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A NOTE ON THE ŁOJASIEWICZ EXPONENT OF
NON-DEGENERATE ISOLATED HYPERSURFACE

SINGULARITIES

SZYMON BRZOSTOWSKI

Abstract. We prove that in order to find the value of the Łojasiewicz
exponent ł(f) of a Kouchnirenko non-degenerate holomorphic function f :
(Cn, 0) → (C, 0) with an isolated singular point at the origin, it is enough to
find this value for any other (possibly simpler) function g : (Cn, 0) → (C, 0),
provided this function is also Kouchnirenko non-degenerate and has the same
Newton diagram as f does. We also state a more general problem, and then re-
duce it to a Teissier-like result on (c)-cosecant deformations, for formal power
series with coefficients in an algebraically closed field K.
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1. Introduction and statement of the result

Let f : (Cn, 0)→ (C, 0) be a holomorphic function, defined in a neighborhood of
0, with power series expansion f = Σi∈Nn

0
aiz

i, where a0 = 0 and zi := (zi11 ·. . .·zinn ).
The support of f is defined as Supp f := {k ∈ Nn0 : ak 6= 0} and its Newton
polyhedron is Γ+(f) := conv(Supp f +Nn0 ) ⊂ Rn>0. The union of the compact faces
of Γ+(f) is called the Newton diagram of f and denoted by Γ(f). If Γ(f) touches
all the coordinate axes, we say that f is convenient . For a face ∆ of Γ(f), we
put f∆ := Σi∈Nn

0∩∆aiz
i. We say that f is (Kouchnirenko) non-degenerate on ∆ if

the system {∇f∆ = 0} has got no solutions in (C∗)n, where C∗ := C \ {0} and ∇
denotes the gradient vector. If f is non-degenerate on all the faces ∆ of Γ(f), then
we simply say that f is (Kouchnirenko) non-degenerate.

A basic result of A. G. Kouchnirenko ([8]) says: if f, g : (Cn, 0) → (C, 0)
are two non-degenerate functions with isolated singularities at 0 and such that
Γ(f) = Γ(g), then their Milnor numbers are equal: µ(f) = µ(g). Moreover, there
exists a combinatorial formula (expressed only in terms of the diagram Γ(f)) for
µ(f).

A fast definition of the Łojasiewicz exponent ł(f) of a function f as above is

(1) ł(f) = sup
ϕ

ord(∇f ◦ ϕ)

ordϕ
,

where ϕ : (C, 0)→ (Cn, 0), ϕ 6= 0, are holomorphic paths through the origin (see [9]
or [15]) and, as usually, ord of a mapping is the minimum of ord’s of its coordinates.

The main observation of this note is the following Kouchnirenko-like result for
the Łojasiewicz exponent:

Theorem 1. For any two Kouchnirenko non-degenerate functions f, g : (Cn, 0)→
(C, 0) having isolated singularities at 0 and the same Newton diagrams their
Łojasiewicz exponents are equal: ł(f) = ł(g).

In principle, the proof of Theorem 1 is straightforward and consists of four steps
(for f and g as in the above statement):

(1) Reduction to the case of convenient singularities.
(2) Application, to a class of simple linear deformations fs of the given germ

f , of topological triviality theorems proved in [4] (or [18]) which imply also
so-called Teissier condition (c) for fs.

(3) Application of the results of [17], which can be restated as follows: if a
deformation (fs) of f satisfies condition (c), then ł(fs) = ł(f).

(4) Using the Zariski-openness of the set of Kouchnirenko non-degenerate sin-
gularities with a given Newton diagram to join f and g by a family of
“linear deformations” of the types considered above.

Although we will mostly stick to the above plan, we want to give a somewhat
more direct (and, partly, more general) proof of the main result. Namely, we
will avoid falling back on the results of J. Damon and T. Gaffney [4] or E.
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Yoshinaga [18] and we will directly prove that the condition (c) holds for the
aforementioned class of deformations of a Kouchnirenko non-degenerate function f
(even if it has a non-isolated singularity). Moreover, this verification will be valid
over any algebraically closed field K (in the formal category).

