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Introduction

A combination of considerations regarding algebraic structures of functions
and topological properties of examined transformations is a common topic of
many scientific papers. A lot of mathematical research and important theo-
ries are based on it. On the other hand, limiting considerations connected with
topological aspects or measure theory to some algebraic structures gives com-
pletely new possibilities (e.g. in the context of dynamical systems it is visible
in [2], [13], [14]). The facts mentioned above lead us in obvious way to the
necessity of analyzing algebraic properties of classes of functions widely ex-
amined in the real functions theory. In this theory, Darboux-like functions play
a particular role (e.g. basic properties of Darboux functions are presented at
the beginning of the classical monograph connected with real functions the-
ory [4]). Discovery that each real function of a real variable is a sum of two
Darboux functions ([24]) became a starting point of looking for the answers to
many questions connected with algebraic operations (addition, multiplication,
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lattice operations) performed on Darboux-like functions (e.g. [5], [6], [12],
[20], [27], [29]).

In this chapter we will concentrate on the considerations connected with the
rings of Darboux-like functions. It is a very wide issue so we have to limit it
to basic topics. Note in fact, that with problems regarding rings of functions
and its ideals (in algebraic sense) one can strictly relate the issues connected
with ideals of sets and theory of density points and approximately continuous
functions ([34]). However these considerations go beyond the scope of this
chapter.

We will mainly focus on pointing out assumptions which guarantee the ex-
istence of rings of functions contained in fixed families of Darboux-like func-
tions, examining its basic properties and, taking into account the directions
signalled at the beginning, applying them in research connected with the dis-
crete dynamical systems. To avoid analysis of very detailed issues we will
sometimes only indicate the literature containing regarded facts.

Throughout this chapter we will use the classical symbols and notions.
However, in order to avoid misunderstandings, we will present basic deno-
tation, symbols and definitions which will be used in the next parts of the
chapter.

Let f be a function. If A is a subset of the domain of f then the symbol f � A
will stand for the restriction of f to A. The set of all continuity (discontinuity)
points of f will be denoted by C( f ) (D( f )). Moreover we will use the notation
C∗( f ) = X \D( f ). If f is a real valued function then let us denote by Z( f ) the
zero set of f ; i.e., Z( f ) = f−1(0). If F is a family of functions f : X→R then
put D[F ] =

⋃
f∈FD( f ) and Z[F ] = {Z( f ) : f ∈ F}.

For a function f : R→ R and x0 ∈ R we will use the following notations:
R−( f ,x0)= {α ∈R : f−1(α)∩(x0−δ ,x0) 6= /0 for any δ > 0} and R+( f ,x0)=

{α ∈ R : f−1(α)∩ (x0,x0 +δ ) 6= /0 for any δ > 0}.
If f : X→R then f<1>(x) = f (x) and f<n>(x) = f<n−1>(x) · f (x) for n> 1.
If f : X→ X then put f 0(x) = x and f n(x) = f ( f n−1(x)) for n > 1. A point x

such that f M(x) = x, but f n(x) 6= x, for n∈ {1,2, . . . ,M−1} is called a periodic
point of f of prime period M. The set of all periodic points of f of prime period
M will be denoted by PerM( f ).

The symbol constX ,Y
α will stand for the constant function from X to Y as-

suming value α .
If A is a subset of the domain of f : X→Y and B⊂Y , then we shall say that

a set A f -covers a set B (denoted by A→
f

B) if B⊂ f (A).



12. On rings of Darboux-like functions 175

The distance between a set A ⊂ R and a point x ∈ R (in the natural metric)
will be denoted by dist(A,x).

In this paper we will consider several classes of functions, apart from the
family of continuous functions, we will deal with Darboux functions or almost
continuous functions. It should be noted that in our case, we limit most of these
definitions (except continuous function and Darboux function) to the case of
real functions of a real variable. However, these definitions can be naturally
extended to the more general case. We start with definition of Darboux function
in general case. Let (X ,TX) and (Y,TY ) be topological spaces. We shall say that
f : X → Y is a Darboux function if an image of any connected set A ⊂ X is a
connected set. In the case of a real function f of a real variable the above
definition is equivalent to the following intermediate value property: if x and y
belong to the domain of f and α is any number between f (x) and f (y) then
there exists a number z between x and y such that f (z) = α .

Let f : X→R. We say that f is a Baire one function (or f is of the first class
of Baire) if for any a ∈ R the sets {x ∈ X : f (x) < a} and {x ∈ X : f (x) > a}
are Fσ type.

We say that a function f belongs to the class B∗∗1 if D( f ) = /0 or f �D( f ) is
continuous ([40]).

It is worth noting that the family B∗∗1 has been introduced in a connection
with research regarding rings of functions and it is wider than the class of all
continuous functions and is included in the class B∗1 ([31]).

Now, let X ,Y be the unit intervals orR (with natural topology) and f : X→Y
be a function.

A function f is approximately continuous if for any x ∈ X there exists a
Lebesgue measurable set Ax ⊂ X such that

lim
h→0

λ (Ax∩ [x−h,x+h])
2h

= 1 and f (x) = lim
t→x,
t∈Ax

f (t).

Obviously if X = [0,1] and x = 0 or x = 1 we consider limh→0
λ (Ax∩[x,x+h])

h = 1
or limh→0

λ (Ax∩[x−h,x])
h = 1, respectively. This kind of functions was considered

for the first time by A. Denjoy in 1915 ([8]). Clearly, the family of all continu-
ous functions from X to Y is a proper subset of the family of all approximately
continuous functions from X to Y .

