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In this chapter, we review some problems related to extension, decompo-
sition and covering of functions. We mainly do not give proofs of the results
stated here.

10.1 An Extension Problem

If (X ,T ) is a topological normal space, then by well known Tietze extension
theorem, for each nonempty closed set A ⊂ X and every continuous function
g : A→ [0,1] there is a continuous function f : X → [0,1] such that f � A = g.

LetH⊂ G be nonempty families of functions from X to Y and let A⊂ X be
a nonempty subset of X . A map W : G →H is said to be an extension operator
from A onto X if the restrictions f � A and W ( f ) � A are equal for each function
f ∈ G.

So, from Tietze theorem it follows that in the case of topological normal
space X , for each nonempty closed set A⊂ X , the family G of all real functions
with restrictions to A being continuous and the family H of all continuous
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functions from X to R, there is an extension (from A onto X) operator W : G →
H.

We recall that a function h : A→ R, where A ⊂ R is quasi-continuous at a
point x0 ∈ A if for each positive real η > 0 and for each open set U containing
x0, there is an open set W ⊂U such that W ∩A 6= /0 and h(W ∩A) ⊂ (h(x0)−
η ,h(x0)+η). The function f is quasi-continuous if it is quasi-continuous at
each point (see [38]).

Denote by LA( f ,x) the set of limit numbers of a function f at x over the
set A (i.e. LA( f ,x) = {α ∈ R̃ : ∃{xn}⊂A\{x} xn → x ∧ f (xn)→ α}). Observe
that if f : R→ R is quasi-continuous and the set A is dense then for all x ∈ R,
f (x) ∈ LA( f ,x).

Consider the function f (x) = 1
x for x 6= 0 and f (0) = 0. The function f is

continuous on the set A = R \ {0} which is dense, but LA( f ,0) ⊂ {−∞,+∞}
so there is no quasi-continuous function g : R→ R with g � A = f � A.

Remark 10.1. Let A⊂ R be a dense set and f : A→ R be a quasi-continuous
function. The function f can be extended on R to a quasi-continuous function
g : R→ R if and only if for every x ∈ R\A, LA( f ,x)\{−∞,+∞} 6= /0.

Proof. If there is a quasi-continuous function g : R→ R such that g � A = f
then for each x ∈ R\A we have g(x) ∈ LA( f ,x)\{−∞,+∞}.

Now suppose that for every x∈R\A, LA( f ,x)\{−∞,+∞} 6= /0. Let g :R→
R be such that g(x) = f (x) for x∈ A and g(x)∈ LA( f ,x)\{−∞,+∞} for x 6∈ A.
Then the function g is quasi-continuous. ut

Example 10.2. Let A ⊂ R be a dense set, G be the family of all functions
f : R→ R quasi-continuous on A and such that LA( f ,x) \ {−∞,+∞} 6= /0 for
each x ∈ R\A, andH⊂ G be the family of all quasi-continuous functions. By
Remark 10.1 there is an extension operator W : G → H from A onto X such
that W (h) = h for h ∈H.

Remark 10.3. Let A = R \ {0}. We put: f1(x) = 0 and f2(x) = n for
x ∈ ( 1

2n ,
1

2n−1 ], n = 1,2, . . .; f1(x) = n and f2(x) = 0 for x ∈ ( 1
2n+1 ,

1
2n ] for

n = 1,2, . . .; f1(x) = f1(−x), f2(x) = f2(−x) for x ∈ [−1,0) and
f1(x) = f2(x) = 0 for x ∈ (−∞,−1)∪ (1,∞). Then f1, f2 : A→ R are quasi-
continuous; f1 and f2 can be extended onto R to quasi-continuous functions
(we can take f1(0) = 0 = f2(0)), but LA( f1 + f2,0) = {+∞} so f1 + f2 cannot
be extended onto R to a quasi-continuous function.

By Remark 10.3 the space G from Example 10.2 is not a linear space. Now
we will consider families G of real functions which form linear spaces with
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the natural operations of addition of functions and multiplication by reals and
discuss the problem of existence of linear extension operators.

Let G be some linear space of bounded real functions defined on a topolog-
ical space X , with the norm || f || = supx∈X | f (x)| for f ∈ G. Let H ⊂ G and
A⊂ X be a nonempty set. Suppose that for each function f ∈ G there is a func-
tion g : X→ I f (where I f = [inf f ,sup f ]) belonging toH such that f �A= g �A.
Then there is an extension operator W : G → H from A onto X satisfying the
condition ||W ( f )|| ≤ || f ||, f ∈ G, and such that W ( f ) = f for every f ∈H, but
this operator may be not linear.

Observe that if there are functions f ,g ∈ H ⊂ G with f + g ∈ G \H then
there is no a linear operator W : G →H such that W (h) = h for h ∈H. Indeed,
for such f ,g we have W ( f +g) =W ( f )+W (g) = f +g ∈ G \H, contrary to
W (G)⊂H.

Remark 10.4 ([17]). Let A ⊂ R be a nonempty nowhere dense set. For each
function f : R→ R there is a quasi-continuous function g : R→ R such that
f � A = g � A and g is continuous at each point x ∈ R \ cl(A) . Moreover, if f
is Lebesgue measurable (resp. of Baire α class, α ≥ 1), then g may have the
same property.

Example 10.5. Let A ⊂ R be a nonempty nowhere dense set. Assume that G
is the family of all functions f : R → R and H is the family of all quasi-
continuous functions, continuous on R \ cl(A). By Remark 10.4 there is an
extension operator W : G →H from A onto X such that W (h) = h for h ∈ H.
Since the sum of two quasi-continuous functions may belong to G \H, such
operator cannot be linear.

