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lenders, high effectiveness of selection based on the scoring model is the primary attribute, so it is cru‑
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1. Introduction

Very rapid evolution of technology in recent years has meant that collection and 
processing of large volume datasets at a very low aggregation level has become 
available even for small companies. By means of statistical methods, these com‑
panies can derive valuable information from the data and be more competitive, 
make better decisions and reduce costs. In the banking sector, lenders may want 
to know if a given borrower will repay his or her debt. The answer to that is credit 
scoring which allows them to assess the borrower’s risk. Credit scoring is simply 
“the use of statistical models to transform relevant data into numerical measures 
that guide credit decisions” (Anderson, 2007: 6). These numerical measures are 
called scores and they rank clients with respect to their credit risk. As for statis‑
tical models, it seems that logistic regression is the most widely used method for 
modelling credit risk. A number of various techniques, such as linear regression, 
discriminant analysis, mathematical programming, neutral networks, or decision 
trees, are also available.

By means of credit scoring, lenders can grant credit to new applicants or ex‑
isting clients (cross‑sell) and expand their business much more. Moreover, credit 
scoring is used to calculate the PD parameter which is an important part of cal‑
culating capital requirements in the advanced internal ratings‑based approach.

When developing a scoring model (also known as a scorecard), it is crucial 
to evaluate its statistical quality. In other words, one needs to know how good 
a scoring model really is in a sense of its performance which is represented by its 
discriminatory power (i.e. the ability to distinguish those clients who will repay 
their debt and those who will not repay it). To measure that, there are several meth‑
ods used in order to evaluate the performance of the scorecard and compare alter‑
native models at the stage of the developing process or to evaluate performance 
of the scorecard as a part of its maintaining process.

Despite its relatively short history (dating back roughly to the 1950s), credit 
scoring has rapidly expanded in the field of finance during the last few decades 
(Abdou, Pointon, 2011). There exist a few books where statistical measures for as‑
sessing scoring models quality can be found (see Anderson, 2007; Crook et al., 
2007; Finlay, 2010; Rezac, Kolacek, 2012; Siddiqi, 2017), but there are differenc‑
es in names or symbols for particular statistics (such as the Kolmogorov‑Smirnov 
statistic) to deal with. Names for particular curves also differ across publications 
(e.g.: the concentration curve). Moreover, these curves often vary in axes, so they 
are not equivalent (see: the Lorenz curve in Siddiqi, 2017).

The purpose of this paper is to review the most widely used statistical methods 
for gauging quality of a scoring model, standardise the above‑mentioned differ‑
ences in names and definitions of particular measures and discuss their main char‑
acteristics. Special attention has been paid to the measures related to the Lorenz 
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curve and the Gini index. In addition, it is discussed what features are important 
in the process of developing a scoring model. In section 2, logistic regression 
is introduced as the most common approach to modelling credit risk. The next 
two paragraphs focus on graphical (section 3) and numerical (section 4) methods 
for assessing quality of a scoring model. These sections contain typical measures 
of discriminatory power of scoring models where the pseudo Gini index, Kolmog‑
orov‑Smirnov statistic, divergence and other methods are pointed out. In section 5, 
a case study based on a comparison of three scoring models is conducted.

2. Assessing the discriminatory power

First of all, it is crucial to outline what is actually modelled. Lenders are interested 
in the identification of those clients who will repay their debt and those who will 
not (a state called default). Let Y be the Bernoulli random variable that can take 
one of two values for each (k = 1, …, K) observation:

 1,     when default occurs
0,     otherwise.kY

ìïï=íïïî

  (1)

The final scorecard will vary across a given default definition, so it is very 
important to be cautious when setting the dependent variable Y. In practice, the 
definition depends on the days past due (DPD) and the amount past due. That be‑
ing said, a client is marked as “bad” (default occurred) when the DPD and the 
amount past due exceed a given threshold at a given time horizon, otherwise he/
she is marked as “good” (non‑default).

