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RINGS AND FIELDS OF CONSTANTS OF CYCLIC

FACTORIZABLE DERIVATIONS

JANUSZ ZIELIŃSKI

Abstract. We present a survey of the research on rings of polynomial con-

stants and fields of rational constants of cyclic factorizable derivations in poly-
nomial rings over fields of characteristic zero.

1. Motivations and preliminaries

The first inspiration for the presented series of articles (some of them are joint
works with Hegedűs and Ossowski) was the publication [20] of professor Nowicki
and professor Moulin Ollagnier. The fundamental problem investigated in that
series of articles concerns rings of polynomial constants ([26], [28], [33], [29], [8]) and
fields of rational constants ([30], [31], [32]) in various classes of cyclic factorizable
derivations. Moreover, we investigate Darboux polynomials of such derivations
together with their cofactors ([33]) and applications of the results obtained for
cyclic factorizable derivations to monomial derivations ([31]).

Let k be a field. If R is a commutative k-algebra, then k-linear mapping d : R→
R is called a k-derivation (or simply a derivation) of R if d(ab) = ad(b) + bd(a)
for all a, b ∈ R. The set Rd = ker d is called a ring (or an algebra) of constants
of the derivation d. Then k ⊆ Rd and a nontrivial constant of the derivation d
is an element of the set Rd \ k. By k[X] we denote k[x1, . . . , xn], the polynomial
ring in n variables. If f1, . . . , fn ∈ k[X], then there exists exactly one derivation
d : k[X]→ k[X] such that d(x1) = f1, . . . , d(xn) = fn.
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More information on derivations one can find in the monographs [6] and [24].
They also present links of derivation theory with the Jacobian Conjecture. Because
this still unsettled conjecture one may translate into the language of derivations.
Such an equivalent formulation can be found for example in [23], Theorem 5.

There is no general effective procedure for determining the ring of constants
of a derivation, although the subject has a long tradition. One of the possible
approaches, a certain reduction of the problem, is the Lagutinskii’s procedure.
Namely, we can associate the factorizable derivation with a given derivation of the
polynomial ring over a field of characteristic zero. A derivation d : k[X]→ k[X] is
said to be factorizable if d(xi) = xifi, where the polynomials fi are of degree 1 for
i = 1, . . . , n. That procedure of association is described for example in [25]. It turns
out that in the generic case the problems of determining the fields of rational con-
stants of the initial derivation and its associated derivation are equivalent. Which
also gives us a good knowledge on polynomial constants. The challenge is that
constants of factorizable derivations are still not sufficiently investigated. We know
everything only in the case of number of variables ≤ 3, mainly thanks to the papers
by Moulin Ollagnier and Nowicki (e.g. [18], [19], [20]). For a greater number of
variables there are examined only some special cases such as Lotka-Volterra deriva-
tions (e.g. [8], [32]), derivations that appear in the Lagutinskii’s procedure applied
to Jouanolou derivations ([16]) and factorizable derivations associated with cyclo-
tomic derivations ([21]). For certain other classes of derivations there are indicated
some constants without settling whether they are the complete set of generators of
the ring of constants (e.g. Itoh [9], Cairó [4]).

The question of determining constants can be equivalently expressed in the lan-
guage of differential equations. Namely, over an arbitrary field k of characteristic
zero, if δ is a derivation of the ring k[X] (respectively: of the field k(X)) such that
δ(xi) = fi for i = 1, . . . , n, then the set k[X]δ \k (respectively: k(X)δ \k) coincides
with the set of all polynomial (respectively: rational) first integrals of a system of
ordinary differential equations

dxi(t)

dt
= fi(x1(t), . . . , xn(t)),

where i = 1, . . . , n (for more details we refer the reader to [24], subsection 1.6).

The topic is also linked to invariant theory. Namely, for every connected al-
gebraic group G ⊆ Gln(k), where k is a field of characteristic zero, there exists
a derivation d such that k[X]G = k[X]d (more information can be found, among
others, in [24], subsection 4.2).