2. A wider perspective

Although in the previous section we only considered the complex analytic setting,
we want to stress that all the definitions and most of the statements given there
can be transferred almost verbatim, after obvious changes, to the context of formal
power series living in the ring K[[z]] over an algebraically closed field K (here z =
(z1, . . . , zn) are variables). In particular, an improved version of the Kouchnirenko
theorem valid in this context was recently given by P. Mondal (see [11]). Let us
remark that for a power series h ∈ K[[z]], where z = (z1, . . . , zn) are variables over
K, it may sometimes be necessary to introduce K into the notation, writing e.g.
ΓK(h), for otherwise the notation could be misleading if K happen to contain some
symbols that could be treated as variables. Below, we provide the non-so-obvious
information in this wider context.

2.1. The definition of the Łojasiewicz exponent. The main object of our
study requires a modified approach in order to make it more productive. First, let
us recall

Definition 2. Let R be a ring (commutative with unity) and I be an ideal in R.
We say that r ∈ R is integral over I if r satisfies an equation of the form

rn + a1r
n−1 + . . .+ an = 0,

where aj ∈ Ij (j = 1, . . . , n) and n ∈ N. The set of all the elements of R that are
integral over I is called the integral closure of I and is denoted by I.

We choose [7] as our main source for references for topics concerning integral
closure. For now, recall that I is also an ideal in R and that I = I. Let us state

Definition 3. Let K be an algebraically closed field and let K[[z]] = K[[z1, . . . , zn]]
be the ring of formal power series with coefficients in K.

(1) Let I, J be two ideals in K[[z]]. We define the Łojasiewicz exponent
ŁK[[z]],J (I) of I relative to J as

ŁK[[z]],J (I) := inf
{
α
β : α, β ∈ N ∧ J α ⊂ Iβ

}
.

Usually, we will write just ŁJ (I) in place of ŁK[[z]],J (I).
(2) Let h ∈ K[[z]] be a formal power series. We define the Łojasiewicz exponent

ł(h) of h to be

ł(h) = łK[[z]](h) := ŁK[[z]],m(∇h) = inf
{
α
β : α, β ∈ N ∧mα ⊂ (∇h)βK[[z]]

}
,

where m = (z)K[[z]] is the maximal ideal.
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Clearly, in a similar fashion, we may define: ŁC{z},J (I) for ideals in the con-
vergent power series ring and łC{z}(g) for holomorphic functions. It was proved in
[9] that such definition is in agreement with the one given in the Introduction (cf.
formula (1)). This is also an easy consequence of Corollary 7 below, so we prove
it in Corollary 5. Still more generally, using Theorem 6 we can show (see [3] for a
proof in dimension 2):

Proposition 4. Let K be an algebraically closed field and K[[z]] = K[[z1, . . . , zn]]
be the ring of formal power series with coefficients in K. Let I, J be two ideals in
K[[z]] with J being proper. Then

ŁJ (I) = sup
ϕ ∈ K[[t]]n

ϕ(0) = 0

ord(ϕ∗I)

ord(ϕ∗J )
.

In the above statement, as is customary, ϕ∗K := (h ◦ ϕ : h ∈ K)K[[t]] and,
obviously, ord(ϕ∗K) = min{ord(h ◦ ϕ) : h ∈ K}.

Proof. “>” If J α ⊂ Iβ for some α, β ∈ N, then for any ϕ ∈ K[[t]]n with ϕ(0) = 0
we get, by Theorem 6 and properties of order, α · ord(ϕ∗J ) > β · ord(ϕ∗I). The
ideal J being proper, ord(ϕ∗J ) > 0 so we infer that α

β >
ord(ϕ∗I)
ord(ϕ∗J ) . Passing to the

limits with both sides of the last relation, we get the required inequality.

“6” If ŁJ (I) > α
β for some α, β ∈ N, so that J α 6⊂ Iβ , then Theorem 6 asserts

that there exists some ψ ∈ K[[t]]n with ψ(0) = 0 such that α · ord(ψ∗J ) < β ·
ord(ψ∗I). Hence, α

β < ord(ψ∗I)
ord(ψ∗J ) . Similarly as above, this implies the required

inequality. �

In the situation of primary interest to us, we can state (see [9])

Corollary 5. Let g : (Cn, 0) → (C, 0) be a holomorphic function and let C{z},
with z = (z1, . . . , zn), denote the ring of convergent power series. Then

łC[[z]](g) = łC{z}(g) = sup
ϕ:(C,0)→(Cn,0)

ord(∇g ◦ ϕ)

ordϕ
.