Logistic regression, which is the most common technique to assess client cred‑
it risk, is given by equation (Hosmer, Lemeshow, Sturdivant, 2013):

 ( ) 0 ,k kLogit p b= + Tâ x   (2)

where:

( )  
1

k
k

k

p
Logit p ln

p

æ ö÷ç ÷= ç ÷ç ÷ç -è ø
 is the natural logarithm of odds ratio also called score and 

pk is the probability that the case k is a good client, i.e. pk(Yk = 0),
β0 is an intercept and β is a vector of estimated parameters,
xk is a vector of explanatory variables with values for the case k.

Developing a scoring model, one has to keep in mind two main properties: 
discriminatory power (the ability of the model to distinguish good and bad clients) 
and accuracy (the ability of the model to predict default probabilities of clients). 
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The first stands for the degree of ranking ability, while the latter focuses on the 
model fitting to observed values of dependent variable. For lenders, power is 
the primary attribute, i.e. distinguishing good and bad clients, whereas accuracy 
may be secondary, and it can be attained through calibration (see: Anderson, 2007). 
Measuring power and accuracy should be part of any developing and maintaining 
process of a credit scoring model.

3. Graphical methods for assessing quality 
of scoring models

Lorenz and concentration curves
The Lorenz curves and concentration curves are widely used tools for the anal‑
ysis of economic inequality and redistribution. The Lorenz curve (LC) was 
first introduced by Lorenz (1905) as a method of measuring the concentration 
of wealth. Let Y be a non‑negative random variable, f(y) its probability densi‑
ty function and F(y) the cumulative distribution function of Y. Moreover, let 

( ) ( ) ( )1 inf{ | },    0;1   y y YQ p F p y F y p p-= = ³ ò p ε ( ) ( ) ( )1 inf{ | },    0;1   y y YQ p F p y F y p p-= = ³ ò  denote the quantile function (the in‑
verse cumulative distribution function). The Lorenz function can be given by the 
following formula (see e.g.: Cowell, 2000):

 ( )

( )
( )
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The above‑mentioned formula can be applied when the theoretical probability 
distribution of Y is known and can be estimated from the data. In practice, we usu‑
ally obtain the Lorenz curve directly using the finite population form of LY(p) 
which is given as:

  ( )
( ){ } 1

1

N
i i yi

Y N
ii

y I y Q p
L p

y
=

=

£
=
å

å
 (4)

with I{.} as an indicator function being equal to 1 if “.” is true and 0 otherwise.
The Lorenz function of the variable Y refers to cumulative outcome propor‑

tions of population members ranked by the values of the same variable Y. Using 
another ranking variable X, while still measuring the outcome in terms of Y, leads 
to the so‑called concentration curve (see e.g.: Cowell, 2000) which is often wrong‑
ly called the Lorenz curve.
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where: fXY(x, y) is the density of the joint distribution of X and Y (see e.g.: Bishop, 
Chow, Formby, 1994). For the finite population of size N, formula (4) can be sim‑
plified to:

 ( )
( ){ } 1

1

ˆ
N

i i Xi
XY N

ii

y I x Q p
L p

y
=

=

£
=
å

å
. (6)

In the credit scoring context, the empirical concentration curve given by for‑
mula (6) is applied with the scores S playing the role of the ranking variable X, while 
the variable of interest Y is binary (bad or good client). The graphical presentation 
of (6) takes the form of a plot with the empirical cumulative distribution function 
(ECDF) of bad clients FBad(s) on the horizontal axis and the empirical cumulative 
distribution function of good clients FGood(s) on the vertical axis (see e.g.: Rezac, 
Kolacek, 2012). It is used to present the discrimination power of a given scoring 
model at any score value (Figure 1).

Figure 1. Concentration curve
Source: own elaboration

By means of the Lorenz and related curves, one can analyse the performance 
of scoring models at any value of the score. The diagonal line shows the perfor‑
mance of a random model (the model which randomly assigns score to good and 

http://www.czasopisma.uni.lodz.pl/foe/


26 Adam Piotr Idczak

FOE 4(343) 2019 www.czasopisma.uni.lodz.pl/foe/

bad clients); on the other hand, an ideal model assigns higher score values only 
to good clients (perfect separation between distributions of good and bad clients). 
In practice, the lower or upper values of the score are often investigated where 
a threshold (a particular value of the score below which all clients are classified 
as bad clients) is expected, e.g.: if 50% of bad clients is rejected, also roughly 10% 
of good clients is rejected at a given score value (see: point C in Figure 1).

