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Notions of f-density operators, f-density topologies and their basic proper-
ties were described in the previous chapter. Recall that by .4 we denote the fam-
ily of all nondecreasing functions f : (0,00) — (0,00) with lim,_,o4 f(x) =0
and liminf,_o @ < oo, We say that x € R is a right-hand f-density point of
a measurable set A for a fixed f € A if

lim A ([x,x+h]\A)

0t f(h) =0

By t’lﬁf+ (A) we denote the set of all right-hand f-density points of A, and in
analogous way we define a left-hand f-density point and the set @, (A). Fi-
nally, if x € @7 (A) := (IJf+ (A)N P, (A) then we say that x is an f-density point
of A. The family 7y = {A €eL:AC Py (A)} forms a topology called f-density
topology.

In chapter 23 f-density is treated mainly as a generalization of (s)-density
and y-density. Now we will focus our attention on the more advanced prop-
erties, which are generally more difficult to prove. All presented results are
known but proofs contained in this chapter are considerably shortened and
simplified.
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24.1 Comparison of f-density topologies

A simple sufficient condition for the inclusion 7y, C 7y, is presented in The-
orem 23.30. There is also formulated a necessary and sufficient condition to

distinguish 77 from 7;. Theorem 23.32 says that 7; C Ty (Ty C Ty) if and

only if liminf,_,o @ > 0 (limsup, o, @ < ). Consequently, we divide

the family A into two subfamilies:

Al = {f cA: G| > 0} and A" := {f cA: limint /. ®) :0} .
x—=0+ X x—=0+ X
Topologies 7 generated by functions from the family A are bigger then the
density topology, and any (s)-density topology is an f-density topology gen-
erated by some f € A! (compare Theorem 23.34). Topologies generated by
f € A® are smaller then 7 or incomparable with 7. Any w-density topology
is an f-density topology for some f € A° (compare Proposition 23.44 and [5]).

Now we will formulate the necessary and sufficient condition for the inclu-
sion 77, C Ty,. The analogous condition for y-density topology was formu-
lated in [16]. However, the proof for f-density is much shorter and simpler
than that for y-density.

In further considerations we will use the observation that to prove 7, C Ty,
it suffices to show that, for any measurable set A, 0 € @;T (A) implies 0 €
CP;; (A) (see Theorem 23.29). We will also need the following Lemma (com-
pare [6]).

Lemma 24.1. Let f € A, t,h € (0,00) and A be a measurable set satisfying

limsup,_,o, M[%;TA) > t. There is an interval [a,b] C (0,h) such that

A ([a,b]NA) an A ([a,x]NA)
o 2 T

Proof. Since limsup, o, M%}? A) > ¢, there is a number y € (0,h) such

that % > t. From the continuity of Lebesgue measure, it follows that

A(la,yInA)
1)

<t forx € (a,b].

=t for some a € (0,y). Let

b::inf{xe la,y] : HeA04) Zt}.

f ()
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A(fabnA)

Obviously, a < b < y. To finish the proof it remains to check that 70) >t.
Suppose that % < t. Thus there is b’ > b such that /1([%;])@4) < t, and
consequently
A (Ja,x]NA) < A ([a,b'|NA)
[ = )
for any x € [b,b], which gives a contradiction with the definition of b. O

Let f1, f>» € A. We define sequences

A= {xe 0 ) < LA},

i A(A N0,x
R ::llnigip ( n]}f(x){ D'
X

Of course, these sequences are decreasing, so (&, 1, ),y 1S convergent.
Theorem 24.2 ([6]). T, C Ty, if and only if lim,, e &5, f, = 0.

Proof. Let us denote A, f, s, and &, s, briefly by A, and &,.

"<" Suppose that lim,,_,.. & = 0 and 0 € @}; (E) (.e. limy_04 A(0A\E)

fa(x)
0). We should to prove that 0 € @ (E). Since
CANE) . A(0\E\A) . A(0,5N4,)
limsup ————% < limsu +limsup ———————~ =
x—>0+p fl (x) x—>0+p fl (x) x—>0+p fl (x)
= limsup A (0.X]\E\Ay) + &,
x—0+ fl (x)
it suffices to show that
. A([0,X\E\A,)
xlg(g 0 =0. (24.1)

Let us fix a positive integer n and a positive x with fj (x) < 1. If x ¢ A,
then fi (x) > % /2 (x), and consequently MO’?}}S\A”) < n’l([ﬁz’ﬁy). If (0,x] C Ay
then % = 0. Finally, if x € A, and (0,x] \ A, # 0, then for a :=
sup ((0,x] \ A,) and for any y from [a — af; (a) ,a] \ A, we have fi (y) > %fz (y).
Hence
A ([0,x]\E\A,)
fi(x)

which implies (24.1).