Proof. The first equality is a consequence of [7, Proposition 1.6.2] (see the proof
of Corollary 7 for details). To justify the second one it is enough to repeat the
reasoning from the proof of Proposition 4 with Corollary 7 applied in place of
Theorem 6. �

Remark. Naturally, in the same way one can show that it holds ŁC[[z]],J (I) =

ŁC{z},J (I) = supϕ
ord(ϕ∗I)
ord(ϕ∗J ) , where I, J are ideals in C{z} and ϕ : (C, 0)→ (Cn, 0).

Let us also note that in Proposition 4 and Corollary 5 we may restrict ϕ’s to have
non-zero components, or even to be polynomials (cf. Theorem 6 and Corollary 7).
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2.2. Testing integral dependence. Of crucial importance is the following para-
metric version of the well-known Valuative Criterion of Integral Dependence (see
[9] or Corollary 7 for the complex analytic setting; an alternative proof of the theo-
rem stated below, valid in dimension 2 and based on so-called Hamburger-Noether
process, can be found in [3, Theorem 21]):

Theorem 6. Let K be a field and I be an ideal in the ring K[[z]] = K[[z1, . . . , zn]] of
formal power series with coefficients in K. The following conditions are equivalent
for an element g ∈ K[[z]]:

(1) g ∈ I,
(2) for any formal parametrization ϕ ∈ K[[t]]n with ϕ(0) = 0, where K denotes

the algebraic closure of the field K, it holds

ord(g ◦ ϕ) > ord(ϕ∗I).

Moreover, in item 2 we may restrict ourselves to ϕ ∈ K[t]n with non-zero compo-
nents ϕi.

Proof. First note that we may assume that K = K, because by [7, Proposition
1.6.1] we have I K[[z]] ∩ K[[z]] = I. Then, according to [ibid., Proposition 6.8.4],
g ∈ I if, and only if, g ∈ I V for all rank one discrete valuation domains (V,mV)
between K[[z]] and its field of fractions K[[z]]0 such that mV ∩K[[z]] = m, where m
denotes the maximal ideal of K[[z]]. This is the same as saying that V are regular
local rings of Krull dimension 1 (see [ibid., Proposition 6.3.4]). Let V̂ denote the
formal completion of (V,mV) with respect to the mV -adic topology. Then V̂ is
also regular local of the same dimension, hence a valuation domain. Since [ibid.,
Proposition 6.8.1] asserts that every ideal in a valuation domain is integrally closed,
using [ibid., Proposition 1.6.2] we get

I V = I V = I V̂ ∩ V = I V̂ ∩ V.

From this it follows that checking whether g ∈ I is equivalent to testing if g ∈ I V̂
for all rank one complete and discrete valuation domains V̂ over K[[z]] such that
mV̂ ∩ K[[z]] = m. Since K ⊂ V̂, by the equicharacteristic case of Cohen Structure
Theorem (see e.g. [19, Corollary in Chapter VIII, § 12], we get V̂ ∼= L[[t]] for some
field L ⊂ V̂. We have mV ∩K[[z]] = m, so L = V̂/mV̂ ∼= V/mV ⊃ K[[z]]/m = K (see
e.g. [10, page 63] for the isomorphism). Thus, we may consider K as a subfield of
L. Let ψ = (ψ1, . . . , ψn) ∈ L[[t]]n be defined by ψi := ι(zi) (i = 1, . . . , n), where
ι : K[[z]]→ L[[t]] is the inclusion. Using ι(m) ⊂ (t)L[[t]] we get ordψ > 0 and then
the condition g ∈ I V̂ may be rewritten as ι(g) = g ◦ ψ ∈ ι(I)L[[t]] = (ψ∗I)L[[t]].
Equivalently, ord g ◦ ψ > ord(ψ∗I).

“1⇒2” Since g satisfies an equation of integral dependence, it is easy to directly
check that ord(g ◦ ϕ) > ord(ϕ∗I), for any ϕ ∈ K[[t]]n with ϕ(0) = 0.