The same curve, but with a reversed axis, called the Receiver Operating Char‑
acteristic (ROC), one can find in Anderson (2007), Finlay (2010), Hosmer, Leme‑
show, Sturdivant (2013), Siddiqi (2017).

Cumulative Accuracy Profile
Another graphical way to assess quality of a scoring model is the Cumulative Ac‑
curacy Profile (CAP). This figure contains the cumulative distribution function 
of all clients on the horizontal axis and the cumulative distribution function of bad 
clients on the vertical axis. The CAP curve easily shows repercussions of rejecting 
the proportion of bad clients in terms of rejecting all clients (at any score value). 
An example of Cumulative Accuracy Profile is presented in Figure 2.

 
Figure 2. CAP curve

Source: own elaboration

A random model means that the model randomly assigns score to good and 
bad clients. The curve for an ideal model goes from point (0,0) through point (wB,1) 
to point (1,1), where wB is the fraction of all bad clients. The closer the CAP curve 
(for a given model) is to those for the ideal model, the better the scoring model is. 
Considering point C (0.1,0.46) as the threshold value, we reject 10% population 
and also get rid of 46% of bad clients.
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Fish-eye graph
The fish‑eye graph (also called the Dn curve) is a convenient method for investi‑
gating quality of a scoring model. It consists of plotting the empirical cumulative 
distribution function (ECDF) for both good and bad clients with respect to the 
score value. By means of the Fish‑eye graph, one can analyse disproportions be‑
tween fractions of good and bad clients. The greater the disproportions, the bet‑
ter the scoring model is. In fact, this method is connected with Dn statistic, which 
is defined as the maximum difference between empirical cumulative distributions 
(see: section 4).

Figure 3. Fish‑eye graph
Source: own elaboration

For the score that holds the maximum absolute value we have got the greatest 
disproportion between the fraction of bad and good clients. For example, at the 
score equal to 2 or smaller, there is a subset of population which consists of 81% 
of the empirical distribution of bad clients and 40% of the empirical distribution 
of good clients (Figure 3).
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4. Numerical characteristics for assessing quality 
of scoring models

Gini index and related measures
The popular Gini index of inequality (Gini, 1912; 1914) was first proposed in 1912 
but it became known after the publication from 1914 indicating the relation with 
the Lorenz curve. The Gini index can be described by several mathematical rep‑
resentations – each of them can be given its own interpretation and naturally leads 
to different estimator formulas. Among these formulas, the most popular is the ge‑
ometric approach based on the Lorenz function (3) where the Gini index is defined 
as double the area between this function and the diagonal called the line of equal 
shares, as described in Figure 1:

  2 1 2 ,AG A B
A B

= = = -
+  (7)

where: A is the area between the diagonal and Lorenz curve and B stands for the 
area under the Lorenz curve.

Another popular representation of the Gini index, proposed by Gini in 1912, 
is based on the absolute mean difference Δ, known as the Gini mean difference 
(GMD). This measure is a result of dividing the value of the absolute mean differ‑
ence by the doubled expected value of Y:

 2
G

m
=


, (8)

where Δ = E |Yi – Yj| is the expected value of the differences between the random 
variables Yi and Yj which come from the same distribution and represents varia‑
bility of Y. The formula (8) enables the interpretation of the Gini index in terms 
of relative variability so it represents the so‑called statistical approach.

