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25.1 Introduction

In the real analysis we often deal with the different kind of density topolo-
gies. The most fundamental one is the classical density topology in the family
of Lebesgue measurable sets introduced by Haupt and Pauc (1952, see [8]),
and intensively investigated by Goffman, Waterman (1961, see [6]), Goffman,
Neugebauer, Nishiura (1961, see [5]) and Tall (1976, see [24]). However, the
idea of density we can found in monograph of Hobson "The theory of functions
of a real variable and the theory of Fourier’s series" where is considered so
called metric density (see [14]). The interesting analogue of the classical den-
sity in measure turned out to be the density topology introduced in the family
of Baire sets on the real line by Poreda, Wagner-Bojakowska and Wilczyński
(1985, see [22]). The both density topologies introduced by the sets of den-
sity points require some properties of the operator of density points, which
is a special case of the lower density operator usually defined on an abstract
measurable space. Many interesting examples of density topologies introduced
and investigated recently based on lower and almost lower density operators.
At this moment it is worth mentioning fundamental paper of Maharam (1958,
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see [20]) and Hamlett, Janković, Rose (1993, see [7]) concerning lower den-
sity operators in the general case for measure and category. We have decided
to collect as much as possible different properties of topologies generated by
lower and almost lower density operators on arbitrary measurable space. The
ideas of proofs are taken from [2], [18], [29], [30], where they are presented in
a special case of the classical density topology and I-density topology.

25.2 The case of lower density operators

Let X be a nonempty set, S be a σ -algebra of sets from X and J ⊂ S be a
proper σ -ideal.

Definition 25.1. We shall say that an operator Φ : S → S is a lower density
operator on a measurable space (X ,S,J ) if

(i) Φ( /0) = /0, Φ(X) = X ;
(ii) ∀A,B∈S Φ(A∩B) = Φ(A)∩Φ(B);

(iii) ∀A,B∈S (A M B ∈ J ⇒Φ(A) = Φ(B));
(iv) ∀A∈S A MΦ(A) ∈ J .

Definition 25.2. We shall say that a topology τ is an abstract density topology
on X if there exists a lower density operator on (X ,S,J ) such that τ = TΦ ,
where TΦ = {A ∈ S : A⊂Φ(A)}.

Topology TΦ is called generated by a lower density operator on (X ,S,J ).

Theorem 25.3. Let τ be an abstract density topology on X generated by a
lower density operator Φ on (X ,S,J ). Then

a) A ∈ J if and only if A is τ-closed and τ-nowhere dense;
b) if A ∈ J , then A is τ-closed and τ-discrete;
c) J =M(τ), whereM(τ) is the family of meager sets with respect to τ;
d) A ∈ S if and only if A is union of a τ-open and a τ-closed set;
e) Bor(τ) = B(τ) = S , where Bor(τ) is the family of Borel sets and B(τ) is

the family of Baire sets with respect to τ;
f) 〈X ,τ〉 is a Baire space;
g) τ = {Φ(A)\B : A ∈ S,B ∈ J }.

Moreover, if J contains all singletons, then

h) A ∈ J if and only if A is τ-closed and τ-discrete;
i) A is τ-compact if and only if A is finite;
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j) 〈X ,τ〉 is neither a first countable, nor a second countable, nor a separable
space;

k) if J contains an uncountable set, then 〈X ,τ〉 is not a Lindelöf space;
l) every sequence consisting of different terms of X does not contain τ-

convergent subsequences.

Proof. a) If A ∈ J , then X \A ∈ τ and intτ(A) = /0. Thus A is τ-closed and τ-
nowhere dense. Conversely, if A is τ-closed and τ-nowhere dense and A /∈ J ,
then A ∈ S \J and Φ(A)∩ A ∈ τ \ { /0}. It contradicts the fact that A is τ-
nowhere dense.

Conditions b) and c) are a consequence of a).
d) It is sufficient to observe that if A∈S, then A = (A∩Φ(A))∪(A\Φ(A)).

Obviously A∩Φ(A) ∈ τ and A\Φ(A) is τ-closed.
It is clear that condition d) implies e).
f ) If A ∈ τ \{ /0}, then A /∈ J . By condition c) A /∈M(τ). Hence 〈X ,τ〉 is a

Baire space.
g) If A∈S and B∈J , then Φ(A)\B∈ τ . Let A∈ τ . Then A⊂Φ(A) so A =

Φ(A)\(Φ(A)\A). Since Φ(A)\A∈J , we have τ ⊂{Φ(A)\B : A ∈ S,B ∈ J }
and the proof of g) is completed.

h) In virtue of b) it is sufficient to show that if A is τ-closed and τ-discrete,
then A ∈ J . Suppose that A 6= /0. Obviously A ∈ S and for every x ∈ A there
exists a set Vx ∈ τ , such that x ∈Vx and Vx∩A = {x}. Thus

x ∈Vx ⊂Φ(Vx) = Φ(Vx \{x})⊂Φ(X \A).

