
aleksander Gemel
Paula Quinon

THE APPROXIMATE NUMBERS SYSTEM 
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1. Introduction

The theory of conceptual spaces is intended to provide a framework for 
models of both symbolic and non-symbolic representations of knowledge and 
information (Gärdenfors 2000). As such, it seems to us to be very clearly suit-
ed to modeling pre-verbal representations belonging to a so-called core cogni-
tion, whose existence is postulated by cognitive developmental psychologists 
(Feigenson et al., 2004; Carey, 2009). In this paper we propose a treatment of 
representations of quantity that embraces both symbol-based and pre-verbal nu-
merical concepts.

The representations we aim to study are related to the Approximate Num-
ber System (ANS). Cognitive psychologists claim that humans share with an-
imals an abstract sense of quantity: they have a so-called “number sense”. To 
“number sense” amounts two core systems of representations, which get activat-
ed by different core mechanisms: the ANS is one of these mechanisms (Dehaene 
1997, 2008; Gallistel 1993; Feigenson et al., 2004; Carey, Sarnecka, 2006).

The ANS is a core system in the sense that it is present in human apprehen-
sion of quantities before verbal conceptual these of quantities appears. But, it is 

1 The core idea of this paper was first formulated in a private conversation of the second 
author (the authors’ names are listed in alphabetical order) with Jakub Szymanik in the summer 
2010. The research of the second author has been supported by the IEF FP7 Marie Curie Fellow-
ship “Numbers” (PIEF-GA-2011-301470). We wish to express our gratitude to Peter Gärden-
fors for comments on an earlier version of this paper.
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claimed, it also underlies symbolic number-concept creation and it is active in the 
processing of quantitative information for the entire life of an individual. Firstly 
it reacts to nonverbal input and this remains the case through the whole lifespan 
(Halberda, Feigenson, 2008), it also gets activated through symbolic input. To 
exemplify the functioning of the ANS and the ANS-related representations, let 
us consider the following case: the reaction to a set of 17 elements corresponds 
to the seventeenth element of the ANS-sequence, i.e. a set containing 17 with 
some specific neighboring area.

It is not our objective to postulate anything about the relation between exact 
number names, i.e. numerals, and representations related to the ANS (Halberda, 
Feigneson, 2008; Mussolin et al., 2012; Wagner, Johnson, 2011; see also Nagen, 
Sarnecka, 2015). Instead, we observe that numerals are in certain contexts inter-
preted as vague terms (Krifka, 2009; Solt, 2011). It might seem surprising, as at 
first glance there is nothing less vague than a number. “Seven” refers to seven; 
“twelve dwarfs” are twelve entities of the type “dwarf”, etc. Naturally, there are 
some numerical expressions that embrace vagueness, like expressions consist-
ing of a numeral and a modifier (e.g., “roughly ten”, “more or less a hundred”, 
or “about twenty”) or generalized numerical quantifiers (e.g., “more” or “little”, 
when applied to discrete sets of entities, etc.); but vagueness is usually not at-
tributed to exact number names (i.e. numerals). Nevertheless, when the use of 
language is studied more carefully, one can see that in some contexts numerals 
behave like vague terms. This is the case, for example, in expressions like “there 
are 100 people in the room” or “two thousand people participated in the demon-
stration”, in which case the intention of the speaker is to approximate the num-
ber of people (Dehaene, 1997, 2008).

Our aim in this paper is to conduct a preliminary study of a possible correla-
tion between three concepts: exact numerals, in particular when used as vague 
quantifiers, ANS-related representations as a (naturalized) semantics for such 
expressions, and a model of the ANS-related representations in the framework of 
conceptual spaces. Our study amounts to an overall understanding of the struc-
ture of the ANS.

It should be clear from the beginning that we work under several arbitrary 
assumptions. First, we work in a paradigm in which “number sense” exists. Sec-
ond, we are primarily interested in theoretical investigation and no experimen-
tal study has been proposed to verify whether there really exists a correlation 
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between ANS-related representations and symbolic representations of exact 
numerals used as vague quantifiers. Conducting such a study would be very valu-
able not only for the current endeavour; it would also shed additional light on the 
nature of the ANS.