When the form of the theoretical distribution of the random variable Y 
is known, we can utilise formulas (7) and (8) to determine the parametric esti‑
mates of the Gini index, as is usually the case in income studies. When we want 
to evaluate the Gini index directly from the data, we can apply several finite pop‑
ulation representations of the Gini index (Jędrzejczak, 2010). In particular, for‑
mula (8) takes the form:
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One can equivalently apply the following formula based on cumulative dis‑
tributions functions:

 ( ) ( )
0

1ˆ 2 ˆ ˆ
ˆ

G yF y dF y
m

¥
= -ò , (10)

where  ( )  F y  is the empirical cumulative distribution function and m̂  is the mean 
for the empirical values of the random variable Y. It is worth noting that formula 
(9) can lead to numerous problems when dealing with large datasets, especially 
in credit scoring where there are at least thousands of observations, while the re‑
sults obtained by means of formula (10) can be ambiguous and lead to different 
values, depending on whether ECDF(y) is left or right continuous. One solution for 
that is data aggregation, though it usually leads to underestimating the true value 
of Gini index (Gastwirth, 1972).

To handle that, one may transform geometric formula (7) for the empirical 
values of the random variable Y, incorporating the so‑called trapezium rule:

 ( ) ( )1 1
2

ˆ 1
N

i i i i
i

G F F L L- -
=

é ù= - - ´ +ë ûå , (11)

where:
Fi is the cumulative distribution function of Y,
Li is the value of the Lorenz curve for the i‑th observation.

For purposes of gauging the discriminatory power of a scoring model, one can 
apply a modification of the Gini inequality index called the concentration index 
or pseudo Gini index (also called the Gini, Gini statistic, Gini index, Gini coeffi‑
cient, see: Siddiqi, 2017; Finlay, 2010). It is based, contrary to the classical Gini in‑
dex, on the concentration curve given by (4) and (5). It can be calculated from the 
data using the modification of formula (10) called the Brown formula (Finlay, 2010):

 ( ) ( )( ) ( ) ( )( )
1 1

2

1 ,
i i i i

N

Bad Bad Good Good
i

G F s F s F s F s
- -

=

é ù= - - ´ +ê úë ûå  (12)

where:
( )

iBadF s  – is the empirical cumulative distribution function of bad clients’ scores 
for the i‑th observation,
( )

iGoodF s  – is the empirical cumulative distribution function of good clients’ scores 
for the i‑th observation.
The pseudo Gini index is very widely used to evaluate the discriminatory 

power of a scoring model. The classical Gini index measures the degree of ine‑
quality and takes values from <0; 1>, whereas the pseudo Gini index takes values 
from <–1; 1> and measures the concentration of good and bad clients, moreover, 
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it gauges the direction of the relationship between scores and the dependent varia‑
ble. Positive values mean that there is a positive relationship between the score and 
the dependent variable (the higher the score, the better the client), negative values 
mean that there is a negative relationship (the lower the score, the better the client), 
and value 0 means the model randomly assigns the score to the predicted variable. 
Absolute value 1 means an ideal model (the case when the distributions of good 
and bad clients are perfectly separated). The pseudo Gini index is connected with 
c statistics by the following relation:

1
2
Ginic +

= , (13)

where (13) is treated as the probability that a randomly selected observation from 
the distribution of bad clients has the score lower than a randomly selected obser‑
vation marked as a good one:

1 2 1 2( | 0 1)c P s s Y Y= > = Ù = . (14)

The minimum value of c equals 0.5, which means that the model randomly 
assigns scores to clients, on the other hand, the maximum value 1 means a perfect 
separation of good and bad observations.

In fact, the pseudo Gini index defined by formula (12) is a special case
of Somers’ D statistics with a discrete variable (Newson, 2006; Thomas, 2009).
Moreover, there is a measure called the Accuracy Rate which is always equal 
to the value of the pseudo Gini for any scoring model.
The Accuracy Rate (AR) is a measure based on the CAP curve and it is calcu-
lated as:

( )0.5 1 B

A AAR
A B w

= =
+ ´ - , (15)

where:
A is the area between the CAP curve and the diagonal,
B is the area between the ideal model’s CAP and the diagonal,
wB is the fraction of all bad clients in the population of all clients.