Example 10.6. Let A ⊂ R be a nonempty nowhere dense set. Assume that G
is the family of all Lebesgue measurable functions f : R→ R and H is the
family of all Lebesgue measurable quasi-continuous functions, continuous on
R \ cl(A). By Remark 10.4 there is an extension operator W : G → H such
that W ( f ) = f for f ∈ H. Since the sum of two Lebesgue measurable quasi-
continuous functions may belong to G \H, such operator cannot be linear.

Example 10.7. Let A⊂ R be a nonempty nowhere dense set. Assume that G is
the family of all functions f : R→ R from Baire α class (α ≥ 1) andH is the
family of all quasi-continuous functions of Baire α class, that are continuous
on R\ cl(A). By Remark 10.4 there is an extension operator W : G →H such
that W ( f ) = f for f ∈ H. Since the sum of two Baire α , quasi-continuous
functions may belong to G \H, such operator cannot be linear.
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Example 10.8. Let G be the family of all approximately continuous functions
f : R→ R and letH be the family of all approximately continuous and quasi-
continuous functions g : R→ R. Let A⊂ R be a nonempty nowhere dense set
of Lebesgue measure zero. It is known ([17]) that for every function f ∈ G
there is a function g ∈ H such that f � A = g � A. So there is an extension
operator W : G →H from A onto X such that W (h) = h for h ∈H. Since there
is approximately continuous function f : R→ R, that is not quasi-continuous
and for each function f ∈ G there are functions f1, f2 ∈ H with f = f1 + f2,
such operator W cannot be linear.

Example 10.9. Let G be the family of all Baire 1 functions f : R→ R and
let H be the family of all Baire 1 and quasi-continuous functions. Let A ⊂ R
be a nonempty nowhere dense set. It is known ([17]) that for every function
f ∈ G there is a function g∈H such that f � A = g � A. So there is an extension
operator W : G →H from A onto X such that W (h) = h for h ∈H. Since there
is a Baire 1 function that is not quasi-continuous, and since for every function
f ∈ G there are functions f1, f2 ∈ G with f = f1 + f2, such operator W cannot
be linear.

Remark 10.10. Let a nonempty Borel set A ⊂ R be such that its complement
R\A is c-dense in R. Using the similar construction as applied in the articles
[14],[44] we can show that for each Lebesgue measurable (resp. having Baire
property) function f : R→ R there is a Lebesgue measurable (resp. with the
Baire property) Darboux function g :R→R such that f � A = g � A. Similarly,
for each function (resp. of Baire α class, where α ≥ 1 function), f : R→ R
there is a Darboux (resp. of Darboux and Baire α class) function g : R→ R
such that f � A = g � A.

Example 10.11. Let a nonempty Borel set A ⊂ R be such that its complement
R\A is c-dense in R. Assume that G is the family of all Lebesgue measurable
functions f : R→ R andH is the family of all Lebesgue measurable Darboux
functions g : R→ R. Then G is a linear space, but for each f ∈ G there are
two functions f1, f2 ∈ H such that f = f1 + f2. By Remark 10.10 there is an
extension operator W : G → H from A onto X such that W (h) = h for h ∈ H
but it cannot be linear.

Example 10.12. Let a nonempty Borel set A ⊂ R be such that its complement
R\A is c-dense in R. Assume that G is the family of all functions f : R→ R
from Baire α class, where α ≥ 1, andH is the family of all Darboux functions
g : R→ R of Baire α class. Then G is a linear space, but for each f ∈ G there
are two functions f1, f2 ∈ H such that f = f1 + f2. By Remark 10.10 there is
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an extension operator W : G →H from A onto X such that W (h) = h for h∈H,
but it cannot be linear.

Example 10.13. Let a nonempty Borel set A ⊂ R be such that its complement
R\A is c-dense in R. Assume that G is the family of all functions f : R→ R
with the Baire property andH is the family of all Darboux functions g :R→R
with the Baire property. Then G is a linear space, but for each f ∈ G there are
two functions f1, f2 ∈ H such that f = f1 + f2. By Remark 10.10 there is an
extension operator W : G → H from A onto X such that W (h) = h for h ∈ H
but it cannot be linear.

Example 10.14. Let a nonempty Borel set A ⊂ R be such that its complement
R\A is c-dense inR. Assume that G is the family of all functions f :R→R and
H is the family of all Darboux functions g : R→ R. Then G is a linear space,
but for each f ∈ G there are two functions f1, f2 ∈ H such that f = f1 + f2.
By Remark 10.10 there is an extension operator W : G → H from A onto X
such that W (h) = h for h ∈H but it cannot be linear.

In the next example we will consider cliquish functions. Recall that a func-
tion f : R→ R is cliquish if the set C( f ) of all its continuity points is dense.
As above, the following remark is true.

Remark 10.15. Let a nonempty Borel set A ⊂ R be such that its complement
R \A is c-dense in R. Using a similar construction as applied in the article
[14] we can show that for each cliquish function f :R→R there is a Darboux
cliquish function g : R→ R such that g � A = f � A

Example 10.16. Let a nonempty Borel set A ⊂ R be such that its complement
R \A is c-dense in R. Assume that G is the family of all cliquish functions
f : R→ R and H is the family of all Darboux cliquish functions g : R→ R.
Then G is a linear space, but for each f ∈ G there are two functions f1, f2 ∈H
such that f = f1 + f2 ∈ G \H. By Remark 10.15 there is an extension operator
W : G →H from A onto X such that W (h) = h for h∈H but it cannot be linear.