2. Two core systems of numerical representation 
and exact numerals

According to a paradigm defended by many cognitive scientists (Spelke, 
et al., 2007; Carey, 2009), at the basis of human numerical abilities lay two innate 
core cognitive systems responsible for pre-verbal representations of quantitative 
content, which in some way support interpretation of numerical expressions 
when the symbolic concept of a number is created: the system of parallel individ-
uation (which allows identification in an exact way of sets up to four elements); 
and the system of approximate numbers (which allows approximation of cardinali-
ty of sets bigger than five elements) (Feigenson et al., 2004).

2.1. Approximate Number System

The system of approximate numbers (ANS) is a cognitive system that pro-
vides a mental representation of the approximate quantity of elements in the set. 
The size of the ANS-related representation is proportional to the number of per-
ceived units and for this reason ANS-related representations are often referred to 
as analogue magnitude representations (ANRs). The analogue characteristic of 
the ANS means that all input provided by the system are represented by contin-
uous data. In other words, a mental representation of a set consisting of 20 ele-
ments will be about twice as large as the mental representation of a set consisting 
of 10 elements.

The ANS-related representations work as an interconnected whole: an ap-
proximation of the cardinality of a given set is possible because it is put into cor-
respondence with other representations. All estimations of size happen through 
comparison to the rest of elements. Comparisons of sizes of multiple sets are 
based on the function of their ratio. In other words, the distinction between 
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a 10-element set and a 20-element set is as difficult to make as the distinction 
between 20- and 40-element sets, since in both cases the ratio of the amount 
of elements in the sets is 1:2. The straightforward consequence of this observa-
tion is that the difficulty of discriminating between two sets is not dependent on 
absolute difference between their cardinalities. This seems quite intuitive when 
we analyze a case in which the absolute difference is the same. Let us take two 
pairs of sets: the first pair consisting of a 10-element set and a 20-element set, 
and the other consisting of a 200-element set and a 210-element set. Although 
the absolute difference between the amounts of the elements of two sets is 10, 
it is intuitively correct, and also experimentally proven, that it is much easier to 
distinguish between the first pair of sets than the second.

Two effects describe behaviour of the ANS:
1) the size effect, when the absolute difference between the two pairs of sets is 

constant, then sets with a smaller number of elements are easier to discriminate. 
This relation is illustrated by the example described above;

2) the distance effect, according to which it is easier to discriminate sets that 
differ by a significantly large number of elements. For instance, it is easier to no-
tice the difference between 20 and 35 elements in the set then between 20 and 
23 elements in the set.

2.2. Parallel Individuation System

The Parallel Individuation System (PIS) is not a quantity-specific, since it 
is not directly intended to represent numbers. Instead it is intended to create 
and sustain, in working memory, mental models consisting of a small number 
of objects – such as things, sounds, events, etc. The small number of individuals 
constituting the mental representation is a result of human cognitive limita-
tions: in particular, the capacity of the working memory is usually limited to 
4 objects at a time. Unlike the ANS, which is responsible for analogue repre-
sentations of approximate cardinalities of sets as continuous wholes, the PIS is 
responsible for the representation of separate individuals. That is, the parallel 
individuation system provides no common symbol for “two” or “three” ele-
ments, but offers two or three separate symbols for each element respectively 
(each of the separate symbols may also carry information concerning its prop-
erties, or specifying its type). 
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2.3. Linguistic Number System

None of the presented above innate cognitive systems can provide repre-
sentations of the exact-number concept. The PIS provides representations only 
for up to four elements, and is not quantity-specific. The ANS accounts for ap-
proximate values. Cognitive scientists claim that exact numbers representations 
appear in consequence of functioning of the symbolic cognitive system: the Lin-
guistic Number System (LNS). This system consists of numerals and also of var-
ious types of quantitative quantifiers. Symbols get their interpretation through 
the core cognitive systems, but also through interactions with other concepts in 
the process called conceptual “bootstrapping”.

3. The ANS and vagueness

An inherent feature of the ANS is the approximate or vague character of 
both the inputs it processes and the representations these inputs activate. Nu-
meral expressions that first come to mind in relation to the ANS are general-
ized quantifiers such as “many”, “little”, “more”, “less”, or “equally”; or numerical 
quantifiers used with a modifiers such as “roughly 20” or “about 1000”. In some 
contexts exact numerals are also used to approximate quantities. This paper is 
principally devoted to the third case. A prototypical example of use of an exact 
numeral to approximate a quantity is, for instance, when one says “this morning 
there were 100 people in the lecture hall” in order to estimate the number of 
people participating in some gathering.