Kolmogorov-Smirnov statistic
A measure of separation frequently used in the USA is the well‑known Kolmog‑
orov‑Smirnov (Dn) statistic (Kolmogorov, 1933; Smirnov, 1936), which was orig‑
inally proposed as a consistency test (see: e.g.: Domański, 1979). The Kolmogor‑
ov‑Smirnov test is based on the comparison of empirical and theoretical cumulative 
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distribution functions and verifies the hypothesis if a sample comes from a popu‑
lation with a specific (continuous) distribution, i.e.:

 
( ) ( )*

0 :H F x F x=

( ) ( )*
1 :H F x F x¹

 (16)

where: F(x) is the empirical distribution function based on the sample, F*(x) is the 
theoretical cumulative distribution function with known parameters. The Dn test 
statistic is defined as (Domański, 1979):

 ( ) ( )*
nD max F x F x= - , (17)

which is the maximum absolute difference between the empirical cumulative dis‑
tribution function estimated on a random sample and the theoretical cumulative 
distribution function.

The Dn test applied in credit scoring is a statistic defined as the maximum 
difference between the cumulative distribution function of bad clients and the cu‑
mulative distribution of good clients:

 ( ) ( )n Bad GoodD max F s F s= - . (18)

Firstly, the main disadvantage of Dn statistic is that it often chooses the score 
value that is too high or too low (usually Dn is obtained somewhere in the mid‑
dle of the score range) for the scorecard threshold. Secondly, Dn statistic only tells 
us the maximum disproportion between the fractions of good and bad clients 
at some score value, hence it quite poorly describes quality of a scoring model 
as a whole. Thus, it is important to analyse the fish‑eye graph and Dn statistic to‑
gether and use them in conjunction with other measures as well.

Divergence
Divergence is a simple measure of separation of two groups. The measure can 
be easily obtained as the squared difference between the average scores of good 
and bad clients divided by their average variance (Siddiqi, 2017):

 
( )

( )

2
2

2 2 / 2
Good Bad

Good Good

D
p p

s s

-
=

+
. (19)

Divergence is a parametric statistic which assumes that scores are normally 
distributed – this is an important limitation in the context of applicability because 
in practice the distribution of scores can often differ from the normal distribution.
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Lift
Lift is a useful measure to assess the predictive power of a scorecard in each score 
interval. One can gauge how a model performs in a chosen range of the score 
– in a particular range where a threshold value is expected. Lift is defined as the 
ratio of the cumulative distribution function of bad clients and the cumulative dis‑
tribution function of all clients (Rezac, Kolacek, 2012):

 ( )
( )
( )

Bad

All

F a
Lift a

F a
= . (20)

The presented measure indicates the number of times that the considered scor‑
ing model is better than the random model in a range of the score [smin; a]. Intui‑
tively the higher the value of Lift, the better the scoring model is. Value 1 corre‑
sponds to a random model.

Distribution similarity index
The distribution similarity index (SI) was first proposed by the Polish statistician 
Egon Vielrose (1960) and has been well‑known in economic research since then, 
especially in the field of income distribution analysis. This technique can also 
be applied to the evaluation of credit scoring systems and is described by the fol‑
lowing equation (Domański, 2001):

 ( )
1

min ,
K

Bi Gi
i

SI w w
=

=å , (21)

where:
 i

Bi
b

w
b

=  is the fraction of bad observations in the i‑th score interval in the total 

number of bad observations,

 i
Gi

g
w

g
=  is the fraction of good observations in the i‑th score interval in the total 

number of bad observations, min(.) is a function which returns the smallest value 
from two arguments. The SI takes values from 0 to 1, where 0 means that the dis‑
tributions are disjoint (perfect situation) and 1 means that structures of considered 
distributions are the same (random assignment of scores to clients). Obviously, the 
smaller the value of SI, the better the scoring model is.
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5. Case study

As the illustration of the behaviour of the methods mentioned above, we investi‑
gate the quality of three different scoring models which can be applied to the same 
group of clients. Compared scorecards were developed to distinguish clients who 
are likely to repay their debts and those who are not. Basic information about the 
scorecards1 is given in Table 1.