“∼1⇒∼2” If g 6∈ I then, by the above characterization, there exists some ζ ∈
L[[t]]n, for some field L ⊃ K, such that ord g ◦ ζ < ord(ζ∗I). Moreover, we may
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assume e.g. that g ◦ ζ = ta + h.o.t.. Interpreting the last inequality as a system of
algebraic equations over K with the coefficients of ζ viewed as unknowns, we infer,
by Hilbert’s Nullstellensatz, that we can find its solution also over the field K. This
delivers ϕ ∈ K[[t]]n (even ϕ ∈ K[t]n) such that ord g ◦ ϕ < ord(ϕ∗I). Changing
the components of ϕ by adding to them high enough powers of t we may arrange
things so that these components are all non-zero. �

Corollary 7 ([9]). Let I be an ideal in the convergent power series ring C{z} with
z = (z1, . . . , zn). The following conditions are equivalent for an element g ∈ C{z}:

(1) g ∈ I,
(2) for any holomorphic curve ϕ ∈ C{t}n with ϕ(0) = 0 it holds

ord(g ◦ ϕ) > ord(ϕ∗I).

Moreover, in item 2 we may restrict ourselves to ϕ ∈ C[t]n with non-zero compo-
nents ϕi.

Proof. We have g ∈ I ⇔ g ∈ I C[[z]], because [7, Proposition 1.6.2] asserts that for
any local noetherian ring (R,m) and an ideal J C R it holds J R̂ ∩R = J , where
“̂” denotes the completion of R with respect to the m-adic topology. The test in
item 2 of Theorem 6 can be performed, in particular, for convergent series ϕ and
then ord(ϕ∗I) = ord(ϕ∗(I C[[z]])); on the other hand, as the theorem asserts, it is
enough to use polynomials from C[t] for the test (with non-zero components). �

3. The integral closure of the toric gradient ideal of
non-degenerate singularities

Here, we prove one of the results given in [18] (see also [16] or [14]) in the more
general, formal setting. First, we introduce

Notation. Let K be a field, K[[z]] = K[[z1, . . . , zn]] and let h ∈ K[[z]] be a formal
power series. Let l ∈ Nn be a vector with positive coordinates.

(1) If ϕ ∈ K[[t]]n, with ϕ(0) = 0, is a formal parametrization such that ordϕi =
li (i = 1, . . . , n), then we will say that l is the initial vector of ϕ and we
will write vordϕ = l .

(2) The symbol ordl h will denote ord(h ◦ ψ), where vordψ = l and ψ is a
parametrization with generic (initial) coefficients. In other words, ordl h is
the minimum value of all scalar products of l and the vectors from Γ(h) =
ΓK(h). The face ∆ = ∆(l) of Γ(h) for which this minimum is attained
is said to be supported by l, and l itself is called a supporting vector of ∆.

(3) ∇torh(z) :=
(
z1 · ∂h(z)

∂z1
, . . . , zn · ∂h(z)

∂zn

)
is the toric gradient of h. More

generally, if w = (w1, . . . , wk), where 1 6 k 6 n, is a subsequence of the
sequence of variables z = (z1, . . . , zn), then we put

∇wtorh(z) :=
(
w1 · ∂h(z)

∂w1
, . . . , wk · ∂h(z)

∂wk

)
.
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We note the following straightforward

Lemma 8. If h ∈ K[[z]] is a non-invertible Kouchnirenko non-degenerate formal
power series, then for any formal parametrization ϕ ∈ K[[t]]n, with ϕ(0) = 0, and
such that l := vordϕ satisfies l ∈ Nn, we have

ord((∇torh) ◦ ϕ) = ord((∇torh∆(l)) ◦ ϕ) = ordl(h). 2

Clearly, the above-introduced notations, as well as the lemma, are valid in the
complex analytic setting.

We have

Proposition 9. Let K be an algebraically closed field, K[[z]] = K[[z1, . . . , zn]] and
let h ∈ K[[z]] be a non-invertible Kouchnirenko non-degenerate formal power series.
Then

∇tor(h)K[[z]] = {zα : α ∈ vert(Γ(h))}K[[z]] = {zα : α ∈ Γ+(h) ∩ Nn0}K[[z]].

Here and below, “vert” denotes the set of all vertices of a given polyhedron.