From now on k is a field of characteristic zero. We will call a factorizable
derivation d : k[X]→ k[X] cyclic if d(xi) = xi(Aixi−1 +Bixi+1), where Ai, Bi ∈ k
for i = 1, . . . , n (in the cyclic sense, that is, we adhere to the convention that
xn+1 = x1 and x0 = xn). In particular, a derivation d : k[X]→ k[X] is said to be
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Lotka-Volterra derivation with parameters C1, . . . , Cn ∈ k (see e.g. [11], [18], [19])
if

d(xi) = xi(xi−1 − Cixi+1)

for i = 1, . . . , n (in the cyclic sense as above, that is, indices modulo n). The
systems under consideration describe a wide range of phenomena and they appear in
numerous domains of science such as population biology (inter-species interactions
in the predator-prey model) [27], chemistry (oscillations of the concentration of
substances in chemical reactions) [14], hydrodynamics (the convective instability
in the Bénard problem) [3], plasma physics (the evolution of electrons and ions)
[13], laser physics (the coupling of waves) [12], aerodynamics (the interaction of
gases in a mixture) [15], economics [4], neural networks [22] and biochemistry [4].
Further motivations and applications are presented in [1], [2], [5] and many more.

The case of Lotka-Volterra derivations in three variables was settled in [18], [19],
[20] by Moulin Ollagnier and Nowicki. For example, the existence of nontrivial
polynomial constants is determined by the following theorem (here parameters Ci
have opposite signs than in the notation above, which is of no account) from [18]:

Theorem 1. ([18], Theorem 1)
The Lotka-Volterra system  d(x) = x(Cy + z)

d(y) = y(Az + x)
d(z) = z(Bx+ y)

has a nontrivial polynomial constant if and only if one of the following cases holds:

(i) ABC + 1 = 0,

(ii) −A− 1
B = 1, −B − 1

C = 1 and −C − 1
A = 1,

(iii) C = −k2 − 1
A , A = −k3 − 1

B , B = −k1 − 1
C where, up to a permutation,

(k1, k2, k3) is one of the following triples: (1, 2, 2), (1, 2, 3), (1, 2, 4).

The rings of polynomial constants were determined in each of these cases in [20].

The article [25] contains a full description of monomial derivations (that is,
derivations which values on variables are monic monomials) in two ([25], Proposi-
tion 5.4) and in three variables ([25], Theorem 8.6) with nontrivial rational con-
stants (that is, in the field of rational functions). The results for three variables in
the generic case are based on Lotka-Volterra derivations, thoroughly investigated
before for three variables mainly in [17]. That complete characterization of all cases
for monomial derivations in two and three variables has marked at the same time
the limitations of the usefulness of the Lagutinskii’s procedure, potentially general,
and practically limited by the knowledge of constants of factorizable derivations.
It was the motivation and a starting point to deal with determining of constants
of cyclic factorizable derivations in n ≥ 4 variables.
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2. Methods and research techniques

In contrast to e.g. Jouanolou derivations ([16], [34]), where one has to show
that a constant of a positive degree does not exist, here we also deal with some
nontrivial constants. Therefore instead of obtaining a contradiction we have to
prove that a constant is a polynomial in given generators. A direct investigation
of constants of derivations of considered type came across serious problems. These
constants did not subject to the induction on degree, and the calculations turned
out to be virtually impossible to perform. Therefore, the idea proved valuable, was
to analyze, instead of constants of a derivation d, polynomials ϕ that fulfill the
condition d(ϕA)A = 0, where fA denotes the restriction of a polynomial f to the
ring of polynomials in variables with indices in the set A, where A ⊆ {1, . . . , n}.
Constants of a factorizable derivation d fulfill the condition d(ϕA)A = 0, hence
we obtained also some properties of these constants, which have been applied in
the proofs of main theorems. However the properties of polynomials ϕ such that
d(ϕA)A = 0 have turned out to be possible to prove by combinatorial and inductive
methods.

Moreover, our frequently used method of investigation of constants was the re-
striction of these constants to the polynomial ring in a smaller number of variables.
And then, after the obtainment of their properties for various subsets of variables,
we have tried to merge these data to receive some information about the shape of
these initial constants.

Another important method was study of Darboux polynomials of a derivation d.
This is a standard procedure in the case of determining rational constants, however
much rarer in the case of determining polynomial constants, as here. Particularly
important turned out to be characterizations of the coefficients of the cofactors of
strict Darboux polynomials.

The next method was an investigation of the leading monomials according to
fixed ordering. This approach originates from Gröbner bases theory, although we
did not use these bases explicitly. Namely, we tried to establish as precisely as
possible the shape of the leading monomials of elements from k[X]d according to
the standard lexicographic ordering (after a convenient choice of the initial variable
for this ordering). The aim was to delete the leading monomial using the generators,
so as we could apply induction on the ordering.

Moreover, we often employ combinatorial methods, for instance to compare the
coefficients of monomials of a given constant.

