Chapter 24

Density type topologies generated by functions. Properties of f-density

MAŁGORZATA FILIPCZAK, TOMASZ FILIPCZAK

2010 Mathematics Subject Classification: 54A10, 28A05, 26A15, 54C30 .
Key words and phrases: lower density operator, density topology, f-density, comparison of topologies.

Notions of f-density operators, f-density topologies and their basic properties were described in the previous chapter. Recall that by \mathcal{A} we denote the family of all nondecreasing functions $f:(0, \infty) \rightarrow(0, \infty)$ with $\lim _{x \rightarrow 0+} f(x)=0$ and $\liminf _{x \rightarrow 0+} \frac{f(x)}{x}<\infty$. We say that $x \in \mathbb{R}$ is a right-hand f-density point of a measurable set A for a fixed $f \in \mathcal{A}$ if

$$
\lim _{h \rightarrow 0+} \frac{\lambda([x, x+h] \backslash A)}{f(h)}=0
$$

By $\Phi_{f}^{+}(A)$ we denote the set of all right-hand f-density points of A, and in analogous way we define a left-hand f-density point and the set $\Phi_{f}^{-}(A)$. Finally, if $x \in \Phi_{f}(A):=\Phi_{f}^{+}(A) \cap \Phi_{f}^{-}(A)$ then we say that x is an f-density point of A. The family $\mathcal{T}_{f}=\left\{A \in \mathcal{L}: A \subset \Phi_{f}(A)\right\}$ forms a topology called f-density topology.

In chapter $23 f$-density is treated mainly as a generalization of $\langle s\rangle$-density and ψ-density. Now we will focus our attention on the more advanced properties, which are generally more difficult to prove. All presented results are known but proofs contained in this chapter are considerably shortened and simplified.

24.1 Comparison of f-density topologies

A simple sufficient condition for the inclusion $\mathcal{T}_{f_{1}} \subset \mathcal{T}_{f_{2}}$ is presented in Theorem 23.30. There is also formulated a necessary and sufficient condition to distinguish \mathcal{T}_{f} from \mathcal{T}_{d}. Theorem 23.32 says that $\mathcal{T}_{d} \subset \mathcal{T}_{f}\left(\mathcal{T}_{f} \subset \mathcal{T}_{d}\right)$ if and only if $\liminf _{x \rightarrow 0+} \frac{f(x)}{x}>0\left(\limsup _{x \rightarrow 0+} \frac{f(x)}{x}<\infty\right)$. Consequently, we divide the family \mathcal{A} into two subfamilies:

$$
\mathcal{A}^{1}:=\left\{f \in \mathcal{A}: \liminf _{x \rightarrow 0+} \frac{f(x)}{x}>0\right\} \text { and } \mathcal{A}^{0}:=\left\{f \in \mathcal{A}: \liminf _{x \rightarrow 0+} \frac{f(x)}{x}=0\right\}
$$

Topologies \mathcal{T}_{f} generated by functions from the family \mathcal{A}^{1} are bigger then the density topology, and any $\langle s\rangle$-density topology is an f-density topology generated by some $f \in \mathcal{A}^{1}$ (compare Theorem 23.34). Topologies generated by $f \in \mathcal{A}^{0}$ are smaller then \mathcal{T}_{d} or incomparable with \mathcal{T}_{d}. Any ψ-density topology is an f-density topology for some $f \in \mathcal{A}^{0}$ (compare Proposition 23.44 and [5]).

Now we will formulate the necessary and sufficient condition for the inclusion $\mathcal{T}_{f_{1}} \subset \mathcal{T}_{f_{2}}$. The analogous condition for ψ-density topology was formulated in [16]. However, the proof for f-density is much shorter and simpler than that for ψ-density.

In further considerations we will use the observation that to prove $\mathcal{T}_{f_{1}} \subset \mathcal{T}_{f_{2}}$ it suffices to show that, for any measurable set $A, 0 \in \Phi_{f_{1}}^{+}(A)$ implies $0 \in$ $\Phi_{f_{2}}^{+}(A)$ (see Theorem 23.29). We will also need the following Lemma (compare [6]).

Lemma 24.1. Let $f \in \mathcal{A}, t, h \in(0, \infty)$ and A be a measurable set satisfying $\limsup x_{x \rightarrow 0+} \frac{\lambda([0, x] \cap A)}{f(x)}>t$. There is an interval $[a, b] \subset(0, h)$ such that

$$
\frac{\lambda([a, b] \cap A)}{f(b)} \geq t \text { and } \frac{\lambda([a, x] \cap A)}{f(x)} \leq t \text { for } x \in(a, b]
$$

Proof. Since $\limsup _{x \rightarrow 0+} \frac{\lambda([0, x] \cap A)}{f(x)}>t$, there is a number $y \in(0, h)$ such that $\frac{\lambda([0, y] \cap A)}{f(y)}>t$. From the continuity of Lebesgue measure, it follows that $\frac{\lambda([a, y] \cap A)}{f(y)}=t$ for some $a \in(0, y)$. Let

$$
b:=\inf \left\{x \in[a, y]: \frac{\lambda([a, x] \cap A)}{f(x)} \geq t\right\}
$$

Obviously, $a<b \leq y$. To finish the proof it remains to check that $\frac{\lambda([a, b] \cap A)}{f(b)} \geq t$. Suppose that $\frac{\lambda([a, b] \cap A)}{f(b)}<t$. Thus there is $b^{\prime}>b$ such that $\frac{\lambda\left(\left[a, b^{\prime}\right] \cap A\right)}{f(b)}<t$, and consequently

$$
\frac{\lambda([a, x] \cap A)}{f(x)} \leq \frac{\lambda\left(\left[a, b^{\prime}\right] \cap A\right)}{f(b)}<t
$$

for any $x \in\left[b, b^{\prime}\right]$, which gives a contradiction with the definition of b.
Let $f_{1}, f_{2} \in \mathcal{A}$. We define sequences

$$
\begin{aligned}
& A_{n f_{1} f_{2}}:=\left\{x \in(0, \infty): f_{1}(x)<\frac{1}{n} f_{2}(x)\right\}, \\
& \varepsilon_{n f_{1} f_{2}}:=\limsup _{x \rightarrow 0+} \frac{\lambda\left(A_{\left.n f_{1} f_{2} \cap[0, x]\right)}^{f_{1}(x)}\right.}{} .
\end{aligned}
$$

Of course, these sequences are decreasing, so $\left(\varepsilon_{n f_{1} f_{2}}\right)_{n \in \mathbb{N}}$ is convergent.
Theorem 24.2 ([6]). $\mathcal{T}_{f_{2}} \subset \mathcal{T}_{f_{1}}$ if and only if $\lim _{n \rightarrow \infty} \varepsilon_{n f_{1} f_{2}}=0$.
Proof. Let us denote $A_{n f_{1} f_{2}}$ and $\varepsilon_{n f_{1} f_{2}}$ briefly by A_{n} and ε_{n}.
$" \Leftarrow "$ Suppose that $\lim _{n \rightarrow \infty} \varepsilon_{n}=0$ and $0 \in \Phi_{f_{2}}^{+}(E)$ (i.e. $\lim _{x \rightarrow 0+} \frac{\lambda([0, x] \backslash E)}{f_{2}(x)}=$ $0)$. We should to prove that $0 \in \Phi_{f_{1}}^{+}(E)$. Since

$$
\begin{aligned}
\limsup _{x \rightarrow 0+} \frac{\lambda([0, x] \backslash E)}{f_{1}(x)} & \leq \limsup _{x \rightarrow 0+} \frac{\lambda\left([0, x] \backslash E \backslash A_{n}\right)}{f_{1}(x)}+\limsup _{x \rightarrow 0+} \frac{\lambda\left([0, x] \cap A_{n}\right)}{f_{1}(x)}= \\
& =\limsup _{x \rightarrow 0+} \frac{\lambda\left([0, x] \backslash E \backslash A_{n}\right)}{f_{1}(x)}+\varepsilon_{n}
\end{aligned}
$$

it suffices to show that

$$
\begin{equation*}
\lim _{x \rightarrow 0+} \frac{\lambda\left([0, x] \backslash E \backslash A_{n}\right)}{f_{1}(x)}=0 \tag{24.1}
\end{equation*}
$$

Let us fix a positive integer n and a positive x with $f_{1}(x)<1$. If $x \notin A_{n}$ then $f_{1}(x) \geq \frac{1}{n} f_{2}(x)$, and consequently $\frac{\lambda\left([0, x] \backslash E \backslash A_{n}\right)}{f_{1}(x)} \leq n \frac{\lambda([0, x] \backslash E)}{f_{2}(x)}$. If $(0, x] \subset A_{n}$ then $\frac{\lambda\left([0, x] \backslash E \backslash A_{n}\right)}{f_{1}(x)}=0$. Finally, if $x \in A_{n}$ and $(0, x] \backslash A_{n} \neq \emptyset$, then for $a:=$ $\sup \left((0, x] \backslash A_{n}\right)$ and for any y from $\left[a-a f_{1}(a), a\right] \backslash A_{n}$ we have $f_{1}(y) \geq \frac{1}{n} f_{2}(y)$. Hence

$$
\frac{\lambda\left([0, x] \backslash E \backslash A_{n}\right)}{f_{1}(x)} \leq \frac{\lambda\left([0, y] \backslash E \backslash A_{n}\right)}{f_{1}(y)}+\frac{a-y}{f_{1}(a)} \leq n \frac{\lambda([0, y] \backslash E)}{f_{2}(y)}+x
$$

which implies (24.1).
$" \Rightarrow$ " Suppose that $\lim _{n \rightarrow \infty} \varepsilon_{n}>0$. We look for a measurable set E such that $0 \in \Phi_{f_{2}}^{+}(E) \backslash \Phi_{f_{1}}^{+}(E)$. There is a positive number t such that $\lim \sup _{x \rightarrow 0+} \frac{\lambda\left(A_{n} \cap[0, x]\right)}{f_{1}(x)}>t$ for sufficiently large n. We can assume that this inequality holds for every n. Applying Lemma 24.1, we can define intervals $\left[a_{n}, b_{n}\right]$ such that $b_{n+1}<\min \left\{a_{n}, \frac{1}{n} f_{2}\left(a_{n}\right)\right\}$,

$$
\frac{\lambda\left(\left[a_{n}, b_{n}\right] \cap A_{n}\right)}{f_{1}\left(b_{n}\right)} \geq t \text { and } \frac{\lambda\left(\left[a_{n}, x\right] \cap A_{n}\right)}{f_{1}(x)} \leq t \text { for } x \in\left(a_{n}, b_{n}\right]
$$