In this paper we assume that the correct semantics for exact natural num-
bers, especially when used as vague quantifiers, is the ANS-related system of rep-
resentations. It seems plausible since, as it is claimed by cognitive scientists, it 
is exactly this system of representations that gets activated by any quantitative 
input asserted without counting elements. This means that exact numbers used 
in a specific context and for a specific purpose (i.e. to estimate cardinalities bigger 
than four) may be considered vague terms. For instance, when one says “there 
are 100 people in the room” or “there are 1000 leaves on the tree”, or “4000 peo-
ple participated in the event”, the objective of the speaker clearly does not consist 
in providing the exact cardinality of the set, but just in approximating it.
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3.1. Vagueness

Traditionally, the concept of vagueness relates to terms. A vague term is 
a term that has borderline cases of interpretation: when we say that the term “red” 
is vague it means that there are cases of redness that are difficult for a human to 
classify as red. In other words the semantics for vague terms is characterized by 
the existence of so-called borderline cases. According to Shapiro, who adopts the 
definition given by McGee and McLaughlin, an “object a is the borderline case 
of predicate F, if Fa is ‘unsettled’ i.e., if a is not determinately an F, nor is a deter-
minately non-F” (Shapiro, 2006: 7). The technical term “determinately”, used in 
the above definition, was introduce by McGee and McLaughlin as follows: “to say 
that an object a is determinately an F means that the thoughts and practices of 
speakers of the language determine conditions of application for F, and the facts 
about a determine that these conditions are met” (McGee, McLaughlin, 1994).

Besides vague terms related to a quality (ex. bald, old), there are numerical 
quantifiers that are vague (“many”, “little”, “more”, “less”, “about 100”). More-
over, and this is what we study in this paper, even exact numerals, when used in 
specific contexts, can also be considered vague terms. Strictly speaking we are 
interested in understanding semantics underlying exact numerals when these are 
used to estimate cardinalities bigger than four, and behave as vague expressions. 

As we mentioned above, a term is vague if it has borderline cases of interpre-
tation, and some object can be called a borderline case of some predicate if the 
thoughts and practices of speakers of the language don’t determine the perfect 
conditions of application for this predicate, and if facts about this object do not 
determine whether these conditions are met. Thus, in the context of the rela-
tionship between the ANS and vagueness, the question is whether the phrase 
“one hundred”, used to estimate the approximate number of leaves on the tree, 
has borderline cases of interpretation. It seems obvious that the answer to this 
question is yes, since there are senses of “100” that are difficult for a human to 
classify as 100 when she is using the ANS. For instance, if someone asks a person 
to estimate the number of leaves on two trees, consisting of 100 leaves on the 
first tree and 103 leaves on the second, the answer would be probably “100” for 
both. The numeral “100” is used as a vague quantifier and it is so independently 
of speaker’s intentions (whether she aimed at providing precise information or 
whether she just wanted to approximate).

Observe that since the representations provided by the ANS are vague, the 
size of the representation of the number 3 can’t be exactly half as long as the rep-
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resentation of number 6. Moreover, the vague nature of the ANS means that the 
boundaries of representations are blurred, which entails the possibility of confu-
sion between two adjacent numerical representations. This phenomenon is in 
line with the characteristics of ANS size and distance effects. As demonstrated by 
numerous studies of the ANS, these effects are reflected in the difficulty of distin-
guishing, for example, 20- and 21-element sets from each other. Therefore, the 
first difficulty in modeling an ANS-related representation system in conceptual 
space consists in the necessity of considering the blurred nature of the boundar-
ies of these representations. As we discussed above, the effect of blurred bound-
aries on the conceptual spaces model is specific to models of vague terms, where 
one uses clusters of prototypes.

3.2. Spatial arrangement of ANS numerical representations

Due to the analogue nature of the ANS, its numerical representations do re-
flect quantitative intuitions in such a way that they are best described with spatial 
categories. The type of representations that ANS generates is called analogue 
magnitude representations (AMRs).2 They are analogue because the neural enti-
ties that they activate are direct analogues of the magnitudes they represent. The 
particular type of AMRs that we are modeling activates in reaction to discrete 
quantitative magnitudes.