Hence A⊂Φ(X \A). It follows that A = Φ(X \A)\ (X \A) ∈ J .
i) Assume that a set A is compact and infinite. Let B ⊂ A be a countable

infinite set. Then the family {(X \B)∪{x}}x∈B is a τ-open cover of A without
a finite subcover. The converse implication in condition i) is obvious.

j) Let x ∈ X and {En}n∈N be a sequence of τ-open sets containing x. Let
xn ∈ En \ {x} for every n ∈ N. Putting E = E1 \ {xn : n ∈ N}, we have E ∈ τ ,
x ∈ E and E does not contain set En for n ∈ N. So the first countability axiom
is not satisfied. Also 〈X ,τ〉 is not a second countable space.

At the same time 〈X ,τ〉 is not a separable space. Indeed, taking into account
a countable and dense set A ⊂ X we have A ∈ J and therefore X = clτ(A) =
A ∈ J , so X ∈ J . It contradicts the fact that J is a proper σ -ideal.

k) Let D ∈ J be an uncountable set. Then the family {(X \D)∪{x}}x∈D

is a τ-open cover of X without a countable subcover. So that 〈X ,τ〉 is not a
Lindelöf space.
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l) If {xn}n∈N is a sequence consisting of different terms of X , then by h) for
every subsequence {xnk}k∈N and x∈ X we get that x∈ (X \

⋃
∞
k=1{xnk})∪{x} ∈

τ . It means that there is no τ-convergent subsequence of {xn}n∈N. ut

Theorem 25.4. Let τ be a topology on X. Then the following conditions are
equivalent:

(i) τ is an abstract density topology;
(ii) τ has the following properties:

(a) A ∈ J if and only if A is τ-closed and τ-nowhere dense;
(b) B(τ) = S.

Proof. Implication (i)⇒ (ii) follows from the previous theorem.
(ii)⇒ (i) Notice that 〈X ,τ〉 is a Baire space. Let A∈S =B(τ). By Theorem

4.6 from [21] the set A has the unique representation in the form GM P, where
G is regular τ-open (i.e. G = intτ(clτ(G))) and P ∈ J . Put Φ(A) = G.

Obviously Φ( /0) = /0, Φ(X) = X , and A M Φ(A) ∈ J for A ∈ S. Moreover,
if A M B ∈ J , then Φ(A) = Φ(B).

Now let A, B ∈ S and A = G1 M P1, B = G2 M P2, where G1, G2 are regular
τ-open and P1, P2 ∈ J . There exists P3 ∈ J such that A∩B = (G1∩G2) M P3.
It follows that

Φ(A)∩Φ(B) = G1∩G2 = Φ(G1∩G2) = Φ(A∩B).

Therefore Φ is a lower density operator on (X ,S,J ). We shall prove that TΦ =

τ . If A is τ-open, then by Theorem 4.5 from [21] we have A = G \P, where
G is regular τ-open and P is τ-closed and τ-nowhere dense. Thus A ∈ S and
A⊂G = Φ(A). Hence τ ⊂ TΦ . Suppose now that A ∈ TΦ , so A ∈ S, A⊂Φ(A)
and A M Φ(A) ∈ J . It follows that A = Φ(A) \P, where P ∈ J . Since P is
τ-closed, A is τ-open. ut

Corollary 25.5. If J contains all singletons, then the operator Φ described in
the proof of the above theorem has the following form:

∀A∈S Φ(A) = intτ {x ∈ X : x ∈ intτ (A∪{x})} .

Proof. Let A ∈ S and Φ1(A) = intτ {x ∈ X : x ∈ intτ (A∪{x})}. First we show
that if A, B∈S and AM B∈J , then Φ1(A) = Φ1(B). It is clear that A = BMC,
where C ∈ J . We demonstrate that Φ1(A) ⊂ Φ1(B). Suppose that x ∈ Φ1(A).
Hence x ∈ Φ1(B M C) and x ∈ intτ((B M C)∪{x}). There exists a τ-open set
Wx 3 x such that Wx ⊂ ((B MC)∪{x}). Therefore Wx \ (C \ {x}) ⊂ (B∪{x})
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and x ∈Wx \ (C \ {x}) which is a τ-open set. It follows that x ∈ intτ(B∪{x})
and Φ1(A)⊂Φ1(B). Similarly we can show that Φ1(B)⊂Φ1(A).