Set

$$
E:=\mathbb{R} \backslash \bigcup_{n=1}^{\infty}\left(A_{n} \cap\left[a_{n}, b_{n}\right]\right)
$$

Since $\frac{\lambda\left(\left[0, b_{n}\right] \backslash E\right)}{f_{1}\left(b_{n}\right)} \geq \frac{\lambda\left(\left[a_{n}, b_{n}\right] \cap A_{n}\right)}{f_{1}\left(b_{n}\right)} \geq t>0,0 \notin \Phi_{f_{1}}(E)$.
Let us consider $x \in\left(0, b_{1}\right]$. We first assume that $x \in\left(a_{n}, b_{n}\right]$ for some n. If $\lambda\left(\left[a_{n}, x\right] \cap A_{n}\right)=0$ then

$$
\frac{\lambda([0, x] \backslash E)}{f_{2}(x)} \leq \frac{b_{n+1}}{f_{2}\left(a_{n}\right)}<\frac{1}{n}
$$

If $\lambda\left(\left[a_{n}, x\right] \cap A_{n}\right)>0$ then one can find $y, z \in\left[a_{n}, x\right]$ such that $z<y \leq x$, $\lambda\left(A_{n} \cap[y, x]\right)=0, z \in A_{n}$ and $y-z<f_{1}\left(a_{n}\right)$. Thus

$$
\begin{aligned}
\frac{\lambda([0, x] \backslash E)}{f_{2}(x)} & \leq \frac{\lambda\left(\left[a_{n}, y\right] \cap A_{n}\right)+b_{n+1}}{f_{2}(z)} \leq \frac{\lambda\left(\left[a_{n}, z\right] \cap A_{n}\right)}{f_{2}(z)}+\frac{y-z}{n f_{1}(z)}+\frac{b_{n+1}}{f_{2}\left(a_{n}\right)}< \\
& <\frac{t}{n}+\frac{1}{n}+\frac{1}{n}=\frac{t+2}{n}
\end{aligned}
$$

Assume now that $x \in\left(b_{n+1}, a_{n}\right]$. From the previous case we obtain

$$
\frac{\lambda([0, x] \backslash E)}{f_{2}(x)} \leq \frac{\lambda\left(\left[0, b_{n+1}\right] \backslash E\right)}{f_{2}\left(b_{n+1}\right)}<\frac{t+2}{n+1}
$$

This gives $0 \in \Phi_{f_{2}}(E)$, which completes the proof.
As a straightforward consequence we obtain:
Theorem 24.3 ([6]). Let $f_{1}, f_{2} \in \mathcal{A}$. If $\lim _{x \rightarrow 0+} \frac{f_{1}(x)}{f_{2}(x)}=0$ then $\mathcal{T}_{f_{1}} \varsubsetneqq \mathcal{T}_{f_{2}}$.
Proof. There are $\delta>0$ and $n_{0} \in \mathbb{N}$ such that $A_{n f_{1} f_{2}} \subset(0, \delta)$ and $A_{n f_{2} f_{1}} \cap$ $(0, \boldsymbol{\delta})=\emptyset$ for $n \geq n_{0}$. Clearly, $\lim _{n \rightarrow \infty} \varepsilon_{n f_{2} f_{1}}=0$, so $\mathcal{T}_{f_{1}} \subset \mathcal{T}_{f_{2}}$.
Since $A_{n f_{1} f_{2}} \cap(0, x)=(0, x)$ for $x \in(0, \delta)$ and $n \geq n_{0}$, we have $\varepsilon_{n f_{1} f_{2}}=$ $\limsup _{x \rightarrow 0+} \frac{x}{f_{1}(x)}$. By the definition of the family \mathcal{A}, we have $\limsup _{x \rightarrow 0+} \frac{x}{f_{1}(x)}>$ 0 , and consequently $\lim _{n \rightarrow \infty} \varepsilon_{n f_{1} f_{2}}>0$. Therefore $\mathcal{T}_{f_{1}} \neq \mathcal{T}_{f_{2}}$.

Theorem 23.32 shows that the condition $\lim _{x \rightarrow 0+} \frac{f_{1}(x)}{f_{2}(x)}=0$ is not necessary for $\mathcal{T}_{f_{1}} \varsubsetneqq \mathcal{T}_{f_{2}}$.

24.2 Properties of f-density for $f \in \mathcal{A}^{0}$

In Theorem 23.38 it is proved that $\lambda\left(\Phi_{f}(A) \triangle A\right)=0$ for $f \in \mathcal{A}^{1}$ and $A \in \mathcal{L}$. Thus for any f from \mathcal{A}^{1} an operator Φ_{f} and a topology \mathcal{T}_{f} have properties similar to the properties of "classical" density operator Φ_{d} and the density topology \mathcal{T}_{d} (compare Theorem 23.39). Now we will study properties of Φ_{f} and \mathcal{T}_{f} for $f \in \mathcal{A}^{0}$. The essential role in these considerations is played by the result analogous to The Second Taylor's Theorem (compare [14] and chapter 22) for f-density.

We begin by defining a Cantor-type set generating by two sequences. In n th step of the construction of the Cantor ternary set, two subintervals of the length $\frac{1}{3^{n}}$ are chosen from any component. In our construction, we will choose k_{n} subintervals of the length r_{n} each.

Let $\left(r_{n}\right)_{n=0,1, \ldots}$ be a sequence of positive numbers and $\left(k_{n}\right)_{n=0,1, \ldots}$ be a sequence of positive integers such that $k_{0}=r_{0}=1, k_{n} \geq 2$ and $k_{n} r_{n}<r_{n-1}$ for $n \geq 1$. We define inductively a decreasing sequence $\left(F_{n}\right)_{n=0,1 \ldots .}$ of closed sets consisting of $p_{n}:=k_{0} \cdot \ldots \cdot k_{n}$ pairwise disjoint closed intervals I_{i}^{n} of the length r_{n}.

For $n=0$ we put $F_{0}:=I_{1}^{0}:=[0,1]$. Suppose that we have defined disjoint closed intervals $I_{1}^{n}, \ldots, I_{p_{n}}^{n}$ and the set $F_{n}:=I_{1}^{n} \cup \ldots \cup I_{p_{n}}^{n}$ for some $n \geq 0$. For any $i \in\left\{1, \ldots, p_{n}\right\}$ we define k_{n+1} pairwise disjoint closed subintervals $I_{(i-1) k_{n+1}+1}^{n+1}, \ldots, I_{i k_{n+1}}^{n+1}$ of the interval I_{i}^{n}, of the length r_{n+1} each. We choose them in such a way that the left endpoint of $I_{(i-1) k_{n+1}+1}^{n+1}$ is the left enpoint of I_{i}^{n}, the right endpoint of $I_{i k_{n+1}}^{n+1}$ is the right endpoint of I_{i}^{n} and distances between subintervals are the same. Let $F_{n+1}:=I_{1}^{n+1} \cup \ldots \cup I_{p_{n+1}}^{n+1}$. Thus we have defined the sequence $\left(F_{n}\right)_{n=0,1 \ldots}$. Put

$$
F:=F\left(\left(r_{n}\right),\left(k_{n}\right)\right):=\bigcap_{n=0}^{\infty} F_{n} .
$$

Remark 24.4. From now on we will assume that $F_{0}=I_{1}^{0}:=[0,1]$ and will define sequences $\left(r_{n}\right)$ and $\left(k_{n}\right)$ for $n \geq 1$.