In the construction of the model, we use the idea that ANS-related repre-
sentations are best characterized by spatial dimensions (Dehaene 1997, 2008; 
Carey, Sarnecka 2006). Thus the natural tool for modeling the representational 
structure of ANS-magnitudes appears to be the geometric representation mod-
el proposed by Peter Gärdenfors, known as the theory of conceptual spaces 
(Gärdenfors 2000).

4. Conceptual spaces

The main thesis of the theory of conceptual spaces developed by Gärden-
fors is that the meanings of words can be represented as an organized spatial 
geometrical structure. Such a structure supports representation of many words 

2 Beck (2014) provides a philosophical introduction to AMRs.
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simultaneously and provides a geometrical model for language representation. 
Concepts are represented as regions containing points in a one-dimensional or 
multidimensional space. Objects belonging to the extension of reference of the 
term being modeled are mapped onto these points. There is a metric (or a dis-
tance function) within the spaces. The distance between points expressed by the 
metric corresponds to some kind of similarity between the qualities of the points.

In the most general terms a metric is defined in the following way:

Definition:3 Consider a space S. A function f defined on a space S is a metric 
for S iff for all points a, b, c ∈ S:

(i) f (a, b) ≥ 0, with f (a, b) = 0 iff a = b;
(ii) f (a, b) = f (b, a);
(iii) f (a, b) ≤ f (a, c) + f (c, b).

The metric is used to measure a degree of similarity between two points 
in the conceptual space. Quality dimensions, which can be taken into account, 
are of different types. They can be one of the three ordinary spatial dimensions 
– height, width, and depth – or some other physically measurable quality such 
as temperature, weight, brightness, or pitch. Finally they can have an abstract 
non-sensory character. The closer the two points are to one another, the more 
similar they are: if point x is closer to point y than to point z, then x is more simi-
lar to y than to z. In other words, the closer that representations of two points are 
placed in the space, the more similar are the objects represented by these points. 
Similarity can hence be defined as a monotonically decreasing function of the 
distance expressed by a metric, defined on the space.

Finally, concepts are represented as regions of conceptual space (sets of 
points). For example, red is a certain region in color space. But there is an import-
ant condition: not just any set of points in a space is a region of conceptual space 
in natural language, but only those regions that tend to have a specific topolog-
ical feature. Namely, the concepts and properties have to correspond to convex 
regions in the given space. Convexity is defined as follows:

Definition: A region R is convex iff for any two points x and y in R, all points 
between x and y are also in R.

3 This very general definition of metric is satisfied by many different metrics used in math-
ematics, for instance by the Euclidean metric. For our current endeavour particular differences 
between metrics are unimportant and hence will be ignored.
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This means that, as long as we consider a domain containing objects x and y 
as having some property, any object that is located between x and y will also have 
this property. For a convex region, one can describe positions within it as being 
more or less central.

Decisions about which points belong to one region are made on the basis of 
similarity to a distinguished point representing the prototypical example of the 
reference. One of the hypotheses of the theory of conceptual spaces is that (for 
many predicates) there exist prototypical examples of their reference (the proto-
type effect) (Gärdenfors 2000).

Mathematical counterparts of conceptual spaces are Voronoi diagrams 
(or tessellations), which exemplify a technique of dividing metrical space into 
cells. Every cell has a center, called a seed or generator, and contains all and only 
those points that lie closer to the given seed than to any other. Seeds model pro-
totypes. In other words, a set of prototypes P = {p1, …, pn } generates a set of 
convex regions C = {c1, …, cn}. Figure 1 is an example of this:

Fig. 1. A Voronoi tessellation

In the case of certain terms it can happen that it is more adequate to consider 
a set P* of clusters of points {{p11, …, p1n },{p21, …, p2n }, …. ,{pn1, …, pnn }} 
instead of a set P of points. As claimed by Decock, Douven (2014), see also Dou-
ven et al. (2013), this would be the case for vague concepts. Decock, Douven 
(2014) use the standard example of colors as requiring this cluster modeling: 
color names are vague, and modeling conceptual space with clusters of proto-
types is specific to vague concepts. In other words, the meaning of some terms is 
more adequately modeled when one considers the division of the corresponding 
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conceptual space as generated not by single points but by groups of points corre-
sponding to prototypical representations of meaning.4

It is traditionally assumed that when the partition of a space is generated by 
a set P* of clusters of points, these clusters form circles. That is, prototypical areas 
are circular, as shown in fig. 2.