Proof. The second equality follows from standard properties of integral closure of
monomial ideals and does not require Kouchnirenko non-degeneracy. Namely, by
[7, Proposition 1.4.6] we get {zα : α ∈ vert(Γ(h))}K[z] = {zα : α ∈ Γ+(h)∩Nn0}K[z]
in the polynomial ring K[z]. But it is immediate to see that both these ideals are
unchanged under passage to the ring of formal power series K[[z]].

We will prove the first equality. Since, obviously, we have ∇tor(h)K[[z]] ⊂ {zα :
α ∈ Γ+(h) ∩ Nn0}K[[z]], we only need to check that any given zα, where α ∈
vert(Γ(h)), is integral over ∇tor(h)K[[z]]. Take ϕ ∈ K[[t]]n such that ϕ(0) = 0 and
ϕ has non-zero components, so that l := vordϕ satisfies l ∈ Nn. From Lemma 8
we infer that

ord((∇torh) ◦ ϕ) = ordl(h) 6 ordl(z
α) = ord(ϕ∗(zα)).

Exploiting the parametric valuative criterion (Theorem 6), we conclude that zα ∈
∇tor(h)K[[z]]. �

Corollary 10. Let f : (Cn, 0) → (C, 0) be a holomorphic, Kouchnirenko non-
degenerate function. Then

∇tor(f)C{z} = {zα : α ∈ vert(Γ(f))}C{z} = {zα : α ∈ Γ+(f) ∩ Nn0}C{z}.

Proof. The first equality follows from Proposition 9 and [7, Proposition 1.6.2] (cf.
the proof of Corollary 7). The second equality holds because both involved sets are
unchanged when C{z} gets replaced by C[[z]]. �

Comment. Both Proposition 9 and Corollary 10 can be improved by stating
that Kouchnirenko non-degeneracy is actually equivalent to the equalities of the
various integral closures (for a proof of this result in the analytic case see [18,
Theorem 1.7] or [16, Theorem 3.4]; a generalization to mappings can be found in



34 S. BRZOSTOWSKI

[14, Corollary 4.5]). The proof is easy: if (%1, . . . , %n) ∈ (K∗)n is a solution to
some system {∇h∆ = 0}, then choosing: a vector l ∈ Nn such that ∆ = ∆(l),
α ∈ vert(Γ(h))∩∆ and ϕ(t) := ((%1 +π · t) · tN ·l1 , . . . , (%n+π · t) · tN ·ln) with generic
π ∈ K and N � 1, we get

ord((∇torh) ◦ ϕ) = ord((∇torh∆) ◦ ϕ) > ordN ·l h∆ = ordN ·l(z
α) = ord(ϕ∗(zα)),

so that, according to Theorem 6, the monomial zα is not integral over the ideal
generated by ∇torh.

As a simple application of the information delivered above, let us note:

Corollary 11. Let K be an algebraically closed field, K[[z]] = K[[z1, . . . , zn]] and
let h ∈ K[[z]] be a non-invertible Kouchnirenko non-degenerate formal power series.
Assume that h is convenient. Set mi := min{p : Γ+(zpi ) ⊂ Γ+(h)} (i = 1, . . . , n)
and m := max16i6n{mi}. Then

ł(h) 6 m− 1.

The same estimation holds if h : (Cn, 0)→ (C, 0) is a holomorphic function.

Proof. Let n denote the maximal ideal in K[[z]]. Since we have the containment of
ideals n(∇h)K[[z]] ⊃ (∇tor(h))K[[z]], we infer that

Łn(n(∇h)K[[z]]) 6 Łn(∇tor(h)K[[z]]).

From Proposition 9 we know that ∇tor(h)K[[z]] = {zα : α ∈ Γ+(h) ∩ Nn0}K[[z]].
By assumption, this last set contains some powers of all the variables so that m
is indeed well-defined. From Proposition 4 and Theorem 6 it easily follows that
ŁJ (I) = ŁJ (I) for any ideals I, J . Using this, we get Łn(∇tor(h)K[[z]]) 6
Łn({zmi

i }16i6nK[[z]]). But this last number is immediately seen to be equal to m.
Thus,

Łn(n(∇h)K[[z]]) 6 m.