Now let A =V M P, where V is regular τ-open and P ∈ J . Then Φ(A) =V
and Φ1(A) = Φ1(V ). It is sufficient to prove that V = Φ1(V ). Since V ⊂Φ1(V )

it remains to show that Φ1(V ) ⊂ V . Suppose that x ∈ Φ1(V ) and x ∈W ∈ τ .
Since x ∈ intτ(V ∪{x} ), there exists a set Wx ∈ τ such that x ∈Wx ⊂V ∪{x}.
It is clear that x ∈ (W ∩Wx) 6= /0. Moreover, (W ∩Wx) \ {x} 6= /0, because J
contains all singletons and (W ∩Wx)⊂ Φ(W ∩Wx). Consequently (W ∩Wx)\
{x} ⊂ V and W ∩V 6= /0. It implies that the set {x ∈ X : x ∈ intτ (V ∪{x})} is
τ-open. Therefore Φ1(V ) = intτΦ1(V )⊂ intτ(clτV ) =V . ut

Theorem 25.6. Let Φ be a lower density operator on (X ,S,J ). Then the fam-
ily

TΦ = {A ∈ S : A⊂Φ(A)}

is a topology on X if and only if the pair (S,J ) has the hull property.

Proof. Sufficiency. Let Φ be a lower density operator on (X ,S,J ). Obviously
/0, X ∈ TΦ and the family TΦ is closed under finite intersections. Let {At}t∈T ⊂
TΦ . We shall prove that

⋃
t∈T At ∈ TΦ . Let B be a S-measurable kernel of the

set
⋃

t∈T At . Hence for every t ∈ T we have (At ∩B) M At ∈ J and

B⊂
⋃
t∈T

At ⊂
⋃
t∈T

Φ(At) =
⋃
t∈T

Φ(At ∩B)⊂Φ(B).

Since Φ(B) \ B ∈ J , we have
⋃

t∈T At ∈ S. Moreover, it is obvious that⋃
t∈T At ⊂Φ(

⋃
t∈T At). Therefore

⋃
t∈T At ∈ TΦ .

Necessity. Obviously TΦ is an abstract density topology on (X ,S,J ). By
Theorem 25.3 we get B(TΦ) = S andM(TΦ) = J . The well known fact that
the pair (B(TΦ),M(TΦ)) has the hull property (see [17]) completes the proof.

ut

Corollary 25.7. If 〈X ,τ〉 is a topological space such that X /∈ M(τ), then
every lower density operator Φ on (X ,B(τ),M(τ)) generates TΦ topology
on X.

Proof. Since the pair (B(τ),M(τ)) has the hull property, then by Theorem
25.6 any lower density operator Φ on (X ,B(τ),M(τ)) generates topology
on X . ut

Remark 25.8. If Φ(A) = A for every set A ∈ Bor, then Φ is the lower density
operator on (R,Bor,J ), whereJ = { /0}, but it is clear that TΦ is not a topology
on R. The reason is that the pair (Bor,J ) does not have the hull property .
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By the idea implemented in Theorem 25.6 we get the following topologies
on the real line:

• density topology (O. Haupt, C. Pauc (1952), see [8]);
• I-density topology (W. Poreda, E. Wagner-Bojakowska, W. Wilczyński

(1985), see [22]);
• topology involving measure and category (W. Wojdowski (1989), see [33]);
• 〈s〉-density topology with respect to category (J. Hejduk, G. Horbaczewska

(2003), see [12], [15]);
• 〈s〉-density topology with respect to measure (M. Filipczak, J. Hejduk

(2004), see [4]);
• density topology related to category with respect to a sequence tending to

zero (R. Wiertelak (2006), see [28]);
• 〈s〉-simple density topology with respect to category (V. Aversa, W. Wilczyń-

ski (2004), see [1]);
• ΨI-density topology (E. Łazarow, A. Vizvary (2010), see [19]);
• category ψ-density topology (W. Wilczyński, W. Wojdowski (2011), see

[31]).

Abstract density topologies allow us to find a clear and useful representation
of the interior of any set. Namely, we have the following theorem which proof
for the case of density topology can be found in [30].

Theorem 25.9. If τ is an abstract density topology on X generated by a lower
density operator Φ on (X ,S,J ), then for any set A ⊂ X we have intτA =

A∩Φ(B), where B is an S-measurable kernel of A.

Proof. Let A ⊂ X . By Theorem 25.6 the pair (S,J ) possesses the hull prop-
erty. Let B ⊂ A be an S-measurable kernel of A. Observe that A∩Φ(B) ∈ τ .
Indeed,

A∩Φ(B) = (B∩Φ(B))∪ ((A\B)∩Φ(B)).

Since Φ(B)∩ (A \B) ⊂ (Φ(B) \B) ∈ J , we have A∩Φ(B) ∈ S . Moreover,
Φ(A∩Φ(B)) = Φ(B∩Φ(B)) = Φ(B). It follows that A∩Φ(B) ∈ τ . Let us
assume that V ∈ τ and V ⊂ A. We show that V ⊂ A∩Φ(B). Since V = (V ∩
B)∪ (V ∩ (A\B)) and V ∩ (A\B)⊂V \B⊂ A\B, we have V \B ∈ J and also
V ∩ (A\B) ∈ J . Therefore Φ(V ) = Φ(V ∩B) = Φ(V )∩Φ(B) which implies
that V ⊂Φ(V )⊂Φ(B). Thus V ⊂ A∩Φ(B). ut

Corollary 25.10. If τ is an abstract density topology on X generated by a
lower density operator Φ on (X ,S,J ), then Φ(A)⊂ clτ(A) for every A ∈ S.