Lemma 24.5. For any $\varepsilon \in(0,1)$ and any tending to zero sequence $\left(x_{n}\right)$ of positive numbers there exists a subsequence $\left(r_{n}\right)$ of the sequence $\left(x_{n}\right)$ and a se-
quence $\left(k_{n}\right)$ of positive integers such that the set $F:=F\left(\left(r_{n}\right),\left(k_{n}\right)\right)$ satisfies $\lambda(F)>1-\varepsilon$ and

$$
\begin{equation*}
\frac{\varepsilon}{p_{n} 2^{n+2}}<\lambda\left(I_{i}^{n} \backslash F_{n+1}\right)<\frac{\varepsilon}{p_{n} 2^{2+1}} \text { for } n=0,1, \ldots, i=1, \ldots, p_{n} \tag{24.2}
\end{equation*}
$$

Proof. Fix a natural number m and suppose that we have defined $r_{j}=x_{t_{j}}$ and k_{j} for $j=1, \ldots, m$. As r_{m+1} we choose any element x_{t} from the sequence $\left(x_{n}\right)$ such that $t>t_{m}$ and $x_{t}<\frac{\varepsilon}{p_{m} 2^{m+2}}$. Now we put

$$
k_{m+1}:=\max \left\{k \in \mathbb{N}: r_{m}-k r_{m+1}>\frac{\varepsilon}{p_{m} 2^{m+2}}\right\}
$$

From the definition of k_{m+1} it follows that

$$
\frac{\varepsilon}{p_{m} 2^{m+2}}<r_{m}-k_{m+1} r_{m+1} \leq \frac{\varepsilon}{p_{m} 2^{m+2}}+r_{m+1}<\frac{\varepsilon}{p_{m} 2^{m+1}}
$$

Since $\lambda\left(I_{i}^{m} \backslash F_{m+1}\right)=r_{m}-k_{m+1} r_{m+1}$, we obtain (24.2). Moreover

$$
\lambda([0,1] \backslash F)=\sum_{n=0}^{\infty} \lambda\left(F_{n} \backslash F_{n+1}\right)=\sum_{n=0}^{\infty} \sum_{i=1}^{p_{n}} \lambda\left(I_{i}^{n} \backslash F_{n+1}\right)<\sum_{n=0}^{\infty} \frac{\varepsilon}{2^{n+1}}=\varepsilon
$$

Theorem 24.6 ([9], [2]). For any function $f \in \mathcal{A}^{0}$ and any real number $c \in$ $[0,1)$ there exists a closed set $F \subset[0,1]$ such that $\lambda(F) \geq c$ and $\Phi_{f}(F)=\emptyset$.

Proof. Let $\varepsilon:=1-c$. Since $f \in \mathcal{A}^{0}$, there is a decreasing sequence $\left(x_{n}\right)$ tending to zero and such that

$$
\frac{f\left(x_{n}\right)}{x_{n}}<\frac{1}{n 2^{n}}
$$

for every n. Clearly, this inequality holds also for any subsequence of $\left(x_{n}\right)$. Let $\left(r_{n}\right),\left(k_{n}\right)$ and $F:=F\left(\left(r_{n}\right),\left(k_{n}\right)\right)$ satisfy the assertion of the latter Lemma. Since F is closed, $\Phi_{f}(F) \subset F$, so it remains to prove that $F \cap \Phi_{f}(F)=\emptyset$. Let us fix $x \in F$. There exists a sequence $\left(I_{i_{n}}^{n}\right)$ of closed intervals such that $\lambda\left(I_{i_{n}}^{n}\right)=r_{n}$ and $\bigcap_{n=1}^{\infty} I_{i_{n}}^{n}=\{x\}$. As $\lambda\left(I_{i_{n}}^{n}\right)<\frac{1}{p_{n}}$ we have

$$
\frac{\lambda\left(I_{i_{n}}^{n} \backslash F\right)}{f\left(\lambda\left(I_{i_{n}}^{n}\right)\right)}>\frac{\lambda\left(I_{i_{n}}^{n} \backslash F_{n+1}\right)}{f\left(r_{n}\right)}>\frac{\frac{\varepsilon}{p_{n} 2^{n+2}}}{f\left(r_{n}\right)}>\frac{r_{n} \varepsilon}{f\left(r_{n}\right) 2^{n+2}}>\frac{\varepsilon n}{4}
$$

Hence $\lim _{n \rightarrow \infty} \frac{\lambda\left(I_{i n}^{n} \backslash F\right)}{f\left(\lambda\left(I_{i n}^{n}\right)\right)}=\infty$, and consequently $x \notin \Phi_{f}(F)$ (compare Proposition 23.21).

Using the set F we will construct a closed set with exactly one f-density point.

Theorem 24.7 ([9]). For any function $f \in \mathcal{A}^{0}$ there exists a closed set $F_{1} \subset$ $[0,1]$ such that $\lambda\left(F_{1}\right)>0$ and $\Phi_{f}\left(F_{1}\right)=\{0\}$.

Proof. Since $f \in \mathcal{A}^{0}$, there exists a sequence $\left(x_{n}\right)$ such that $n x_{n+1}<f\left(x_{n}\right)<x_{n}$ for $n \geq 2$. Let $J_{n}:=\left[x_{n+1}+\frac{1}{n} f\left(x_{n+1}\right), x_{n}\right]$. According to Theorem 24.6 there is a closed set $E_{n} \subset J_{n}$ with $\Phi_{f}\left(E_{n}\right)=\emptyset$ and $\lambda\left(J_{n} \backslash E_{n}\right)<\frac{1}{n} f\left(x_{n+1}\right)$. Put $E:=\bigcup_{n=2}^{\infty} E_{n}$. Of course, $\Phi_{f}(E)=\emptyset$. It remains to check that $0 \in \Phi_{f}^{+}(E)$. For $x \in\left[x_{n+1}, x_{n}\right]$ we have

$$
\begin{aligned}
{[0, x] \backslash E } & \subset\left[0, x_{n+2}+\frac{1}{n+1} f\left(x_{n+2}\right)\right] \cup\left(J_{n+1} \backslash E_{n+1}\right) \cup \\
& \cup\left[x_{n+1}, x_{n+1}+\frac{1}{n} f\left(x_{n+1}\right)\right] \cup\left(J_{n} \backslash E_{n}\right)
\end{aligned}
$$

Therefore
$\frac{\lambda([0, x] \backslash E)}{f(x)}<\frac{x_{n+2}+\frac{1}{n+1} f\left(x_{n+2}\right)+\frac{1}{n+1} f\left(x_{n+2}\right)+\frac{1}{n} f\left(x_{n+1}\right)+\frac{1}{n} f\left(x_{n+1}\right)}{f\left(x_{n+1}\right)}<\frac{5}{n}$,
and consequently $0 \in \Phi_{f}^{+}(E)$. Thus $F_{1}:=E \cup(-E) \cup\{0\}$ is the desired set.

The sets constructed in Theorem 24.6 and Theorem 24.7 show that properties of f-density operators for $f \in \mathcal{A}^{0}$ differ considerably from the properties of the classical density operator Φ_{d}. Theorems 23.6 and 23.8 contain the list of differences. In particular we have.

Proposition 24.8. If $f \in \mathcal{A}^{0}$ then the space $\left(\mathbb{R}, \mathcal{T}_{f}\right)$ is of the first category.
In chapter 23 it is proved that $\operatorname{int}_{\mathcal{T}_{f}}(A)=A \cap \Phi_{f}(A)$ for $f \in \mathcal{A}^{1}$ and $A \in$ \mathcal{L}. This equality need not be true for $f \in \mathcal{A}^{0}$. If F_{1} is the set constructed in Theorem 24.7 then $F_{1} \cap \Phi_{f}\left(F_{1}\right)=\{0\}$ but int $\mathcal{T}_{f}\left(F_{1}\right)=\emptyset$. Now we will describe an interior operation in an f-density topology (in the general case).

Let $f \in \mathcal{A}$ and $A \in \mathcal{L}$. By induction we define $\Phi_{f}^{\alpha}(A)$ for $1 \leq \alpha<\omega_{1}$:

$$
\begin{aligned}
& \Phi_{f}^{1}(A):=\Phi_{f}(A), \Phi_{f}^{\alpha+1}(A):=\Phi_{f}\left(\Phi_{f}^{\alpha}(A)\right) \\
& \Phi_{f}^{\alpha}(A):=\bigcap_{1 \leq \beta<\alpha} \Phi_{f}^{\beta}(A) \text { if } \alpha \text { is a limit number. }
\end{aligned}
$$

Obviously, $\Phi_{f}^{\alpha}=\Phi_{f}$ for $f \in \mathcal{A}^{1}$ and $1 \leq \alpha<\omega_{1}$.

We will use some properties of operators Φ_{f} described in Theorem 23.24. Note that for any $f \in \mathcal{A}$ and any measurable sets $A, B, \lambda\left(\Phi_{f}(A) \backslash A\right)=0$ and the condition $\lambda(A \backslash B)=0$ implies $\Phi_{f}(A) \subset \Phi_{f}(B)$. Therefore $\Phi_{f}\left(\Phi_{f}(A)\right) \subset$ $\Phi_{f}(A)$. Recall that by K_{A} we denote a measurable kernel of $A \subset \mathbb{R}$.

Proposition 24.9 ([9]). Let $f \in \mathcal{A}, E \subset \mathbb{R}, A, B \in \mathcal{L}$ and $A \subset B$. If $1 \leq \beta \leq \alpha<$ ω_{1} then
(1) $\Phi_{f}^{\alpha}(A) \subset \Phi_{f}^{\alpha}(B)$,
(2) $\Phi_{f}^{\alpha}(A) \subset \Phi_{f}^{\beta}(A)$,
(3) $\operatorname{int}_{\mathcal{T}_{f}}(E) \subset E \cap \Phi_{f}^{\alpha}\left(K_{E}\right)$.