A general construction for linear spaces
Now we consider the case in which H ⊂ G are families of real functions

being both linear spaces with the natural operations of addition of functions
and multiplication by reals.

Proposition 10.17. LetH⊂G be linear spaces of real functions. Let A⊂ X be
a nonempty set and suppose that for every function g ∈ G there is a function
f : X → R belonging to H such that f � A = g � A. Then there is a linear
extension operator W : G → H from A onto X such that W ( f ) = f for every
f ∈H.
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Proof. Without loss of generality we can suppose that H 6= G and that H con-
tains elements different from 0. Let B(H) be a basis of the linear space H
and let B(G), such that B(G) ⊃ B(H) is a basis of the linear space G. For
f ∈ B(H) we put W ( f ) = f and for g ∈ B(G) \ B(H) we take W (g) to be
an element of H such that g � A = W (g) � A. Next, if h ∈ G is of the form
h = ∑

k
i=1 rihi, where hi ∈ B(G) and ri ∈ R for i = 1,2, . . . ,k, then we put

W (h) = ∑
k
i=1 riW (hi). Evidently, the operator W is well defined on G and its

values belong to H. It is also linear. Since f = 1 · f , for f ∈ H, we have for
such an f that W ( f ) = 1 ·W ( f ) = f . ut

Example 10.18. Let X be a topological normal space and let A ⊂ X be a
nonempty closed set. Denote by H the family of all continuous functions
f : X → R and by G the family of all functions g : X → R, whose restrictions
g � A are continuous. Then by the Tietze Theorem and Proposition 10.17 there
is a linear extension operator W : G →H from A onto X such that W ( f ) = f
for every f ∈H.

Recall that an F-space is a vector space V over the real (or complex) num-
bers together with a metric d : V ×V → R so that scalar multiplication in V is
continuous with respect to d and the standard metric on R (or on C), addition
in V is continuous with respect to d, the metric is translation-invariant and the
metric space (V,d) is complete.

Remark 10.19. Let H⊂ G be families of real functions satisfying all require-
ments of Proposition 10.17. If G is an F-space and H has a complement in G,
then there is a continuous linear extension operator W : G →H from A onto X
such that W ( f ) = f for every f ∈H.

Proof. Let W be a linear extension operator from A onto X such that
W ( f ) = f for every f ∈ H. Because W 2 = W , the operator W obtained in
the above construction is a projection. Because G is an F-space and H has
a complement in G, we obtain that W is continuous. ut

Let (X ,ρ) be a metric space and A⊂X . We say that a function ω f : [0,∞)→
[0,∞) is a modulus of continuity of the function f : A→ R if

| f (x1)− f (x2)|< ω f (t) for all x1,x2 ∈ A with ρ(x1,x2)< t

In [30] M. J. McShane proved the following theorem:

Theorem 10.20. (McShane) If the function f defined on a subset A of metric
space X has a concave modulus of continuity ω f such that lim

t→0
ω f (t) = 0, then

f can be extended to X preserving the modulus of continuity.
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Example 10.21. Let A be a nonempty set in a metric space (X ,ρ). Denote by
H the family of all functions f : X → R for which there exists some concave
modulus of continuity ω f such that lim

t→0
ω f (t) = 0. Let G be the family of all

functions g : X → R, whose restrictions to A have a modulus of continuity ω f

which is concave and such that lim
t→0

ω f (t) = 0. Then by Theorem 10.20 and

Proposition 10.17 there is a linear extension operator W : G →H from A onto
X such that W ( f ) = f for every f ∈H.

Let A be a nonempty set in a metric space (X ,ρ). We say that a function
f : A→ R satisfies Hölder condition if

| f (x1)− f (x2)| ≤M(ρ(x1,x2))
α f or x1,x2 ∈ A

for some constants M > 0 and α > 0.

Example 10.22. Let A be a nonempty set in a metric space (X ,ρ) and
0 < α ≤ 1. Denote by H the family of all functions f : X → R satisfying
Hölder condition with the exponent α and by G the family of all functions
g : X → R whose restrictions g � A satisfy the Hölder condition with α on the
set A. By McShane Corollary 1 from [30] and Proposition 10.17 there is a lin-
ear extension operator W : G →H from A onto X such that W ( f ) = f for every
f ∈H.

Example 10.23. Let A be a nonempty set in a metric space (X ,ρ). Denote byH
the family of all bounded uniformly continuous functions and by G the family
of all functions g : X → R whose restrictions g � A are bounded and uniformly
continuous. By Corollary 2 from [30] and Proposition 10.17 there is a linear
extension operator W : G → H from A onto X such that W ( f ) = f for every
f ∈H.

We recall that a vector L ∈ Rn is a derivative of a function f : F → R at a
point a ∈ F ⊂ Rn if either a is an isolated point of F , or

| f (x)− f (a)− (L,(x−a))|
|x−a|

−→ 0 as x−→ a, x ∈ F,

where (x,y) denotes the scalar product of vectors x,y ∈ Rn. The vector L is a
strict derivative of f at a point a ∈ F if either a is an isolated point of F , or

| f (y)− f (x)− (L,(y− x))|
|y− x|

−→ 0 as x,y−→ a,

(x,y ∈ F, x 6= y; x = a or y = a is allowed).
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In [3] the authors prove the following theorem:

Theorem 10.24 (Aversa, Laczkovich, Preiss). Let F ⊂ Rn be a nonempty
closed set, f : F→R and L : F→Rn be functions such that for each a ∈ F the
vector L(a) is a derivative of f at a. Then f can be extended to an everywhere
differentiable function g : Rn→ R such that g′ = L on F if and only if the map
L : F → Rn is Baire 1.