The next kind of functions we will consider are derivatives. It is known
that the class of all approximately continuous functions is not contained in the
class of derivatives but every bounded approximately continuous function is
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a derivative ([4]). In 1959 J. Stallings in paper [47] introduced the notion of
almost continuity. We call a function f almost continuous if for any open set
U ⊂ X×Y containing the graph of f , U contains the graph of some continuous
function g : X → Y . It is worth noting that every derivative (approximately
continuous function) is an almost continuous function.

We shall say that f has the Świątkowski property (or is a Świątkowski func-
tion) if for any x,y ∈ X such that x < y and f (x) 6= f (y) there exists z ∈ C( f )
such that z ∈ (x,y) and f (z) belongs to the open interval of the ends f (x) and
f (y). This kind of functions was introduced by T. Świątkowski and T. Mańk in
1982 ([28]). In the paper [26] one can find the following definition. A function
f has the strong Świątkowski property if for any x,y ∈ X such that x < y and
f (x) 6= f (y) and any α between f (x) and f (y) there exists z ∈ C( f ) such that
z∈ (x,y) and f (z) = α . This function is also called a strong Świątkowski func-
tion. If f is a strong Świątkowski function then it has the Świątkowski property
and moreover it is a Darboux and quasi-continuous function ([27]).

We will use the following symbols for families of considered functions:
Const(X) - the family of all constant functions defined on X ,
C(X ,Y ) - the family of all continuous functions f : X → Y ,
D(X ,Y ) - the family of all Darboux functions f : X → Y ,
S(X ,Y ) - the family of all functions f : X → Y having the Świątkowski prop-
erty,
sS(X ,Y ) - the family of all functions f : X→Y having the strong Świątkowski
property,
B1(X ,Y ) - the family of all functions f : X → Y of first Baire class,
B∗∗1 (X ,Y ) - the family of all functions f : X → Y from the class B∗∗1 ,
4′(X ,Y ) - the family of all derivatives from X to Y which are not approxi-
mately continuous functions,
C′ap(X ,Y ) - the family of all approximately continuous functions f : X → Y
which are not continuous functions,
A(X ,Y ) - the family of all almost continuous functions f : X → Y .

In all the above notations if X = Y we will write only one X , e.g. D(X)

instead of D(X ,X), S(X) instead of S(X ,X) etc. If additionally X = Y = R
then we will write shortly D, S etc.

For brevity, if we wish to consider the intersection of two or three classes of
functions, we shall write them next to each other (e.g. DS(X ,Y ) or DB1(X)).

The ring R of real functions defined on [0,1] is called a complete ring if it
contains the class of all continuous functions and the following condition is
fulfilled:
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if f ,g ∈ R, then max( f ,g) ∈ R and min( f ,g) ∈ R. (12.1)

If F is a fixed class of functions and f ∈ F then the symbol ℜF ( f ) will
stand for the family of all rings of functions from F containing the function f .
If we additionally assume that considered rings are extensions of some ringW
then we will write ℜW

F ( f ). Moreover, if ℜ is a family of rings, then we will
write ℜ̂ to denote that all the rings belonging to ℜ satisfy condition (12.1).

For brevity of notation in the next parts of the chapter we will use the fol-
lowing rule. If f : X → Y then writing ℜW

F ( f ) we will assume that all the
functions from the ringW and the family F are defined on X and their values
belong to Y . For example, if f : [0,1]→ R is a Darboux function then we will
write ℜC

D( f ) instead of ℜ
C([0,1],R)
D([0,1],R)( f ).

Let R be a ring. We will denote by I(R) the set of all ideals of R. If f ∈ R

then the symbol ( f )R will stand for the ideal generated by f . An ideal J ∈
I(R) will be called an extension (restriction) of an ideal J1 ∈ I(R) if J1 ⊂ J
(J ⊂ J1). An ideal J will be called a z-ideal if f ∈ R and Z( f ) ∈ Z[J ]
implies f ∈ J . Moreover, if J2 ∈ I(R) is a z-ideal such that

⋂
Z[J2] is a

nonempty closed set belonging to Z[J2], then we will called it z’-ideal. The
set of all z’-ideals of R will be denoted by Iz′(R). An ideal J is prime if
f g ∈ J implies f ∈ J or g ∈ J . A nonzero ideal J0 ∈ I(R) is called essential
if it intersects every nonzero ideal nontrivially. For A⊂ R we write Ann(A) to
denote the set {ξ ∈R : ξ ·A = {const0}}, where const0 stands for the constant
function assuming value 0.

12.1 Rings of the real Darboux-like functions defined on
topological spaces

The results presented in this part are based on the paper [43].
It is known that the family of all continuous functions defined on a topo-

logical space is a ring. Since each continuous function is a Darboux function,
then for any topological space X one can create a ring of Darboux functions
defined on X . In the context of our considerations this case is less interesting.
That is why the question arises whether for each topological space there exists
a ring of real Darboux functions defined on X containing at least one discontin-
uous function (we call such rings essential Darboux rings). We can extend the
question: is there for any topological space a discontinuous Darboux function
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defined on it? The following theorem shows that even in the case of spaces
with "very nice properties" such Darboux functions may not exist.

Theorem 12.1. There exists a connected, uncountable, Hausdorff topological
space X such that every Darboux function f : X → R is constant.

