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16.1 Introduction

Definition 16.1. Function f : X ×Y → X ×Y is axial if f (x,y) = (x,g(x,y))
for some g : X × Y → Y ( f is vertical) or f (x,y) = (g(x,y),y) for some
g : X×Y→X ( f is horizontal) (we use the notation f (x,y) instead of f ((x,y))).

Consideration of axial functions dates back to S. Banach and S. Ulam in
Scottish book [9]. Our main question is which functions from X ×Y to X ×Y
are finite composition of axial functions.

To show that most functions can not be obtained as a composition of just
two axial functions consider the following example:

Example 16.2. Let X = Y = R and f : R2→ R2 be defined as f (0,0) = (1,1),
f (1,1) = (0,0) and f (x,y) = (x,y) for all other x,y ∈R. Function f can not be
obtained by a composition of only two axial functions.

If f = h2 ◦h1 and h1 is, say, horizontal then h1(0,0) = (1,0) since then ver-
tical function h2(1,0) = (1,1). But h1(1,0) = (x,0), where x 6= 1, and vertical
function h2 can not map it back to (1,0).
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16.2 Finite sets

By |X | we denote the cardinality of the set X . In this section we consider func-
tions f : X×Y → X×Y , where X and Y are finite sets. Clearly every function
is a composition of finitely many axial functions, it turns out that the number
of axial functions can be bounded.

Theorem 16.3 ([3]). Every function f : X×Y → X×Y is a composition of six
axial functions f = h6 ◦ ...◦h1, moreover we can demand that h1 is horizontal.

The above Theorem is an answer to a question of Ulam ([14], VIII 2). In the
same paper [3] a problem was stated if it is posibble to decrease number six.
The positive answer appeared in [10].

Theorem 16.4. Every function f : X×Y → X×Y is a composition of five axial
functions f = h5 ◦ ...◦h1, moreover we can demand that h1 is horizontal.

The question whether number five is minimal remains open. The "sharp"
result is the following

Theorem 16.5 ([10]). For every f : X×Y → X×Y there is g : X×Y → X×Y
such that ∀(x,y)∈X×Y | f−1(x,y)|= |g−1(x,y)| and g is a composition of three ax-
ial functions f = h3 ◦h2 ◦h1 and we may additionally assume h1 is horizontal.

As to bound the number of axial functions from below we have in [10] and
later in [8] the following

Example 16.6 ([8]). There is a function from {1,2,3}2 to {1,2,3}2 which is
not a composition of three axial functions.

Warning: in [8] and [10] the names horizontal and vertical have different (op-
posite) meaning than in Definition 16.1. In [8] we find yet another example.

Example 16.7. There is a function f : X ×Y → X ×Y , where |X | = 3, |Y | =
93 (!), which is not a composition of four axial functions h4 ◦ ...◦h1 provided
that h1 is horizontal.

However, f is a composition of four axial functions when h1 is vertical. We
know only that four axial functions are enough in very special cases.

Theorem 16.8 ([8]). Every function f : X ×Y → X ×Y , where |X | = 3, is a
composition of four axial functions f = h4 ◦ ...◦h1 provided that h1 is vertical.

We conclude this section with a remark that in case when f is a permutation
the situation is easier.
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Theorem 16.9 ([3]). Every permutation f : X×Y → X×Y is a composition of
only three axial permutations f = h3 ◦h2 ◦h1 and we can additionally demand
that h1 is horizontal.

(This is a difference with infinite sets - see next section).

16.3 Infinite sets

As we mentioned, first problems about axial functions appeared in Scottish
Book and were about permutations, we start, however, with result about all
functions. In contrast to finite sets, functions on infinite sets can be easily writ-
ten as a composition of axial functions.

Theorem 16.10 ([3]). If one of sets X , Y is infinite then every function
f : X×Y → X×Y is a composition of three axial functions.

We present the proof as it is simple and shows why axial permutations can
not be used.

Proof. Assume |X | ≥ |Y |, let g : X×Y → X be a 1-1 function. We set h1 : X×
Y → X ×Y as h1(x,y) = (g(x,y),y). Note that h1 is 1-1, denoting f = ( f1, f2)

we define h2(x,y) = (x, f2(h−1
1 (x,y))) and h3(x,y) = ( f1[(h2 ◦ h1)

−1(x,y)],y).
It’s direct to verify f = h3 ◦h2 ◦h1. ut

Obviously whether h1 is horizontal or vertical depends on cardinalities of X
and Y .