A([0,y]\E\A,)  a-—y
fy) fi(a)

VALY

)

<
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"=" Suppose that lim, ,.&, > 0. We look for a measurable set E
such that 0 € @g (E)\ (DJT1 (E). There is a positive number ¢ such that

limsup, .o, %)[{()),x]) > ¢t for sufficiently large n. We can assume that this

inequality holds for every n. Applying Lemma 24.1, we can define intervals
[an, by) such that b,y < min{a,, L (a.)},

A ([an,ba]) NAy) A ([an,x]NA,)
——————~= >t and ———————= <tforx€ (a,,b,|.
71 (o) e (o
Set .
E:=R\ | J (AuN[an,bn)).
n=1
. A([0,b,)\E A([an,bp]NA,
Since ([fl(b']} ) 2 ([fl(bl) ) Z r> 0’ 0 ¢ (pfl (E)

Let us consider x € (0,b;]. We first assume that x € (a,,b,| for some n. If
A ([an,x]NA,) = 0 then
AQOANE) _ bt 1
fa(x) falan) —n
If A ([an,x]NA,) > 0 then one can find y,z € [a,,x] such that z <y < x,
A(A,N[yx])=0,z€ A, andy—z < fi (ay). Thus

AOANE) _ A (lan 3]0 +busr _ A(land A | y=2  but
HLlx)  — f2(2) - f2(2) nfi(z)  fa(an)
r 1 1 t+2
< ; + ; + ; = T

Assume now that x € (b, 1,a,]. From the previous case we obtain

A(OA\E) _ A(0.b,]\E) _ 142
f2(x) n o (bus1) n+1’

This gives 0 € @y, (E), which completes the proof. O
As a straightforward consequence we obtain:

Theorem 24.3 ([6)). Let fi, f>» € A. If lim, o }g—g; =0then Ty, G Tp,

Proof. There are 6 > 0 and ng € N such that A,z C (0,0) and A, 5 N
(0,6) =0 for n > ny. Clearly, lim, o &y, 1, =0, s0 Ty, C Ty,.

Since Anf 5 N (0,x) = (0,x) for x € (0,0) and n > nyg, we have &5, =
limsup,_,o, 757~ By the definition of the family A, we have limsup, 70 >

0, and consequently lim,, e &7, 7, > 0. Therefore Tz, # Tp,.

O
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Theorem 23.32 shows that the condition lim,_,o ﬁ g;

for Ty, S Ti.

= 0 is not necessary

24.2 Properties of f-density for f ¢ A°

In Theorem 23.38 it is proved that A (@7 (A) AA) =0 for f € Al and A € L.
Thus for any f from A' an operator @, and a topology 7, have properties
similar to the properties of "classical" density operator &, and the density
topology 7; (compare Theorem 23.39). Now we will study properties of @
and 7y for f € A" The essential role in these considerations is played by the
result analogous to The Second Taylor’s Theorem (compare [14] and chapter
22) for f-density.

We begin by defining a Cantor-type set generating by two sequences. In n-
th step of the construction of the Cantor ternary set, two subintervals of the
length % are chosen from any component. In our construction, we will choose
k, subintervals of the length r,, each.

Let (r4),—0,1, . be a sequence of positive numbers and (k,),_o; be a se-
quence of positive integers such that ko = rg = 1, k, > 2 and k,,r}, < ry_1 for
n > 1. We define inductively a decreasing sequence (F,),_o,  of closed sets
consisting of p, := ko - ...k, pairwise disjoint closed intervals I?' of the length
T

For n = 0 we put Fy := 1" := [0, 1]. Suppose that we have defined disjoint
closed intervals I{,...,I, and the set F,:=1{ U...UI; for some n > 0.
For any i € {1,...,p,} we define k, pairwise disjoint closed subintervals

Zfll) b1 ,I{,’{:j} of the interval 7, of the length r,, ;| each. We choose them

in such a way that the left endpoint of I("l.fll) k141

right endpoint of " is the right endpoint of I” and distances between subin-
lkn+l 1

tervals are the same. Let Fj, | := I{’H U... Ulziﬂ. Thus we have defined the
sequence (F,),_q ;. Put

is the left enpoint of I7', the

F:=F((ra),(kn)) := () Fa-

n=0

Remark 24.4. From now on we will assume that Fy = I? := [0, 1] and will
define sequences (r,,) and (k,) forn > 1.