Proof. (1) follows from the monotonicity of Φ_{f}. Suppose that (2) is true for ordinal numbers less than α. If α is a limit number then

$$
\Phi_{f}^{\alpha}(A)=\bigcap_{1 \leq \gamma<\alpha} \Phi_{f}^{\gamma}(A) \subset \Phi_{f}^{\beta}(A)
$$

for any $\beta<\alpha$. If $\alpha=\gamma+1$ then $\Phi_{f}^{\alpha}(A)=\Phi_{f}\left(\Phi_{f}^{\gamma}(A)\right) \subset \Phi_{f}^{\gamma}(A)$, so $\Phi_{f}^{\alpha}(A) \subset \Phi_{f}^{\beta}(A)$ for $\beta<\alpha$, which ends the proof of (2). By Theorem 23.25 we have $\operatorname{int}_{\mathcal{T}_{f}}(E) \subset \Phi_{f}\left(K_{E}\right)$. Suppose that $1 \leq \alpha<\omega_{1}$ and int $\mathcal{T}_{f}(E) \subset \Phi_{f}^{\gamma}\left(K_{E}\right)$ for $\gamma<\alpha$. If $\alpha=\beta+1$ then

$$
\operatorname{int}_{\mathcal{T}_{f}}(E) \subset \Phi_{f}\left(\operatorname{int}_{\mathcal{T}_{f}}(E)\right) \subset \Phi_{f}\left(\Phi_{f}^{\beta}\left(K_{E}\right)\right)=\Phi_{f}^{\alpha}\left(K_{E}\right)
$$

If α is a limit number then $\operatorname{int}_{\mathcal{T}_{f}}(E) \subset \bigcap_{1 \leq \gamma<\alpha} \Phi_{f}^{\gamma}\left(K_{E}\right)=\Phi_{f}^{\alpha}\left(K_{E}\right)$, which ends the proof of (3).

Theorem 24.10 ([9]). For any function $f \in \mathcal{A}$ and any set $E \subset \mathbb{R}$ there is $1 \leq \alpha<\omega_{1}$ such that $\operatorname{int}_{\mathcal{T}_{f}}(E)=E \cap \Phi_{f}^{\alpha}\left(K_{E}\right)$.

Proof. By the latter proposition, the sequence $\left(\Phi_{f}^{\alpha}\left(K_{E}\right)\right)_{\alpha<\omega_{1}}$ is decreasing. Since $(\mathcal{L}, \mathcal{N})$ fulfils countable chain condition, there is $\alpha<\omega_{1}$ such that $\lambda\left(\Phi_{f}^{\alpha}\left(K_{E}\right) \backslash \Phi_{f}^{\alpha+1}\left(K_{E}\right)\right)=0$, and hence $\Phi_{f}^{\alpha+1}\left(K_{E}\right)=\Phi_{f}^{\alpha}\left(K_{E}\right)$. We shall show that $\operatorname{int}_{\mathcal{T}_{f}}(E)=E \cap \Phi_{f}^{\alpha}\left(K_{E}\right)$. Proposition $24.9 \operatorname{implies}_{\operatorname{int}}^{\mathcal{T}_{f}}(E) \subset$ $E \cap \Phi_{f}^{\alpha}\left(K_{E}\right)$. From $\lambda\left(\Phi_{f}^{\alpha}\left(K_{E}\right) \backslash K_{E}\right) \leq \lambda\left(\Phi_{f}\left(K_{E}\right) \backslash K_{E}\right)=0$ it follows that

$$
\Phi_{f}\left(E \cap \Phi_{f}^{\alpha}\left(K_{E}\right)\right)=\Phi_{f}\left(\Phi_{f}^{\alpha}\left(K_{E}\right)\right)=\Phi_{f}^{\alpha}\left(K_{E}\right) \supset E \cap \Phi_{f}^{\alpha}\left(K_{E}\right)
$$

Thus $E \cap \Phi_{f}^{\alpha}\left(K_{E}\right)$ is \mathcal{T}_{f}-open, and consequently

$$
E \cap \Phi_{f}^{\alpha}\left(K_{E}\right)=\operatorname{int}_{\mathcal{T}_{f}}\left(E \cap \Phi_{f}^{\alpha}\left(K_{E}\right)\right) \subset \operatorname{int}_{\mathcal{T}_{f}}(E)
$$

The following theorem is an interesting strengthening of Theorem 24.7. In [17] it was proved for ψ-density and in [9] for f-density.

Theorem 24.11 ([9]). Let $f \in \mathcal{A}^{0}$. For an arbitrary perfect nowhere dense set A there exists a perfect nowhere dense set B such that $\Phi_{f}(B)=A$.

Theorem 24.12 ([9]). Let $f \in \mathcal{A}^{0}$. For each $n>1$ there exists a closed nowhere dense set A such that $\operatorname{int}_{\mathcal{T}_{f}}(A)=\Phi_{f}^{n}(A) \varsubsetneqq \Phi_{f}^{n-1}(A)$.
Proof. For $n=2$ it suffices to take the set F_{1} from Theorem 24.7. Let $n \geq 2$. Suppose that there exists a closed nowhere dense set A such that $\operatorname{int}_{\mathcal{T}_{f}}(A)=$ $\Phi_{f}^{n}(A) \varsubsetneqq \Phi_{f}^{n-1}(A)$. Let B be a closed set such that $\Phi_{f}(B)=A$. Obviously, B is nowhere dense, $A \subset B$ and

$$
\Phi_{f}^{n+1}(B)=\Phi_{f}^{n}(A)=\operatorname{int}_{\mathcal{T}_{f}}(A) \subset \operatorname{int}_{\mathcal{T}_{f}}(B) \subset \Phi_{f}^{n+1}(B)
$$

Hence $\operatorname{int}_{\mathcal{T}_{f}}(B)=\Phi_{f}^{n+1}(B)$ and $\operatorname{int}_{\mathcal{T}_{f}}(B)=\operatorname{int}_{\mathcal{T}_{f}}(A) \varsubsetneqq \Phi_{f}^{n-1}(A)=\Phi_{f}^{n}(B)$, which completes the proof.

24.3 Separating axioms for f-density topologies

Recall that any f-density topology is Hausdorff but not normal (see Theorem 23.25). We will prove that \mathcal{T}_{f} is completely regular for $f \in \mathcal{A}^{1}$. The proof is similar to the proof for classical density topology \mathcal{T}_{d} (compare [1]). We will write $B \subset_{f} A$ instead of $B \subset A \cap \Phi_{f}(A)$.

Theorem 24.13 ([3]). Let $f \in \mathcal{A}^{1}, A \in \mathcal{L}$ and F be a closed set such that $F \subset_{f}$ A. There exists a closed set P such that $F \subset_{f} P \subset_{f} A$.

Proof. Without loss of generality we can assume that dist $(x, F)<1$ for $x \in A$. Let $B:=A \cap \Phi_{f}(A)$ (i.e. $B=\operatorname{int}_{\mathcal{T}_{f}}(A)$). Of course, $F \subset_{f} B$. Define $B_{n}:=\left\{x \in B: \frac{1}{n+1}<\operatorname{dist}(x, F) \leq \frac{1}{n}\right\}$. For any $n \in \mathbb{N}$ there is a closed set $P_{n} \subset B_{n}$ such that $\lambda\left(B_{n} \backslash P_{n}\right)<\frac{1}{2^{n}} f\left(\frac{1}{n+1}\right)$. Put $P:=F \cup \bigcup_{n=1}^{\infty} P_{n}$. Obviously, P is closed and $F \subset P \subset B \subset_{f} A$. It suffices to show that $F \subset \Phi_{f}(P)$. For any $x \in F$ and $h \in\left(\frac{1}{n+1}, \frac{1}{n}\right]$ we have

$$
\lambda((B \backslash P) \cap[x-h, x+h]) \leq \lambda\left(\bigcup_{k=n}^{\infty}\left(B_{k} \backslash P_{k}\right)\right) \leq f\left(\frac{1}{n+1}\right) \frac{1}{2^{n-1}}
$$

and consequently

$$
\begin{aligned}
\frac{\lambda([x-h, x+h] \backslash P)}{f(h)} & \leq \frac{\lambda([x-h, x+h] \backslash B)}{f(h)}+\frac{\lambda([x-h, x+h] \cap(B \backslash P))}{f(h)} \leq \\
& \leq \frac{\lambda([x-h, x] \backslash B)}{f(h)}+\frac{\lambda([x, x+h] \backslash B)}{f(h)}+\frac{1}{2^{n-1}}
\end{aligned}
$$

Since $x \in \Phi_{f}(B)$, the last inequality implies $x \in \Phi_{f}(P)$.
Remark 24.14. Repeating the proof of Theorem 24.13, one can show that if $f \in \mathcal{A}, A \in \mathcal{L}$ and F is a closed set such that $F \subset_{f} A$, then there exists a closed set P such that $F \subset_{f} P \subset A$. It means that an f-density topology fulfils LusinMenchoff condition for each $f \in \mathcal{A}$ (not only from \mathcal{A}^{1}) (compare [3]).