In [28] the authors show the following theorem.

Theorem 10.25 (Koc-Zajićek). Let F ⊂ Rn be a nonempty closed set,
f : F → R and L : F → Rn be functions such that for each a ∈ F the vector
L(a) is a derivative of f at a. Moreover, suppose that the mapping L : F → Rn

is Baire 1. Then f can be extended to an everywhere differentiable function
g : Rn→ R such that g is C∞ on Rn \F, the derivative g′ = L on F and g′ is
continuous at all points a ∈ F at which L is continuous and L(a) is a strict
derivative of f at a.

These theorems are used in the next examples.

Example 10.26. Let X = Rn and let A⊂ Rn be a nonempty closed set. Denote
byH the family of all differentiable functions g :Rn→R, and by G the family
of all functions f : Rn→ R, whose restrictions f � A are differentiable and its
derivatives ( f � A)′ are Baire 1. By Theorem 10.24 and Proposition 10.17 there
is a linear extension operator W : G →H from A onto X such that W ( f ) = f
for every f ∈H.

Example 10.27. Let X = Rn and let A⊂ Rn be a nonempty closed set. Denote
by H the family of all differentiable functions g : Rn → R, that are C∞ on
Rn \A, and by G the family of all functions f : Rn → R, whose restrictions
f � A are differentiable and its derivatives ( f � A)′ are Baire 1. By Theorem
10.24 and Proposition 10.17 there is a linear extension operator W : G → H
from A onto X such that W ( f ) = f for every f ∈H.

Let A⊂ Rn and x ∈ Rn. A vector v ∈ Rn is called tangent to A if there exist
{xk}∞

k=1 ⊂ A and {αk}∞
k=1 ⊂ [0,∞) such that xk → x and αk(xk− x)→ v. The

set of all tangent vectors to A is called the contingent cone of A at x and will be
denoted by Tan(A,x). In [3] the authors proved that for a function f : A→ R
differentiable at x, the derivative f ′(x) is determined uniquely iff Tan(A,x)
spans Rn.

Remark 10.28 ([3]). There is a nonempty compact set A⊂ R2 and a function
f : A→ R such that the contingent cone Tan(A,x) spans R2 for every x ∈ A
and f has a derivative everywhere on A, but the derivative is not Baire 1 and
thus f cannot be extended to R2 as an everywhere differentiable function.
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Theorem 10.29 ([28]). Let A⊂Rn be a nonempty closed set such that Tan(A,x)
spans Rn for every x ∈ A. If a function f : A→ R has a strict derivative ev-
erywhere on A, then f can be extended to Rn as an everywhere differentiable
function.

Remark 10.30 ([28]). There is a nonempty compact set A⊂R2 and a function
f : A→ R such that Tan(A,x) spans R2 for every x ∈ A and f has a strict
derivative everywhere on A, but f cannot be extended to R2 as an everywhere
continuously differentiable function.

Example 10.31. Let A⊂Rn be a nonempty closed set such that Tan(A,x) spans
Rn for each x ∈ A. Denote by G the set of all functions f : Rn→ R, whose re-
strictions f �A have a strict derivative everywhere on A, and byH the family of
all differentiable functions belonging to G. By Theorem 10.29 and Proposition
10.17 there is a linear extension operator W : G →H from A onto X such that
W ( f ) = f for every f ∈H.

In the next examples we use the ordinary differentiation basis in Rn (see
[11] and [45]). Recall that a point x ∈ Rn is a density point of a Lebesgue
measurable set E ⊂ Rn if

lim
r→0+

λn(E ∩Q(x,r))
λn(Q(x,r))

= 1,

where Q(x,r) denotes the cube with the center x and the length of edge equal
r, and λn denotes the Lebesgue measure in Rn. Moreover, x is a density point
of an arbitrary set H ⊂ Rn if there is a Lebesgue measurable set E ⊂ H such
that x is a density point of E. The family Td of all sets M ⊂ Rn such that every
point x ∈ M is a density point of M is a topology called the ordinary density
topology. All sets belonging to Td are Lebesgue measurable. If Tnat denotes the
natural topology in R then the ordinary approximate continuity of a function
f : Rn→ R denotes the continuity of f as a map from (Rn,Td) into (R,Tnat).
A function f : Rn→ R, locally Lebesgue integrable at a point x ∈ Rn, is said
to be an ordinary derivative at x if

lim
r→0+

∫
Q(x,r) f (t)dt

λn(Q(x,r))
= f (x).

It is well known that a Lebesgue measurable function f , locally bounded at x
and approximately continuous at x is an ordinary derivative at x. All ordinary
derivatives and all approximately continuous functions are Baire 1.

Theorem 10.32 ([2]). If a set A⊂ Rn has Lebesgue measure 0 and a function
f : Rn→ R is Baire 1 then there is an ordinary derivative g : Rn→ R and an
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approximately continuous function h :Rn→R such that f � A = g � A = h � A.
Moreover, if the image f (A) is contained in a closed interval K then g and h
can be chosen so that their images are contained in K.

Example 10.33. Let X = Rn and let A ⊂ Rn be a nonempty set of Lebesgue
measure 0. Denote by G the family of all Baire 1 functions, and byH the family
of all ordinary derivatives. By Theorem 10.32 and Proposition 10.17 there is a
linear extension operator W : G → H from A onto X such that W ( f ) = f for
every f ∈H.

Example 10.34. Let X = Rn and let A ⊂ Rn be a nonempty set of Lebesgue
measure 0. Denote by G the family of all Baire 1 functions, and byH the family
of all approximately continuous functions. By Theorem 10.32 and Proposition
10.17 there is a linear extension operator W : G →H from A onto X such that
W ( f ) = f for every f ∈H.