3. Volterra derivations

A Lotka-Volterra derivation with parameters Ci = 1 for all i is called a Volterra
derivation (see e.g. [2]). The work [26] presents a description of the ring of constants
of the Volterra derivation in four variables, which in this case has three algebraically
independent generators:



RINGS AND FIELDS OF CONSTANTS 217

Theorem 2. ([26], Theorem 3.1)
Let R = k[x1, . . . , x4]. Let d : R→ R be the derivation of the form

d(xi) = xi(xi−1 − xi+1)

for i = 1, . . . , 4. Then

Rd = k[x1 + x2 + x3 + x4, x1x3, x2x4].

In [26] there are also shown numerous facts for n variables. In particular, they
concern the restrictions of constants to the polynomial rings in a smaller number
of variables. Let R(m) denote the homogeneous component of R = k[x1, . . . , xn] of
degree m (since the derivation d is homogeneous, we need only search for homo-
geneous constants). For ϕ ∈ R and for each subset A ⊆ {1, . . . , n} denote by ϕA

the sum of monomials of the polynomial ϕ that depend on variables with indices
in A, that is, ϕA = ϕ|xj=0 for j /∈A

. As indicated in the previous section, to success-

fully perform complicated computations, the key idea was to investigate, instead
of constants of the derivation d, polynomials ϕ such that d(ϕA)A = 0 for various
sets A (constants of the derivation d fulfill that condition, see [26], Corollary 2.8).
This allowed to obtain some essential properties, ignoring at the same time in the
calculations of a huge number of irrelevant data, greater than for the standard
restriction. We quote below two examples of the results obtained in that way.

Proposition 3. ([26], Proposition 2.10)
Let n ≥ 3. If ϕ ∈ R(m), A = {i, i + 1} ⊆ {1, . . . , n} and d(ϕA)A = 0, then

ϕA = c(xi + xi+1)m for some c ∈ k.

Proposition 4. ([26], Proposition 2.11)
Let n ≥ 4. If ϕ ∈ R(m), A = {i, i + 1, i + 2} ⊆ {1, . . . , n} and d(ϕA)A = 0, then

ϕA ∈ k[xi + xi+1 + xi+2, xixi+2].

In [26] there are also given generalizations of various results also for Lotka-
Volterra derivations with arbitrary parameters Ci ∈ k. And as it turned out
once again (see: Jouanolou derivations, Hilbert’s fourteenth problem), the cases
of a small number of variables were more difficult (less independence in the cyclic
sense, too high ”density” of variables).

The work [28] gives a description of the ring of polynomial constants of the
five-variable Volterra derivation.

Theorem 5. ([28], Theorem 4.1)
Let R = k[x1, . . . , x5]. Let d : R→ R be the derivation of the form

d(xi) = xi(xi−1 − xi+1)

for i = 1, . . . , 5. Then

Rd = k[
5∑
j=1

xj , x1x3 + x1x4 + x2x4 + x2x5 + x3x5, x1x2x3x4x5].
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Thus, starting from five variables there appear generators, which are linear forms
of the shape: the sum of products of nonconsecutive variables (obviously the sum
of all variables is also a trite case of this). It turns out that for n variables the ring
of constants of the Volterra derivation is a polynomial ring, which generators are
of a such form, plus the product of all variables for n odd (analogously to the case
n = 5) and two products of variables of the same parity for n even (analogously to
the case n = 4). It is conjectured in [28] that analogous results as for n ≤ 5 remain
valid also for an arbitrary number of variables, which was confirmed in [7].

In [28] the methods of proofs are based upon obtaining more extensive properties
of polynomials ϕ fulfilling the condition d(ϕA)A = 0 for suitable sets A. Amidst
these facts was, among others:

Lemma 6. ([28], Lemma 3.1)
Let n ≥ 5. If ϕ ∈ R(m), A = {i, i + 2, i + 3} ⊆ {1, . . . , n} and d(ϕA)A = 0, then

ϕA ∈ k[xi, xi+2 + xi+3].

From which we can obtain the following, this time stronger properties of con-
stants of the derivation d:

Lemma 7. ([28], Lemma 3.2)
Let n ≥ 5. If ϕ ∈ Rd(m) and A = {i, i + 2, i + 3} ⊆ {1, . . . , n}, then ϕA ∈
k[xi + xi+2 + xi+3, xi(xi+2 + xi+3)].

Proposition 8. ([28], Proposition 3.5)
Let n ≥ 5. If ϕ ∈ Rd(m) and A = {i, i + 1, i + 2, i + 3} ⊆ {1, . . . , n}, then ϕA ∈
k[xi + xi+1 + xi+2 + xi+3, xixi+2 + xixi+3 + xi+1xi+3].