Theorem 24.15 ([3]). If $f \in \mathcal{A}^{1}$ then \mathcal{T}_{f} is completely regular.
Proof. Let G be a \mathcal{T}_{f}-open set and $x_{0} \in G$. There is an F_{σ} set F such that $x_{0} \in F \subset G$ and $\lambda(G \backslash F)=0$. Then $F \in \mathcal{T}_{f}$ and there are closed sets F_{n} such that $F=\bigcup_{n=1}^{\infty} F_{n}$. We first construct a family $\left\{P_{\alpha}: \alpha \in[1, \infty)\right\}$ of closed sets such that

$$
\begin{equation*}
P_{\alpha} \subset_{f} P_{\beta} \subset F \text { for } \beta>\alpha \geq 1 \tag{24.3}
\end{equation*}
$$

Let $P_{1}:=F_{1}$. Since $P_{1} \subset_{f} F$, Theorem 24.13 shows that there is a closed set K_{2} such that $P_{1} \subset_{f} K_{2} \subset F$. Thus the set $P_{2}:=F_{2} \cup K_{2}$ fulfils $P_{1} \subset_{f} P_{2} \subset F$. Proceeding inductively we define sets P_{n} such that

$$
F_{n} \subset P_{n} \subset_{f} P_{n+1} \subset F
$$

Similarly, for every γ from the set $\mathbb{Q}_{2}:=\left\{\frac{n}{2^{m}}: m \in \mathbb{N}\right.$ and $\left.n \geq 2^{m}\right\}$ we can define P_{γ}, in such a way that $P_{\alpha} \subset_{f} P_{\beta}$ for $\alpha, \beta \in \mathbb{Q}_{2}, \alpha<\beta$. Finally, for any $\alpha \in[1, \infty)$ we put $P_{\alpha}:=\bigcap_{\beta \in \mathbb{Q}_{2}, \beta \geq \alpha} P_{\beta}$. It is easy to check that sets P_{α} satisfy condition (24.3). Write

$$
g(x):= \begin{cases}\frac{1}{\inf \left\{\alpha: x \in P_{\alpha}\right\}} & \text { for } x \in F, \\ 0 & \text { for } x \notin F\end{cases}
$$

It is clear that $0<g(x) \leq 1$ for $x \in F$. We show that g is \mathcal{T}_{f}-continuous. If $x \notin F$ then $g(x)=0$ and for any $\varepsilon \in(0,1)$ we have $x \in \mathbb{R} \backslash P_{2 / \varepsilon} \subset\{t: g(t)<\varepsilon\}$. Since $\mathbb{R} \backslash P_{1 / \varepsilon}$ is open, g is continuous at x (even in a usual sense). Assume now that $x \in F$. Let $\alpha:=\frac{1}{g(x)}, \varepsilon \in\left(0, \frac{1}{2}\right)$,

$$
A:=\left\{t: g(t)<\frac{1}{\alpha-2 \varepsilon}\right\} \text { and } B:=\left\{t: g(t)>\frac{1}{\alpha+3 \varepsilon}\right\}
$$

We have $x \in \mathbb{R} \backslash P_{\alpha-\varepsilon} \subset A$ and $x \in P_{\alpha+\varepsilon} \subset_{f} P_{\alpha+2 \varepsilon} \subset B$. Hence

$$
x \in \operatorname{int}_{\mathcal{T}_{\text {nat }}}(A) \cap \operatorname{int}_{\mathcal{T}_{f}}\left(P_{\alpha+2 \varepsilon}\right) \subset \operatorname{int}_{\mathcal{T}_{f}}(A) \cap \operatorname{int}_{\mathcal{T}_{f}}(B)=\operatorname{int}_{\mathcal{T}_{f}}(A \cap B),
$$

and consequently g is \mathcal{T}_{f}-continuous at x. Since g is \mathcal{T}_{f}-continuous, the function

$$
h(x):=\frac{g(x)}{g(x)+\left|x-x_{0}\right|} .
$$

is \mathcal{T}_{f}-continuous, $h\left(x_{0}\right)=1$ and $h(x)=0$ for $x \notin G$. Thus \mathcal{T}_{f} is completely regular.

Theorem 24.16 ([3]). If $f \in \mathcal{A}^{0}$ then \mathcal{T}_{f} is not regular.
Proof. Since $f \in \mathcal{A}^{0}$, there is a nowhere dense closed set $F \subset[0,1]$ of a positive measure and such that $\Phi_{f}(F)=\emptyset$. Let $\left(q_{j}\right)_{j \in \mathbb{N}}$ be a sequence of all rational numbers. For any natural j, the set $F_{j}:=F+q_{j}$ is \mathcal{T}_{f}-closed and \mathcal{T}_{f}-nowhere dense. However, the set $B:=\bigcup_{j=1}^{\infty} F_{j}$ is \mathcal{T}_{f}-open because it is a set of a full measure (compare Smital's Lemma [10, p. 65]). We will show that no point from B can be separated from $\mathbb{R} \backslash B$ by \mathcal{T}_{f}-open sets. Let A be a nonempty \mathcal{T}_{f}-open subset of B. The proof will be completed by showing that

$$
\begin{equation*}
\mathrm{cl}_{\mathcal{T}_{f}}(A) \backslash B \neq \emptyset \tag{24.4}
\end{equation*}
$$

Since $f \in \mathcal{A}^{0}$, there exists a decreasing sequence $\left(t_{n}\right)$ of positive numbers such that $f\left(2 t_{n}\right)<2 t_{n}$ for every n. As $A \backslash F_{1}$ is \mathcal{T}_{f}-open and nonempty we have $\lambda\left(A \backslash F_{1}\right)>0$, and the set

$$
A_{1}:=\left(A \backslash F_{1}\right) \cap F_{i_{1}}
$$

has positive measure for some $i_{1}>1$. Let $a_{1} \in A_{1} \cap \Phi_{d}\left(A_{1}\right)$. There is a natural number n_{1} such that

$$
\left[a_{1}-t_{n_{1}}, a_{1}+t_{n_{1}}\right] \cap F_{1}=\emptyset \text { and } \frac{\lambda\left(A_{1} \cap\left[a_{1}-t_{n_{1}}, a_{1}+t_{n_{1}}\right]\right)}{2 t_{n_{1}}}>\frac{1}{2}
$$

Let us denote $x_{1}:=a_{1}-t_{n_{1}}$ and $y_{1}:=a_{1}+t_{n_{1}}$.
Note that $\lambda\left(A \cap\left(x_{1}, y_{1}\right) \backslash \bigcup_{j=1}^{i_{1}} F_{j}\right)>0$ and the set

$$
A_{2}:=\left(A \cap\left(x_{1}, y_{1}\right) \backslash \bigcup_{j=1}^{i_{1}} F_{j}\right) \cap F_{i_{2}}
$$

is of a positive measure for some $i_{2}>i_{1}$. Fix $a_{2} \in A_{2} \cap \Phi_{d}\left(A_{2}\right)$. There is a natural number $n_{2}>n_{1}$ such that the points $x_{2}:=a_{2}-t_{n_{2}}$ and $y_{2}:=a_{2}+t_{n_{2}}$ satisfy

$$
\left[x_{2}, y_{2}\right] \subset\left(x_{1}, y_{1}\right),\left[x_{2}, y_{2}\right] \cap \bigcup_{j=1}^{i_{1}} F_{j}=\emptyset \text { and } \frac{\lambda\left(A_{2} \cap\left[x_{2}, y_{2}\right]\right)}{y_{2}-x_{2}}>\frac{1}{2}
$$

Proceeding by induction we define increasing sequences $\left(i_{k}\right),\left(n_{k}\right)$ of natural numbers and a decreasing sequence of closed intervals $\left(\left[x_{k}, y_{k}\right]\right)$ such that

$$
y_{k}-x_{k}=2 t_{n_{k}},\left[x_{k}, y_{k}\right] \cap \bigcup_{j=1}^{i_{k-1}} F_{j}=\emptyset \text { and } \frac{\lambda\left(A \cap\left[x_{k}, y_{k}\right]\right)}{y_{k}-x_{k}}>\frac{1}{2} .
$$

Let

$$
\{x\}=\bigcap_{k=1}^{\infty}\left[x_{k}, y_{k}\right] .
$$

Then $x \notin \bigcup_{j=1}^{\infty} F_{j}=B$, but for every k we have

$$
\frac{\lambda\left(A \cap\left[x_{k}, y_{k}\right]\right)}{f\left(y_{k}-x_{k}\right)}=\frac{\lambda\left(A \cap\left[x_{k}, y_{k}\right]\right)}{2 t_{n_{k}}} \cdot \frac{2 t_{n_{k}}}{f\left(2 t_{n_{k}}\right)}>\frac{1}{2}
$$

which implies that x is not a \mathcal{T}_{f}-interior point of $\mathbb{R} \backslash A$, and consequently $x \in$ $\mathrm{cl}_{\mathcal{T}_{f}}(A)$. This establishes (24.4) and completes the proof.

24.4 Homeomorphisms of f-density topologies

Theorem 24.17 ([4]). If $f_{1}, f_{2} \in \mathcal{A}$ and $h:\left(\mathbb{R}, \mathcal{T}_{f_{1}}\right) \rightarrow\left(\mathbb{R}, \mathcal{T}_{f_{2}}\right)$ is a homeomorphism, then
(1) h and h^{-1} are continuous (in a usual sense), strictly monotonic and satisfy Lusin's condition (N),
(2) the sets

$$
\begin{aligned}
& A:=\left\{x: \text { there exists derivative } h^{\prime}(x)\right\} \\
& B:=\left\{x: \text { there exists derivative }\left(h^{-1}\right)^{\prime}(h(x))\right\}
\end{aligned}
$$

have full measure,
(3) if $h^{\prime}(x)=1$ for every $x \in A \cap B$, then $\mathcal{T}_{f_{1}}=\mathcal{T}_{f_{2}}$.

Proof. Let I be an open interval. By Theorem 23.37,
$\left\{E: E\right.$ is $\mathcal{T}_{f_{1}}$-connected $\}=\left\{E: E\right.$ is $\mathcal{T}_{f_{2}}$-connected $\}=\{E: E$ is connected $\}$, so $h^{-1}(I)$ is an interval, too. Since no end of an interval can be its f_{1}-density point, the interval $h^{-1}(I)$ has to be open. Thus h is continuous. Since h is also an injection, it is strictly monotonic. Let P be a null set. Then P and all subsets of P are closed in $\mathcal{T}_{f_{1}}$. Consequently, $h(P)$ and all its subsets are closed in $\mathcal{T}_{f_{2}}$, and so they are measurable. Hence $h(P)$ is of measure zero, which finishes the proof of (1).
Any monotonic function is almost everywhere differentiable, so A has full measure. Observe that $B=h^{-1}\left(\left\{y\right.\right.$; there exists $\left.\left.\left(h^{-1}\right)^{\prime}(y)\right\}\right)$. Using Lusin's condition (N) for h^{-1}, we conclude that B has full measure too. Suppose that $h^{\prime}(x)=1$ for $x \in A \cap B$. By (1) and Banach-Zarecki theorem, we deduce that $h(x)$ is absolutely continuous on any interval $[a, b]$ (see [11]). Since $h^{\prime}(x)=1$ almost everywhere, $h(x)=x$, which gives $\mathcal{T}_{f_{1}}=\mathcal{T}_{f_{2}}$.