Table 1. Models comparison – basic statistics

Model I Model II Model III
Number of predictors* 6 6 7
Min. score –9.22 –10.44 –9.78
Avg. score 7.90 7.45 7.77
Max. score 11.45 9.24 10.34

* All of the estimated parameters are significant at 5% level.

Source: own calculations

The performance of these models has been examined on the basis of a dataset 
which consists of 5000 credit clients (non‑mortgage loans) and 300 of them were 
bad clients2. In Table 2, the pseudo Gini index, Dn statistic, Divergence and Sim‑
ilarity Index (SI) for each scoring model have been presented.

Table 2. Pseudo Gini, Dn, Divergence and SI statistics

Model I Model II Model III
Pseudo Gini 74.53% 73.26% 68.20%
Dn 61.55% 60.38% 53.09%
Divergence 2.58 2.41 1.95
SI 0.39 0.40 0.48

Source: own calculations

All of the computed global statistics outlined in Table 2 show that Model I has 
the highest discriminatory power, but Model II is almost as good as Model I. On the 
other hand, Model III seems to have the lowest discriminatory power. Given these 
measures, one can say that Model I performs only slightly better than Model II, but 
all of these values are at an acceptable level. According to the pseudo Gini index 
(74.53% vs 73.26%), Dn statistic (61.55% vs 60.38%), Divergence (2.58 vs 2.41) and 

1 Due to privacy policy, the structures of the models are not provided. All of the scorecards are 
acceptable from the statistical point of view (i.e. assumptions, the significance of the estimat‑
ed parameters).

2 A client was marked as bad when the days past due and the amount past due exceeded 90 days 
and 120 EUR respectively.
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Similarity Index (0.39 vs 0.40), both models have similar discriminatory power. 
Because the pseudo Gini and the other measures cannot recognise a model which 
is significantly better than its competitors, further examination is necessary.

By means of Lift (eq. 20), it is possible to investigate performance of the mod‑
els in particular score intervals, obtained by dividing all clients into decile groups 
(see Table 3).

Table 3. Lift values

Decile Obs* Model I Model II Model III
Bad obs** LIFT Bad obs LIFT Bad obs LIFT

1 500 125 4.17 180 6.00 134 4.47
2 500 92 3.62 48 3.80 69 3.38
3 500 44 2.90 19 2.74 35 2.64
4 500 23 2.37 15 2.18 22 2.17
5 500 13 1.98 7 1.79 16 1.84
6 500 2 1.66 11 1.56 9 1.58
7 500 1 1.43 10 1.38 9 1.40
8 500 0 1.25 5 1.23 3 1.24
9 500 0 1.11 1 1.10 1 1.10
10 500 0 1.00 4 1.00 2 1.00

ALL 5000 300 300 300
* The number of clients in each decile.
** The number of clients marked as bad in each decile.

Source: own calculations

It turns out that values of Lift differ across given models, especially in the 
first decile group, in favour of Model II and Model III. Model I is roughly 4 times 
better than a random model, whereas Models II and III are 6 times and roughly 
4.5 times better than random selection, respectively. In this case, the maximum 
value of Lift would be equal to 10, hence Model II performs much better than the 
remaining ones in lower score intervals (the first and second decile).

Analysing the CAP curve (Figure 4), one can say that Model I performs better 
in higher values of scores (better separates the best clients from good clients) and Mod‑
el II performs better in lower values of scores (better separates the worst clients from 
bad clients), whereas Model III seems more balanced (separates the best clients from 
good clients and the worst clients from bad clients with similar discriminatory power).