25. On the abstract density topologies 437

Proof. Let A ∈ S. Then

clτ(A) = X \ intτ(X \A) = X \ [(X \A)∩Φ(X \A)] = A∪ (X \Φ(X \A)).

From Φ(A)⊂ X \Φ(X \A), it follows that Φ(A)⊂ clτ(A). ut

Theorem 25.11. If τ is an abstract density topology on X generated by a lower
density operator Φ on (X ,S,J ), then A⊂ X is a regular τ-open set if and only
if A = Φ(A).

Proof. Necessity. Let A be a regular τ-open set, i.e. A = intτ(clτ(A)). Then, by
Theorem 25.9, A = clτ(A)∩Φ(clτ(A)). In virtue of Corollary 25.10, Φ(A) ⊂
clτ(A). Moreover, Φ(A) ⊂ Φ(clτ(A)). It follows that Φ(A) ⊂ A. Evidently
A ∈ τ , so that A⊂Φ(A) and finally A = Φ(A).

Sufficiency. Let A = Φ(A). Then A ∈ τ and clτ(A)\A ∈ J . Hence

intτ(clτ(A)) = clτ(A)∩Φ(clτ(A)) = clτ(A)∩Φ(A) = Φ(A) = A.

Therefore A is a τ-regular open set. ut

Theorem 25.12. Let Φ1, Φ2 be the lower density operators on (X ,S,J )
generating TΦ1 , TΦ2 topologies, respectively. Then TΦ1 = TΦ2 if and only if
Φ1 = Φ2.

Proof. Sufficiency is obvious.
Necessity. Let A∈S. Then Φ1(A)∈TΦ1 = TΦ2 . It follows that Φ2(Φ1(A))⊃

Φ1(A). Since Φ1(A) M A ∈ J , we obtain Φ2(Φ1(A)) = Φ2(A) and conse-
quently Φ2(A)⊃Φ1(A). Similarly we show that Φ1(A)⊃Φ2(A). ut

Corollary 25.13. If τ is an abstract density topology on X, then there exists a
unique lower density operator Φ on (X ,S,J ) such that TΦ = τ .

Definition 25.14. We shall say that operators Φ1, Φ2 : S → 2X are equivalent
on (X ,S,J ) if Φ1(A) MΦ2(A) ∈ J for every set A ∈ S. It will be denoted by
Φ1 ≈Φ2.

It is evident that lower density operators Φ1, Φ2 on (X ,S,J ) are equivalent.
By Theorem 25.3 and Theorem 25.12 we have the following property.

Property 25.15. If Φ1, Φ2 are lower density operators on (X ,S,J ) and Φ1

generates topology TΦ1 on X , then Φ2 generates topology TΦ2 on X such that
B(TΦ1) = B(TΦ2) = S andM(TΦ1) =M(TΦ2) = J .
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Let us assume that 〈X ,τ〉 is an arbitrary topological space and TΦ is a topol-
ogy generated by a lower density operator Φ on (X ,S,J ) such that τ ⊂ TΦ .
In real analysis two kinds of continuity are considered: topological and restric-
tive.

Definition 25.16. We shall say that f : 〈X ,TΦ〉 → 〈R,Tnat〉 is topologically
continuous at x0 ∈ X if

∀
ε>0

∃
V∈TΦ ,x0∈V

V ⊂ {x ∈ X : | f (x)− f (x0)|< ε}.

Definition 25.17. We shall say that f : 〈X ,TΦ〉→ 〈R,Tnat〉 is restrictively con-
tinuous at x0 ∈ X if there exists a set A ∈ S such that x0 ∈Φ(A)∩A and f|A is
τ-continuous at x0.

Property 25.18. If f : 〈X ,TΦ〉→ 〈R,Tnat〉 is restrictively continuous at x0 ∈ X ,
then f is topologically continuous at x0.

Proof. Let x0 ∈ X and A ∈ S be a set such that x0 ∈ Φ(A) and f|A is
τ-continuous at x0. Fix ε > 0. There exists a set V ∈ τ such that x0 ∈ A∩V
and A∩V ⊂ {x ∈ X : | f (x)− f (x0)| < ε}. Putting W = A∩Φ(A)∩V we ob-
tain W ∈ TΦ , x0 ∈W and W ⊂ {x ∈ X : | f (x)− f (x0)|< ε}. ut

It is worth mentioning that in the case of real line there exists characteriza-
tion of equivalence of restrictive and topological continuity.