From the above theorem it is easy to conclude the following

Corollary 12.2. There exists a connected, uncountable, Hausdorff topological
space X for which there are no essential Darboux rings of real functions de-
fined on X.

In the context of the above results and the questions posed at the beginning of
the section, the following problem seems to be fundamental: what kind of as-
sumptions should we impose on the space X to obtain the existence of essential
Darboux ring of real functions defined on X? The answer to this question is

Theorem 12.3. If X is a connected and locally connected topological space
such that there exists a nonconstant continuous function f : X →R, then there
exists an essential Darboux ring of functions from X to R.

Of course obtaining the answer to one of the questions generates new prob-
lems, for example connected with the existence of essential Darboux rings
consisting of such functions f that D( f ) ⊂ Z( f ) (essential rings with this
property will be called ∗-rings).

Theorem 12.4. Let X be a non-singleton, connected and locally connected,
perfectly normal topological space. Then for every point x0 ∈ X there exists a
Darboux ∗-ring R of real functions defined on X such that D[R] = {x0}.

Of course the properties of such rings and properties of families of such rings
may be examined. For example in [43] some properties of rings connected
with cardinal functions were examined. However, the detailed considerations
regarding these problems are beyond the scope of this chapter.

12.2 Rings of the real Darboux-like functions defined on the unit
interval.

From now on till the end of the chapter we will refer the Darboux property ex-
clusively to the natural topology. So if a topology T is given and we will write
that each T -continuous function (i.e. continuous when we consider topology T
in [0,1]) has the Darboux property then we will mean that each T -continuous
function has the intermediate value property.
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12.2.1 Rings of Darboux and Świątkowski functions.

The main results of this section are based on the statements contained in the
papers [37] and [32].

At first one can notice that for Darboux functions, the Świątkowski property
is equivalent to other properties frequently examined in real analysis.

Theorem 12.5. A Darboux function f : [0,1]→ R has the Świątkowski prop-
erty if and only if for any x ∈ [0,1] there exists a sequence {xn}n∈N ⊂ C( f )
such that limn→∞ xn = x and limn→∞ f (xn) = f (x).

In [32] the statement being used in the proofs of theorems connected with rings
of Świątkowski functions was proved. Before formulating this theorem we will
briefly recall two notions. We call a function f : [0,1]→ [0,1] quasi-continuous
if for any x∈ [0,1] and any neighbourhood U of x and any neighbourhood V of
f (x) there exists a nonemty open set W ⊂U such that f (W )⊂V . We say that
f : [0,1]→ [0,1] has a strong Blumberg set B iff B is dense in [0,1], f � B is
continuous and for any nonempty open set U ⊂ [0,1] the set f (U ∩B) is dense
in f (U).

Theorem 12.6. For Darboux function f : [0,1]→ [0,1] the following condi-
tions are equivalent:

(i) f has the Świątkowski property,
(ii) f is quasi-continuous,

(iii) f has a strong Blumberg set.

It is worth noting that in [32] the Świątkowski property was defined also for
functions defined on R2 and the theorem analogous to Theorem 12.6 was
proved.

From Theorem 12.3 it follows immediately that there exists discontinuous
Darboux function f such that ℜD( f ) 6= /0. In this case we can ask another
question: what kind of assumptions should we impose on a Darboux function
f to have ℜC

D( f ) 6= /0? In particular one can ask whether the fact that f is a
Darboux and Świątkowski function is a sufficient condition for the existence
of a ring belonging to ℜC

D( f ). The following theorem shows that the answer to
this question is negative.

Theorem 12.7. There exists a Darboux function f : [0,1] → R having the
Świątkowski property such that ℜC

D( f ) = /0.

Indeed, let C denote the classical Cantor set and C∗ denote the set of all
endpoints of the intervals "removed" from [0,1] in construction of C in even
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steps. For any component (a,b) of the set [0,1] \ C "removed" from [0,1]
in the (2n + 1)-th (n = 0,1,2, . . . ) step we will use the symbol hb

a to de-
note a continuous function defined on (a,b) such that for any c ∈ (a,b) we
have hb

a((a,c)) = hb
a((c,b)) = [0,a− a

n+1 ]. For any component (a,b) of the set
[0,1]\C "removed" from [0,1] in the 2n-th (n = 1,2, . . . ) step we will use the
symbol hb

a to denote a continuous function defined on (a,b) such that for any
c ∈ (a,b) we have hb

a((a,c)) = hb
a((c,b)) = [b+ b

n ,2]. Define f : [0,1]→ R as
follows:

f (x) =


2 for x ∈ C∗,

0 for x ∈ (C\C∗),
hb

a(x) for x ∈ (a,b), where (a,b) is a component of [0,1]\C.

The function f is a Darboux function and it has the Świątkowski property, but
ℜC

D( f ) = /0. The details of this example are presented in [37].

It is not difficult to check that the function constructed above is not of first
Baire class. The question is whether the assumption that a considered function
is of first class of Baire may improve the situation. The answer is positive:

Proposition 12.8. If f : [0,1]→ R is Darboux and first class of Baire, then
ℜC

D( f ) 6= /0. Moreover if f also has the Świątkowski property, then ℜC
S( f ) 6= /0.