Now, exploiting Proposition 4, we see that Łn(n(∇h)K[[z]]) = 1+Łn((∇h)K[[z]]) =
1 + ł(h). Combining this with the relation above, we finish the proof in the formal
setting. The holomorphic case is treated the same way. �

Comment. Choosing an appropriate parametrization of the form ϕ(t) = (0, . . . , 0,
t, 0, . . . , 0) we immediately see that under the above assumptions it actually holds
Łn(∇tor(h)K[[z]]) = m. A proof of this fact for complex analytic mappings can be
found in [1, Corollary 3.6] and [14, Theorem 2.7].

4. Constant-Newton-diagram deformations of non-degenerate
singularities

In order to prove the main result, we need to have information about special
deformations of Kouchnirenko non-degenerate holomorphic functions. Similarly as
above, this result turns out to hold more generally – for formal power series with
coefficients in an algebraically closed field.
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Definition 12. Let K be a field, K[[z]] = K[[z1, . . . , zn]] and let h ∈ K[[z]] be a
non-invertible formal power series. Let s be a new variable over K[[z]]. We say
that h× ∈ K[[s, z]] is a deformation of h if h×(s, 0) = 0 and h×(0, z) = h.

Definition 13. We say that a deformation h× ∈ K[[s, z]] of h ∈ K[[z]], where
z = (z1, . . . , zn), satisfies condition (c) if

∂h×
∂s
∈ (z1, . . . , zn) · ∇z(h×)K[[s, z]].

Comments.

I. Naturally, above it is meant that ∇z(h×) :=
(
∂h×
∂z1

, . . . , ∂h×
∂zn

)
. Note that

condition (c), as stated, is weaker than the condition

(2)
∂h×
∂s
∈ ∇ztor(h×)K[[s, z]],

which we shall actually work with below (cf. Example 16).
II. Teissier in [17] requires that the deformation is not smooth i.e. it must hold
∇z(h×)(s, 0) = 0. We decided to remove this restriction here.

III. If h× ∈ C{s, z} then relation (2) is equivalent to

(3)
∂h×
∂s
∈ ∇ztor(h×)C[[s, z]] ∩ C{s, z} =

[7, Prop. 1.6.2]
∇ztor(h×)C{s, z}

and, similarly, the relation from Definition 13 is equivalent to
∂h×
∂s
∈ (z1, . . . , zn) · ∇z(h×)C{s, z}.

This is the original Teissier condition (c) given in [17, § 2] in the complex
analytic setting. We also remark that, according to Teissier, elements of
the family h×(σ, z), for σ � 1, are called (c)-cosecant .

The result below shows that simple enough deformations of Kouchnirenko non-
degenerate formal power series do satisfy condition (c).

Proposition 14. Let K be an algebraically closed field, K[[z]] = K[[z1, . . . , zn]] and
let h ∈ K[[z]] be a non-invertible Kouchnirenko non-degenerate formal power series.
Define a deformation h× ∈ K[s][[z]] of h by the formula h× := h + s · zα, where
α ∈ Γ+(h) ∩Nn0 . Then h× satisfies Teissier condition (c), and even condition (2).

Proof. We must check that zα = ∂h×
∂s ∈ ∇ztor(h×)K[[s, z]]. Take an arbitrary

ϕ = (ϕ0, ϕ̂) ∈ K[[t]]n+1 such that ϕ(0) = 0. By Proposition 9 we have zα ∈
∇tor(h)K[[z]], hence using Theorem 6 we get

(4) ord(ϕ̂∗zα) > ord(ϕ̂∗(∇tor(h)K[[z]])),

where we substitute z = ϕ̂. This implies

ord(ϕ∗(s · zα)) > ord(ϕ∗(∇tor(h)K[[s, z]])),
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where we substitute (s, z) = (ϕ0, ϕ̂). Consequently, upon noticing that ∇ztor(h×) =
∇tor(h) + szαα,

(5) ord(ϕ∗(∇tor(h)K[[s, z]])) = ord(ϕ∗(∇ztor(h×)K[[s, z]])).