Theorem 25.19 (cf. [16]). Let TΦ be a topology generated by a lower density
operator Φ on (R,S,J ) such that Tnat ⊂ TΦ , f : 〈R,TΦ〉 → 〈R,Tnat〉 and
x0 ∈ R. Then the following conditions are equivalent:

a) f is TΦ -topologically continuous at x0 if and only if it is restrictively con-
tinuous at x0;

b) for every descending sequence {En}n∈N ⊂ S such that x0 ∈
⋂

∞
n=1 Φ(En)

there exists a sequence {rn}n∈N ⊂ R+, rn↘ 0 such that

x0 ∈Φ

(
∞⋃

n=1

(En \ (x0− rn,x0 + rn))

)
.

Remark 25.20 (cf. [29]). In the topological space 〈R,TI〉, where TI is
I-density topology, the topological and restrictive continuity are not equiva-
lent.

Theorem 25.21. Let 〈X ,τ〉 be a topological space and TΦ be a topology gen-
erated by a lower density operator Φ on (X ,B(τ),M(τ)) such that τ ⊂ TΦ .
For every function f : X → R the following conditions are equivalent:
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a) f has the Baire property with respect to τ;
b) there exists a set A ∈ M(τ) such that for every x ∈ X \ A function f is
TΦ -restrictively continuous at x;

c) there exists a set A ∈ M(τ) such that for every x ∈ X \ A function f is
TΦ -topologically continuous at x.

Proof. a)⇒ b) Let f be a function with the Baire property. There exists a set
A ∈M(τ) such that f|X\A is τ-continuous. Then for every x ∈ X \A we have
x ∈Φ(X \A) = X and f is restrictively continuous at x.

By Property 25.18 implication b)⇒ c) holds.
c)⇒ a) We show that E = f−1((a,b)) ∈ B(τ) for every a, b ∈ R, such that

a < b. Let C be the set of TΦ -topological continuity points of f . Obviously
E = (E ∩C)∪ (E \C) and E \C ∈M(τ). Let z ∈ E ∩C and ε > 0 be such that
ε < min{b− f (z), f (z)−a}. Then there exists a set Vz ∈ TΦ such that z ∈Vz ⊂
{x ∈ X : | f (x)− f (z)|< ε}. Putting V ′z =Vz∩C we obtain z ∈V ′z and V ′z ∈ TΦ .
Hence E ∩C =

⋃
z∈E∩C V ′z ∈ TΦ ⊂ B(τ). Therefore E = f−1((a,b)) ∈ B(τ).

ut

25.3 The case of almost lower density operators

Let (X ,S,J ) be a measurable space, where X is a nonempty set, S be
a σ -algebra of subsets of X and J ⊂ S a proper σ -ideal.

Definition 25.22. We shall say that an operator Φ : S → 2X is an almost lower
density operator on measurable space (X ,S,J ) if

(i) Φ( /0) = /0, Φ(X) = X ;
(ii) ∀A,B∈S Φ(A∩B) = Φ(A)∩Φ(B);

(iii) ∀A,B∈S A M B ∈ J ⇒Φ(A) = Φ(B);
(iv) ∀A∈S Φ(A)\A ∈ J .

It is worthwhile noting that in the above definition instead of a σ -algebra S
we can consider a family S closed under finite intersections such that /0 ∈ S,
X ∈ S and J ⊂ S .

The next theorem follows by the same method as in proof of sufficient con-
dition of Theorem 25.6.

Theorem 25.23. Let Φ be an almost lower density operator on (X ,S,J ).
If the pair (S,J ) has the hull property, then the family

TΦ = {A ∈ S : A⊂Φ(A)}

is a topology on X.
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We will say that TΦ is a topology generated by the almost lower density
operator Φ on (X ,S,J ).

The following example shows that the inverse of the last theorem does not
hold.

Example 25.24. Let (R,Bor,J ) be a measurable space, where J denotes the
σ -ideal of countable sets. Putting

∀A∈S Φ(A) =
{
R, if R\A ∈ J ,
/0, if R\A /∈ J ,

we obtain the topology

TΦ = {A ∈ Bor : A = /0∨R\A ∈ J }

but the pair (Bor,J ) does not possesses the hull property.

Example 25.25. Let Φ1, Φ2 be the almost lower density operators on (R,L,N )

defined in the following way

∀A∈L Φ1(A) =
{
R, if R\A ∈N ,

/0, if R\A /∈N ,

∀A∈L Φ2(A) =
{

R, if R\A ∈N ,

Φd(A)∩B, if R\A /∈N ,

where B is a Bernstein set. Then Φ1 6= Φ2 but

TΦ1 = TΦ2 = {A ∈ L : A = /0∨R\A ∈N}.

It means that the analogue of Theorem 25.12 in the case of almost lower
density operators is not true. It turns out that Φ1 and Φ2 are not equivalent.
However, we have the following property.