Indeed, let K be the set of all functions h of the form h = h0 f<m> +

h1 f<m−1>+ · · ·+ hm−1 f + hm, where h0,h1, . . . ,hm ∈ C([0,1],R) and m ∈ N.
It is easy to see that f ∈ K, C([0,1],R) ⊂ K and K is a ring of functions.
Applying the Young condition ([53]) we can show that K is a Darboux ring.

Similarly, Theorem 12.5 implies that K is a ring of functions having the
Świątkowski property, whenever f has this property.

It should be mentioned here that in the case of Darboux Baire one functions
it is possible to construct rings of functions from DB1([0,1]) in another way
presented in [19] and [36].

However, let us notice that there exist Darboux (Świątkowski) functions not
belonging to B1([0,1],R) and for which construction of such a ring is possible.

Theorem 12.9. Let f : [0,1]→ R be a Darboux function such that D( f ) is a
nowhere dense set and the following condition is satisfied
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for any x0 ∈ [0,1] and for any ε > 0 there exists δ > 0 such that for any

component J of the set C( f ) if dist(J,x0)< δ then dist( f (J), f (x0))< ε.

Then f is a Świątkowski function and there exists a topology T in [0,1] such
that C(([0,1],T ),R) ∈ ℜ̂C

D( f )∩ ℜ̂C
S( f ).

All the above considerations regarding rings of Świątkowski functions were
connected directly with the similar considerations regarding Darboux func-
tions. This situation is not accidental, which is shown by the next theorem.

Theorem 12.10. Let f : [0,1]→R be a Świątkowski function such thatD( f ) =
{x0}. Then ℜ̂C

S( f ) 6= /0 if and only if f is a Darboux function.

In [17], [21], [52] the following issue was examined: at what assumptions
regarding topology T finer than the natural topology of the real line do we
have the equality C = C(([0,1],T ),R) (this problem was also investigated in
the case of more general spaces e.g. in [30])? The paper [22] presents a synthe-
sis of the results on this issue. Natural complement to the considerations pre-
sented above is examining the possibility of creating a topology T finer than
the natural topology of the real line such that the classes of real continuous and
T -continuous functions are different but the families of Baire one functions in
both topologies coincide. Due to the considerations of this section, it seems to
be natural to demand from the family of T -continuous real functions to consist
only of Darboux and Świątkowski functions. Then of course this family will
be an essential and complete ring being an extension of the ring C([0,1],R).

Now let us formulate an adequate theorem.

Theorem 12.11. There exists a topology T ∗ finer than a natural topology of
[0,1] fulfilling the following conditions:

1. C([0,1],R) C(([0,1],T ∗),R),
2. the families of all functions of first Baire class with respect to natural topol-

ogy and to topology T ∗ coincide,
3. the ring C(([0,1],T ∗),R) consists of Darboux and Świątkowski functions.

12.2.2 Rings of strong Świątkowski functions.

As it was pointed out in the introduction, functions with the strong Świątkowski
property are Darboux functions, so considering rings consisting of strong
Świątkowski functions in this chapter is entirely justified.
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The considerations of this section are based on [23] and [44].
A sum of function with the strong Świątkowski property and linear func-

tion may not have the strong Świątkowski property. One can ask the following
questions: for which functions f is there a complete ring of functions hav-
ing the strong Świątkowski property and containing f and what is the form of
functions belonging to such ring? Searching for answers to these questions has
led to formulation of "generalized Fleissner condition".

We say that a function f : [0,1]→ R fulfills the generalized Fleissner con-
dition, if f is a continuous function or f �D( f ) = const
and for each x ∈D+( f ) there exists a sequence {xn} ⊂ C∗( f ) such that xn↘ x
and f (xn) = f (x),n = 1,2, . . .
and for each x ∈D−( f ) there exists a sequence {yn} ⊂ C∗( f ) such that yn↗ x
and f (yn) = f (x),n = 1,2, . . . .

It is easy to show that the family of all functions fulfilling the generalized
Fleissner condition is a proper subset of the class of all functions with the
strong Świątkowski property.

Theorem 12.12. If f fulfills the generalized Fleissner condition then

ℜ̂sSB∗∗1 ( f ) 6= /0.

The proof of the above theorem is based on the observation that if f fulfills
the generalized Fleissner condition and D( f ) 6= /0 then there exists α ∈R such

that f �D( f ) = constD( f ),R
α .

12.2.3 Ideals of rings of almost continuous functions.

According to the earlier considerations (e.g. Proposition 12.8) and due to the
results presented in [19] and [36] it is easy to conclude the existence of rings
of almost continuous functions containing discontinuous functions (so called:
essential almost continuous rings). In reference to the previous section we can
also formulate the following theorem.

Theorem 12.13. If a function f fulfills the generalized Fleissner condition then
ℜ̂A( f ) 6= /0.

Further considerations regarding existence of rings of almost continuous
functions may be found in [44], while the next part of this section will be
based on the paper [39].
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In the study of algebraic properties of rings, ideals play a special role (e.g.
[15]). In the remaining part of the section we examine this issue in relation to
the rings of almost continuous functions. We shall consider the properties of
ideals of some rings of almost continuous functions, being extensions of rings
of continuous functions. Due to other observations in this section, these results
can also be applied easily to the other classes of functions.

Let f ∈ A([0,1],R) be a function such that D( f ) =D( f )⊂ Z( f ). We will
use the following notation ℜ̃C

A( f ) = {R ∈ℜC
A( f ) :D(g)⊂D( f ) for g ∈ R}.