Discriminatory power can also be visualised by plotting concentration curves 
for each model. Curves show concentration of bad and good observation across 
all possible score values (see Figure 5). On the basis of the concentration curves 
(Figure 5), it can be noted that Model II is much better than Model I and Mod‑
el III in lower score values, where a threshold is usually expected. For example, 
setting the threshold at a particular score value, for Model I, 60% of bad clients 
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is rejected and also 12.4% of good clients is rejected (see: point B in Figure 5), for 
Model II 60% of bad clients is rejected and also 6.8% of good clients is rejected 
(see: point A in Figure 5) and for Model III 60% of bad clients is rejected and also 
13.6% (see: point C in Figure 5) of good clients is rejected.
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Figure 4. CAP curves for Model I, Model II and Model III 
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To sum up, all presented graphical methods and numerical characteristics for 
assessing quality of a scoring model lead to a particular choice which is Model II. 
Despite similar quality of the models based on global measures (taking into ac‑
count all possible score values, see: Table 2), it has turned out that they perform 
quite differently in particular ranges of scores. In this case, the second model is the 
most reasonable for lenders in terms of quality due to its high discriminatory power 
in the lower range of the score where a threshold value is often expected to be set.

6. Conclusions

In a rapidly changing economic environment, rich in large volume data available 
at a low aggregation level, it becomes crucial for lenders to extract information 
about their customers in order to explore the market, make smart decisions and 
manage credit risk properly. These activities can be facilitated by the use of scor‑
ing models which produce scores based on consumer credit data. Scores are meas‑
ures which rank clients with respect to their credit risk. The ability to gauge qual‑
ity of a scoring model plays a key role in its developing or maintaining processes.

In this article, the most common methods (such as the pseudo Gini index, Kol‑
mogorov‑Smirnov statistic) for measuring quality of a scoring model were pre‑
sented, simultaneously the author standardises the names of these methods (e.g.: 
the pseudo Gini index, concentration curve). It turns out that particular measures 
are named in various ways (often incorrectly), probably due to high contribution 
of practitioners in the development of credit scoring. Also, a case study was con‑
ducted which contained application of statistical measures for assessing quality 
of a scoring model in comparison analysis between three scoring models. It was 
shown that global measures should be analysed in conjunction with the local meas‑
ure called Lift and graphs such as the concentration curve and Cumulative Accu‑
racy Profile (CAP), especially when at first glance the models are not essentially 
different.

References

Abdou H., Pointon J. (2011), Credit scoring, statistical techniques and evaluation criteria: a review 
of literature, “Intelligent Systems in Accounting Finance & Management”, vol. 18, no. 2–3, 
pp. 59–88.

Anderson R. (2007), The credit scoring toolkit, Oxford University Press, New York.
Bishop J. A., Chow K. V., Formby J. P. (1994), Testing for Marginal Changes in Income Distri‑

butions with Lorenz and Concentration Curves, “International Economic Review”, vol. 35, 
no. 2, pp. 479–488.

Cowell F. A. (2000), Measurement of Inequality, [in:] A. B. Atkinson, F. Bourguignon (eds.), Hand‑
book of Income Distribution, vol. 1, Elsevier, Amsterdam, pp. 87–166.

http://www.czasopisma.uni.lodz.pl/foe/


Remarks on Statistical Measures for Assessing Quality of Scoring Models 37

www.czasopisma.uni.lodz.pl/foe/ FOE 4(343) 2019

Crook J. N., Edelman D. B., Thomas L. C. (2007), Recent developments in consumer credit risk as‑
sessment, “European Journal of Operational Research”, no. 183, pp. 1447–1465.

Domański C. (1979), Statystyczne testy nieparametryczne, Państwowe Wydawnictwo Ekonomicz‑
ne, Warszawa.

Domański C. (ed.) (2001), Metody statystyczne. Teoria i zadania, Wydawnictwo Uniwersytetu 
Łódzkiego, Łódź.

Finlay S. (2010), Credit Scoring, Response Modelling and Insurance Rating: a practical guide 
to forecasting consumer behaviour, Palgrave Macmillan, New York.

Gastwirth J. (1972), The Estimation of the Lorenz Curve and Gini index, “Review of Economics 
and Statistics”, vol. 54, no. 3, pp. 306–316.

Gini C. (1912), Variabilità e Mutuabilità. Contributoallo Studio delle Distribuzioni e delle Relazi‑
oni Statistiche, C. Cuppini, Bologna.

Gini C. (1914), Sulla misuradellaconcentrazione e dellavariabilitàdeicaratteri, “Atti R. 1st. Veneto 
Sci. Lett. Arti”, vol. LXXIII(II), pp. 1203–1248.