4. Darboux polynomials and Lotka-Volterra derivations

Results of [33] are of two kinds. First, there are described the cofactors of
strict Darboux polynomials of four-variable Lotka-Volterra derivations. Let R =
k[x1, . . . , xn]. A polynomial g ∈ R is called strict if it is homogeneous and not
divisible by the variables x1, . . . , xn. For α = (α1, . . . , αn) ∈ Nn we introduce the
notation Xα = xα1

1 · · ·xαn
n . Clearly, every nonzero homogeneous polynomial f ∈ R

has a unique presentation f = Xαg, where Xα is a monic monomial and g is a
strict polynomial. Recall also that a nonzero polynomial f is said to be a Darboux
polynomial of a derivation δ : R → R if δ(f) = Λf for some polynomial Λ ∈ R.
We will call Λ a cofactor of f . In the following lemma we give the aforementioned
description of cofactors:

Lemma 9. ([33], Lemma 3.2)
Let n = 4. Let g ∈ R(m) be a Darboux polynomial of a Lotka-Volterra derivation
d with the cofactor λ1x1 + . . . + λ4x4. Let i ∈ {1, 2, 3, 4}. If g is not divisible by

xi, then λi+1 ∈ N. More precisely, if g(x1, . . . , xi−1, 0, xi+1, . . . , x4) = x
βi+2

i+2 G and

xi+2 6 | G, then λi+1 = βi+2 and λi+3 = −Ci+2λi+1.

Consequences of that lemma, which is a fairly technical nature, are more elegant:
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Corollary 10. ([33], Corollary 3.3)
Let n = 4. If g ∈ R(m) is a strict Darboux polynomial, then its cofactor is a linear
form with coefficients in N.

Lemma 11. ([33], Lemma 3.4)
Let n = 4. If d(f) = 0 and f = Xαg, where g is a strict polynomial, then d(Xα) = 0
and d(g) = 0.

In other words, for an arbitrary nonzero constant, in the factorization of the
above type both the monomial factor and the strict factor are constants, too.
Lemma 9 has turned out to be useful for investigation of polynomial constants
([33], [29]) and of rational constants ([30], [31], [32]). That lemma together with
its potential generalizations seem crucial in a further study of rational constants.

The second result of [33] was a description of the ring of constants of four-
variable Lotka-Volterra derivations in the generic case. It turns out that in such
a case the ring of constants is trivial, that is, equal to k ([33], Theorem 5.1 and
Corollary 5.2).

Among the methods used, besides the investigation of cofactors of strict Darboux
polynomials, the second approach was to generalize results for Volterra derivations
from [26] and [28] to cases of arbitrary parameters Ci, for example:

Proposition 12. ([33], Lemma 4.4)
Let n ≥ 3. If ϕ ∈ R(m), A = {i, i + 1} ⊆ {1, . . . , n} and d(ϕA)A = 0, then

ϕA = a(xi + Cixi+1)m for some a ∈ k.

The paper [29] gives a description of the rings of constants of four-variable
Lotka-Volterra derivations depending on the parameters Ci, except the case when
the product C1C2C3C4 is a root of unity not equal to 1 (see [8]). Denote by N+

the set of positive integers, and by Q+ the set of positive rationals.

Consider the three sentences:

s1 : C1C2C3C4 = 1.

s2 : C1, C3 ∈ Q+ and C1C3 = 1.

s3 : C2, C4 ∈ Q+ and C2C4 = 1.

In case s2 let C1 = p
q , where p, q ∈ N+ and gcd(p, q) = 1. In case s3 let C2 = r

t ,

where r, t ∈ N+ and gcd(r, t) = 1. Denote by ¬si the negation of the sentence si.
We assume that C1C2C3C4 is not nontrivial root of unity.

Theorem 13. ([29], Theorem 5.1)
Let R = k[x1, x2, x3, x4] and d : R→ R be a derivation of the form

d =
4∑
i=1

xi(xi−1 − Cixi+1)
∂

∂xi
,

where C1, C2, C3, C4 ∈ k. Then the ring of constants of d is always finitely gen-
erated over k with at most three generators. In each case it is a polynomial ring,
more precisely:
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(1) if s1 ∧ ¬s2 ∧ ¬s3, then Rd = k[x1 + C1x2 + C1C2x3 + C1C2C3x4],