Lemma 24.5. For any € € (0,1) and any tending to zero sequence (x,) of pos-
itive numbers there exists a subsequence (r,) of the sequence (x,) and a se-
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quence (ky) of positive integers such that the set F :=F ((r,),(ky,)) satisfies
A(F)>1—¢and

€

PR <A\ Fyi) <
n

€ .
]Wforn:O,l,...,lzl,...,pn. (24.2)
Proof. Fix a natural number m and suppose that we have defined r; = x;;, and
kjfor j=1,...,m. As ry41 we choose any element x, from the sequence (x;,)
such that > 1, and x; < ﬁ. Now we put

)
ki1 = max{k €N 1y —krpsy > W} :

From the definition of &, it follows that

£

P) m+2 <rm—kms1rme1 <
m

+rmr1 <

pm2m+2 pm2m+l .

Since A (I"\ Fy+1) = rm — ki 15m+1, We obtain (24.2). Moreover
oo oo Dp

MOANF) = Y AENF) = Y YA\ ) < ¥,

n=0 n=0i=1 n=0

8 JR—
on+l €.
O

Theorem 24.6 ([9], [2]). For any function f € A° and any real number ¢ €
[0,1) there exists a closed set F C [0, 1] such that A (F) > ¢ and ®¢(F) = 0.

Proof. Let€:=1—c. Since f € A°, there is a decreasing sequence (x,) tending
to zero and such that
fOw) _ 1

Xn n2"

for every n. Clearly, this inequality holds also for any subsequence of (x;).
Let (r,), (k,) and F := F ((r,), (kn)) satisfy the assertion of the latter Lemma.
Since F is closed, @¢(F) C F, so it remains to prove that F N ®;(F) = 0.
Let us fix x € F. There exists a sequence (Il'; ) of closed intervals such that

A(I') =ryand (- I = {x}. As A (I"') < - we have

; Pn
AENF) A@\Fi))  pam  ne _en
o) e FeaE T %
A(1\F)

Hence lim,,_o ) = and consequently x ¢ @ (F) (compare Proposi-
tion 23.21). ! 0
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Using the set F we will construct a closed set with exactly one f-density
point.

Theorem 24.7 ([9]). For any function f € A° there exists a closed set F| C
[0, 1] such that A (Fy) > 0 and ®¢ (Fy) = {0}.

Proof. Since f € A, there exists a sequence (x,) such that nx, 1 < f (x,) < x,
for n > 2. Let J, := [Xy41 + 1 f (Xp+1) ;] . According to Theorem 24.6 there
is a closed set E, C J, with ®/(E,) =0 and A (J,\E,) < 1f(xp41). Put
E =, E,. Of course, ®¢(E) = 0. It remains to check that 0 € db}r (E).
For x € [x,41,x,] we have

0.4\ E [0,xn+2 i ni]ﬂxm)} U U1 \Eps1)U

U [xnﬂ,xnﬂ T ;f<xn+1>} UUN\En).

Therefore

A(0.4\E) _Fni2+ i Gona) + b f (o) + 5 f (1) + 5 f (Kug1) .5
f(x) f (one1) n

and consequently 0 € (15}’ (E). Thus F} := EU(—E)U{0} is the desired set.

O

The sets constructed in Theorem 24.6 and Theorem 24.7 show that proper-
ties of f-density operators for f € A° differ considerably from the properties
of the classical density operator @,. Theorems 23.6 and 23.8 contain the list
of differences. In particular we have.

Proposition 24.8. If f € A° then the space (R,Ty) is of the first category.

In chapter 23 it is proved that int7,(A) = AN @y (A) for f € A' and A €
L. This equality need not be true for f € A°. If Fj is the set constructed in
Theorem 24.7 then Fi NPy (F;) = {0} but int; (F;) = 0. Now we will describe
an interior operation in an f-density topology (in the general case).

Let f € Aand A € L. By induction we define @7 (A) for 1 < o0 < oy:

Dj(A) =D (A), PFF(A) == D (PF (4)),
®F(A):= () @f(A) if o is a limit number.
1<B<a

Obviously, (D]?‘ = @y for f € Aland 1 < a < o.
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We will use some properties of operators @, described in Theorem 23.24.
Note that for any f € A and any measurable sets A,B, A (®f(A)\A) =0 and
the condition A (A \ B) = 0 implies @7 (A) C @y (B). Therefore ®;(Pr(A)) C
@/ (A). Recall that by K4 we denote a measurable kernel of A C R.

Proposition 24.9 ([9]). Let fe A ECR A, BE LandACB. If1<B<a<
w; then

(1) B (4)  BF (B),

(2) DE(A) C D (A),

(3) intﬁ.(E) CcEN CD? (KE).