Hosmer D. W., Lemeshow S., Sturdivant R. X. (2013), Applied Logistic Regression, 3rd ed., John 
Wiley & Sons, New Jersey.

Jędrzejczak A. (2010), Metody analizy rozkładu dochodów i ich koncentracji, Wydawnictwo Uni‑
wersytetu Łódzkiego, Łódź.

Kolmogorov A. (1933), Sulla determinazioneempirica di unalegge di distribuzionc, “Instituto Ital‑
iano degli Attuari”, no. 4, pp. 1–11.

Lorenz M. O. (1905), Methods of Measuring the Concentration of Wealth, “Publications of the 
American Statistical Association”, vol. 9, no. 70, pp. 209–219.

Newson R. (2006), Confidence intervals for rank statistics: Somers’ D and extensions, “The Stata 
Journal”, vol. 6, no. 3, pp. 309–334.

Rezac M., Kolacek J. (2012), List‑based quality indexes for credit scoring models as an alternative 
to Gini and KS, “Journal of Statistics: Advances in Theory and Applications”, vol. 7, no. 1, 
pp. 1–23.

Siddiqi N. (2017), Intelligent credit scoring. Building and Implementing Better Credit Risk Score‑
cards, 2nd ed., John Wiley & Sons, New Jersey.

Smirnov N. V. (1936), Sur la distribution de w2 (criterium de M. R. von Mises), “Comptes ren‑
dus de l’Académie des Sciences”, no. 202, pp. 449–452 [paper with the same title in Russian 
“Recueil Math” 1937, no. 2, pp. 973–993].

Thomas L. C. (2009), Consumer Credit Models: Pricing, Profit, and Portfolio, Oxford University 
Press, Oxford.

Vielrose E. (1960), Rozkład dochodów według wielkości, Polskie Wydawnictwo Gospodarcze, War‑
szawa.

http://www.czasopisma.uni.lodz.pl/foe/


38 Adam Piotr Idczak

FOE 4(343) 2019 www.czasopisma.uni.lodz.pl/foe/

Uwagi na temat statystycznych miar oceny jakości modelu scoringowego

Streszczenie: Jednym z podstawowych zadań banków jest udzielanie kredytów i pożyczek pie‑
niężnych. Z punktu widzenia kredytodawcy w procesie kredytowaniem niezwykle istotna jest oce‑
na ryzyka zaniechania płatności zobowiązań potencjalnego kredytobiorcy. W celu selekcji klientów, 
obok oceny ich zdolności kredytowej, coraz częściej wykorzystuje się modele scoringowe wchodzące 
w skład metodologii tzw. scoringu kredytowego (creditscoring). W podejściu tym z punktu widzenia 
kredytodawcy kluczowa jest jakość doboru jednostek, którym kredyt zostanie przyznany. To, czy kla‑
syfikacja dokonywana na podstawie modelu scoringowego jest dobra, może być opisane za pomo‑
cą statystycznych miar oceny jakości.

Mimo coraz większej popularności metod scoringowych w praktyce gospodarczej literatura dotycząca 
statystycznych metod oceny ich jakości jest w dalszym ciągu stosunkowo uboga. Ponadto w publika‑
cjach na ten temat często występują rozbieżności w zakresie nazewnictwa oraz konstrukcji poszcze‑
gólnych miar. W artykule przedstawiono charakterystykę najczęściej stosowanych statystycznych miar 
oceny jakości modelu scoringowego (m.in. indeksu pseudo Giniego, statystyki Kolmogorova‑Smir‑
nova, krzywej koncentracji), a także podjęto próbę standaryzacji nazewnictwa oraz postaci samych 
miar jakości modelu scoringowego. Ponadto przedstawione zostało studium przypadku, w którym 
dokonano analizy porównawczej trzech modeli scoringowych w kontekście ich jakości klasyfikacyjnej.

Słowa kluczowe: scoring kredytowy, jakość modelu scoringowego, krzywa Lorenza, krzywa kon‑
centracji, współczynnik Giniego
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