In the further considerations, if we write ℜ̃C
A( f ) then we always assume that

f is a fixed function belonging to A([0,1],R), such that /0 6= D( f ) = D( f ) ⊂
Z( f ).

Our considerations start with the observation that the results included in the
papers [3], [29], [33], [37], [38], [50] show, that for a function f satisfying the
above assumptions, ℜ̃C

A( f ) 6= /0 and, moreover, ℜ̃C
A( f ) contains more than one

ring.
The following theorem also shows some relationship between the ideals of

the appropriate rings.

Theorem 12.14. For each countable and closed set P ⊂ [0,1], there exists a
function f : [0,1]→ R such that f ∈ A([0,1],R) and D( f ) = P, for which
there exist two families of rings {Rη : η < c}, {Hη : η < c} ⊂ ℜ̃C

A( f ) such
that Rη1 6= Rη2 , Hη1 6= Hη2 , ( f )Hη1

6= ( f )Hη2
(η1,η2 < c and η1 6= η2) and

( f )Rη1
= ( f )Rη2

(η1,η2 < c).

In many papers and monographs (e.g. [1], [15], [16]) the authors investi-
gated the ideals of rings of continuous functions (often defined on more ab-
stract space than R). So, to begin with, let us note the relations between ideals
of the rings of continuous functions and ideals of the rings belonging to ℜ̃C

A( f ).
First let us make some preliminary observations.

Remark 12.15. For an arbitrary ring R ∈ ℜ̃C
A( f ), there exists an ideal J0 of

the ring C([0,1],R) such that J0 6∈ I(R).
In fact. Let [a,b] ⊂ (0,1) be a nondegenerate interval such that [a,b] ∩

D( f ) = /0 and x0 ∈ (a,b). Putting J0 = {h∈ C([0,1],R) : h(x0) = 0} we obtain
that J0 ∈ I(C([0,1],R)). Now, we consider a function k : [0,1]→R defined by

k(x) =


0 for x = x0,

1 for x ∈ [0,1]\ (a,b),
linear in the segments [a,x0] and [x0,b].

Note that k ∈ J0 but f · k 6∈ J0.
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Since in this section rings of functions containing the family of all continuous
functions are examined, so the following result seems to be interesting.

Theorem 12.16. Let R ∈ ℜ̃C
A( f ). For an arbitrary z’-ideal J ∈ I(C([0,1],R))

for which
⋂
Z[J ] is not a singleton, there exist:

(A) an extension J ∗ of J which is a z’-ideal of C([0,1],R), such that
J ∗ 6∈ I(R),

(B) a restriction J∗ of J which is a z’-ideal of C([0,1],R), such that
J∗ ∈ I(R).

The above theorem suggests considering in some sense opposite situation
i.e. the following problem. We have a fixed ideal J of R ∈ ℜ̃C

A( f ). Does there
exist a restriction J∗ of J such that J∗ is an ideal of C([0,1],R) and R? The
following theorem gives the answer to this question.

Theorem 12.17. Let f be a function for which D( f ) is a countable set. For
each ideal J of R ∈ ℜ̃C

A( f ), there exists a restriction J∗ ∈ I(C([0,1],R))∩
I(R). Moreover, if J is an essential ideal of R, then we may assume that J∗ is
also an essential ideal of R.

Let us introduce some more notations. For a function ξ : R→ R let ξ
β

α

(α < β ) denote a function defined as follows (e.g. [4], p. 36):

ξ
β

α (x) =


β if ξ (x)≥ β ,

ξ (x) if ξ (x) ∈ [α,β ],

α if ξ (x)≤ α.

Let F be a fixed family of functions. The symbol Fb will stand for the set
{ξ β

α : ξ ∈ F ∧α < 0 < β}. Moreover, if (X ,ρ) is a metric space, M ⊂ X and
x ∈ X , then p(M,x) = 2 · limsupR→0+

γ(x,R,M)
R , where for fix R > 0, γ(x,R,M)

is a supremum of the set of all positive r such that there exists z ∈ X such that
B(z,r)⊂ B(x,R)\M (here B(y,δ ) denotes an open ball i.e. B(y,δ ) = {w ∈ X :
ρ(y,w)< δ} for y ∈ X and δ > 0). We shall say that M is uniformly porous if
there exists m > 0 such that p(M,x)≥ m for any x ∈ X .

Theorem 12.18. Let J be a nontrivial ideal of a ring R∈ ℜ̃C
A( f ). Then the set

A = Ann(J ) has the following property: Ab is uniformly porous (in Rb which
is endowed with the metric of uniform convergence).

Theorem 12.19. Let R0 ∈ ℜ̃C
A( f ). If J ∈ Iz′(R0), then J is an intersection of

prime ideals.
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The proof is similar to that of Theorem 2.8 from [15] for rings of continuous
functions.

Note that, if R ∈ ℜ̃C
A( f ), then we can consider the set Iz′(R) with the

metric ρ0 such that ρ0(J1,J2) = ρH(
⋂
Z[J1],

⋂
[J2]) for J1,J2 ∈ Iz′(R),

where ρH(A,B) = max(supa∈A(dist(a,B),supb∈B(dist(b,A))) for any closed
sets A,B⊂ [0,1].

It is not hard to give an example of a z’-ideal which is not prime. So, the
question arises whether this phenomenon is rare or frequent. The successive
theorem is the answer to this question.