Proof. (1) follows from the monotonicity of ®y. Suppose that (2) is true for
ordinal numbers less than «. If o is a limit number then

P (A)= [ @A) C P} (A)
1<y<o
for any B < o If & = y+ 1 then &% (A) = &b (quY(A)) C @7(A), so

D7 (A) C @f (A) for B < a, which ends the proof of (2). By Theorem 23.25
we have int7, (E) C @7 (Kg). Suppose that 1 < @ < @y and int7, (E) C dJ}.’ (KEg)
fory< o.If o = B +1 then

int, (E) C @ (int7, (E)) C &y (cpﬁ (KE)) — % (Kg).

If o is a limit number then int7, (E) C N1 <y<q CD}/ (Kg) = @7 (Kg), which ends
the proof of (3). O

Theorem 24.10 ([9]). For any function f € A and any set E C R there is
1 < a < o such that intr, (E) = EN P (Kg).

Proof. By the latter proposition, the sequence (4’))‘3‘ (KE)) is decreas-
' a<m;

ing. Since (£,N) fulfils countable chain condition, there is @ < @; such
that A (cp}?‘ (Kg)\ @ (KE)> = 0, and hence ®¢*! (Kg) = @F (Kg). We
shall show that int7; (E) = E N @f (Kg). Proposition 24.9 implies int7, (E) C

EN®¢ (Kg). From A (cp;f (Kg) \KE) < A (®; (Kg)\ Kg) = 0 it follows that
@ (ENDY (Kg)) = Pf (PF (Ki)) = PF (Kg) D ENDPF (KE).

Thus EN @f (Kg) is Ty-open, and consequently
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EN®F (Kg) =intr, (EN®F (Kg)) C intr, (E).

O

The following theorem is an interesting strengthening of Theorem 24.7. In
[17] it was proved for y-density and in [9] for f-density.

Theorem 24.11 ([9)). Let f € A°. For an arbitrary perfect nowhere dense set
A there exists a perfect nowhere dense set B such that ®¢ (B) = A.

Theorem 24.12 ([9)]). Let f € A°. For each n > 1 there exists a closed nowhere
dense set A such that int7,(A) = @} (A) & Q?_l (A).

Proof. For n = 2 it suffices to take the set F| from Theorem 24.7. Let n > 2.
Suppose that there exists a closed nowhere dense set A such that int7, (A) =

PrA) G (IJ?_1 (A). Let B be a closed set such that @ (B) = A. Obviously, B
is nowhere dense, A C B and

@4+ (B) = @} (A) = int7;(A) C int7,(B) C P} (B).

Hence int7;(B) = @}*' (B) and int7,(B) = int7;(A) G @}~ (A) = &} (B),
which completes the proof. O

24.3 Separating axioms for f-density topologies

Recall that any f-density topology is Hausdorff but not normal (see Theorem
23.25). We will prove that 77 is completely regular for f € A!. The proof is
similar to the proof for classical density topology 7; (compare [1]). We will
write B C s A instead of BC AN Py (A).

Theorem 24.13 ([3]). Let f € A', A € L and F be a closed set such that F Cr
A. There exists a closed set P such that F Cy P Cy A.

Proof. Without loss of generality we can assume that dist (x, F) < 1 forx € A.
Let B:=A N ®¢(A) (ie. B = inty;(A)). Of course, F C; B. Define
B,:={x€B: # < dist(x,F) < %} For any n € N there is a closed set
B, C B, such that A (B, \ P,) < 217]‘(,11?) Put P:= F U, B,. Obviously,
P is closed and F C P C B Cy A. It suffices to show that F C ®(P). For any

xeFandhe (ﬁ,ﬂ we have

S}

),((B\P)ﬂ[x—h,x—i—h])g?t(U(Bk\Pk)> Sf( : )2,,1_1’

Pt n+1



420 Matgorzata Filipczak, Tomasz Filipczak

and consequently

A(x—hx+h\P) _A(lx—hx+h\B) A(x—hx+hN(B\P))

O () 7 =
Ar=hx]\B) A(bx+h\B) 1
T
Since x € @¢(B), the last inequality implies x € ®¢(P). 0

Remark 24.14. Repeating the proof of Theorem 24.13, one can show that if
feA Ae LandF is aclosed set such that F C 1A, then there exists a closed
set P such that ' Cy P C A. It means that an f-density topology fulfils Lusin-
Menchoff condition for each f € A (not only from .A') (compare [3]).

Theorem 24.15 ([3]). If f € A! then Ty is completely regular.