Property 25.26. Let Φ1, Φ2 be the almost lower density operators on (X ,S,J ).
Then the equality TΦ1 = TΦ2 implies that Φ1(A) M Φ2(A) ∈ J for every
A ∈ TΦ1 .

Proof. Let A ∈ TΦ1 = TΦ2 . Then Φ1(A) = A∪ (Φ1(A) \A) and Φ2(A) = A∪
(Φ2(A)\A). Hence Φ1(A) MΦ2(A) ∈ J for every A ∈ TΦ1 . ut

Below there are examples of topologies generated by the almost lower den-
sity operators on the real line:

• ψ-density topology (M. Terepeta, E. Wagner-Bojakowska, (1999), see [25]);
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• density topology with respect to the O’Malley points (W. Poreda, W. Wil-
czyński (2001), see [23]);

• density topology with respect to measure and category (J. Hejduk (2002),
see [10]);

• complete density topology (W. Wilczyński, W. Wojdowski (2007), see
[32]);

• f -density topology (M. Filipczak, T. Filipczak, (2008), see [3]);
• f -symmetrical density topology (J. Hejduk (2008), see [9]);
• simple density topology (V. Aversa, W. Wilczyński (2004), see [1]);
• density topology in the aspect of measure with respect to a sequence tending

to zero (J. Hejduk, R. Wiertelak (2012), see [13]).

The same ideas as the ones used in proofs of Theorem 25.3 and Theorem
25.9 allow us to prove the next theorem.

Theorem 25.27. If Φ is an almost lower density operator on (X ,S,J ) gener-
ating topology TΦ , then the following conditions are satisfied:

a) if A ∈ J , then A is TΦ -closed and TΦ -nowhere dense;
b) if A ∈ J , then A is TΦ -closed and TΦ -discrete;
c) J ⊂M(TΦ);
d) if J =M(TΦ), then B(TΦ)⊂ S;
e) intTΦ

(A)⊂ A∩Φ(A) for every A ∈ S.

Moreover, if J contains all singletons, then

f) A ∈ J if and only if A is TΦ -closed and TΦ -discrete;
g) A is TΦ -compact if and only if A is finite;
h) 〈X ,TΦ〉 is neither a first countable, nor a second countable, nor a separa-

ble space;
i) if J contains an uncountable set, then 〈X ,TΦ〉 is not a Lindelöf space;
j) every sequence consisting of different terms of X does not contain
TΦ -convergent subsequence.

Remark 25.28. Topology TΨ obtained by the almost lower density operator
ΦΨ on measurable space (R,L,N ) contains TΨ -closed set and TΨ -nowhere
dense set from L\N (see [25]). Hence the inverse properties to a) and the
equality in c) do not hold. Moreover, M(TΨ ) = 2R (see [26]). Therefore
〈R,TΨ 〉 is not a Baire space. Simultaneously it is not true thatM(TΨ ) =N nor
B(TΨ )⊂ L. So, assumption in condition d) is necessary. There is an example
(in [27]) of a set A ∈ L such that intTΨ

(A) 6= A∩ΦΨ (A), so inclusion in e) can
be proper.
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Remark 25.29. If X 6= /0, S = 2X , J = { /0}, then the operator Φ(A) = A is
the almost lower density operator on (X ,S,J ) such that TΦ is the discrete
topology. Then it is clear that inverse of b) is not satisfied.

Remark 25.30. Let us consider a lower density operator Φ on (R,L,N ) given
by formula:

∀A∈L Φ(A) =
{
R, if R\A ∈N ,

/0, if R\A /∈N .

Then
TΦ = {A⊂ R : A = /0∨R\A ∈N}

is a topology generated by Φ such that M(TΦ) = N . Evidently B(TΦ) ⊂ L
and the inverse inclusion is not true. Hence inclusion in d) can be proper.

Theorem 25.31. If Φ1, Φ2 are equivalent almost lower density operators on
(X ,S,J ) and TΦ1 , TΦ2 topologies on X generated by Φ1, Φ2 respectively, then

1◦M(TΦ1) =M(TΦ2);
2◦ B(TΦ1) = B(TΦ2).

First we need the following lemma.

Lemma 25.32. If Φ1, Φ2 are equivalent almost lower density operators on
(X ,S,J ), then for every set A ∈ TΦ1 there exists a set E ∈ J such that
A\E ∈ TΦ2 .