Fig. 2. Voronoi Diagrams generated by P*

Fig. 3. Use of P* to model vague concepts (Decock, Douven, 2014)

The tessellation made by the cluster of points formed in a circle (so-called 
vague prototypes), allows blurring of boundaries between concepts in the space. 

4 How to think about diagrams in this setting is presented in Gärdenfors and Williams 
(2001). See in addition Gärdenfors (2000).
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Every point lying on the boundary of two or more terms is considered a bor-
derline case of these predicates. The tessellation made by vague prototypes is 
presented in fig. 3.

4.1. The ANS in the conceptual spaces framework

Our central endeavor in this paper is to define a conceptual space that mod-
els a structure of ANRs related to the ANS. This system of ANRs is activated 
by discrete quantitative inputs. It is magnitude sensitive; that is, the bigger the 
quantity of the input, the bigger the magnitude represented in the system.5 The 
boundaries between elements of the ANS are not sharp: it is not clear whether 39 
belongs to the scope of 45, or whether this scope stops at 40. Moreover, the an-
alogue magnitude representations obey the so-called Weber’s Law: “the ability 
to discriminate two magnitudes is determined by their ratio. As the ratio of two 
magnitudes approaches 1:1 they become harder to discriminate, and beyond 
a certain threshold determined by the subject’s ‘Weber constant’ cannot be dis-
criminated at all” (Beck, 2014). On the neural level, a ratio 1:1 of two magnitudes 
in a noisy system makes it almost impossible to discriminate the neural entities. 
This effect of ratio-sensitivity occurs every time human adults have to discrimi-
nate magnitude when explicit counting is not possible (Barth et. al., 2003).

In this paper we target a particular type of AMRs’ system. Therefore, there 
are multiple general aspects of such systems that we shall ignore in the proposed 
model. For example, there are various AMRs that are activated through different 
input – which underlies important differences, and gives rise to essentially differ-
ent models, even though these AMRs share multiple common features and traits 
of functioning. Moreover, even the system of AMRs related to quantities is acti-
vated by input of various types (visual, aural, kinetic, or tactile). In this paper we 
want to avoid discussing the common nature of AMRs and the extent to which 
various inputs that activate ANS-related representations differ across types of 
AMR systems. We focus on AMRs that are activated in response to constant vi-
sual input consisting of various sets composed of different quantities of identical 
blue dots evenly distributed on a whiteboard. Even if the targeted objective of 
our research is to understand semantics for exact numerals, we will model the 

5 It is shown that analogue magnitudes related to the ANS get bigger in logarithmic 
progression (Dehaene, 2008; Berteletti et al., 2010).
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non-conceptual content of ANS-related representations, which occurs in this 
situation automatically before any other type of representation supporting quan-
titative information. Exact numerals and sensory quantitative, discrete input are 
claimed to activate the same system of representations (the ANS-related system 
of AMRs), so starting by proposing a sketch of a model for a simple sensory input 
seems to be a natural step to take.

The discussion of how exactly analogue magnitude representations are instan-
tiated in the brain (are larger quantities represented by more neurons’ firings or by 
faster firing of a fixed population of neurons?) does not fall within the scope of this 
paper. What is important for us is that “their psychophysical signatures strongly 
suggest analogue type of representational scheme” (Carey, 2009: 458). One sim-
ple way of thinking about this kind of representation is proposed by Carey and Sar-
necka (2006: 477) and Carey (2009: 118): “[there exists] a helpful analogy to the 
following external system of analogue number representations. […] Line length 
is a direct analogue of number. […] Suppose our brains deploy magnitude repre-
sentations that are likewise analogue”. Note that we do not take a position in the 
debate about how representations really look – that is irrelevant to our endeavor.

Fig. 4. The representation of quantities in the ANS

Fig. 5. Representation of numbers in the ANS
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The authors’ original example focuses on symbolic input (fig. 5).
Indeed, it is claimed that when an agent acquires names for numbers, her 

neural reaction and activation of ANS-related representations will also take place 
when input is symbolic. Observe that the point we are making inscribes this line 
of reasoning in an even more straightforward way: our aim is to provide a model 
for vague-exact quantifiers.