Theorem 12.20. Let P be the set of all prime ideals of a ring R0 ∈ ℜ̃C
A( f ).

Then P ∩Iz′(R0) is a uniformly porous set in the space (Iz′(R0),ρ0).

12.3 Rings of Darboux-like functions and problems connected
with discrete dynamical systems.

12.3.1 The Sharkovsky property.

In [41] the following statement of M. Misiurewicz was quoted: Combinato-
rial Dynamics has its roots in Sharkovsky’s Theorem. The basic version of this
theorem concerns exclusively continuous functions. In [48] and [49] the the-
orem was generalized to the case of functions with connected and Gδ graphs
(obviously such functions have the Darboux property).

This part of the chapter will be based on the papers [35] and [41].

Initial considerations are intended to highlight the main ideas connected
with the issues presented in this section.

It is very useful to introduce the following notions. Let (I1, I2, . . . , IM) be a
finite sequence of continuums (Ii ⊂R for i = 1,2, . . . ,M) and let f1, f2, . . . , fM :
R→ R. We say that (I1, I2, . . . , IM) is ( f1, f2, . . . , fM)-cycle if I1→

f1
I2→

f2
I3→

f3

. . . →
fM−1

IM →
fM

I1. If f1 = f2 = · · · = fM = f , we say that ( f1, f2, . . . , fM)-cycle

(I1, I2, . . . , IM) is ( f )-cycle. If x0 ∈ I1 is a point such that ( fi ◦· · ·◦ f1)(x0)∈ Ii+1

for i ∈ {1,2, . . . ,M}, we shall say that x0 is connected with an ( f1, f2, . . . , fM)-
cycle (I1, I2, . . . , IM).

We shall say that ( f )-cycle (J1,J2, . . . ,JM) predominates ( f1, f2, . . . , fM)-
cycle (I1, I2, . . . , IM) if for each i ∈ {1,2, . . . ,M}, there exists a homeomorphic
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embedding ξi : Ji → Ii such that ( fi ◦ · · · ◦ f1)(ξ1(x)) = ξi+1( f i(x)) for each
point x connected with ( f )-cycle (J1,J2, . . . ,JM).

A family of functions F is substituted by a class of functions F1 if for
any M ∈ N and any arbitrary ( f1, f2, . . . , fM)-cycle (I1, I2, . . . , IM), where
f1, f2, . . . , fM ∈ F , there exists an ( f )-cycle (J1,J2, . . . ,JM) which predomi-
nates ( f1, f2, . . . , fM)-cycle (I1, I2, . . . , IM) such that f ∈ F1.

We shall say that a family of functions F has the property J1 if for any ( f )-
cycle (I1, I2, . . . , IM) ( f ∈ F1) there exists a point x0 connected with this cycle
and such that f M(x0) = x0.

If F is a family of real functions of a real variable then we shall denote
F c = { fn ◦ fn−1 ◦ · · · ◦ f1 : f1, f2, . . . , fn ∈ F ,n≥ 1}.

First, we are going to establish two classes of functions PC and PD, which
will form a model for our considerations. Let us note that some functions be-
longing to PC (PD) were considered in many papers and monographs (e.g. [4],
[5]).

Let P be an arbitrary Cantor-like set in [0,1] (additionally we assume that
0,1 ∈ P) and let P′ ⊂ P. Then we can distinguish some properties of functions
fP′,P : R→ R which are connected with the sets P′ and P.

(P1) fP′,P(x) = 0 if x ∈ P\P′ and if P′ 6= /0, then fP′,P(x) = 1, if x ∈ P′.
(P2) fP′,P � [a,b] is a continuous function and fP′,P([a,b]) = [0,1] for any con-

nected component (a,b) of [0,1]\P.
(P′2) fP′,P � [a,b] is a continuous function, fP′,P � [a,b] is a Darboux function and

fP′,P([a,b]) = [0,1] for any connected component (a,b) of [0,1]\P.
(P3) fP′,P(x) = fP′,P(0), for x < 0 and fP′,P(x) = fP′,P(1), for x > 1.

Let us denote by PC (PD) a family of all functions fP′,P fulfilling conditions
(P1), (P2), (P3) ((P1), (P′2), (P3)) for all possible pairs of sets (P,P′). It is easy to
see that PC ⊂D (PD ⊂D) and, moreover, both classes contain nonmeasurable
(in the Lebesgue sense) functions, if the measure of P is positive and P′ is a
nonmeasurable set. Moreover, one can remark that the family PC is substituted
by the family C and the family PD is substituted by the family DB1.

It should be mentioned here that we can consider various modifications of
our models. For example, we can replace the condition (P2) (and (P′2)) with

(P′′2 ) fP′,P � [a,b] ∈ DB1 and f ([a,b]) = [0,1], for any component of [0,1]\P.

Then such a family is also substituted by the family DB1.
Moreover, the assumption 3 suggests that one can consider the functions

mapping [0,1] into itself.
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Now, we can define the notion of Sharkovsky function. First we should con-
sider the following Sharkovsky ordering of the set of all positive integers:

3≺ 5≺ 7≺ ·· · ≺ 2 ·3≺ 2 ·5≺ ·· · ≺ 22 ·3≺ 22 ·5≺ ·· · ≺ 23≺ 22≺ 2≺ 20 = 1.

We shall say that f is a Sharkovsky function provided that if PerM( f ) 6= /0
and M ≺ N, then PerN( f ) 6= /0.