Example 10.35. Let X = Rn and let A ⊂ Rn be a nonempty set of Lebesgue
measure 0. Denote by G the family of all bounded Baire 1 functions, and byH
the family of all bounded ordinary derivatives. By Theorem 10.32 and Propo-
sition 10.17 there is a linear extension operator W : G →H from A onto X such
that W ( f ) = f for every f ∈H.

Example 10.36. Let X = Rn and let A ⊂ Rn be a nonempty set of Lebesgue
measure 0. Denote by G the family of all bounded Baire 1 functions, and by
H the family of all bounded approximately continuous functions. By Theorem
10.32 and Proposition 10.17 there is a linear extension operator W : G → H
from A onto X such that W ( f ) = f for every f ∈H.

Remark 10.37. Let a nonempty set A⊂ Rn be such that its closure cl(A) is of
Lebesgue measure zero. From the proof of Theorem 3 in [13] it follows that
for each Baire 1 function f : Rn → R there is an approximately continuous
function g : Rn→ R, that is continuous at every point x ∈ Rn \ cl(A) and such
that f (x) = g(x) for x ∈ A.

Example 10.38. Let A ⊂ Rn be a nonempty set, whose closure cl(A) is of
Lebesgue measure zero,H be the family of all approximately continuous func-
tions, continuous at all points x∈Rn \cl(A) and let G be the family of all Baire
1 functions. By Remark 10.37 and Proposition 10.17 there is a linear extension
operator W : G →H from A onto X such that W ( f ) = f for every f ∈H.

Remark 10.39. The above results concerning extensions of Baire 1 functions
to approximately continuous functions and extensions of Baire 1 functions to
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almost everywhere continuous, approximately continuous functions were gen-
eralized for functions defined on some special metric spaces with measures
(see [12]).

In [24] the author considered the notion of B1-retracts. A subset A of a topo-
logical space X is a B1-retract of X if and only if for any topological space
Y every continuous function f : A→ Y can be extended to a Baire 1 function
g : X → Y .

Example 10.40. Let X be a topological space and let A ⊂ X be a B1-retract of
X . Denote by G the family of all functions f : X → R, whose restrictions to A
are continuous, and by H the family of all Baire 1 functions g : X → R whose
restrictions to A are continuous. Then the families G and H are linear spaces
and by Proposition 10.17 there is a linear extension operator W : G →H from
A onto X such that W ( f ) = f for every f ∈H.

Remark 10.41. Let A ⊂ [a,b] be a nonempty set whose complement [a,b]\A
is countable and let f : [a,b]→R be a function with a bounded variation, con-
tinuous at each point x ∈ A. There is a right-continuous (resp. left-continuous)
function f1 : [a,b]→ R with a bounded variation and continuous at each point
x ∈ A and such that f � A = f1 � A.

Proof. Since f is of bounded variation, there are two increasing functions g,h :
[a,b]→ R such that f = g− h and g, h are continuous at each point x ∈ A. If
u ∈ [a,b) is a discontinuity point of g then we put g1(u) = inf{g(t); t ∈ (u,b)}.
For other points u ∈ [a,b] we put g1(u) = g(u). Then the function g1 is right-
continuous and continuous at each point x ∈ A, where g1(x) = g(x). Similarly,
if u ∈ [a,b) is a discontinuity point of h then we put h1(u) = inf{h(t); t ∈
(u,b)}. For other points u ∈ [a,b] we put h1(u) = h(u). Then the function h1

is right-continuous and continuous at each point x ∈ A, where h1(x) = h(x).
Moreover, the functions g1 and h1 are increasing. So the function f1 = g1−h1

has bounded variation on [a,b], is right-continuous and f1 � A = f � A. The
case of left-continuity is similar. ut

Example 10.42. Let A ⊂ [a,b] be a nonempty set such that its complement
[a,b] \A is countable. Denote by G the family of all functions f : [a,b]→ R
with a bounded variation on [a,b], that are continuous at each point x ∈ A.
Moreover, let H be the family of all right-continuous (resp. left-continuous)
functions g : [a,b]→R with bounded variation on [a,b] and continuous at each
point x∈ A. By Remark 10.41 and Proposition 10.17 there is a linear extension
operator W : G →H from A onto X such that W ( f ) = f for every f ∈H.
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In [15] there was introduced the following classes of functions. A function
f : R→ R has property A3 at a point x if for each positive real r and each set
U ∈ Td containing x there is an open interval I such that C( f )⊃ I∩U 6= /0 and
| f (t)− f (x)| < r for t ∈ I ∩U , where C( f ) denotes the set of all continuity
points of f . A function f has property A3 if it has property A3 at each point
x ∈ R. A function f : R→ R has property A5 if for each nonempty set U ∈ Td

there is an open interval I such that /0 6= I∩U ⊂C( f ).
These classes were considered as some special notions of quasi- continuity

and cliquishness using two topologies: natural topology Tnat and density topol-
ogy Td . All functions of these classes are almost everywhere continuous and
are very useful for considerations related to measurability of functions of two
variables. For example there is a nonmeasurable (in the sense of Lebesgue)
function f : R2 → R with approximately continuous vertical sections fx, for
x ∈R, and measurable horizontal sections f y, for y ∈R, while the propertyA3

of vertical sections fx, for x ∈ R, and measurability of horizontal sections f y,
for y ∈ R, imply the measurability of function f .