Now, (4) and (5) give

(6) ord(ϕ∗(zα)) > ord(ϕ∗(∇ztor(h×)K[[s, z]])),

where we substitute (s, z) = (ϕ0, ϕ̂). As ϕ was chosen arbitrarily, Theorem 6
ensures that zα ∈ ∇ztor(h×)K[[s, z]]. This proves the result. �

Remark. Essentially the same proof as the one given above shows that every
deformation h× of h whose Newton diagram built over the field K((s)) of Laurent
series is equal to that of h, that is Γ

K((s))
+ (h×) = ΓK

+(h), also satisfies condition (c).

Corollary 15. Let f : (Cn, 0) → (C, 0) be a holomorphic, Kouchnirenko non-
degenerate function. Define a deformation fs : (Cn+1, 0) → (C, 0) of f by the
formula fs := f+s ·zα, where α ∈ Γ+(f)∩Nn0 . Then fs satisfies Teissier condition
(c), and even condition (3).

Proof. Follows from the above proposition and Comment III. on page 35. �

Let us consider the following

Example 16. It is not enough to assume the (weaker) non-degeneracy consid-
ered by Mondal (see [11]) in order for Proposition 14 (or Corollary 15) to hold
with condition (2) in their assertions. Take the Kouchnirenko’s example [8, Re-
marque 1.21], where f := (x + y)2 + xz + z2 ∈ C{x, y, z}. Then f is Kouch-
nirenko degenerate with respect to the vector l := (1, 1, 2) supporting the segment
∆ = ∆(l) = conv({(1, 0, 0), (0, 1, 0)}) ⊂ R3. Indeed, the system {∇ in∆ f = 0} =
{∇(x+ y)2 = 0} possesses solutions in (C∗)3. At the same time, f is Milnor non-
degenerate (see [11, Definition 5.1]) and, consequently, its Milnor number can be
read off the Newton diagram of f by the usual Kouchnirenko formula: µ(f) = 1.

Consider the deformation fs := f + s · xy ∈ C{s, x, y, z} and let ϕ(t) := (0, t,
−t, 0) ∈ C{t}4. Since fσ, for 0 6= σ � 1, are Kouchnirenko non-degenerate, we
get µ(fσ) = µ(f), which by Lê-Saito-Teissier criterion of µ-constancy gives that
∂fs(z)
∂s ∈ ∇(x,y,z)fs(z)C{s, x, y, z} (see [6]). Nevertheless, this last relation cannot

be improved to get condition (2) (or (3)), as the following calculation reveals:

∇(x,y,z)
tor (fs) = (2x · (x+ y) + x · z + s · x · y, 2y · (x+ y) + s · x · y, z · x+ 2z2),

so, substituting (s, x, y, z) = ϕ(t), we get

ordϕ∗
(
∂fs
∂s

)
= ordϕ∗(xy) = 2 <∞ = ordϕ∗(∇(x,y,z)

tor (fs)C{s, x, y, z}).

By Corollary 7, ∂fs
∂s is not integral over the ideal ∇(x,y,z)

tor (fs)C{s, x, y, z}, hence
condition (3) does not hold for fs.
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Still, ordϕ∗((x, y, z) · ∇(x,y,z)(fs)C{s, x, y, z}) = 2 and one can check that ac-
tually fs does satisfy condition (c), because, as ideals, ∇(x,y,z)(fs)C{s, x, y, z} =

(x, y, z)C{s, x, y, z} and ∂fs
∂s = xy ∈ (x, y, z)2C{s, x, y, z}.

Finally, let us note that ł(fσ) = ł(f) = 1 for small σ.
These observations inspire several problems (see Section 6).

5. The proof of the main result

In this section, we go back to the complex analytic world. We need the following
result:

Theorem 17 (Teissier). Let f : (Cn, 0) → (C, 0) be a holomorphic function with
isolated singular point at 0 and fs : (Cn+1, 0)→ (C, 0) – its deformation such that
∇zfs(0, s) = 0. Assume that fs satisfies condition (c). Then

ł(fσ) = ł(f),

for 0 6= σ � 1.

Proof. This is a consequence of two results of B. Teissier. The first one, [17,
Théorème 6], asserts that, under the above assumptions, the set of so-called polar
quotients (see [17]) attached to an isolated singularity is invariant in deformations
satisfying condition (c). The second one, [17, §1.7., Corollaire 2], explains that the
biggest polar quotient is exactly the Łojasiewicz exponent ł. Hence, the assertion
of the theorem follows. �

For convenience, let us state Theorem 1 once again.