Theorem 24.18 ([4]). Let $f_{1}, f_{2} \in \mathcal{A}^{1}$. If topological spaces $\left(\mathbb{R}, \mathcal{T}_{f_{1}}\right)$ and $\left(\mathbb{R}, \mathcal{T}_{f_{2}}\right)$ are homeomorphic, then topologies $\mathcal{T}_{f_{1}}$ and $\mathcal{T}_{f_{2}}$ are comparable i.e. $\mathcal{T}_{f_{1}} \subset \mathcal{T}_{f_{2}}$ or $\mathcal{T}_{f_{2}} \subset \mathcal{T}_{f_{1}}$.

Proof. Suppose, contrary to our claim, that $\mathcal{T}_{f_{1}}$ and $\mathcal{T}_{f_{2}}$ are not comparable. Let h be a homeomorphism from $\left(\mathbb{R}, \mathcal{T}_{f_{1}}\right)$ onto $\left(\mathbb{R}, \mathcal{T}_{f_{2}}\right)$. By Theorem 24.17, h is strictly monotonic and for some x_{0} there exist derivatives $h^{\prime}\left(x_{0}\right)$, $\left(h^{-1}\right)^{\prime}\left(h\left(x_{0}\right)\right)$ with $h^{\prime}\left(x_{0}\right)=c \neq 1$. Since f-density topologies are invariant with respect to translations and symmetries, we can assume that h is increasing and $h\left(x_{0}\right)=x_{0}=0$. We can also assume that $0<c<1$ (we replace h by h^{-1}, if necessary).

Since $\mathcal{T}_{f_{1}} \backslash \mathcal{T}_{f_{2}} \neq \emptyset$, Theorem 23.29 shows that there is a measurable set A such that $0 \in \Phi_{f_{1}}^{+}(A) \backslash \Phi_{f_{2}}^{+}(A)$. Thus there exist a positive number η and a decreasing and tending to 0 sequence $\left(h_{n}\right)$ such that $\frac{\lambda\left(\left[0, h_{n}\right] \backslash A\right)}{f_{2}\left(h_{n}\right)}>\eta$ for every n. It is not difficult to define sequences $\left(b_{n}\right)$ and $\left(c_{n}\right)$ satisfying $b_{n+1}<c_{n}<b_{n} \leq$ h_{n} and

$$
\frac{\lambda\left(\left[c_{n}, b_{n}\right] \backslash A\right)}{f_{2}\left(b_{n}\right)}>\eta
$$

Let us define $a_{n}:=b_{n}-\lambda\left(\left[c_{n}, b_{n}\right] \backslash A\right)$ and

$$
B:=\bigcup_{n=1}^{\infty}\left(b_{n+1}, a_{n}\right) \cup\{0\} \cup \bigcup_{n=1}^{\infty}\left(-a_{n},-b_{n+1}\right)
$$

Of course, $c_{n} \leq a_{n} \leq b_{n}$. An easy computation shows that $\lambda([0, x] \backslash B) \leq$ $\lambda([0, x] \backslash A)$ for $x \leq b_{1}$. Hence $0 \in \Phi_{f_{1}}^{+}(B)$ and $B \in \mathcal{T}_{f_{1}}$.
The proof will be completed by showing that $0 \notin \Phi_{f_{2}}(h(B))$. Since $f_{2} \in \mathcal{A}^{1}$, there exists $\alpha>0$ such that $\frac{f_{2}\left(b_{n}\right)}{b_{n}}>4 \alpha$ for almost all n. Let $\varepsilon:=c \eta \alpha$. Since $0<h^{\prime}(0)=c<1$, we have

$$
\left|\frac{h\left(a_{n}\right)}{a_{n}}-c\right|<\varepsilon, \quad\left|\frac{h\left(b_{n}\right)}{b_{n}}-c\right|<\varepsilon \quad \text { and } \quad h\left(b_{n}\right)<b_{n}
$$

for sufficiently large n. Hence

$$
h\left(b_{n}\right)-h\left(a_{n}\right)>(c-\varepsilon) b_{n}-(c+\varepsilon) a_{n}>c\left(b_{n}-a_{n}\right)-2 \varepsilon b_{n}
$$

Therefore

$$
\begin{aligned}
\frac{\lambda\left(\left[0, b_{n}\right] \backslash h(B)\right)}{f_{2}\left(b_{n}\right)} & \geq \frac{h\left(b_{n}\right)-h\left(a_{n}\right)}{f_{2}\left(b_{n}\right)} \geq c \frac{\left(b_{n}-a_{n}\right)}{f_{2}\left(b_{n}\right)}-2 \varepsilon \frac{b_{n}}{f_{2}\left(b_{n}\right)}> \\
& >c \eta-\frac{2 \varepsilon}{4 \alpha}=\frac{c \eta}{2}>0
\end{aligned}
$$

which gives $0 \notin \Phi_{f_{2}}(h(B))$.
Theorem 24.19 ([4]). The density topology \mathcal{T}_{d} is not homeomorphic to any topology $\mathcal{T}_{f} \neq \mathcal{T}_{d}$.

Proof. If $f \in \mathcal{A}^{0}$ then, by Theorem $24.16, \mathcal{T}_{f}$ is not regular, so \mathcal{T}_{f} and \mathcal{T}_{d} are not homeomorphic. Assume that $f \in \mathcal{A}^{1}$ and $\mathcal{T}_{f} \neq \mathcal{T}_{d}$. Of course, $\mathcal{T}_{f} \backslash$ $\mathcal{T}_{d} \neq \emptyset$. Suppose, contrary to our claim, that there is a homeomorphism h : $\left(\mathbb{R}, \mathcal{T}_{f}\right) \rightarrow\left(\mathbb{R}, \mathcal{T}_{d}\right)$. We can choose $x_{0} \in \mathbb{R}$ such that $h^{\prime}\left(x_{0}\right)=c \neq 1$. We can also assume that h is increasing and $h\left(x_{0}\right)=x_{0}=0$. If $c<1$ then repeating the proof of Theorem 24.18 we obtain a contradiction. Suppose that $c>1$ and set $g(x):=\frac{h(x)}{2 c}$. Since \mathcal{T}_{d} is invariant under multiplication by nonzero numbers, for any $U \in \mathcal{T}_{f}$ we have $g(U)=\frac{1}{2 c} h(U) \in \mathcal{T}_{d}$, and for any $V \in \mathcal{T}_{d}$ we have $g^{-1}(V)=h^{-1}(2 c V) \in \mathcal{T}_{f}$. Hence g is a homeomorphism. As $g^{\prime}\left(x_{0}\right)=\frac{1}{2}$, we can repeat the proof of Theorem 24.18 for g.

$24.5 f$-density topologies and $\left(\Delta_{2}\right)$ condition

In the theory of Orlicz spaces there is often use of the condition called $\left(\Delta_{2}\right)$. W. Orlicz says that a continuous, nondecreasing and unbounded function
$\varphi:[0, \infty) \rightarrow[0, \infty)$, with $\varphi(0)=0$ and $\varphi(x)>0$ for $x>0$, satisfies $\left(\Delta_{2}\right)$ condition if $\limsup _{x \rightarrow \infty} \frac{\varphi(2 x)}{\varphi(x)}<\infty$ (see [12] or [13]). In the consideration of ψ density, the analogous condition is used for functions belonging to the family \widehat{C} (compare [8] and chapter 22). We will consider this condition for functions from the family \mathcal{A}.
We say that a function $f \in \mathcal{A}$ fulfils $\left(\Delta_{2}\right)$ condition $\left(f \in \Delta_{2}\right)$ if

$$
\limsup _{x \rightarrow 0+} \frac{f(2 x)}{f(x)}<\infty
$$

We will use $\left(\Delta_{2}\right)$ condition to compare f-density topologies and to study their algebraic properties. It is useful to observe:

Proposition 24.20 ([7]). For any $f \in \mathcal{A}$ the following conditions are equivalent:
(1) $f \in \Delta_{2}$,
(2) for any positive number β, limsup $\lim _{x \rightarrow 0+} \frac{f(\beta x)}{f(x)}<\infty$,
(3) there exists $\beta>1$ such that $\limsup _{x \rightarrow 0+} \frac{f(\beta x)}{f(x)}<\infty$.

Proof. (1) $\Rightarrow(2)$. There is $n \in \mathbb{N}$ such that $2^{n} \geqslant \beta$. From

$$
\frac{f(\beta x)}{f(x)} \leqslant \frac{f\left(2^{n} x\right)}{f(x)}=\frac{f\left(2^{n} x\right)}{f\left(2^{n-1} x\right)} \cdot \frac{f\left(2^{n-1} x\right)}{f\left(2^{n-2} x\right)} \cdot \ldots \cdot \frac{f(2 x)}{f(x)}
$$

we obtain $\lim \sup _{x \rightarrow 0+} \frac{f(\beta x)}{f(x)} \leqslant\left(\limsup _{x \rightarrow 0+} \frac{f(2 x)}{f(x)}\right)^{n}<\infty$. The implication $(2) \Rightarrow(3)$ is obvious. The proof of $(3) \Rightarrow(1)$ is analogous to the first one.