Proof. Let G be a Tr-open set and xo € G. There is an Fi set F' such that
X0 € FCGand A (G\F)=0.Then F € Ty and there are closed sets F, such
that F = |J,_, F,. We first construct a family {Py : & € [1,00)} of closed sets
such that

Py CyPgCFforf>a>1. (24.3)

Let P, := Fj. Since Py Cy F, Theorem 24.13 shows that there is a closed set
K> such that Py Cr K> C F. Thus the set P, := F, UK fulfils Py Cy P, C F.
Proceeding inductively we define sets P, such that

F,CP,CsPy 1 CF.

Similarly, for every 7y from the set Q; := {% :meNandn > 2’"} we can de-
fine Py, in such a way that Py Cy Pg for o, B € Qa, o < 3. Finally, for any
o € [1,00) we put Py := Npe,,p>a Pp- It is easy to check that sets Py satisfy
condition (24.3). Write

1
g(x) = inf{a:x€Py } forx e F,
0 forx¢ F.

Itis clear that 0 < g(x) <1 for x € F. We show that g is Ty-continuous. If x ¢ F
then g (x) =0 and forany € € (0,1) we have x ¢ R\ P,/ C {1 : g(¢) < €}. Since
R\ Py /¢ is open, g is continuous at x (even in a usual sense). Assume now that

x€F. Leta:= 5.e€(0,3),

A {t:g(r)< a_lzg} and B = {t:g(t)> ai%}.
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We have x € R\ Py_¢ CA and x € Pyt Cy Pyi2e C B. Hence

X € intg

nat

(A) Nint7; (Pay2e) C int7;(A) Ninty, (B) = int7; (AN B),

and consequently g is Ty-continuous at x. Since g is 7¢-continuous, the func-

tion

h(x) := &
8(x) + [x —xo|

is T¢-continuous, A(xp) = 1 and h(x) = 0 for x ¢ G. Thus 7y is completely

regular. O

Theorem 24.16 ([3]). If f € A° then Tt is not regular.

Proof. Since f € A%, there is a nowhere dense closed set F C [0, 1] of a positive
measure and such that @¢(F) = 0. Let (¢;) ;. be a sequence of all rational
numbers. For any natural j, the set F; := F +g; is Ty-closed and 7-nowhere
dense. However, the set B:=J7_, F; is Ty-open because it is a set of a full
measure (compare Smital’s Lemma [10, p. 65]). We will show that no point
from B can be separated from R\ B by 7;-open sets. Let A be a nonempty
Tr-open subset of B. The proof will be completed by showing that

clr.(A)\ B #0. (24.4)

Since f € A°, there exists a decreasing sequence (#,) of positive numbers such
that f(2t,) < 2t, for every n. As A\ Fj is Ty-open and nonempty we have
A (A\ F;) > 0, and the set

A] = (A\F])QE‘I

has positive measure for some i} > 1. Leta; € AN P, (A;). There is a natural
number 7 such that
l(Alﬂ[al—tnl,al—i—tm]) 1
> —.
21y, 2

[a1 — Iy, a1 —I—l‘nl]ﬂFl =@ and

Let us denote x; :=aj —t,, and y; := aj +1p,.
Note that A (A N (x1,y1) \U;?:l Fj> > 0 and the set

Ay = (Aﬂ(m,yl)\ OFj) NE,

J=1
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is of a positive measure for some i, > i;. Fix ay € Ay NP, (A;). There is a
natural number ny > n; such that the points xp :=ay —t,, and y; 1= az + 1,
satisfy

i A (AN [xz, 1
[x2,2] € (x1,31)» 2, 32] N [ Fj = 0 and A Nb,ya]) > 5
i1 Y2 —X2 2

Proceeding by induction we define increasing sequences (ix), (ng) of natural
numbers and a decreasing sequence of closed intervals ([xg,yx]) such that

if—1
AAN[x,w]) 1
—xi =2ty X, vi|N | JFj=0and ——— > —.
Yk — Xk o Xk Vil jL—Jl j Ye—%i )
Let -
{x} = () boes il -
k=1

Then x ¢ 7, F; = B, but for every k we have

A (A N [xk,yk]) A (A N [xk,yk]) 2y, 1

f(yk _xk) a 21, f(2tnk) 2
which implies that x is not a 7y-interior point of R\ A, and consequently x €
cl7;(A). This establishes (24.4) and completes the proof. 0

24.4 Homeomorphisms of f-density topologies
Theorem 24.17 ([4]). If fi, o € Aand h: (R, Ty, ) = (R, Tp,) is a homeomor-
phism, then