Theorem 12.21. Let us suppose that F is a family of functions substituted by
a family F1 and the family F1 has the property J1. Then each function f ∈ F c

is a Sharkovsky function.

Since C and DB1 have the property J1, then both families PC and PD con-
sist of Sharkovsky functions.

At the end of twentieth century, a team of American mathematicians consid-
ered issues related to the theory, which can generally be called: "first return"
([9], [10], [11]). It is worth noting that the first return continuous functions
have the Darboux property. In the next part we will use this theory to build
our own solutions leading to defining wide class of Darboux functions (see
Theorem 12.22).

A set H ⊂R is called an od-set if H is an open and dense subset of R. Let H
be an od-set and f : R→ R be a function. We shall say that a set H f -replaces
R (denoted by H →

f−r
R) if for any nondegenerated interval [α,β ] ⊂ R there

exists (a,b)⊂ [α,β ]∩H such that [a,b]→
f

f ([α,β ]).

The idea of the notions below derives from [7], [9], [10] and [11]. Let H
be an od-set in R and {dn}n∈N ⊂ H be a fixed H-trajectory (i.e. {dn}n∈N is a
sequence of distinct points such that {dn : n ∈N} is dense set in H). For x ∈R
the left first return path to x based on {dn}n∈N, Pl

x = {tk : k ∈ N} is defined as
follows: t1 is the first element of the sequence {dn}n∈N in the set (−∞,x), for
t ∈ {2,3, . . .} the element tk+1 is the first element of the sequence {dn}n∈N in
the set (tk,x). The right first return path to x based on {dn}n∈N, Pr

x = {sk : k∈N}
is defined analogously. A function f : R→ R is first return continuous from
the left (right) at x with respect to the H-trajectory {dn}n∈N if

lim
t→x
t∈Pl

x

f (t) = f (x)

lim
t→x
t∈Pr

x

f (t) = f (x)

 .
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A function f : R → R is an (H,{dn}n∈N)-first return continuous function
( f ∈ FRC(H,{dn}n∈N)) if it is first return continuous with respect to the H-
trajectory {dn}n∈N from the left and right at each point x ∈ H and for any
component (a,b) of the set H, f is first return continuous with respect to the
H-trajectory {dn}n∈N from the right (left) at a (b).

We shall call f an S(H,{dn}n∈N)-function ( f ∈ S(H,{dn}n∈N)) if H →
f−r
R

and f ∈ FRC(H,{dn}n∈N).
We say that f : R→ R is an S-function ( f ∈ S) provided that there exists

an od-set H and an H-trajectory {dn}n∈N such that f ∈ S(H,{dn}n∈N).

The following theorem justifies considering the class S in the context of the
Darboux-like functions.

Theorem 12.22. If f : R→ R is an S-function, then f is a Darboux function.

With reference to our considerations and the above statement it seems to be
interesting to ask the following question: what kind of assumption should we
impose on f in order to have guaranteed the existence of a ring belonging to
ℜ̂Const

S ( f )?

Theorem 12.23. Let f ∈ S. Then there exists a ring R ∈ ℜ̂Const
S ( f ).

12.3.2 Rings of Darboux-like functions and entropy points.

In the introduction to this chapter it was noted that in the case of dynamical
systems, some algebraic structures of functions are often considered (e.g. [46],
[51]). This section will deal with rings of Darboux-like functions in the context
of local interpretation of entropy. The results presented here are based on the
papers [42] and [45].

We will start with introducing the concept of almost fixed point. Let
f : [0,1] → [0,1] be a Darboux function. We will say that a point x0 is an
almost fixed point of f if

x0 ∈ int(R−( f ,x0))∪ int(R+( f ,x0)).

If x0 = 0 or x0 = 1, then we only consider R+( f ,x0) or R−( f ,x0), respectively.
From now on, aFix( f ) stands for the set af all almost fixed points of f and
Fix( f ) denotes the set af all fixed points of f .
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It should be mentioned here that the notion of almost fixed point was created
on the basis of conception of Darboux point presented by J. Lipiński in [25].

In the theory of discrete dynamical systems, the question regarding symme-
try of properties of conjugate functions is essential. The following statement
refers to this question with respect to the possession of almost fixed points by
such functions.

Theorem 12.24. If f ,g : [0,1]→ [0,1] are topologically conjugate via a home-
omorphism φ (i.e. φ ◦ f = g◦φ ), and x0 ∈ aFix( f ), then φ(x0) ∈ aFix(g).

It is easy to see that the function f : [0,1]→ [0,1] defined by the formula:
f (0) = 1

2 and f (x) = |sin 1
x | for x ∈ (0,1] belongs to the class DB1 and 0 ∈

aFix( f )\Fix( f ). However, the next theorem shows, that in the case of function
f ∈ DB1([0,1]), in every neighborhood of any almost fixed point of f one can
find a fixed point of f .

Theorem 12.25. Let f ∈ DB1([0,1]) and let x0 ∈ aFix( f ). Then (x0− ε,x0 +

ε)∩Fix( f ) 6= /0 for each ε > 0.

Our considerations are limited to the real functions defined on the interval
[0,1]. However, it should be noted that all the following definitions, Theorem
12.27 and Remark 12.28 may be formulated for more general spaces ([44]).