Main Theorem. For any two Kouchnirenko non-degenerate functions f, g :
(Cn, 0) → (C, 0) having isolated singularities at 0 and the same Newton diagrams
their Łojasiewicz exponents are equal: ł(f) = ł(g).

Proof. Set f = Σi∈Nn
0
aiz

i and g = Σi∈Nn
0
biz

i in a neighborhood of 0.

Firstly, note that we may assume that both f and g are polynomials (of degrees
6 µ(f) + 1 = µ(g) + 1). This is a consequence of their finite determinacy for the
right (biholomorphic) equivalence (see [5, Theorem 9.1.4]).

Secondly, we may make f and g be supported only on Γ = Γ(f) = Γ(g). Indeed,
choose e.g. j ∈ (Supp f)\Γ and consider the deformation fs(z) := f(z) − s · ajzj
of f . Then fσ (σ ∈ C) are all Kouchnirenko non-degenerate functions with the
same Newton diagrams as f has, and, actually, all of them differ by only one term,
above Γ. In particular, µ(fσ) = µ(f) < ∞, so all fσ have isolated singularities
at 0. From Corollary 15 we know that locally, at each σ ∈ [0, 1], the deformation
fs+σ : (Cn+1, 0) → (C, 0) of fσ satisfies condition (c) and hence, by Theorem 17,
has constant Łojasiewicz exponent. Consequently, ł(f1) = ł(f0) = ł(f) and the
function f1 has got one monomial less above Γ than f has. Continuing in this way,
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after finitely many steps we will change f into a function without terms above Γ.
Similar procedure does the same to g.

Lastly, we essentially repeat the above argument for a monomial zj with j ∈
Γ ∩ Nn0 and aj 6= bj but this time this requires some care. Namely, since the set

H :=
{

(ξα)α∈Γ∩Nn
0

: the function
∑

ξαz
α is Kouchnirenko non-degenerate

}
is Zariski open in C#(Γ∩Nn

0 ) (see e.g. [8, Théorème 6.1] or [13, Appendix]), we may
choose a real (piecewise linear) simple curve δ lying entirely in H and joining the
coefficients of f with these of g. Next, covering the curve by a finite number of
small enough closed cubes contained in H, we may sequentially modify the curve
inside each of these cubes to make it only be built of segments parallel to the
coordinate axes in R2·#(Γ∩Nn

0 ) (see Figure 1). Then, locally, along each of these
segments, one can apply the above reasoning to find that the Łojasiewicz exponent
is constant there. Consequently, ł(f) = ł(g). �

f

g

Figure 1. Modification of the curve δ (i-th step).

Comment. In the statement of Theorem 1 we can simply assume that the func-
tions f, g : (Cn, 0) → (C, 0) are Kouchnirenko non-degenerate and have the same
Newton diagrams. Indeed, if ord f = ord g = 1, that is both f and g are smooth
at 0, we clearly have ł(f) = ł(g) = 0. On the other hand, if e.g. f possesses a
non-isolated singularity at 0, then Γ(f) = Γ(g) cannot be the Newton diagram of
any isolated singularity (see [2]), hence g is also non-isolated and ł(f) = ł(g) =∞.

6. Problems

Here we ask several questions that may be worthwhile addressing.

I. Does Theorem 17 hold for formal power series over an algebraically closed
field?
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II. And what about Theorem 17 with condition (c) replaced by condition (2)?
III. And what about the Main Theorem?
IV. And what about the Łojasiewicz exponent for Milnor non-degenerate singular-

ities? (consult [11]).
V. For a function f : (Cn, 0)→ (C, 0), one can consider the Łojasiewicz exponent

Łf (∇f) of f relative to its gradient. This number is always finite, even in the
case of non-isolated singularities. For isolated singularities, we have the iden-
tity Łf (∇f) = ł(f)

1+ł(f) ([17, § 1.7, Corollaire 2]) so this number, too, depends
only on the Newton diagram for Kouchnirenko non-degenerate isolated singu-
larities. Does the same hold in the non-isolated case? And over algebraically
closed fields? Note that, by [12], this is indeed the case in the holomorphic
setting in dimension 2.
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