(2) if ¬s1 ∧ ¬s2 ∧ ¬s3, then Rd = k,

(3) if ¬s1 ∧ ¬s2 ∧ s3, then Rd = k[xt2x
r
4],

(4) if ¬s1 ∧ s2 ∧ ¬s3, then Rd = k[xq1x
p
3],

(5) if s1 ∧ ¬s2 ∧ s3, then Rd = k[x1 + C1x2 + C1C2x3 + C1C2C3x4, x
t
2x
r
4],

(6) if s1 ∧ s2 ∧ ¬s3, then Rd = k[x1 + C1x2 + C1C2x3 + C1C2C3x4, x
q
1x
p
3],

(7) if s2 ∧ s3, then Rd = k[x1 + C1x2 + C1C2x3 + C1C2C3x4, x
q
1x
p
3, x

t
2x
r
4].

Techniques of proofs used in [29] are extension of the methods from the former
articles. For example, a useful tool is:

Lemma 14. ([29], Lemma 3.1)
Let n ≥ 4, ϕ ∈ R(m), i ∈ {1, . . . , n} and A = {i, i + 1, i + 2}. Let Ci ∈ Q+

and Ci = p
q , where p, q ∈ N+ and gcd(p, q) = 1. If d(ϕA)A = 0, then ϕA ∈

k[xi + Cixi+1 + CiCi+1xi+2, x
q
ix
p
i+2].

While the complementary to the Lemma 14 case of Ci /∈ Q+ had already been
resolved in [33] (Lemma 4.5).

5. Fields of rational constants

The article [30] explores the fields of rational constants, that is, constants belong-
ing to the field of rational functions. Recall that for any derivation δ : k[X]→ k[X]
of the polynomial ring in n variables there exists exactly one derivation δ̄ : k(X)→
k(X) of the field of rational functions in n variables such that δ̄|k[X] = δ. By a
rational constant of the derivation δ : k[X] → k[X] we mean the constant of its
corresponding derivation δ̄ : k(X) → k(X). The rational constants of δ form a
field. For simplicity, we write δ instead of δ̄. In [30] it is shown the following
theorem:

Theorem 15. ([30], Theorem 2)
If d is the four-variable Volterra derivation, then

k(X)d = k(x1 + x2 + x3 + x4, x1x3, x2x4).

Thus, in this case k(X)d is the field of fractions of the ring k[X]d (which is not
true in general, see e.g. [31], Example 1).

Theorem 15 was proved using an analysis of the cofactors of strict Darboux
polynomials. In particular, it was shown ([30], Lemma 2) that every strict Dar-
boux polynomial of the four-variable Volterra derivation is also a constant of this
derivation.

The field of rational constants of a four-variable Lotka-Volterra derivation in the
generic case was determined in [31]. Namely, it was demonstrated that in such a
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generic case nontrivial rational constants do not exist ([31], Theorem 2). It was
also determined the field of rational constants in some another case ([31], Theorem
2 again). In both cases these fields of constants are the fields of fractions of the
rings of constants.

An important aspect of the results obtained are their applications. Therefore, in
[31] there were investigated, similarly to [25], monomial derivations, but this time
in four variables. Recall that a derivation δ : k(X)→ k(X) is monomial if

δ(xi) = xβi1

1 · · ·xβin
n

for i = 1, . . . n, where each βij is an integer. It is shown how one can determine
its rational constants using two tools, which are a description of strict Darboux
polynomials ([33], Lemma 3.2) and so far proven results on constants of Lotka-
Volterra derivations. This was demonstrated on the following example of a class of
monomial derivations depending on four natural parameters si.

Theorem 16. ([31], Theorem 5)
Let s1, . . . , s4 ∈ N+, where (s1, s3) 6= (1, 1) and (s2, s4) 6= (1, 1). Let D : k(X) →
k(X) be a derivation of the form

D(xi) = x
si−1+1
i−1 xsi+1

i x
si+2

i+2

for i = 1, . . . , 4 (in the cyclic sense). Then k(X)D = k.

As we remember, a factorizable derivation d : k[X] → k[X] is called cyclic if
d(xi) = xi(Aixi−1+Bixi+1), where Ai, Bi ∈ k for i = 1, . . . , n (and we adhere to the
convention that xn+1 = x1 and x0 = xn). Suppose that Ai 6= 0 for all i. Consider
an automorphism σ : k[X] → k[X] defined by σ(xi) = A−1

i+1xi for i = 1, . . . , n.

