolution in S ′(Mp) of
Beurling tempered ultradistributions. Namely, we have
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Theorem 5.21 (see [13]). Let f ,g ∈ S ′(Mp)(Rd) be Beurling tempered ultra-
distributions. If the supports of f and g are (contained in) M-compatible sets
in Rd , then the convolution f ∗g exists in S ′(Mp) and f ∗g ∈ S ′(Mp)(Rd).

Acknowledgements. We would like to express our gratitude to Mr. Klaudiusz
Majchrowski for preparing the figures illustrating certain topics discussed in
the article.
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