When we put restriction on the axial functions to be permutations then the
situation gets harder (note the contrast with finite sets X ,Y ). In Scotisch Book
[9] (problem 48) Banach asked if every permutation of N×N is a composition
of finitely many axial permutations of N×N. The affirmative answer has been
given by Nosarzewska [7], she proved that five axial permutations are enough
to obtain any permutation of N×N. The proof uses induction on N. Later
Ehrenfeucht and Grzegorek [3] using algebraic argument generalized the result
to any infinite sets.

Theorem 16.11. When X and Y are infinite then every permutation of X ×Y
is a composition of five axial permutations, moreover we may assume h1 is
horizontal.

Dropping the ’moreover’ part it was possible to decrease number five. The
strongest and "sharp" result is in [4].
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Theorem 16.12. Let X and Y are infinite.

(i) Every permutation of X ×Y is a composition of four axial permutations
(we can not demand additionally that h1 is, say, horizontal, it depends on
function f ).

(ii) There exists a permutation of X ×Y that can not be represented as a com-
position of three axial permutations.

To finish we remark that we can adapt (simplify) the proof of Theorem
16.20 to obtain an alternative proof of a weaker statement than the above -
every permutation is a composition of eleven axial permutations.

16.4 The plane

On the plane R2 we can consider various classes of functions and ask if they
are composition of axial functions of the same classes.

16.4.1 Continuity

We define class of compositions of axial homeomorphisms of R2

Θ = { f : R2→ R2 : f = hn ◦ ...◦h1, hi is an axial homeomprphism},

Ξ = { f : [0,1]2→ [0,1]2 : f = hn ◦ ...◦h1, hi is an axial homeomorphism}.

As example 16.16 shows there are homeomorphisms not in Θ or in Ξ .
Problem of Ulam in Scottish Book [9, problem 20] asks if it possible to ap-
proximate any homeomorphism of the plane by axial homeomorphisms. The
answers gave Eggleston in [2].

Theorem 16.13. Any homeomorphism of the plane R2 is a pointwise limit of
members from Θ .

Theorem 16.14. There is a homeomorphism of R2 that is not a uniform limit
(i.e. in supremum metric) of homeomorphisms in Θ .

On a bounded set, however, we have the following

Theorem 16.15 ([2]). Let f : [0,1]2 → [0,1]2 be a homeomorphism of the
square [0,1]2 being identity on the boundary. Then f is a uniform limit (in
supremum metric) of elements from Ξ .
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The assumption that f |bd[0,1]2 is identity can be only slightly relaxed to have
vertices of [0,1]2 as fixed points (then we can easily bring f to be identity on
the boundary).

Example 16.16. There is a homeomorphism of [0,1]2 that does not belong to
Ξ .

This homeomorphism can be easily defined using polar coordinates (r,ϕ)
and replacing [0,1]2 by [−1,1]2. Let f : [−1,1]2 → [−1,1]2 and f (r,ϕ) =
(r,ϕ+ 1

r ) for r≤ 1 and extend it continuously to the rest of [−1,1]2. The image
of the interval r ∈ [0,1], ϕ = 0 is a spiral winding around (0,0) infinitely many
times. While by superposition of finitely many axial functions we can obtain
only finitely many "twists" ([2]).
Similarly, homeomorphism g : R2 → R2 defined by g(r,ϕ) = (r,ϕ + r) maps
halfline ϕ = 0 to a spiral with infinitely many coils thus in supremum metric g
is at infinite distance from Θ .

Knowing the results of Eggleston (especially Theorem 16.15) Ulam asked
([14], IV 2) if we can generalize Theorem 16.15 to continuous function. This
time the answer is negative. Let

Ξ
′ = { f : [0,1]2→ [0,1]2| f = fn ◦ ..◦ f1, fi is axial and continuous}.

Theorem 16.17. [12] There is a continuous function f : [0,1]2 → [0,1]2 (be-
ing identity on bd[0,1]2) that is at least 1

10 away from any function in Ξ ′ in
supremum metric.

If we consider only the images of sets, then we obtain the following Theo-
rem:

Theorem 16.18. Let f : R2 → R2 be continuous and K any continuum. Then
for arbitrary ε > 0 there is g ∈Θ ′ which maps K onto a set closer to f (K)

than ε in Hausdorff metric.