We do not take up this challenge here, but it seems to us that there is a nat-
ural way of generalizing our model to other analogue magnitude representation 
systems. As put by Carey and Sarnecka (2006: 477),

[n]umber is not the only dimension of experience represented by analogue magnitudes – 
other examples include brightness, loudness, and temporal duration. In each case, as the 
physical magnitudes get bigger, it becomes increasingly harder to discriminate values that 
are the same absolute distance apart. […] [T]he discriminability of any two values is a func-
tion of their ratio […].

4.2. The ANS and prototypicality

According to prototype theory, the cognitive process of categorization has 
a graded nature, i.e. some members of a category are better, more straightforward, 
or more central representatives of this category than other members (Rosch, 1973; 
Lakoff, 1987; Taylor, 2003). There exists serious empirical evidence confirming 
the prototype effect in human cognitive processes. One of the most famous se-
ries of experiments is Brent Berlin and Paul Kay’s study of color categorization 
(Berlin, Kay, 1969). In the first series, respondents (competent users of different 
languages) were asked to divide a color continuum according to system of color 
categories functioning in their language. The results showed that ranges of color 
categories differ considerably from one language to the next. In a second series of 
experiments, subjects were asked to point out the best copy of a color among over 
three hundred color plates. Regardless of the different ranges of categories in their 
languages and their linguistic area, all participants pointed to the same color, i.e. 
same shade of, for instance, red. The results of Berlin and Kay’s study show that 
even if languages categorize colors in different ways, for every color there exists 
a prototypical example, in common and similar across all languages.

As we said above, the ANS-related AMRs system represents the numerosity 
of a set by an analogue extension. Remember that in this paper we concentrate 
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on a specific type of input, that is, we focus on AMRs that are activated in response 
to constant visual input consisting of various sets, which are composed of different 
quantities of identical blue dots distributed on a whiteboard in such a way that ev-
ery dot is not further from some other dot than its diameter. For the moment we as-
sume that dots can be organized in different shapes (spatially ordered or randomly 
distributed). Later, for the sake of model simplification, we will consider only these 
shapes, which are representable in the Cartesian coordinate system.

We argue that certain types of distribution of visual input are cognitively 
privileged. They activate ANS-related AMRs in the same way as the exact sym-
bolic numerals do. This provides an opportunity to incorporate the phenomenon 
of prototypicality for model of ANS-related representations in the conceptual 
spaces framework. The distinctiveness of distribution can be studied, as we do it 
in this paper, from theoretical perspective, but we agree that the most significant 
results might be achieved through empirical investigation. Simply speaking, it 
is a plausible hypothesis that some shapes may be psychologically prototypical 
cases. In other words, in analogy to Berlin and Kay’s color categorization experi-
ment, some arrangements of blue dots on a board may be considered prototypi-
cal or more salient instances of a given cardinality than others.

Hypotheses presented in this paper could be tested empirically in experiments 
inspired by Berlin and Kay’s work. One of our ambitions is to prepare theoreti-
cal and conceptual frameworks for such studies. To begin with, let us consider 
a two-dimensional conceptual space – with height and length as quality dimen-
sions – in which we consider spatial arrangements of identical blue dots evenly dis-
tributed on a whiteboard. According to Berlin and Kay’s result for color-predicates, 
there exists a language-independent set of prototypes. Subjects from the study con-
verged on some unified set of examples when asked “what is a prototypical red?” 
Following Berlin and Kay, we offer the hypothesis that some of these arrangements 
will be more easily recognized by the subjects (competent users of the given lan-
guage) as corresponding to a given numeral. The situation we want to describe is 
the following: subjects look at different quantities of identical dots. These dots can 
be arranged in different ways. The following figures contain just 4 dots, but this 
can be generalized to greater quantities. Moreover, as we said above, in the model 
construction we consider only spatially ordered shapes.6 

6 We are aware of limitations that this constraint entails and of the necessity of adjusting 
the proposed model to empirical results on prototypically.
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Fig. 6. Examples of arrangements of the four-element sets of dots in two-dimensional space