Example 10.43. Denote by H the family of all functions f : R→ R having
propertyAi (where i= 3 or i= 5) and by G the family of all almost everywhere
continuous functions g : R→ R. Let A ⊂ R be a nonempty set whose closure
cl(A) is of Lebesgue measure 0. Then the families G and H are linear spaces
and by Theorem 1 in [16] and Proposition 10.17 there is a linear extension
operator W : G →H from A onto X such that W ( f ) = f for every f ∈H.

Remark 10.44. Let X be a metric space and let A⊂ X be a nonempty Gδ -set.
It is well known (see [29]) that for every Baire 1 function f : A→ R there is a
Baire 1 function g : X → R such that f � A = g � A.

Example 10.45. Let X be a metric space and let A⊂ X be a nonempty Gδ -set.
Denote by G the family of all functions f : X → R whose restrictions to A
are Baire 1 functions and by H the family of all Baire 1 functions g : X → R.
Then families G andH are linear spaces and by Remark 10.44 and Proposition
10.17 there is a linear extension operator W : G →H from A onto X such that
W ( f ) = f for every f ∈H.

Remark 10.46 ([23]). Let X be a completely regular topological space and let
A be a nonempty Lindelöf hereditarily Baire subset of X . If f : A→R is a Baire
1 function then there is a Baire 1 function g : X → R such that f � A = g � A.

Example 10.47. Let X be a completely regular topological space and let A be
a nonempty Lindelöf hereditarily Baire subset of X . Denote by G the family
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of all functions f : X → R whose restrictions to A are Baire 1 and by H the
family of all Baire 1 functions g : X → R. Then families G and H are linear
spaces and by Remark 10.46 and Proposition 10.17 there is a linear extension
operator W : G →H from A onto X such that W ( f ) = f for every f ∈H.

10.2 Decomposing and Covering of Functions

Decomposing and covering of functions by continuous functions

Let X ,Y be topological spaces and k be a positive integer. We say that
f : X → Y is k-continuous if there exist sets {Xn}k

n=1 such that X =
⋃k

n=1 Xn

and f � Xn is continuous for n = 1, . . .k. We say that f is finitely continuous
if it is k- continuous for some k. We say that f is countably continuous if it
is decomposable into countably many continuous functions, i.e. if there exists
a sequence {Xn}∞

n=1 such that X =
⋃

∞
n=1 Xn and f � Xn is continuous for all n.

We say that f is strongly k-continuous if its graph can be covered by k
graphs of continuous functions, i.e. there exist continuous functions fi : X→Y ,
i = 1, . . .k such that Gr( f )⊂

⋃k
i=1 Gr( fi) where Gr( f ) denotes the graph of a

function f . We say that f is strongly finitely continuous if it is strongly k-
continuous for some k. We say that f is strongly countably continuous if its
graph can be covered by graphs of countably many continuous functions, i.e.
if there exists the sequence { fi}∞

i=1 of continuous functions fi : X → Y such
that Gr( f )⊂

⋃
∞
i=1 Gr( fi).

In [39] R. J. O’Malley introduced the class of Baire-one-star function. We
say that f ∈ B∗1 if for any nonempty closed set F ⊂ X there is an open set
U ⊂ X such that U ∩F 6= /0 and the restriction f � F ∩U is continuous.

If X is a complete metric space then functions from class B∗1 are of first
Baire class. Moreover, f ∈ B∗1 iff it is piecewise continuous, i.e. there exists a
sequence of nonempty closed sets {Xn}∞

n=1 such that X =
⋃

∞
n=1 Xn and f � Xn is

continuous (see [22], [25]). Of course from Tietze Theorem we conclude that
a piecewise continuous function is strongly countably continuous.

It is easy to see that finitely continuous functions f :R→R have a nowhere
dense graph, but of course even 2-continuous functions can be discontinuous
everywhere (consider for example the Dirichlet function). In [40] R. J. Pawlak
considered a nice subclass B∗∗1 of 2-continuous functions (we say that f be-
longs to B∗∗1 if is continuous or f � D( f ) is continuous, where D( f ) denotes
the set of all discontinuity points of f ). He proved that if f ∈ B∗∗1 then the set
of discontinuity points of f must be nowhere dense and B∗∗1  B?1 .
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In [32] the author proves that the Darboux real function defined on a locally
connected metric space is 2-continuous if and only if it belongs to the classB∗∗1 .
In this paper we give an example of 3-continuous Darboux function that is not
in the first class of Baire. However, in the case f : R→ R (similar to that for
functions from DB∗1), if f is finitely continuous Darboux function then its set
of discontinuity points must be nowhere dense and the set f (R)\ f (int(C( f )))
must be nowhere dense too [32], [33].

We say that f :Rn→Rk is a Hamel function if its graph is a Hamel basis for
Rn+k. Many authors considered Hamel functions with some nice properties. In
[10] the authors show an example of Marczewski measurable Hamel function
and an example of Hamel function which is both Lebesgue measurable and
with the Baire property. In [36] T. Natkaniec gives an example of a quasi-
continuous Hamel function. An example of finitely continuous Hamel function
is given in the paper [43].

It is well known that for every measurable function f : I→R (where I is an
interval) there exists a sequence of measurable sets {Xn}∞

n=1 such that
⋃

∞
n=1 Xn

has full measure and f � Xn is continuous for all n. Lusin asked if any Borel
function is necessarily countably continuous. The answer is negative and many
authors give counterexamples (see [1], [9], [34], [46]).

An interesting counterexample is the Lebesgue measure: in the paper [26]
S. Jackson and R. D. Mauldin proved that the Lebesgue measure λ considered
on the space of nonempty closed subsets of the unit interval with Hausdorff
metric is not countably continuous.