However, as Example 16.16 shows, there is a continuous mapping f such
that f ([0,1]×{0}) is not equal to g([0,1]×{0}) for any g ∈ Ξ ′. We don’t
know if we can obtain any continuous image of [0,1]2 by an element of Ξ ′ or
Ξ .
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16.4.2 Borelity

Theorem 16.19 ([11]). Every Borel function f : R2→ R2 is a composition of
three axial Borel functions. We can also demand that the first axial function is
horizontal.

The axial functions above are not onto, the question if we can require them to
be onto (provided that f is) is harder. The next theorem is an answer to Ulam’s
question ([14], IV 2) and a question in [11].

Theorem 16.20 ([13]). Every Borel permutation f :R2→R2 is a composition
of eleven axial Borel permutations of R2.

We can demand that the first axial permutation is, say, horizontal. Number
eleven is surely not minimal.

16.4.3 Measurability

Theorems 16.19 and 16.20 hold for (Lebesgue) measurable functions and for
functions with Baire property.

Theorem 16.21 ([11]). Every function from R2 to R2 is a composition of three
axial functions both measurable and with Baire property.

16.4.4 Slides

Definition 16.22 ([1]). Function f :R2→R2 is a slide if f (x,y) = (x,y+g(x))
or f (x,y) = (x+g(y),y) for some g : R→ R.

Slide is a very special case of axial function, note that it is a permutation of
the plane (as a translation on horizontal or vertical lines). Very interesting (and
surprising) result appeared in [1].

Theorem 16.23. Every permutation of R2 is a composition of 209(!) slides.

It is possible to decrease the number 209 to even below 100 (private commu-
nication with authors of [1]).

We may extend the definition of slide to any group.
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Theorem 16.24 ([6]). Let X be an infinite group and let B⊂ X2 such that |B|=
|X2\B| then using five slides we can map set B onto a fixed set D= {(x,x) : x∈
X}. Thus using ten slides we can map any set A⊂ X2 to a set C⊂ X2 provided
that |A|= |C| and |X2 \A|= |X2 \C|.

The question that comes first to mind is if we can present continuous (or
Borel, or measurable) permutations as a composition of such slides. The an-
swer is mostly negative as measurable slide is a measure preserving mapping
([1]) so composition of slides preserves measure of every set as well. As exam-
ple 16.16 shows, even measure preserving homeomorphism cannot be a com-
position of slides (even axial functions). It is not known which measure pre-
serving homeomorphisms (or Borel isomorphisms) are compositions of con-
tinuous (or Borel) slides.

16.5 Higher dimensions

Definition 16.25 ([3]). Function f : X1× ...×Xn→X1× ...×Xn is axial if there
exists i ∈ {1, ...,n} such that

f (x1, ...,xn) = (x1, ..,xi−1,g(x1, ...,xn),xi+1, ..,xn)

for some g : X1× ...×Xn→ Xi.

Except [3] (and some questions in [14]) there is no literature about axial
functions in higher dimensions.

Virtually repeating the proof of Theorem 16.10 we obtain

Theorem 16.26 ([3]). If at least one of the sets X1, ...,Xn is infinite, then every
function f : X1× ...×Xn→ X1× ...×Xn can be represented as a composition
of n+1 axial functions f = fn+1 ◦ ...◦ f1.

The choice of f1 is determined by which Xi is the biggest (in cardinality), in
particular, if |X1|= ...= |Xn| then f1 may change for example the first coordi-
nate.

Theorem 16.27 ([3]). For any sets X1, ...,Xn (finite or infinite) and any permu-
tation f : X1× ...×Xn→ X1× ...×Xn there is k ∈N with f = fk ◦ ...◦ f1, where
all fi are axial permutations.
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16.5.1 Borelity

The situation when we allow the axial functions to be not permutations is quite
simple.

Theorem 16.28. Every Borel function f : Rn → Rn is a composition of n+ 1
axial Borel functions.

The proof is almost identical to that of Theorem 16.19.

Borel isomorphisms
We prove a three dimensional analog of Theorem 16.20.

Theorem 16.29. Any Borel isomorphism from R3 to R3 is a composition of 22
axial Borel isomorphisms.

Although the proof follows the proof of Theorem 16.20, it is more complicated,
we suggest that the reader looks at the proofs in [13] first.

In order to prove Theorem 16.29 we list some useful facts, they are either
well known or obvious.

Fact 16.30. 1. ([5], rem.1 §1 chp.13) If f is a 1-1 Borel function then f−1 is
also Borel.