Similarly to the fig. 6, the extended, continuous, and approximate represen-
tations of the ANS also can be distinguished in terms of the space occupied by 
their shape:

 Fig. 7. The arrangements of shapes of 4-element sets of dots

Each of these possible arrangements varies according to height and length 
parameters and as such, they can be straightforwardly instantiated in conceptual 
spaces as ANS-related AMRs for “four”. The hypothesis is the following: as in the 
case of colors, it seems pretty plausible that humans converge to some unified set 
of prototypes. Before an empirical study is conducted and a set of distribution 
recognized as prototypes psychologically grounded, we propose that in our mod-
el the role of the prototype is played by dots which are the most evenly distribut-
ed.7 The rest of the configurations are, in the proposed model, ordered following 
the degree of similarity to the prototype or prototypes.

To support our hypothesis that evenly distributed dots are more prototypi-
cal, one can refer to Tversky’s studies provided in „Features of similarity” (Tver-
sky, 1977). In two-dimensional conceptual space (height/length), the element 
of equal dimension ratio 1:1 is certainly a natural candidate for a prototype. The 
choice of an equilateral shape representation for the prototype is supported by 
Tversky’s studies devoted to determining the degree of prominence of geometric 

7 Again, it is just a simplification necessary for initiation discussion on conceptual spaces 
models for ANS-related representations. We use “evenly” with an undefined meaning, but we are 
aware that more exact definition is necessary. 
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figures (Tversky, 1977).8 As Tversky puts it: „A major determinant of the sa-
lience of the geometric figures is goodness of form. Thus, a ‘good figure’ is like-
ly to be more salient than a ‘bad figure’, although the latter is generally more 
complex” (ibid.: 334). Generally the more prominent or salient figure, the more 
regular and symmetric shape it has. The example of good and bad in form figures, 
given by Tversky, is presented on following figure:

Fig. 8. More salient figure (left), and less salient one (right) (Tversky, 1977: 334)

For the sake of model construction, we propose to order the rest of the, con-
figurations of 4-element sets of dots (mentioned above), following the degree of 
similarity to the prototype or prototypes. In other worlds the location of the other 
elements of the set is then determined by the degree of similarity to the prototype 
with regard to one of the dimensions, i.e. length and height. This is shown in the 
following figure:

Fig. 9. Example of an ordered set of the arrangements of 4-element sets

8 It can be argued that dots distributed in straight lines are in reality prototypical as well. 
In this paper we will not investigate this possibility. 
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Element marked as A represents the prototype, the element marked as B dif-
fers from the prototype with regard of length dimension by 1 point on similarity 
scale. The element C also differs from the prototype by 1 on the similarity scale, 
but with regard of height dimension. D and E differ from prototype by 2 points 
with regard of length and height dimension respectively. 

In the similar way we can model the sets of ANS-related representations of 
other magnitudes. Models for bigger numbers will differ from the above, because 
these representations take into their scope neighboring cardinalities. So, for ex-
ample, some inputs that activate the representation of 17 also activate some (non 
prototypical) representations of 16 and 18. The number of representations taken 
into account by the AMR for each number grows with magnitudes of elements 
from the number line. 

The application of Voronoi tessellation to the conceptual spaces model al-
lows us to map the entire conceptual representation structure of size provided 
by the ANS. The set of generators of the tessellation will be constituted by the 
collection of prototypes of each subsequent quantity represented by ANS mag-
nitudes (i.e. prototypes of 4, 5, 6, and so on). Therefore, if we treat points as 
representations of successive prototypes of numeric quantities, we will get the 
following picture of the conceptual structure of the ANS.

Fig. 10. The idealized conceptual structure of the ANS

However, the above-presented conceptual structure of ANS representations 
is certainly not vague. It should be noted that modeling the approximate nature 
of ANS-related representations involves taking into account the blurred borders 
in the above scheme. This objective can be achieved by using the fuzzy prototype 
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model (the so-called prototype groups) proposed by (Douven et al., 2013). In 
short, this model requires treating cases of objects adjacent to the prototype also 
as prototypical cases, and using them as generators of subsequent tessellations. 
As a result, we get the following diagram: 