We say that f : R→ R is symmetrically continuous if

lim
t→0

( f (x+ t)− f (x− t)) = 0 f or x ∈ R.

K. Ciesielski gives an example of symmetrically continuous function that is
not countably continuous. The author uses the notion of Sierpiński function.
The function f : A→ R (where A ⊂ R) is of Sierpiński type if f � Y is dis-
continuous for every set Y ⊂ A of cardinality continuum. In the paper [7] the
author observes that if there exists A ⊂ R of cardinality continuum, such that
f � A is Sierpiński-Zygmund type, then f is not countably continuous. Next the
author constructed a symmetrically continuous function f : R→ R that "con-
tains" a Sierpiński-Zygmund type function i.e. for some A ⊂ R of cardinality
continuum f � A is a Sierpiński-Zygmund type.

In the paper [47] S. Solecki proves the following dichotomy result: a Baire
one function is countably continuous or "contains" (to be explained in detail in
below) some complicated function. Let g : X1→ Y1 and f : X2→ Y2. We write
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g v f if there exist embeddings (i.e. open continuous injections) φ : X1→ X2

and ψ : g[X1]→ Y2 with ψ ◦g = f ◦φ .
Recall that any ordinal number can be considered as a topological space by

endowing it with the order topology. Let ω denote the first infinite ordinal.
Define the Pawlikowski function P : (ω +1)ω → ωω by p(η) = γ , where

γ(n) =
{

0 if η(n) = ω,

η(n)+1 if η(n)< ω.

Theorem 10.48 ([47]). Let X be a Souslin space, Y be a separable metric
space, and f : X → Y be a Baire one function. Then either f is countably con-
tinuous or P is "contained" in f, (i.e. Pv f ).

This result was generalized by Pawlikowski and Sabok. In the paper [42]
the autors prove that if f is a partial Borel function from one Polish space to
another, then either f can be decomposed into countably many partial contin-
uous functions, or f contains the countable infinite power of a bijection that
maps a convergent sequence together with its limit onto a discrete space.

In [47] the authors consider also decomposition of Baire one functions into
continuous functions with closed domain, i.e. piecewise continuity and prove
similar dichotomy result using Lebesgue functions L1 and L2 defined as fol-
lows.

Let Q be the set of all points in 2ω that are eventually equal to 1. For each
x ∈ Q fix a number ax > 0 so that:

1. if x,y ∈ Q, x 6= y, then ax 6= ay,
2. ax <

1
3n0 where n0 is the smallest natural number such that x(n) = 1 for

n≥ n0.

Let H : 2ω → [0,1] be the embedding H(x) = x(n)
3n+1 , for x ∈ 2ω .

The functions L1,L : 2ω → R are defined by:

L(x) =
{

H(x) if x 6∈ Q,

H(x)+ax if x ∈ Q,

L1(x) =
{

0 if x 6∈ Q,

ax if x ∈ Q.

Theorem 10.49 ([47]). Let X be a separable complete metric space, Y be a
separable metric space, and f : X → Y be a Baire one function. Then either
f is piecewise continuous or one of L, L1 is "contained" in f (i.e. L v f or
L1 v f ).
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Strongly countably continuous functions were investigated in [20], [21],
[37]. Let f be a monotone function that is discontinuous on a dense countable
set (for example f (x) = ∑qn<x

1
2n where {qn : n = 1,2 . . .} is an enumeration

of the rational numbers). Then f is countably continuous but it is not strongly
countably continuous (see [8] and [20], Example 1). An interesting construc-
tion of an almost everywhere continuous and everywhere approximately con-
tinuous function, that is not strongly countably continuous is given in [21].

In the paper [37] Natkaniec constructed an example of additive Darboux
function f : R→ R which is strongly countably continuous and discontinu-
ous. The author noted that every finitely continuous and additive function is
continuous.

Countably decomposable functions

We say that fn : X → Y converges to f : X → Y discretely if for all x ∈ X
there is a positive integer n(x) such that fn(x) = f (x) for n ≥ n(x). If X is
complete metric space then the function f : X→R is Baire-one-star if and only
if it is a discrete limit of continuous functions (see [8]). It follows that f is a
discrete limit of continuous functions if and only if it is piecewise continuous,
i.e. there exists a sequence of nonempty closed sets {Xn}∞

n=1 such
⋃

∞
n=1 Xn = X

and f � Xn is continuous.
In the paper [18] there was considered the notion of almost monotone con-

vergence. We say that fn : X → R (where X is a topological space) almost
decreases (increases) to f if it pointwise converges to f and for all x ∈ X
there is a positive integer n(x) such that fn+1(x) ≤ fn(x) ( fn+1(x) ≥ fn(x))
for n ≥ n(x). The author proves that if a sequence of continuous functions
fn : X → R almost decreases (increases) to the function f then there exist
closed sets An ⊂ An+1 for n = 1,2 . . ., such that X =

⋃
∞
n=1 An and restricted

functions f � An, n = 1,2 . . . are upper (lower) semicontinuous.
If X is the real line with the density topology then characteristic functions

of Lebesgue measure zero sets are upper semicontinuous (with respect to Td)
but if A ⊂ R is the set with measure zero but non Borel then there is no se-
quence of approximately continuous functions (i.e. continuous with respect to
Td) that pointwise converges to its characteristic function. Moreover we have
the following equivalence when X = Y = R with the natural topology.

Theorem 10.50 ([18]). Let f : R→ R be a function. The following conditions
are equivalent:
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a) there is a sequence of continuous functions fn :R→R, n∈N, which almost
decreases (increases) to f ;

b) there is a sequence of nonempty closed sets {An}∞
n=1 such that R=

⋃
∞
n=1 An

and fn is upper semicontinuous (lower semicontinuous) for n ∈ N.