Let f : [0,1]→ [0,1]. An f -bundle B f is a pair (F ,J) consisting of a family
F of pairwise disjoint (nonsingletons) continuums in [0,1] and a connected
set J ⊂ [0,1] (fibre of bundle) such that A→

f
J for any A ∈ F . Let ε > 0,

n ∈ N and B f = (F ,J) be an f -bundle. A set M ⊂
⋃
F is (B f ,n,ε)-separated

if for each x,y ∈ M, x 6= y there is 0 ≤ i < n such that f i(x), f i(y) ∈ J and
ρ( f i(x), f i(y))> ε . Let

maxsep[B f ,n,ε] = max{card(M) :M ⊂ [0,1] is (B f ,n,ε)-separated set}.

The entropy of the f -bundle B f is the number

h(B f ) = lim
ε→0

limsup
n→∞

[
1
n

log(maxsep[B f ,n,ε])
]
.

We shall say that a sequence of f -bundles Bk
f = (Fk,Jk) converges to a

point x0 (written Bk
f −→k→∞

x0), if for any ε > 0 there exists k0 ∈ N such that⋃
Fk ⊂ B(x0,ε) and B( f (x0),ε)∩ Jk 6= /0 for any k ≥ k0.
Putting

E f (x) = {limsup
n→∞

h(Bn
f ) : Bn

f −→n→∞
x}
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we obtain a multifunction E f : X ( R∪{+∞}.
We shall say that a point x0 ∈ [0,1] is an entropy point of f if h( f ) ∈ E f (x0)

(where h( f ) denotes an entropy1 of a function f ). If in addition we require
that x0 ∈ Fix( f ), then such a point will be called a strong entropy point of f .
The family of all functions f : [0,1]→ [0,1] having an entropy point (a strong
entropy point) will be denoted by E([0,1]) (Es([0,1])).

Theorem 12.26. Let f be a Darboux function. If x0 ∈ aFix( f )∩Fix( f ) then x0

is a strong entropy point of f .

The following theorem shows that the notion of an almost fixed point is "dy-
namically invariant".

Theorem 12.27. Let functions f : [0,1]→ [0,1] and g : [0,1]→ [0,1] be topo-
logically conjugate. Then f ∈ E([0,1]) if and only if g ∈ E([0,1]).

The above theorem is still true if we replace E([0,1]) with Es([0,1]).

Let F be some class of functions from the unit interval into itself. We shall
say that a function f : [0,1]→ [0,1] is TΓ -approximated by functions belonging
to F if for each open set U f containing the graph of f , there exists g ∈ F such
that the graph of g is a subset of U f . We shall say that a function f : [0,1]→
[0,1] is Tu-approximated by functions belonging toF if there exists a sequence
{ fn}n∈N ⊂F uniformly convergent to f . If we consider the familyA([0,1]) or
C([0,1]) as the family F in above definitions, then we have

Remark 12.28. (a) If f ∈A([0,1]), then the function f can be TΓ -approximated
by continuous functions from Es([0,1]).

(b) If f ∈A([0,1]), then the function f can be TΓ -approximated by discontin-
uous but almost continuous functions from Es([0,1]).

(c) If f ∈ C([0,1]), then the function f can be Tu-approximated by continuous
functions from Es([0,1]).

Let Per∞( f ) denote the set of all points x ∈ Fix( f ) such that for any open
neighborhood V of x and each n ∈ N there exists yx ∈ Pern( f ) for which
O f (yx) = { f n(yx) : n = 0,1,2, . . .} ⊂ V . f If Per∞( f ) 6= /0, then we will say
that f has the local periodic property. The family of all functions having local
periodic propery will be denoted by Per∞.

Theorem 12.29. If f ∈DB1([0,1]) then there exists a ringK∈RDB1([0,1],R)( f )
such that

1 A definition of entropy of a function can be found in section 11.3.
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(a) the function f can be TΓ -approximated by functions belonging to
KEs4′Per∞([0,1]).

(b) the function f can be TΓ -approximated by functions belonging to
KEsC′ap Per∞([0,1]).

Now, following [19], we will introduce another class of functions whose
definition is based on the notions of an od-set, H-trajectory and (H,{dn}n∈N)-
first return continuity presented in Section 12.3.1.

Let H ⊂ [0,1] be an od-set in [0,1], {dn}n∈N be an H-trajectory and f :
[0,1]→R. We say that function f is HC-connected with respect to H-trajectory
{dn}n∈N if f ∈ FRC(H,{dn}n∈N), {dn}n∈N ⊂ C( f ) and for any x ∈ [0,1] \H
and any ε > 0 there exists δ ∈ (0,ε) such that for any component I of the set
H the following condition is fulfilled:

(I∩ (x−δ ,x+δ ) 6= /0)⇒

( f ({dn : n = 1,2, ...}∩ I∩ (x−δ ,x+δ ))∩ ( f (x)− ε, f (x)+ ε) 6= /0).

The symbol ConnC will denote the family of all functions f : [0,1]→ R such
that there exist an od-set H( f ) and an H( f )-trajectory {dn}n∈N such that f is
H( f )C-connected with respect to {dn}n∈N.

Theorem 12.30. If f ∈ConnC([0,1]) then there exists a ringK∈RConnC([0,1],R)( f )
such that

(a) the function f can be TΓ -approximated by functions belonging toKEs([0,1]).
(b) the function f can be Tu-approximated by functions belonging toKEs([0,1]).
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[18] E. Korczak-Kubiak, Pierścienie funkcji H-spójnych, Doctoral Thesis, Łódź Univer-
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