Fig. 11. The conceptual spaces structure of the ANS

Thicker boundaries of tessellation model boundary cases where the number 
of elements in the set might or might not activate the representation which are 
activated by prototypes. Figures 9 and 10 contain a preliminary visualization of 
the proposed model. We suspect that for larger numerical values regions of tes-
sellation will differ from the picture above. Regions representing larger numerical 
values are not only contiguous upon the regions representing two closest values 
in numeral progression, but also are contiguous upon other proximate regions. 
We say that region A is contiguous upon the region B, iff a ratio of numerical val-
ues represented by both regions is close as possible to 1:1. The exact value of the 
ratio should be ascertained experimentally, but for the purposes of the model, we 
can venture to say that the deviation should not exceed 0.1. This rule explains 
why the region representing 5 in conceptual space is contiguous only upon re-
gions denoting 4 and 6, since the ratio between the 5 and 4 and between 5 and 6 
is respectively 1.25 (deviation = 0.25) and 0.83 (deviation = 0.23). While the re-
gion representing for instance 33 is contiguous upon 6 regions (i.e. representing 
30, 31, 32, 34, 35, 36), since deviation of a ratio between 30 and other numbers 
is smaller than 0.1.

Understanding the contiguousness of regions in terms of the ratio of values 
representing by them is the consequence of the characteristic for ANS size and 
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distance effects. According to the latter it is easier to discriminate – with respect 
to a given set – a set that contains more elements than a set with a similar number 
of elements to the comparison set. In other words, if one compares two num-
bers to the same target, the number that is further away from the target should 
be easier to discriminate. For instance, it is easier to tell the difference between 
10 and 15 than between 10 and 11. Concepts arranged close to each other in 
conceptual space, since they have a common vague area (i.e. a fuzzy boundary), 
are much more difficult to distinguish than concepts arranged further away from 
each other in space.

According to the size effect, when the absolute difference between the two 
pairs of sets is constant, it is easier to compare sets with a lower number of ele-
ments. This effect can be quite intuitively achieved in the presented model. As 
a matter of fact, the size effect occurs simply due to the way that the magnitude of 
representation is modeled in conceptual space. This is because in the proposed 
model, the magnitude of the representation binds directly with the amount of 
variants of the objects’ spatial orientations. Both values (i.e. magnitude of the 
representation and amount of variants of the objects’ spatial orientations) have 
a direct impact on the size of representation and the number of prototypes, and 
as a consequence also on the size of the prototype group. The size of the proto-
type group has a direct bearing on the size of the penumbra – i.e. the range of the 
blurred boundary between adjacent terms in the series. In other words, the larger 
the sets that are compared, the easier it is to make a mistake, since the absolute 
difference between sets is small enough to be located within the penumbra area.

It is important to note that the proposed model of the conceptual framework 
of ANS-related representations is easily and intuitively reconciled with the ANS’s 
distance and size effects. Both effects show that similarity between ANS-related 
representations in conceptual space is consistent with Weber’s law. This means 
that the degree of similarity is designated by the inverse ratio of two magnitudes 
being compared with each other. In other words, the smaller the ratio between 
the magnitudes, the more similar objects are.

5. Conclusions and openings

In this paper we discussed the ANS-related system of representations. These 
representations firstly get activated by preverbal, empirical input, and then con-
tinue to be activated when symbols from number line acquire meaning. The 
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model based on conceptual spaces that we proposed, aims at accounting for 
the structure of these representations. In consequence, additional light is shed 
on the relation between exact numerals, especially when they are used as vague 
quantifiers, ANS-related representations as a (naturalized) semantics for such 
expressions and a model of the ANS-related representations in the framework of 
conceptual spaces.

The model we propose is based on the idea that tessellations corresponding to 
ANS-related representations are generated not by a single prototype, but by clus-
ters of prototypes. In consequence boarders between concepts are fuzzy. We argue 
that this model accounts for size and distance effects, characteristic for ANS.

We believe that further investigation into the exact structure of this mod-
el is necessary, in particular necessary is to take into account experimental data 
disclosing sets of empirical inputs, which correspond to prototypical represen-
tations. Another interesting opening, which we do not explore in this paper, is 
the relation between activation of the system of analog magnitude representa-
tions by non-symbolic input and activation of this system by symbolic input (lan-
guage, number names, numerals). Such a study would enhance understanding of 
the semantic of numerals.
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