Strongly countably A-functions

Let X ,Y be topological spaces and A be a nonempty family of functions
from X to Y . A function f : X → Y is said to be a strongly countably A-
function if there is a sequence ( fn)

∞
n=1 of functions from A such that Gr( f )⊂⋃

∞
n=1 Gr( fn). In [19] properties of strongly countably A-function for some

families A ⊂ RR are considered. In particular, it is proved that the families
Aω(R) of all strongly countably A-functions are closed with respect to some
operations depending on the properties of the families A:

Theorem 10.51 ([19]). Let D⊂ R2 be a nonempty open set and F : D→ R be
a function. Assume that the family A is closed with respect to the operation
F, i.e. for arbitrary functions φ ,ψ ∈ A with (φ(x),ψ(x)) ∈ D for all x ∈ R
the function F(φ ,ψ) ∈A. Then for arbitrary two functions f ,g ∈Aω(R) with
( f (x),g(x)) ∈ D for all x ∈ R, the function F( f ,g) belongs to Aω(R).

Corollary 10.52. Assume that the family A is closed with respect to addition
(subtraction) [multiplication by constant] { multiplication }, then the fam-
ily Aω(R) has the same property. Moreover, if for arbitrary two functions
φ ,ψ ∈ A with ψ(R) ⊂ R \ {0} the quotient φ

ψ
∈ A, then for arbitrary two

functions f ,g ∈Aω(R) with g(R)⊂R\{0} the quotient f
g belongs toAω(R).

Proof. Our corollary follows immediately from Theorem 10.51. For the proof
of the second part it suffices to observe that the division is defined on the set
D = R× (R\{0}). ut

Similarly, from Theorem 10.51 we obtain the following

Corollary 10.53. Assume that the family A is closed with respect to the oper-
ation F1(x,y) = max(x,y) (F2(x,y) = min(x,y)). Then the family Aω(R) has
the same property.

Theorem 10.54 ([19]). Assume that the family A is closed with respect to the
superposition. Then the family Aω(R) has the same property.
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In the case where A is the family of all continuous functions the above re-
sults were obtained in [20]. If A is the family of all constant functions then
evidently a function f ∈ Aω(R) (we will say that f is strongly countably con-
stant) if and only if the image f (R) is countable.

Denote by ∆ the family of all differentiable functions. This family is closed
with respect to the addition, subtraction product, division (if the image of the
denominator is contained in R \ {0}) and superposition. It is not closed with
respect to the operations max and min. Strongly countably ∆ -functions will be
called strongly countably differentiable. Characteristic functions of nomeasur-
able (in the sense of Lebesgue) sets are strongly countably constant, so also
strongly countably differentiable. Evidently such functions are nonmeasurable
(so also discontinuous).

Theorem 10.55 ([19]). Let f : R → R be a continuous function. Then
f ∈ ∆ω(R) if and only if for each nonempty closed set H ⊂ R there is an open
interval I such that I∩H 6= /0 and there is a differentiable function g : R→ R
such that f � (H ∩ I) = g � (H ∩ I).

Corollary 10.56. If f ∈ ∆ω(R) then it is differentiable on an open dense set.

Corollary 10.57. If a continuous function f :R→R is nowhere differentiable
then it is not strongly countably differentiable.

Denote by Cap the family of all approximately continuous functions from
R to R . Strongly countably Cap-functions will be called strongly countably
approximately continuous. Approximate continuity of a function f : R→ R
implies measurability (in the sense of Lebesgue) of its graph. So, the graphs of
strongly countably approximately continuous functions are measurable.

Theorem 10.58 ([19]). There is measurable function f : R→ R that is not
strongly countably approximately continuous.

Theorem 10.59 ([19]). If a function f : R→ R is of the first Baire class then
it is strongly countably approximately continuous.

The following problem is natural.

Problem 10.60. Does there exist Baire two function f : R → R that is not
strongly countably approximately continuous?

The positive answer to this problem follows from Corollary 3.4 in [5] (see
also [6], the foot of page 160), where authors proved that for each ordinal
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α < ω1 there is a function f : R→ R of the α +1 Baire class for which there
is no countable sequence {Xn}∞

n=1 such that R=
⋃

∞
n=1 Xn and f � Xn is of the α

Baire class on Xn. Clearly such function can’t be covered by countably many
functions Baire class α .

Denote by QC the family of all quasi-continuous functions from R to
R. Strongly countably QC-functions will be called strongly countably quasi-
continuous. We can observe that the graphs of strongly countably quasi-
continuous functions are of the first category on the plane R2. Moreover, there
is strongly countably quasi-continuous function, not having the Baire property,
for example characteristic functions of sets without the Baire property.

Theorem 10.61 ([19]). If a function f : R→ R has the Baire property then it
is strongly countably quasi-continuous.

We have observed that all functions f : R→ R of the first Baire class are
strongly countably approximately continuous and strongly countably quasi-
continuous.

Problem 10.62. Let f : R→ R be a function of Baire 1 class. Is it strongly
countably approximately continuous and quasi-continuous function i.e, does
there exist a sequence of approximately continuous and simultaneously quasi-
continuous functions fn :R→R, n = 1,2, . . . such that Gr( f )⊂

⋃
∞
n=1 Gr( fn)?
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niki Gdańskiej 285, Matematyka XI (1978), 71–74.

[13] Z. Grande, M. Topolewska, Sur les fonctions vectorielles approximativement contin-
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