THE JUMP OF MILNOR NUMBER FOR LINEAR DEFORMATIONS OF PLANE CURVE SINGULARITIES

Aleksandra Zakrzewska

SUMMARY OF THE PHD THESIS

Let $f_0:(\mathbb{C}^n,0)\to(\mathbb{C},0)$ be an **isolated singularity**, i.e. there exists a representative $\widehat{f}_0: U \to \mathbb{C}$ of f_0 , holomorphic in an open neighbourhood U of the point $0 \in \mathbb{C}^n$ such that:

- 1. $\widehat{f}_0(0) = 0$,
- 2. $\nabla \hat{f}_0(0) = 0$,
- 3. $\nabla \widehat{f}_0(z) \neq 0 \text{ for } z \in U \setminus \{0\},$

where for a holomorphic function f we put $\nabla f := \left(\frac{\partial f}{\partial z_1}, \dots, \frac{\partial f}{\partial z_n}\right)$. In the sequel a singularity means an isolated singularity.

A deformation of the singularity f_0 is the germ of a holomorphic function $f = f(s, z) : (\mathbb{C} \times \mathbb{C}^n, 0) \to (\mathbb{C}, 0)$ such that

- 1. $f(0,z) = f_0(z)$,
- 2. f(s,0) = 0.

The deformation f(s,z) of the singularity f_0 will also be treated as a family (f_s) of functions germs, taking $f_s(z) := f(s,z)$. Since f_0 is an isolated singularity, f_s for sufficiently small s also has isolated singularities near 0 ([5] Theorem 2.6 I). By the above for sufficiently small s one can define μ_s

$$\mu_s := \mu(f_s) = \dim_{\mathbb{C}} \mathcal{O}_n/(\nabla f_s),$$

called the Milnor number of f_s , where \mathcal{O}_n is the ring of holomorphic function germs at 0, and (∇f_s) is the ideal in \mathcal{O}_n generated by $\frac{\partial f_0}{\partial z_1}, \ldots, \frac{\partial f_0}{\partial z_n}$.

Since the Milnor number is upper semi-continuous in the Zariski topology in families of singularities ([5], Theorem 2.6 I), there exists an open neighbourhood S([5], Theorem 2.6 I and Proposition 2.57 II) of the point 0 such that

- 1. $\mu_s = \text{const. for } s \in S \setminus \{0\},\$
- 2. $\mu_0 \ge \mu_s$ for $s \in S$.

The constant difference $\mu_0 - \mu_s$ (for $s \neq 0$) will be called **the jump of the** deformation (f_s) and denoted by $\lambda((f_s))$. The smallest non-zero value among all the jumps of deformations of the singularity f_0 will be called **the jump of the** Milnor number of the singularity f_0 and denoted by $\lambda(f_0)$.

From now on we will consider only plane curve singularities $f_0: (\mathbb{C}^2, 0) \to (\mathbb{C}, 0)$. The first general result concerning the jump of the Milnor number was obtained by Sabir Gusein-Zade([6]), who proved that there exist singularities f_0 for which $\lambda(f_0) > 1$. Later the same problem was consider by:

- A. Bodin ([2]) who gave a formula for $\lambda(f_0)$ for f_0 convenient with its Newton polygon reduced to one segment for non-degenerate deformations,
- J. Walewska ([7]) who generalized Bodin's results to the non-convenient case for non-degenerate deformations,
- S. Brzostowski, T. Krasiński and J. Walewska ([3]) who calculated all possible Milnor numbers of all non-degenerate deformations of homogeneous singularities,
- in the same paper they proved that for the singularity $f_0^n(x,y) = x^n + y^n$ $(n \ge 2)$ we have $\lambda(f_0) = \left[\frac{n}{2}\right]$.

In this paper we consider the jumps of the Milnor number of singularities for all **linear deformations** of f_0 i.e. deformations of the form $f_s = f_0 + sg$, where g is a holomorphic function in a neighbourhood of 0 such that g(0) = 0. The smallest non-zero value among all the jumps of linear deformations of the singularity f_0 will be denoted by $\lambda^{lin}(f_0)$.

The main result is a formula for $\lambda^{lin}(f_0)$ in the class of homogeneous and semi-homogeneous singularities.

Theorem 1 For every homogeneous singularity f_0 of order $n \geq 2$ the jump of Milnor number for linear deformations is given by formula

$$\lambda^{lin}(f_0) = \begin{cases} n-2, & n \ge 3\\ 1, & n = 2 \end{cases}$$

From this we immediately obtain.

Theorem 2 For every semi-homogeneous singularity f_0 of order $n \geq 2$ the jump of Milnor number for linear deformations is given by formula

$$\lambda^{lin}(f_0) = \begin{cases} n-2, & n \ge 3\\ 1, & n = 2 \end{cases}.$$

To get main result the **Enriques diagrams** will be used. For any singularity we can associate its weighed Enriques diagram (D, ν) which represents the whole resolution process of this singularity ([4] Chapter 3.9). It is a finite graph with two types of edges and a weight function $\nu: D \to \mathbb{Z}$ on vertices of the diagram. M. Alberich-Carramiñana and J.Roé ([1] Theorem 1.3) gave a necessary and sufficient condition for two Enriques diagrams of singularities to be linear adjacent, which means for singularities that one singularity is a linear deformation of another. Using their result we get the formula for $\lambda^{lin}(f_0)$.

Chapter 1 is an Introduction. In Chapter 2 the Enriques diagrams of singularities are briefly presented. In Chapter 3 abstract Enriques diagrams are introduced and the result of M. Alberich-Carramiñana and J.Roé [1] is recalled. Some properties of abstract Enriques diagrams, needed in the main theorem, are also proved. From them we obtain an interesting result that $\lambda^{lin}(f_0)$ is a topological invariant for any singularity f_0 . In Chapter 4 the main theorem i.e. the formula for $\lambda^{lin}(f_0)$ for homogeneous and semi-homogeneous singularities is proved.

Bibliography

- M. Alberich-Carramiñana, J.Roé: Enriques Diagrams and Adjacency of Planar Curve Singularities, Canad. J. Math., Vol 57(1):3-16, 2005.
- [2] A. Bodin: Jump of Milnor numbers, Bull. Braz. Math. Soc. (N.S.), 38(3):389-396, 2007.
- [3] S. Brzostowski, T. Krasiński, J. Walewska: Milnor numbers in deformations of homogeneous singularities ArXiv (1104.7704), 2014.
- [4] E. Casas-Alvero: Singularities of Plane Curve, Cambridge University Press, 2000.
- [5] G.-M. Gruel, C. Lossen, E. Shustin: Introduction to Singularities and Deformation, Springer Verlag, 2006.
- [6] S. Gusein-Zade: On singularities from which an A_1 can be split off., Funct. Anal. Appl., 27(1):57-60, 1993.
- [7] J.Walewska: The jump of Milnor numbers in families of non-degenerate and non-convenient singularities, Analytic and Algebraic Geometry, University of Łódź Press, 141-153, 2013.