Note that for any $\alpha \geqslant 1$, the function x^{α} fulfils $\left(\Delta_{2}\right)$ condition and $\mathcal{T}_{x^{\alpha}} \subset \mathcal{T}_{d}$. If $\alpha \in(0,1)$ then the function x^{α} does not belong to \mathcal{A}, because $\lim _{x \rightarrow 0+} \frac{x^{\alpha}}{x}=$ ∞. To obtain a function $f \in \Delta_{2}$, generating topology \mathcal{T}_{f} bigger than \mathcal{T}_{d} (or incomparable with \mathcal{T}_{d}), we will "glue together" square functions with various coefficients and constant ones. Such a construction is presented in the following lemma. It is worth to observe that the construction works not only for square functions. We can use for example x^{α} with $\alpha>1$.

Lemma 24.21 ([7]). If $\left(a_{n}\right)_{n \geq 0}$ is a decreasing sequence tending to zero and $b_{n}:=\sqrt{a_{n} a_{n-1}}$ for $n \in \mathbb{N}$, then the functions

$$
f(x):=\left\{\begin{array}{l}
\frac{x^{2}}{a_{n}} \text { for } x \in\left[a_{n}, b_{n}\right], \\
a_{n-1} \text { for } x \in\left[b_{n}, a_{n-1}\right], \quad g(x):=\left\{\begin{array}{l}
\frac{x^{2}}{a_{2 n-1}} \text { for } x \in\left[b_{2 n}, b_{2 n-1}\right] \\
a_{2 n} \text { for } x \in\left[b_{2 n+1}, b_{2 n}\right] \\
a_{0} \text { for } x \geqslant a_{0},
\end{array}, \quad \text { for } x \geqslant b_{1}\right.
\end{array}\right.
$$

are continuous and fulfil $\left(\Delta_{2}\right)$ condition.
Proof. Obviously, the functions f and g are continuous and belong to \mathcal{A}. Observe that

$$
f(x) \leq \frac{x^{2}}{a_{n}} \text { for } x \geq a_{n}
$$

Indeed, if $x \in\left[a_{k}, b_{k}\right]$ for some $k \leq n$, then $f(x)=\frac{x^{2}}{a_{k}} \leq \frac{x^{2}}{a_{n}}$, whereas for $x \in$ $\left[b_{k}, a_{k-1}\right], k \leq n$, we have $f(x)=f\left(b_{k}\right)=\frac{b_{k}^{2}}{a_{k}} \leq \frac{x^{2}}{a_{n}}$.
Let $x>0$. If $x \in\left[a_{n}, b_{n}\right]$ for some n, then $\frac{f(2 x)}{f(x)} \leq \frac{(2 x)^{2} / a_{n}}{x^{2} / a_{n}}=4$. If x and $2 x$ belong to $\left[b_{n}, a_{n-1}\right)$ then $\frac{f(2 x)}{f(x)}=1$. Finally, if $x \in\left[b_{n}, a_{n-1}\right]$ and $2 x>a_{n-1}$ then $\frac{f(2 x)}{f(x)}=\frac{f(2 x)}{f\left(a_{n-1}\right)} \leq \frac{f\left(2 a_{n-1}\right)}{f\left(a_{n-1}\right)} \leq 4$. Thus f fulfils $\left(\Delta_{2}\right)$ condition.
Similarly we show that $g(x) \leq \frac{x^{2}}{a_{2 n-1}}$ for $x \geq b_{2 n}$, and hence $\frac{g(2 x)}{g(x)} \leq 4$.
Example 24.22 ([7]). Let $a_{n}:=\frac{1}{(n+1)!}, n=0,1, \ldots$ and let f, g be the functions defined in Lemma 24.21. Then $f, g \in \Delta_{2}$. Since $\liminf _{x \rightarrow 0+} \frac{f(x)}{x}=1$ and $\lim \sup _{x \rightarrow 0+} \frac{f(x)}{x}=\infty$, Theorem 23.32 implies $\mathcal{T}_{d} \varsubsetneqq \mathcal{T}_{f}$. Similarly, from $\liminf _{x \rightarrow 0+} \frac{g(x)}{x}=0$ and $\limsup x_{x \rightarrow 0+} \frac{g(x)}{x}=\infty$, we conclude that the topologies \mathcal{T}_{g} and \mathcal{T}_{d} are not comparable ($\mathcal{T}_{g} \nsubseteq \mathcal{T}_{d}$ and $\mathcal{T}_{d} \nsubseteq \mathcal{T}_{g}$).

Recall that the density topology \mathcal{T}_{d} is invariant under multiplication by nonzero numbers and any f-density topology is invariant under multiplication by numbers $\alpha \geq 1$ and $\alpha \leq-1$ (compare Theorem 23.40). Theorem 23.12 states that $\langle s\rangle$-density topologies different from \mathcal{T}_{d} are not invariant under multiplication by numbers $\alpha \in(-1,1)$. Since any $\langle s\rangle$-density topology is equal to the topology \mathcal{T}_{f} for some $f \in \mathcal{A}^{1}$, there are f-density topologies which are not invariant under multiplication by numbers $\alpha \in(-1,1)$. There is a natural question if there exists an f-density topology $\mathcal{T}_{f} \supsetneqq \mathcal{T}_{d}$ which is invariant under multiplication by nonzero numbers. The following theorem gives a straightforward answer.

Theorem 24.23 ([7]). If $f \in \Delta_{2}$ then \mathcal{T}_{f} is invariant under multiplication by nonzero numbers.

Proof. According to Theorem 23.29, it is enough to show that if $\alpha \in(0,1)$ and $0 \in \Phi_{f}^{+}(A)$, then $0 \in \Phi_{f}^{+}(\alpha A)$. If $f \in \Delta_{2}$ then we have

$$
\begin{aligned}
\limsup _{x \rightarrow 0+} \frac{\lambda([0, x] \backslash \alpha A)}{f(x)} & =\limsup _{x \rightarrow 0+} \frac{\alpha \lambda\left(\left[0, \frac{x}{\alpha}\right] \backslash A\right)}{f\left(\frac{x}{\alpha}\right)} \cdot \frac{f\left(\frac{x}{\alpha}\right)}{f(x)} \leq \\
& \leq \alpha \cdot \limsup _{x \rightarrow 0+} \frac{\lambda\left(\left[0, \frac{x}{\alpha}\right] \backslash A\right)}{f\left(\frac{x}{\alpha}\right)} \cdot \limsup _{x \rightarrow 0+} \frac{f\left(\frac{x}{\alpha}\right)}{f(x)}=0 .
\end{aligned}
$$

Now we are in the position to give a simple example of a function $f \in \mathcal{A}^{1}$ such that $\mathcal{T}_{f} \neq \mathcal{T}_{\langle s\rangle}$ for $\langle s\rangle \in \widetilde{\mathcal{S}}$ (much nicer than Example 23.41).

Example 24.24. Let f be the function from Example 24.22. Then $f \in \Delta_{2}$ and, by Theorem 24.23 , topology \mathcal{T}_{f} is invariant under multiplication by nonzero numbers. Thus Theorem 23.12 implies $\mathcal{T}_{f} \neq \mathcal{T}_{\langle s\rangle}$ for $\langle s\rangle \in \widetilde{\mathcal{S}}$.

In the paper [15] it was shown that, for ψ-density topologies, the invariantness of \mathcal{T}_{ψ} under multiplication by nonzero numbers implies $\lim \sup _{x \rightarrow 0+} \frac{\psi(2 x)}{\psi(x)}<$ ∞. This result can be generalized to f-density topologies contained in \mathcal{T}_{d}, i.e. the invariantness of \mathcal{T}_{f} under multiplication by nonzero numbers implies $f \in \Delta_{2}$. Moreover, if $\mathcal{T}_{f} \nsubseteq \mathcal{T}_{d}$ then the considered implication is untrue.

Theorem 24.25 ([7]). Let $f \in \mathcal{A}$. The following conditions are equivalent.
(1) $\mathcal{T}_{f} \subset \mathcal{T}_{d}$.
(2) The topology \mathcal{T}_{f} is invariant under multiplication by nonzero numbers if and only if $f \in \Delta_{2}$.

Proof. (1) $\Rightarrow(2)$. By Theorem 24.23 , if $f \in \Delta_{2}$ then \mathcal{T}_{f} is invariant under multiplication by nonzero numbers. Suppose that $f \notin \Delta_{2}$. There exists a decreasing sequence $\left(b_{n}\right)$ such that $b_{n+1}<\frac{1}{2} \min \left\{b_{n}, f\left(b_{n}\right)\right\}$ and $\frac{f\left(2 b_{n}\right)}{f\left(b_{n}\right)}>n$ for $n \in \mathbb{N}$. Let $a_{n}:=\max \left\{\frac{b_{n}}{2}, b_{n}-\frac{f\left(b_{n}\right)}{2}\right\}$ and $A:=\mathbb{R} \backslash \bigcup_{n=1}^{\infty}\left[a_{n}, b_{n}\right]$. We will show that $A \notin \mathcal{T}_{f}$ but $4 \cdot A \in \mathcal{T}_{f}$. Since $\mathcal{T}_{f} \subset \mathcal{T}_{d}$, Theorem 23.32 implies $\frac{f(x)}{x} \leq M$ for some positive M and any x from some interval $(0, h)$. We can assume that this inequality holds for all $x>0$. Thus

$$
\frac{\lambda\left(\left[0, b_{n}\right] \backslash A\right)}{f\left(b_{n}\right)}>\frac{b_{n}-a_{n}}{f\left(b_{n}\right)} \geqslant \min \left\{\frac{b_{n}}{2 f\left(b_{n}\right)}, \frac{1}{2}\right\} \geq \min \left\{\frac{1}{2 M}, \frac{1}{2}\right\}>0
$$