Then ∆ = σdσ−1 is also a derivation of the ring k[X]. Moreover, f is a nontrivial
polynomial (respectively: rational) constant of a derivation d if and only if σ(f) is
a nontrivial polynomial (respectively: rational) constant of a derivation ∆. Clearly
σ−1(xi) = Ai+1xi and ∆(xi) = xi(xi−1 − Cixi+1) for Ci = −BiA−1

i+2 (we allow
Ci = 0) and i = 1, . . . , n. We can proceed similarly if Ai = 0 for some i but Bi 6= 0
for all i.

A characterization of all four-variable Lotka-Volterra derivations with a nontriv-
ial constant in the field of rational functions is given in [32]:

Proposition 17. ([32], Corollary 2)
If d is a four-variable Lotka-Volterra derivation, then k(X)d contains a nontrivial
rational constant if and only if at least one of the following four conditions is
fulfilled:

(1) C1C2C3C4 = 1,

(2) C1, C3 ∈ Q and C1C3 = 1,

(3) C2, C4 ∈ Q and C2C4 = 1,

(4) C1C2C3C4 = −1 and Ci = 1 for two consecutive indices i.
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Note that the existence of a nontrivial polynomial constant is equivalent to
similar four conditions, wherein in conditions (2) and (3) the set Q is replaced by
Q+ (a consequence of Theorem 1.2 from [8]).

In many of the cases we can describe the full fields of constants. Namely, consider
the sentences:

s̃2 : C1, C3 ∈ Q and C1C3 = 1.

s̃3 : C2, C4 ∈ Q and C2C4 = 1.

Sentences s1, s2, s3 and numbers p, q, r, t are as in Theorem 13. We define the
sentence:

s4 : C1C2C3C4 = −1 and Ci = 1 for two consecutive indices i.

If the sentence s4 is true we define the polynomial f4, namely for C1 = C2 = 1
let

f4 = x2
1 +x2

2 +x2
3 +C2

3x
2
4 +2x1x2−2x1x3−2C3x1x4 +2x2x3−2C3x2x4 +2C3x3x4,

for the other possibilities one has to rotate the indices appropriately.

Theorem 18. ([32], Theorem 4.1)
Let d : k(X)→ k(X) be a four-variable Lotka-Volterra derivation with parameters
C1, C2, C3, C4 ∈ k. Then:

(1) if ¬s1 ∧ ¬s̃2 ∧ ¬s̃3 ∧ ¬s4, then k(X)d = k,

(2) if s1 ∧ ¬s̃2 ∧ ¬s̃3, then k(X)d = k(x1 + C1x2 + C1C2x3 + C1C2C3x4),

(3) if ¬s1 ∧ ¬s̃2 ∧ ¬s̃3 ∧ s4, then k(X)d = k(f4),

(4) if ¬s1 ∧ ¬s̃2 ∧ s3 ∧ ¬s4, then k(X)d = k(xt2x
r
4),

(5) if ¬s1 ∧ s2 ∧ ¬s̃3 ∧ ¬s4, then k(X)d = k(xq1x
p
3),

(6) if ¬s1 ∧ ¬s̃2 ∧ s3 ∧ s4, then k(X)d = k(f4, x
t
2x
r
4),

(7) if ¬s1 ∧ s2 ∧ ¬s̃3 ∧ s4, then k(X)d = k(f4, x
q
1x
p
3),

(8) if s1 ∧ ¬s̃2 ∧ s3, then k(X)d = k(x1 + C1x2 + C1C2x3 + C1C2C3x4, x
t
2x
r
4),

(9) if s1 ∧ s2 ∧ ¬s̃3, then k(X)d = k(x1 + C1x2 + C1C2x3 + C1C2C3x4, x
q
1x
p
3),

(10) if s2 ∧ s3, then k(X)d = k(x1 +C1x2 +C1C2x3 +C1C2C3x4, x
q
1x
p
3, x

t
2x
r
4).

The proof of the above theorem also uses investigations of the cofactors of strict
Darboux polynomials.

6. Rings of constants in n variables

The paper [8] resolves in a complete way the problem of describing the rings of
constants of Lotka-Volterra derivations for an arbitrary number of variables. The
case Ci = 1 for all i was determined in [7]. All other cases are included in the
following theorem:
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Theorem 19. ([8], Theorem 1.1 and Theorem 1.2)
The ring of constants of Lotka-Volterra derivation in n ≥ 4 variables is finitely
generated over k with at most 3 generators, if there exists i such that Ci 6= 1. In
every case it is a polynomial ring.

In [8] all of these rings of constants are determined in an effective way depending
on n. It is presented in the following Theorems 20 and 25.