(1) h and h™" are continuous (in a usual sense), strictly monotonic and satisfy
Lusin’s condition (N),
(2) the sets
A := {x : there exists derivative h' (x)},
B:= {x : there exists derivative (h_l)/ (h (x))}

have full measure,
(3) if i (x) = 1 for every x € ANB, then Ty, = Ty,.
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Proof. Let I be an open interval. By Theorem 23.37,
{E :Eis Ty, —connected} = {E :Eis sz—connected} ={E : E is connected },

so h~!(I) is an interval, too. Since no end of an interval can be its fi-density
point, the interval 2! (I) has to be open. Thus & is continuous. Since / is also
an injection, it is strictly monotonic. Let P be a null set. Then P and all subsets
of P are closed in 7,. Consequently, / (P) and all its subsets are closed in 7Tp,,
and so they are measurable. Hence £ (P) is of measure zero, which finishes the
proof of (1).

Any monotonic function is almost everywhere differentiable, so A has full
measure. Observe that B = h~! ({y; there exists (h_l)/ (y) }) Using Lusin’s

condition (N) for h~!, we conclude that B has full measure too. Suppose that
I (x) =1 for x € ANB. By (1) and Banach-Zarecki theorem, we deduce that
h(x) is absolutely continuous on any interval [a,b] (see [11]). Since /' (x) =1
almost everywhere, 1 (x) = x, which gives 77, = Ty,. 0

Theorem 24.18 ([4]). Let fi, f» € Al If topological spaces (R,T;,) and
(R,Ty,) are homeomorphic, then topologies Ty, and Ty, are comparable i.e.
Ts CTyor Ty, CTh.

Proof. Suppose, contrary to our claim, that 7 and 7y are not compara-
ble. Let 4 be a homeomorphism from (R, 7 ) onto (R, 7). By Theorem
24.17, h is strictly monotonic and for some xq there exist derivatives 4’ (xo),
(hfl)/ (h(xo)) with A’ (xg) = ¢ # 1. Since f-density topologies are invariant
with respect to translations and symmetries, we can assume that /4 is increas-
ing and % (xp) = xo = 0. We can also assume that 0 < ¢ < 1 (we replace & by
h~!, if necessary).

Since Ty, \ Tz, # 0, Theorem 23.29 shows that there is a measurable set A
such that 0 € (IJ}T1 (A)\ CPE (A). Thus there exist a positive number 71 and a

decreasing and tending to 0 sequence () such that W > n for every n.

It is not difficult to define sequences (b,) and (c,) satisfying b, < ¢, < b, <

h,, and
A ([cn; ba] \A)
—_— Y >1.
12 (bn) 1
Let us define a, := b, — A ([cn,b,] \ A) and

(=S oo

U n+17an U{O}U U anv_bn+1)~

n=1 n=1
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Of course, ¢, < a, < b,. An easy computation shows that A ([0,x]\B) <
A ([0,x]\ A) for x < by. Hence 0 € @/ (B) and B € Ty,.
The proof will be completed by showing that 0 ¢ @, (h(B)). Since f, € A,

there exists & > 0 such that %ﬁ”) > 4 for almost all n. Let € := cna. Since
0 <H (0)=c <1, we have

‘ h(an)

day

h(ba)
oJee [

<& and h(b,) <b,

for sufficiently large n. Hence

h(by)—h(ay) > (c—€)by— (c+€)an > c (b, —an) —2€by,.

Therefore
A([Ovbn]\h(B)) h(bn)_h(an) (bn_an) _ b,
A A R A A
2k _an_
“N " =2 7
which gives 0 ¢ @, (h(B)). O

Theorem 24.19 ([4]). The density topology Ty is not homeomorphic to any
topology Ty # Ta.

Proof. 1f f € A° then, by Theorem 24.16, 7T; is not regular, so 7 and Ty
are not homeomorphic. Assume that f € A! and 7; # 7. Of course, 7\
Ta # 0. Suppose, contrary to our claim, that there is a homeomorphism # :
(R,Tf) = (R,74). We can choose xo € R such that 7’ (xo) = ¢ # 1. We can
also assume that £ is increasing and % (xp) = xo = 0. If ¢ < 1 then repeating the
proof of Theorem 24.18 we obtain a contradiction. Suppose that ¢ > 1 and set

g(x):= % Since 7, is invariant under multiplication by nonzero numbers,

for any U € 7 we have g(U) = TIL (U) € Ty, and for any V € T; we have

g '(V) =h"'(2¢V) € T;. Hence g is a homeomorphism. As g’ (xo) = 3, we
can repeat the proof of Theorem 24.18 for g. O