2. (Borel isomorphism theorem) ([5], cor.1 §1 chp.13) Any two Borel subsets
of R or R2 of the same cardinality are Borel isomorphic.

3. For any Borel sets A,B ⊂ R with |A| = |B| and |R\A| = |R\B| there is a
Borel permutation f : R→ R with f (A) = B.

4. Composition of Borel functions is Borel.
5. Function f = ( f1, f2) : R2 → R2, where f1, f2 : R2 → R, is Borel if and

only if both f1 and f2 are Borel.
6. If a function f is axial so is f−1, if f is a composition of axial functions so

is f−1.

We also list lemmas used to prove Theorem 16.20. In what follows set
C ⊂ [0,1] is a standard ternary Cantor set.

Lemma 16.31 ([13]). There are three axial Borel isomorphisms F1,F2,F3 :
R2→ R2 such that F3 ◦F2 ◦F1(R2 \C×{0}) =C×{0} (thus F3 ◦F2 ◦F1(C×
{0}) = R2 \C×{0}).

Theorem 16.32 ([13]). Let f : R2 → R2 be a Borel permutation satisfying
f (C×{0}) =C×{0} (so f (R2 \C×{0}) =R2 \C×{0}) then f is a compo-
sition of eight axial Borel permutations of R2.
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Lemma 16.33 ([13]). For every Borel permutation f : R2→ R2 there are four
axial Borel permutations g3,g2,g1,g0 : R2 → R2 such that g3 ◦ g2 ◦ g1 ◦ f ◦
g0(C×{0}) =C×{0}.

We prove now three-dimensional counterparts of the statements above.

Lemma 16.34. There are seven axial Borel isomorphisms F1, ...,F7 : R3→ R3

such that F7 ◦ ... ◦F1(R3 \C×{(0,0)}) = C×{(0,0)} (thus F7 ◦ ... ◦F1(C×
{(0,0)}) = R3 \C×{(0,0)}).

Proof. The proof is very similar to the proof of Lemma 16.31. We may parti-
tion C into continuum many "subcantors" Ct for t ∈R - see [13]. Sets Ct are la-
beled in a Borel way i.e. there is a Borel function c : C→R such that c−1(t) =
Ct , moreover all Ct are translations of each other, that is ∀t∃mt Ct −mt = C0

(where mt = minCt).
We shift the sets Ct ×{(0,0)} on different ’z levels’, let

F1(x,y,z) =

{
(x,0,z+ c(x)) if x ∈C,y = 0

(x,y,z) otherwise

(equivalently, we may write F1(x,0,z) = (x,0,z+ t) for x ∈ Ct). F1 is a slide
thus a bijection, it is Borel since the function c : C→ R is Borel.
Now we shift sets Ct ×{(0, t)} ’one over other’ by a slide F2(x,0, t) = (x−
mt ,0, t) for x ∈ Ct and identity elsewhere, this way F2(Ct ×{(0, t)}) = C0×
{(0, t)}. On every plane z = t we use Lemma 16.31 with the set C re-
placed with C0 to obtain three axial Borel permutations F3,F4,F5 satisfying
F5 ◦F4 ◦F3(C0×{(0, t)}) = (R2 \ (C0×{0}))×{t}.
The sixth permutation is to ’shift back’ sets C0 to the place of Ct . Define
F6(x,0,z)=F−1

2 (x,0,z)= (x+mt ,0, t) for x∈C0 and identity for other (x,y,z).
The last permutation F7 = F−1

1 i.e.

F7(x,y,z) =

{
(x,0,z− c(x)) if x ∈C,y = 0

(x,y,z) otherwise

(equivalently, we may write F7(x,0,z) = (x,0,z− t) when x ∈Ct). ut

Theorem 16.35. Let f : R3 → R3 be a Borel permutation satisfying f (C×
{(0,0)}) = C×{(0,0)}. Then f is a composition of sixteen axial Borel per-
mutations of R3.

Proof. The proof is almost a repetition of that of Theorem 16.32. The first
seven functions F1, ...,F7 are from Lemma above.
We define F̃8 : C×{(0,0)}→C×{(0,0)} as follows
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F̃8 = F7 ◦ ...◦F1 ◦ f ◦ (F7 ◦ ...◦F1|C×{(0,0)})−1.