Proof. Let A ∈ TΦ1 , hence A ⊂ Φ1(A). Put E = Φ1(A) M Φ2(A). Then
E ∈ J and A ⊂ Φ2(A) M E. Thus A ⊂ Φ2(A) ∪ E. This implies that
A\E ⊂Φ2(A) = Φ2(A\E). Therefore A\E ∈ TΦ2 . ut

Proof of Theorem 25.31. First we show that the families of nowhere dense sets
with respect to topologies TΦ1 and TΦ2 are equal. Let A be a nowhere dense
set with respect to TΦ1 and V2 nonempty TΦ2-open set. By Lemma 25.32 there
exists a set E1 ∈ J such that V2 \E1 ∈ TΦ1 . Moreover, there exists a nonempty
set V1 ∈TΦ1 such that V1⊂V2\E1 and A∩V1 = /0. By Lemma 25.32 there exists
a set E2 ∈ J such that V1 \E2 ∈ TΦ2 . Obviously V1 \E2 6= /0. Thus V1 \E2 ⊂V2

and A∩ (V1 \E2) = /0. Hence A is a nowhere dense set with respect to TΦ2 . In a
similar way we prove the inverse inclusion.

Condition 1◦ is now an immediate consequence of the equality of the fami-
lies of nowhere dense sets with respect to topologies TΦ1 and TΦ2 .

Now we prove that B(TΦ1) = B(TΦ2). Suppose that A ∈ B(TΦ1). Then
A = V M Y , where V ∈ TΦ1 and Y ∈M(TΦ1). By Lemma 25.32 there exists
a set E1 ∈ J such that V \E1 ∈ TΦ2 . Hence A = [(V \E1)∪ (V ∩E1)] M Y .
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Since V \E1 ∈ TΦ2 and (V ∩E1) ∈ J ⊂M(TΦ2) and Y ∈M(TΦ2), we have
A ∈ B(TΦ2). In a similar way we prove that B(TΦ2)⊂ B(TΦ1). ut

In the further consideration we apply the following proposition.

Proposition 25.33 (cf. 1.14 in [10]). Let Φ be the almost lower density opera-
tors on (X ,S,J ). Then the following conditions are equivalent:

1. ∀A∈S A\Φ(A) ∈ J ;
2. ∀A∈S A MΦ(A) ∈ J .

Theorem 25.34. If Φ is an almost lower density operator on (X ,S,J ) gener-
ating topology TΦ , then

(i)M(TΦ) = J if and only if there exists a σ -algebra S ′ ⊂ S such that
Φ ′ = Φ|S ′ is a lower density operator on (X ,S ′,J ) and TΦ = TΦ ′;

(ii)M(TΦ) = J and B(TΦ) = S if and only if Φ is a lower density operator
on (X ,S,J ).

Proof. (i) Necessity. Let S ′ = B(TΦ). Then J ⊂ S ′ ⊂ S. It is sufficient to
prove that Φ ′=Φ|S ′ is a lower density operator on (X ,S ′,J ). For every A∈S ′
we have A = B MC, where B ∈ TΦ , C ∈ J . Hence Φ ′(A) = Φ(A) = Φ(B) ⊃
B. It follows that A \Φ ′(A) ⊂ A \B ∈ J . By Proposition 25.33 we conclude
that Φ ′(A)\A ∈ J . So Φ ′(A) M A ∈ J and Φ ′ is a lower density operator on
(X ,S ′,J ). The equality TΦ = TΦ ′ is obvious.

Sufficiency. If Φ ′ is a lower density operator on (X ,S ′,J ) generating topol-
ogy TΦ ′ , then by Theorem 25.3,M(TΦ ′) = J . SinceM(TΦ) =M(TΦ ′), we
get J =M(TΦ).

(ii) Necessity. If M(TΦ) = J , then Φ|S ′ , where S ′ = B(TΦ), is a lower
density operator on (X ,S ′,J ). Since S = S ′, we have Φ is a lower density
operator on (X ,S,J ).

Sufficiency. If Φ is a lower density operator on (X ,S,J ), then by Theorem
25.3 we obtainM(TΦ) = J and B(TΦ) = S. ut

Example 25.35. Let Y ⊂ (0,1) and Y /∈ L. If we put

∀A∈L Φ(A) =
{

R, if R\A ∈N ,

Φd(A)∩Y, if R\A /∈N ,

then we obtain an almost lower density operator on (R,L,N ) generating topol-
ogy

TΦ = {A⊂ R : R\A ∈N}∪ (Td ∩2Y )

but Φ((0,1)) = Φd((0,1))∩Y /∈ L.
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In the context of the above observation we see the range of an almost density
operator can be wider then the σ -algebra S. However we have the following
theorem.

Theorem 25.36. If Φ is an almost lower density operator on (X ,S,J ), then
there exists a subfamily R ⊂ S such that J ⊂ R, X ∈ R, R is closed un-
der finite intersections and an almost lower density operator Φ ′ : R→ S on
(X ,R,J ) such that

TΦ ′ = {A ∈R : A⊂Φ
′(A)}= TΦ .