24.5 f-density topologies and (A;) condition

In the theory of Orlicz spaces there is often use of the condition called (A;).
W. Orlicz says that a continuous, nondecreasing and unbounded function
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@ : [0,00) — [0,00), with ¢(0) = 0 and @(x) > 0 for x > 0, satisfies (A2) con-
dition if limsup, .., (’;((2;;) < oo (see [12] or [13]). In the consideration of -
density, the analogous condition is used for functions belonging to the family

c (compare [8] and chapter 22). We will consider this condition for functions

from the family A.
We say that a function f € A fulfils (A;) condition (f € Ay) if
2
limsupf( ) < oo
x—0+ f (x)

We will use (A;) condition to compare f-density topologies and to study their
algebraic properties. It is useful to observe:

Proposition 24.20 ([7]). For any f € A the following conditions are equiva-
lent:

(1) f € Ay,
(2) for any positive number 3, lim SUPy_,0+ %;X)) <o

(3) there exists B > 1 such that limsup,_,q, f(fi};) < oo

Proof. (1)=>(2). There is n € N such that 2" > 8. From

fBx) _f2) _ [ f(2"%) f(2)

f@) S f T fe ) f2 ) T f()

we obtain limsup, ., % < (lim sup, o4 %) ! < oo, The implication
(2)=(3) is obvious. The proof of (3)=-(1) is analogous to the first one. O

Note that for any o > 1, the function x* fulfils (A;) condition and Ty« C 7.
If a € (0,1) then the function x* does not belong to A, because lim,_,( % =
oo, To obtain a function f € A,, generating topology 7 bigger than 7; (or in-
comparable with 7;), we will "glue together" square functions with various co-
efficients and constant ones. Such a construction is presented in the following
lemma. It is worth to observe that the construction works not only for square
functions. We can use for example x* with a > 1.

Lemma 24.21 ([7]). If (an), ¢ is a decreasing sequence tending to zero and
b, := \/ana,_| for n € N, then the functions

% for x € [ay,by), L for x € [ban,ba1],

a ap—1
f(x):=9q an1 forx € [by,an—1], 8X):=1q ay, forx€ [bai1,bal,
ap forx = ay, ag forx > b
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are continuous and fulfil (A) condition.

Proof. Obviously, the functions f and g are continuous and belong to .A. Ob-

serve that )

flx) < T for x> ay.
an

Indeed, if x € [ax,by] for some k < n, then f(x) = x—k < 2, whereas for x €

[br,ax—1], k < n, we have f (x) = f(by) = aj <

)n

2

2
Let x > 0. If x € [ay,b,] for some n, then f(() < <x2)/6{ — 4. If x and 2x

belong to [by,a,—1) then f(( )) = 1. Finally, if x € [b,,a,_1] and 2x > a,,—; then

J;((Zxx)) = f’géff)l 7 < 1;((2:7 1)) <4. Thus f fulfils (Az) condition.

Similarly we show that g (x) <

2) g 0
glx) — 7

ﬁ, n=20,1,... and let f,g be the func-
tions defined in Lemma 24.21. Then f,g € Ay. Since liminfy_o4 = viCa

and limsup, o, L ECX)

and hence £

Example 24.22 ([7]). Let a, :=

= oo, Theorem 23.32 implies 75 & Ty Slmllarly, from

liminf,_,o4 £ ) — 0 and lim sup,_,o. & Ef) = oo, We conclude that the topologies

T, and T, are not comparable (T € Tz and Ty € Ty).

Recall that the density topology 7 is invariant under multiplication by
nonzero numbers and any f-density topology is invariant under multiplica-
tion by numbers ¢ > 1 and o < —1 (compare Theorem 23.40). Theorem 23.12
states that (s)-density topologies different from 7 are not invariant under mul-
tiplication by numbers o € (—1,1). Since any (s)-density topology is equal to
the topology 7 for some f € A, there are f-density topologies which are
not invariant under multiplication by numbers o € (—1,1). There is a natural
question if there exists an f-density topology 7 £ 74 which is invariant under
multiplication by nonzero numbers. The following theorem gives a straightfor-
ward answer.

Theorem 24.23 ([7]). If f € A, then Ty is invariant under multiplication by
nonzero numbers.

Proof. According to Theorem 23.29, it is enough to show that if o € (0, 1) and
0e @;’ (A), then 0 € @;’ (aA). If f € A, then we have
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A0 \ad) L ah([0.3]\A) £(3)
iy S = ima S S <
<o- hmsup)b([o’ é] ) hmsupf(é) =0.