Consequently, $0 \notin \Phi_{f}^{+}(A)$ and $A \notin \mathcal{T}_{f}$.
Observe that $4 a_{n} \geqslant 2 b_{n}$. For $x \in\left[4 a_{n}, 4 b_{n}\right]$ we have

$$
\frac{\lambda([0, x] \backslash 4 A)}{f(x)} \leq \frac{4\left(b_{n+1}+\left(b_{n}-a_{n}\right)\right)}{f\left(4 a_{n}\right)}<\frac{4\left(\frac{f\left(b_{n}\right)}{2}+\frac{f\left(b_{n}\right)}{2}\right)}{f\left(2 b_{n}\right)}<\frac{4}{n}
$$

Using the preceding inequality, for $x \in\left[4 b_{n+1}, 4 a_{n}\right]$ we obtain

$$
\frac{\lambda([0, x] \backslash 4 A)}{f(x)}=\frac{\lambda\left(\left[0,4 b_{n+1}\right] \backslash 4 A\right)}{f(x)} \leqslant \frac{\lambda\left(\left[0,4 b_{n+1}\right] \backslash 4 A\right)}{f\left(4 b_{n+1}\right)}<\frac{4}{n+1}
$$

Hence $0 \in \Phi_{f}^{+}(4 A)$, and consequently $4 A \in \mathcal{T}_{f}$.
$(2) \Rightarrow(1)$. It is sufficient to show that for any function $f \in \Delta_{2}$ such that $\mathcal{T}_{f} \nsubseteq$ \mathcal{T}_{d} there is a function $g \notin \Delta_{2}$ for which $\mathcal{T}_{f}=\mathcal{T}_{g}$. Since $\mathcal{T}_{f} \nsubseteq \mathcal{T}_{d}$, Theorem 23.32 implies $\lim \sup _{x \rightarrow 0+} \frac{f(x)}{x}=\infty$. From $f \in \Delta_{2}$ it follows that $\liminf _{x \rightarrow 0+} \frac{f(x)}{x}<\infty$ and $\lim \sup _{x \rightarrow 0+} \frac{f(2 x)}{f(x)}<\infty$. Thus there are a positive number M and sequences $\left(a_{n}\right),\left(b_{n}\right)$ such that

$$
b_{n+1}<a_{n}<b_{n}, \frac{f\left(a_{n}\right)}{a_{n}}<M, \frac{f\left(b_{n}\right)}{b_{n}}>n^{2} \text { and } \frac{f(2 x)}{x}<M
$$

for $n \in \mathbb{N}$ and $x \in\left(0, b_{1}\right]$. Write $c_{n}:=\sup \left\{x \in\left[a_{n}, b_{n}\right]: f(x) \leq n b_{n}\right\}$ for $n>$ M^{2}. Then

$$
n b_{n} \geq f\left(\frac{c_{n}}{2}\right) \geq \frac{f\left(2 c_{n}\right)}{M^{2}}>\frac{n b_{n}}{M^{2}} \text { and } 2 a_{n} \leq c_{n}
$$

because $f\left(2 a_{n}\right) \leq M f\left(a_{n}\right)<M^{2} a_{n}<n a_{n}<n b_{n}$. Let us define

$$
g(x):=\left\{\begin{array}{l}
f\left(b_{n}\right) \text { for } x \in\left(\frac{c_{n}}{2}, b_{n}\right], n>M^{2}, \\
f(x) \text { for } x \in(0, \infty) \backslash \bigcup_{n>M^{2}}\left(\frac{c_{n}}{2}, b_{n}\right]
\end{array}\right.
$$

From $\frac{g\left(c_{n}\right)}{g\left(\frac{c_{n}}{2}\right)}=\frac{f\left(b_{n}\right)}{f\left(\frac{c_{n}}{2}\right)}>\frac{n^{2} b_{n}}{n b_{n}}=n$ we obtain $g \notin \Delta_{2}$. Since $f \leq g, \mathcal{T}_{f} \subset \mathcal{T}_{g}$. To prove the inverse inclusion, we use Theorem 24.2. Let

$$
A:=A_{1 f g}=\{x>0: f(x)<g(x)\} \text { and } \varepsilon:=\varepsilon_{1 f g}=\limsup _{x \rightarrow 0+} \frac{\lambda(A \cap[0, x])}{f(x)} .
$$

Since $A \subset \bigcup_{n>M^{2}}\left(\frac{c_{n}}{2}, b_{n}\right]$, for any $x \in\left(\frac{c_{n}}{2}, \frac{c_{n-1}}{2}\right]$ we have

$$
\frac{\lambda(A \cap[0, x])}{f(x)}<\frac{b_{n}}{f\left(\frac{c_{n}}{2}\right)}<\frac{M^{2}}{n}
$$

and consequently $\varepsilon=0$. Thus $\mathcal{T}_{g} \subset \mathcal{T}_{f}$.
In Theorem 23.30 it is shown that $\limsup x_{x \rightarrow 0+} \frac{f(x)}{g(x)}<\infty$ implies $\mathcal{T}_{f} \subset \mathcal{T}_{g}$. Example 23.31 asserts that the functions $f(x)=\frac{1}{n!}, x \in\left[\frac{1}{(n+1)!}, \frac{1}{n!}\right)$ and $g(x)=$ $\frac{1}{n!}, x \in\left(\frac{1}{(n+1)!}, \frac{1}{n!}\right]$ generates the same topology, although $\limsup _{x \rightarrow 0+} \frac{f(x)}{g(x)}=$
∞. It turns out that, if we additionally assume that $f \in \Delta_{2}$ and $\mathcal{T}_{f} \subset \mathcal{T}_{d}$, then the condition $\mathcal{T}_{f} \subset \mathcal{T}_{g}$ is equivalent to $\lim \sup _{x \rightarrow 0+} \frac{f(x)}{g(x)}<\infty$.

Theorem 24.26 ([7], Th. 7). Suppose that $f \in \Delta_{2}, g \in \mathcal{A}$ and $\mathcal{T}_{f} \subset \mathcal{T}_{d}$. If $\mathcal{T}_{f} \subset$ \mathcal{T}_{g} then $\lim \sup _{x \rightarrow 0+} \frac{f(x)}{g(x)}<\infty$.

Note that the assumption $\mathcal{T}_{f} \subset \mathcal{T}_{d}$ cannot be omitted. In [7, Ex. 3] there are constructed the functions $f, g \in \Delta_{2}$ such that $\lim \sup _{x \rightarrow 0+} \frac{f(x)}{g(x)}=\infty$ and $\mathcal{T}_{f}=\mathcal{T}_{g}$.

References

[1] A. Bruckner, Differentiation of Real Functions, Lect. Notes in Math. 659, SpringerVerlag, 1978.
[2] M. Filipczak, T. Filipczak, Remarks on f-density and ψ-density, Tatra Mt. Math. Publ., 34 (2006), 141-149.
[3] M. Filipczak, T. Filipczak, On f-density topologies, Topology Appl. 155 (2008), 1980-1989.
[4] M. Filipczak, T. Filipczak, On homeomorphisms of density type topologies generated by functions, Tatra Mt. Math. Publ. 46 (2010), 7-13.
[5] T. Filipczak, The comparison of f-density and ψ-density, in: Real Functions, Density Topology and Related Topics, Łódź University Press 2011, 23-28.
[6] M. Filipczak, T. Filipczak, On the comparison of density type topologies genarated by functions, Real Anal. Exchange 36 (2011), 341-352.
[7] M. Filipczak, T. Filipczak, On Δ_{2} condition for density-type topologies generated by functions, Topology Appl. 159 (2012), 1838-1846.
[8] M. Filipczak, M. Terepeta, On Δ_{2} condition in density-type topologies, Demonstratio Math. 44 (2) (2011), 423-432.
[9] M. Filipczak, E. Wagner-Bojakowska, The interior operation in f-density topology, Tatra Mt. Math. Publ. 35 (2007), 51-64.
[10] M. Kuczma, An Introduction to the Theory of Functional Equations and Inequalities, PWN, 1985.
[11] I.P. Natanson, Theory of functions of a real variable, $2^{\text {nd }}$ rev. ed. Ungar, New York 1961.
[12] W. Orlicz, Über eine gewisse Klasse von Räumen vom typus B, Bull. Acad. Polonaise, Série A (1932), 207-220; reprinted in his Collected Papers, PWN, Warszawa 1988, 217-230.
[13] M. M. Rao, Z. D. Ren, Theory of Orlicz Spaces, Marcel Dekker, Inc., 1991.
[14] S. J. Taylor, On strengthening the Lebesgue Density Theorem, Fund. Math. 46 (1959), 305-315.
[15] M. Terepeta, E. Wagner-Bojakowska, ψ-density topology, Rend. Circ. Mat. Palermo 48 (1999), 451-476.
[16] E. Wagner-Bojakowska, W. Wilczyński, Comparison of ψ-density topologies, Real Anal. Exchange 25 (1999-2000), 661-672.
[17] E. Wagner-Bojakowska, W. Wilczyński, The interior operation in a ψ-density topology, Rend. Circ. Mat. Palermo 49 (2000), 5-26.

Malgorzata Filipczak
Faculty of Mathematics and Computer Sciences, Łódź University
ul. Banacha 22, 90-238 Łódź, Poland
E-mail: malfil@math.uni.lodz.pl

Tomasz Filipczak

Institute of Mathematics, Łódź Technical University ul. Wólczańska 215, 93-005 Łódź, Poland
E-mail: tfil@math.uni.lodz.pl