It is easy to verify that F̃8 is a permutation of C×{(0,0)} indeed. We extend
F̃8 to F8 defined on the entire space R3 putting identity on R3 \C×{(0,0)}.
Functions F9, ...,F15 are defined so that F15 ◦ ...◦F9 = (F7 ◦ ...◦F1)

−1. We can
verify that F15 ◦ ...◦F1 = f on R3 \C×{(0,0)} and F15 ◦ ...◦F1 is identity on
C×{(0,0)}.
To finish we set F16 = f on C×{(0,0)} and F16 is identity onR3\C×{(0,0)}.

ut

Lemma 16.36. For every Borel permutation f : R3 → R3 there are six ax-
ial Borel permutations g5, ...,g0 : R3 → R3 such that g5 ◦ ... ◦ g1 ◦ f ◦ g0(C×
{(0,0)}) =C×{(0,0)}.

Proof. We again follow the proof of Lemma 16.33. By a perfect set we
understand additionally a compact set. By Borelity there is a perfect set
P ⊂ R×{(0,0)} such that f |P is continuous (thus homeomorphism). The set
f (P) ⊂ R3 is a perfect set (thus of size continuum). The projection of f (P)
on XY -plane (z = 0) is a compact set, if it is of size continuum we set g1 as
identity, if not then g1(x,y,z) = (x+ z,y,z) (planes perpendicular to the plane
z = 0 become ’slant’), this way we assure that g1( f (P)) has projection at XY -
plane of size continuum and is still a compact set. Denote this projection by
ΠXY g1( f (P))⊂ R2×{0}. Take a function g̃2 : ΠXY g1( f (P))→ R defined by
g̃2(x,y) = min{z : (x,y,z) ∈ g1( f (P)), since g1( f (P)) is compact it is a lower
semicontinuous function thus Borel (even first Baire class) [5, chpt.11 §2].
We define slide g2(x,y,z) = (x,y,z− g̃2(x,y)) for (x,y) ∈ ΠXY g1( f (P)) and
g2(x,y,z) = (x,y,z) for other (x,y).

Using function g3 we may ensure that the projection of ΠXY g1( f (P))
on X-axis, denoted ΠX [ΠXY g1( f (P))], is compact and of size continuum.
(take g2(x,y,z) = (x+ y,y,z) if necessary or g2 = identity). Again the func-
tion g̃4 : R → R defined on ΠX [ΠXY g1( f (P))] by g̃4(x) = min{y : (x,y) ∈
ΠXY g1( f (P))} is lower semicontinuous and Borel. We define a slide g4(x,y,z)=
(x,y− g̃4(x),z) when x ∈ΠX [ΠXY g1( f (P))] and identity for other (x,y,z).
Since ΠX [ΠXY g1( f (P))] is compact of cardinality continuum it contains a per-
fect set S, the set P′ = (g4 ◦g3 ◦g2 ◦g1 ◦ f )−1(S×{(0,0)})⊂ P is perfect again
(because functions gi restricted to proper compact sets are continuous and 1-1).

Let g̃5 : R→ R be a Borel permutation such that g̃0(S) =C (where C is the
Cantor set), such permutation exists by Borel isomorphism theorem ([5], Cor.1,
paragraf 1, Chapter 13). Axial function g5 :R3→R3 is defined by g5(x,y,z) =
(g̃5(x),y,z).
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Let g̃0 : R→ R be a Borel permutation such that g̃0(C) = P′. Again we
define g0 :R3→R3 as g0(x,y,z) = (g̃0(x),y,z). We can verify that g5 ◦ ...◦g1 ◦
f ◦g0(C×{(0,0)}) =C×{(0,0)}. ut

Proof of Theorem 16.29. Let f :R3→R3 be a Borel permutation. Combining
Lemma 16.36 and Theorem 16.35 (and using their notations) we obtain g5 ◦
...◦g1 ◦ f ◦g0 = F16 ◦ . . .◦F1 thus f = (g5 ◦ ...◦g1)

−1 ◦F16 ◦ . . .◦F1 ◦g−1
0 . Since

g−1
5 and F16 are of the same type - they change x-coordinate, we treat g−1

5 ◦F16

as one permutation and conclude the proof. ut

It is visible that applying the same method we obtain theorems for Rn.

Theorem 16.37. Any Borel isomorphism of Rn is a composition of finitely
many axial Borel isomorphisms.

16.5.2 Continuity

The author conjectures that Eggleston’s Theorem 16.13 and 16.15 can be gen-
eralised to R3, however, the proof for the plane can not be applied for R3. As
for Rn we do not dare to state any hypothesis.
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