Let f =
∑n
i=1(

∏i−1
j=1 Cj)xi = x1 + C1x2 + C1C2x3 + . . . + C1C2 · · ·Cn−1xn.

Moreover, consider nonempty subsets A ⊆ Zn of integers mod n closed under
i 7→ i + 2. If n is odd then A = Zn, if n is even we have two additional subsets
E = {2i | i ≤ n/2} and O = {2i − 1 | i ≤ n/2}. For a given A we define a
polynomial gA if there exist θi ∈ N+ for i ∈ A, such that θi+2 = Ciθi. We can
choose the set of θi coprime, then that numbers are uniquely determined. Then let
gA =

∏
i∈A x

θi
i .

Theorem 20. ([8], Theorem 1.1)
Let n > 4 and let there exist i such that Ci 6= 1. Then the number of generators of
the ring of constants of the Lotka-Volterra derivation with parameters C1, . . . , Cn
is equal to:

• 0 if
∏
Ci 6= 1 and no gA is defined;

• 3 if n is even and both gE and gO are defined;
• 2 if n is odd and gZn

is defined, or n is even and
∏
Ci = 1 but only one of

gE and gO is defined;
• 1 in all other cases.

The generators are always those polynomials gA that are defined together with f if∏
Ci = 1.

To prove the theorem above, we have to show that the aforementioned generators
are constants, which is a quick calculation, that these generators are algebraically
independent, which can be shown by standard methods using the Jacobian, and
that there are no constants not belonging to the polynomial ring with generators
given above, which is practically entire difficulty of the proof. In order to establish
this last condition we tried to describe as precisely as possible the shape of the
leading monomials of polynomial constants according to the standard lexicographic
ordering on monomials of a fixed degree. To then be able to eliminate such a
leading monomial using generators and to be able to apply the induction (on the
aforementioned ordering). This is achieved by several auxiliary facts. We quote
below a selection of them.

Assume Cn 6= 1. Consider the standard lexicographic ordering. Suppose that h
is a counterexample to Theorem 20 with the smallest leading monomial according
to the ordering under consideration. Let m1 =

∏n
i=1 x

αi
i be that leading monomial.

Let M(h) denote the set of monomials occurring in h with a nonzero coefficient.
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Proposition 21. ([8], Proposition 2.5)
Suppose m =

∏n
i=1 x

γi
i is a monomial and r is a positive integer with the following

properties:

(1) γn = αn,
(2) γ2i−1 = α2i−1 for 1 ≤ i ≤ r,
(3) γ2i = C2i−2γ2i−2 for 1 ≤ i ≤ r − 1,
(4) γ2r 6= C2r−2γ2r−2.

Then m /∈M(h).

Note that the above proposition implies that the even-indexed exponents of m1

are uniquely determined by αn. The odd-indexed exponents are determined only
up to a certain extent, as described in the following proposition.

Proposition 22. ([8], Proposition 2.7)
Suppose m =

∏n
i=1 x

γi
i ∈ M(h) is a monomial and r < n/2 is a positive integer

with the following properties:

(1) γn = αn (or Cn = 0),
(2) γ2i−1 = α2i−1 for 1 ≤ i ≤ r,
(3) γ2i = α2i for 1 ≤ i ≤ r.

Then there exists a nonnegative integer β2r−1 such that C2r−1(γ2r−1 − β2r−1) =
γ2r+1 and m′ = m(x2r/x2r−1)β2r−1 ∈M(h). In particular, there exist nonnegative
integers β′2i−1 such that C2i−1(α2i−1 − β′2i−1) = α2i+1 for 1 ≤ i < n/2.

The next result enables further reductions and some kind of substitutions of
monomials in a constant h and, on the other hand, forces certain conditions on the
parameters Ci.

Proposition 23. ([8], Corollary 2.9)
Suppose Cn 6= 0 and m =

∏
xγii ∈ M(h) is such that γn = αn, γ1 = α1 and

γ2 = α2 = Cnαn. Then l = γ1 − Cn−1γn−1 is a nonnegative integer and m′ =
m(xn/x1)l ∈M(h). In particular, α1 − Cn−1αn−1 is a nonnegative integer.

It also turns out that some types of constants may occur only under certain
conditions on the product of parameters Ci.

Proposition 24. ([8], Proposition 2.10)
Let h, g ∈ k[X]d, where g is a monomial. If the leading monomial of h is m1 = xs1g
with s > 0, then C1C2 · · ·Cn is s-th root of unity, in particular, all Ci 6= 0. If
further n > 4, then C1C2 · · ·Cn = 1.