Proof. LetR= {A ∈ S : Φ(A) ∈ S}. Then /0, X ∈R, J ⊂R andR is closed
under finite intersections. Let Φ ′=Φ|R be the restriction of Φ to the familyR.
It is clear that Φ ′ : R→ S is an almost lower density operator on (X ,R,J ).
We show that TΦ ′ = TΦ . It is sufficient to show that TΦ ⊂ TΦ ′ . If A ∈ TΦ , then
A∈S and A⊂Φ(A). Since Φ(A)\A∈J , we have Φ(A) =A∪(Φ(A)\A)∈S
and A ∈R. From the inclusion A⊂Φ ′(A) we obtain A ∈ TΦ ′ . ut
Theorem 25.37 (cf. [11]). Let 〈X ,τ〉 be a topological space such that
X /∈M(τ) and Φ be an almost lower density operator on (X ,B(τ),M(τ)).
Then Φ generates topology TΦ . Moreover, if there exists a τ-dense set
D ∈M(τ) and τ ⊂ TΦ , then the topological space 〈X ,TΦ〉 is not regular.

Proof. Since the pair (B(τ),M(τ)) has the hull property, then by Theorem
25.23

TΦ = {A ∈ B(τ) : A⊂Φ(A)}

is a topology on X .
Let D ∈M(τ) be a τ-dense set and τ ⊂ TΦ . First we prove that if D⊂W ∈

TΦ , then X \W ∈M(τ). Evidently W = B MC, where B ∈ τ , C ∈M(τ). We
show that B is τ-dense. Suppose that there exists a nonempty set E ∈ τ such
that B∩E = /0. By the assumption that τ ⊂ TΦ we have W ∩E ∈ TΦ and thus

W ∩E ⊂Φ(W ∩E) = Φ(B∩E) = /0.

Hence W ∩ E = /0 and it contradicts the fact that W is τ-dense. Thus B is
τ-dense and τ-open. Therefore X \B ∈M(τ) and X \W ∈M(τ).

Taking a TΦ -closed set D and a point x0 ∈ X \D we see that for TΦ -open
and disjoint sets W and V such that D⊂W and x0 ∈V we get X \W ∈M(τ)

and V /∈M(τ). So W ∩V 6= /0. This contradiction forces us to conclude that
the topological space 〈X ,TΦ〉 is not regular. ut
Corollary 25.38. If Φ is an almost lower density operator on (R,Bor,M)

such that Tnat ⊂ TΦ , then the topological space 〈R,TΦ〉 is not regular.
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Now we will concentrate on the topologies generated by almost lower den-
sity operators invariant with respect to translation or multiplication.

Definition 25.39. We shall say that a topology τ on R is invariant with respect
to translation (multiplication) if

∀A∈τ ∀t∈R A+ t ∈ τ
(
∀A∈τ ∀α∈R\{0} αA ∈ τ

)
.

Definition 25.40. We shall say that a measurable space (R,S,J ) is invariant
with respect to translation (multiplication) if

i) ∀A∈S ∀t∈R A+ t ∈ S
(
∀A∈S ∀α∈R\{0} αA ∈ S

)
,

ii) ∀A∈J ∀t∈R A+ t ∈ J
(
∀A∈J ∀α∈R\{0} αA ∈ J

)
,

Definition 25.41. We shall say that an almost lower density operator Φ on an
invariant with respect to translation (multiplication) measurable space (R,S,J )
is invariant with respect to translation (multiplication) if

∀A∈S ∀t∈R Φ(A+t)=Φ(A)+t
(
∀A∈S ∀α∈R\{0} Φ(αA) = αΦ(A)

)
.

Evidently, we have the following property.

Property 25.42. If Φ is an almost lower density operator invariant with respect
to translation (multiplication) on a measurable space (R,S,J ) invariant with
respect to translation (multiplication) generating topology TΦ , then TΦ is in-
variant with respect to translation (multiplication).

Property 25.43. Let (R,S,J ) be a measurable space invariant with respect to
translation and multiplication. If Φ is an almost lower density operator on
(R,S,J ) invariant with respect to translation generating topology TΦ , then
TΦ is invariant with respect to translation and, moreover, TΦ is invariant with
respect to multiplication if and only if

∀A∈TΦ
∀α∈R\{0} (0 ∈ A =⇒ 0 ∈Φ(αA)) .

Proof. By the previous property TΦ is invariant with respect to translation. Let
α ∈ R \ {0} and A ∈ TΦ . We show that αA ∈ TΦ . Let y ∈ αA, then y/α ∈
A⊂ Φ(A). Hence 0 ∈ A− y/α . By assumption 0 ∈ Φ(αA− y) = Φ(αA)− y.
Therefore y ∈ Φ(αA) and it follows that αA ⊂ Φ(αA). Since αA ∈ S , we
obtain αA ∈ TΦ .

Now assume that TΦ is invariant with respect to multiplication. Suppose that

∃A∈TΦ
∃α∈R\{0} (0 ∈ A∧0 /∈Φ(αA)) .
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Since αA ∈ TΦ , then αA ⊂ Φ(αA). Moreover, 0 ∈ Φ(αA) because 0 ∈ αA.
This contradiction completes the proof. ut
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