X0+ (%) o+ f(x)
O

Now we are in the position to give a simple example of a function f € Al
such that 7y # T for (s) € S (much nicer than Example 23.41).

Example 24.24. Let f be the function from Example 24.22. Then f € A, and,
by Theorem 24.23, topology 7 is invariant under multiplication by nonzero
numbers. Thus Theorem 23.12 implies 7y # T, for (s) € S.

In the paper [15] it was shown that, for y-density topologies, the invariant-
ness of 7y, under multiplication by nonzero numbers implies limsup, ., "‘;,((2 x)) <
oo, This result can be generalized to f-density topologies contained in 7y,
i.e. the invariantness of 7y under multiplication by nonzero numbers implies

f € Ay. Moreover, if Ty ¢ T, then the considered implication is untrue.

Theorem 24.25 ([7]). Let f € A. The following conditions are equivalent.
(1) Ty C Ta.

(2) The topology Ty is invariant under multiplication by nonzero numbers if
and only if f € Ay.

Proof. (1)=(2). By Theorem 24.23, if f € A, then Ty is invariant under multi-
plication by nonzero numbers. Suppose that f ¢ A,. There exists a decreasing
sequence (b,) such that b, < Smin{b,, f(b,)} and ff((Zb )) > n forn € N.
Let a, := max{h—” by, — f(b”)} and A =R\ U,_, [an,bn).

A ¢ Trbut4-A € Ty Since Ty C Ty, Theorem 23.32 implies 'Ec) < M for
some positive M and any x from some interval (0,%). We can assume that this
inequality holds for all x > 0. Thus

A ([0,5] \A) by —ay ,{ by 1} ,{1 1}
> >mins ———,— s >ming —, - » > 0.
I (bn) [ (bn) 2f (bn) 2 M2
Consequently, O ¢ <1>;r (A)and A ¢ T;.
Observe that 4a,, > 2b,. For x € [4a,,4b,] we have

We will show that

4(bn+1 + (bn *an)) < 4 (%b”) + @>
[ (4an) 1 (2by)

< < -.
n



428 Matgorzata Filipczak, Tomasz Filipczak

Using the preceding inequality, for x € [4b,1,4a,| we obtain

A(0,4\44) _ A([0,4bu1]\4A) _ A([0,4b411]\44) _ 4
fx) fx) S f(4buy) n+1’

Hence 0 € dbj‘f (4A), and consequently 4A € Ty.
(2)=-(1). It is sufficient to show that for any function f € A, such that 7y ¢
7Ta there is a function g ¢ A, for which Ty = Tg. Since T; € T4, Theorem 23.32

implies limsup,_,o, L% = oo, From f € 4, it follows that liminf, o, £ < e

and limsup, o, J;(( )) < oo, Thus there are a positive number M and sequences

(an), (by) such that

fbn) _ >

fla) <M >n

Ay n

for n € N and x € (0,b;]. Write ¢, := sup{x € [an,b,] : f (x) < nb,} for n >
M?. Then

b1 < ay < by, and <M

F(z)

2 b
nb = £ () = fgwg") > and 2a, <,

because f (2a,) < Mf (a,) < M*a, < na, < nb,. Let us define

. 7 (b) forxe ($.b,] n> 2,
g()'_{f(x) for x € (0, )\Un>M2(2’ }

From ;((m)) = J{(U;:)) > ’:;b = n we obtain g ¢ As. Since f < g, Ty C T,. To
2 2

prove the inverse inclusion, we use Theorem 24.2. Let

A=A, ={x>0:f(x) <g(x)} and €: =g, = 1imsupM‘
x—0+ f(x)

Since A C U,=pp2 (%,04], for any x € (%, “5*] we have

A (AN]0,x]) by, M2
< < —
f ) f(3) n
and consequently € = 0. Thus 7, C 7T;. O

(3 < oo implies Ty C T,.

\.’

In Theorem 23.30 it is shown that limsup,

=

Example 23.31 asserts that the functions f(x) = 1, x € [(n+1), , m) and g(x) =
)

n,, X € <(n e n,} generates the same topology, although limsup, ., %
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oo, It turns out that, if we additionally assume that f € A, and 7y C 7Ty, then
the condition 7y C 7, is equivalent to limsup,_,(_. VACI R

8(x)
Theorem 24.26 ([7], Th. 7). Suppose that f € Ay, g € Aand Ty C Ty If Ty C
T, then limsup,_,q % < o

Note that the assumption 7 C 7 cannot be omitted. In [7, Ex. 3] there are

constructed the functions f, g € A; such that limsup, ., % =ooand Ty =T,.
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