We now proceed to the case n = 4. In this case it may occur some generator of
the ring of constants, which does not occur for n > 4. Namely, if C1C2C3C4 = −1
and for two consecutive indices i we have Ci = 1 (see already [26], Proposition 4.4,
condition (4)). Without loss of generality, if C1 = C2 = 1 and C4 = −1/C3, then
that generator is equal to

f4 = x2
1 +x2

2 +x2
3 +C2

3x
2
4 +2x1x2−2x1x3−2C3x1x4 +2x2x3−2C3x2x4 +2C3x3x4.
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The following theorem describes the ring of constants for 4 variables.

Theorem 25. ([8], Theorem 1.2)
Assume n = 4 and let there exist i such that Ci 6= 1. Then the number of generators
of the ring of constants of the Lotka-Volterra derivation with parameters C1, . . . , Cn
is equal to:

• 0 if
∏
Ci 6= 1 and none of gO, gE , f4 is defined;

• 3 if both gE and gO are defined;
• 2 if

∏
Ci = 1 but only one of gE and gO is defined or one of parameters

Ci is equal to −1 and the other three are equal to 1;
• 1 in all other cases.

The generators are always those polynomials gA that are defined together with f4

if
∏
Ci = −1 and two consecutive parameters are equal to 1 or together with f if∏

Ci = 1.

The case of 4 variables has turned out to be the most difficult to prove. Al-
ready in the previously cited facts occurred some distinctions for this case (see
e.g. Proposition 24). Also needed were results specific to the four variables, for
example:

Proposition 26. ([8], Proposition 2.11)
Let n = 4 and h, g ∈ k[X]d, where g is a monomial. Assume either every Ci is
positive rational, or C4 is not. If the leading monomial of h is m1 = xs1g with
s > 0, then C1C2C3C4 = ±1. If C1C2C3C4 = −1, then C2 = 1 and at least one of
C1 = 1 or C3 = 1 also holds.
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[12] W. E. Lamb, Theory of an Optical Maser, Phys Rev. A 134 (1964), 1429.

[13] G. Laval, R. Pellat, Plasma Physics, Proceedings of Summer School of Theoretical Physics,

Gordon and Breach, New York 1975.
[14] A. J. Lotka, Analytical Note on Certain Rhythmic Relations in Organic Systems, Proc. Natl.

Acad. Sci. U.S. 6 (1920), 410–415.
[15] R. Lupini, G. Spiga, Chaotic Dynamics of Spatially Homogeneous Gas Mixtures, Phys. Flu-

ids. 31 (1988), 2048–2051.

[16] A. J. Maciejewski, J. Moulin Ollagnier, A. Nowicki, J.-M. Strelcyn, Around Jouanolou non-
integrability theorem, Indag. Math. (N.S.) 11 (2000), 239–254.

[17] J. Moulin Ollagnier, Liouvillian first integrals of homogeneous polynomial 3-dimensional

vector fields, Colloq. Math. 70 (1996), 195–217.
[18] J. Moulin Ollagnier, Polynomial first integrals of the Lotka-Volterra system, Bull. Sci. Math.

121 (1997), 463–476.

[19] J. Moulin Ollagnier, Rational integration of the Lotka-Volterra system, Bull. Sci. Math. 123
(1999), 437–466.

[20] J. Moulin Ollagnier, A. Nowicki, Polynomial algebra of constants of the Lotka-Volterra sys-

tem, Colloq. Math. 81 (1999), 263–270.
[21] J. Moulin Ollagnier, A. Nowicki, Constants of cyclotomic derivations, J. Algebra 394 (2013),

92–119.
[22] V. W. Noonburg, A Neural Network Modeled by an Adaptive Lotka-Volterra System, SIAM

J. Appl. Math. 49 (1989), 1779–1792.

[23] A. Nowicki, Commutative bases of derivations in polynomial and power series rings, J. Pure
Appl. Algebra 40 (1986), 275–279.

[24] A. Nowicki, Polynomial derivations and their rings of constants, Nicolaus Copernicus Uni-

versity, Toruń 1994.
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[31] J. Zieliński, Rational constants of generic LV derivations and of monomial derivations, Bull.

Pol. Acad. Sci. Math. 61 (2013), 201–208.
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[34] H. Żo la̧dek, Multi-dimensional Jouanolou system, J. Reine Angew. Math. 556 (2003), 47–78.

Nicolaus Copernicus University, Faculty of Mathematics and Computer Science, ul.
Chopina 12/18, 87-100 Toruń, Poland
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