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SHORT- AND LONG-TERM SOCIAL INTERACTIONS 
FROM THE GAME THEORETICAL PERSPECTIVE:  

A COGNITIVE APPROACH

1. Introduction

Game theory is a growing field of analytical modelling of interactions be-
tween agents. It has found many applications in economics and business ad-
ministration, as well as in social and cognitive sciences. Among various forms 
of one-off and multi-period games, the probably most popular one is known as 
a prisoner’s dilemma. This paper analyses the social interactions from the per-
spective of the equilibria resulting from the prisoner’s dilemma models with 
a short and indefinite time horizon.

A one-period interaction modelled in the prisoner’s dilemma setting results 
in an equilibrium point where the agents are maximising their short-term profit 
and thus, interacting, they reach a suboptimal point of overall welfare. However, 
in a model with an indefinite time framework, it is likely to reach an equilibrium 
which is consistent with the cooperative behaviour over a longer period of time. 
In result, an optimal point from the perspective of welfare is reached. In the fol-
lowing analysis, we relate these model results to social interactions and discuss 
their possible applications in cognitive science.

The paper is related to the literature on game theory and its applications in 
social interactions. Research in game theory dates back to the nineteenth century, 
when, among others, the theories of strategic interaction in oligopolies have been 

1 Views expressed in this paper do not necessarily represent the views of the European 
Central Bank.
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developed (see, e.g. Bertrand, 1883, or Varian, 2006 for an overview). In the first 
half of the 20th century, Neumann and Morgenstern (1944) applied game the-
ory to the economic interactions among agents who maximise their utility (see 
also Neumann, 1928 or Copeland, 1945 for the review of Neumann, Morgen-
stern, 1944). Following this, the field grew intensively, with the range of under-
lying concepts developed and extensive applications to many areas of economic 
research (see, e.g. Shapiro, 1989; Kreps, 1990 and Selten, 1999). In particular, in 
1994 John C. Harsanyi, John F. Nash Jr. and Reinhard Selten received the Nobel 
Prize in Economic Sciences “for their pioneering analysis of equilibria in the theo-
ry of non-cooperative games”. Following this work, game theoretical results have 
been validated from the behavioural perspective, as well as by experiments (see, 
e.g. Smith, 1992 or Crawford, 1997),2 while the framework to analyse conflict 
and cooperation of economic agents has been developed further.3 In cognitive 
science, game theory has been also widely used for a variety of applications and 
research questions (see, e.g. Carlsson, 1998; Skyrms, 2010). The contribution of 
this paper is to add some new aspects to this discussion.

The remainder of the paper is structured as follows. Section 2 outlines a basic 
model of the prisoner’s dilemma, with focus on a one-period and multi-period in-
teractions. Section 3 analyses social interactions from the perspective of the equi-
libria of prisoner’s dilemma game, as derived in section 2. Section 4 concludes.

2. Prisoner’s dilemma

The most popular model in the game theory is the prisoner’s dilemma. The 
game stems originally from the research conducted for military purposes in the 
middle of the 20th century. The following section discusses, first, the one-period 
interaction, outlining the game’s set-up, the Nash equilibrium and the welfare 
calculation. The second part of the section presents the iterated prisoner’s dilem-
ma, discussing possible strategies and their dominance. 

2 2002 Nobel Prize in Economic Sciences for Daniel Kahneman “for having integrated in-
sights from psychological research into economic science, especially concerning human judg-
ment and decision-making under uncertainty” and for Vernon L. Smith “for having established 
laboratory experiments as a tool in empirical economic analysis, especially in the study of alter-
native market mechanisms”.

3 2005 Nobel Prize in Economic Sciences for Robert J. Aumann and Thomas C. Schell-
ing “for having enhanced our understanding of conflict and cooperation through game-theory 
analysis”.
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2.1. One-period interaction

Prisoner’s dilemma game is a standard example of a cooperation problem. 
The game in its simple set-up has two parties, who interact in a one-off meeting. 
Originally, the game formulated by M. Flood and M. Dresher in the context of 
military-related research was formalised in Kuhn and Tucker (1950). The game 
is described as a problem of two prisoners, accused of committing jointly a crime, 
and facing an interrogation. Each of them can decide, without consulting with 
the other one, to admit the crime or not. If they both refuse to confess, they will 
both get only a mild conviction – an outcome resulting in a maximal joint wel-
fare. In case one of the prisoners confesses, while the other will deny the crime, 
the latter will suffer a long conviction, while the confessing prisoner will be set 
free – an outcome implying a maximum profit for one of the parties and a maxi-
mal loss for another party. 

In a more general setting, each of the players faces a simple choice: to “co-
operate” or “defect”. The outcomes of the game for each of the players can be 
summarised as follows:

Player II

cooperate defect

Player I
cooperate (A,A) (B,C)

defect (C,B) (D,D)

Fig. 1. Matrix of outcomes for one-period game

where C > A > D > B, and 2A > (B + C) > 2D. In a numerical example, the above 
setting would correspond to the following:

Player II

cooperate defect

Player I
cooperate (100,100) (0,150)

defect (150,0) (25,25)

Fig. 2. Matrix of payoffs for one-period game
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The outcome always denotes the payoff in units of each of the players, de-
pending on their action as well as the action of the counterparty (i.e. units received 
by player I, units received by player II). The contingencies involve a choice be-
tween “cooperate” and “defect” for each player. This would correspond to “re-
fuse to confess” and “confess” in an original example of the game. 

Analysing the possible outcomes from the overall welfare perspective, it is 
generally optimal that both players “cooperate” with each other, as they would 
maximise the joint payoff and minimise the inequality of the payoff distribution. 
However, from the perspective of a strategy, which is an optimal response to the 
other players’ strategies, i.e. from the perspective of Nash equilibrium, the opti-
mal strategy is quite different. Nash equilibrium can be defined as follows. The-
orem as in Nash (1950): 

Let (P, R)m×n be the payoffs of a bimatrix game.4 Then there exists a mixed 
strategy x* = (x1*, x2*, …, xm*) for player I and a mixed strategy y* = (y1*, y2*, …, 
ym*) for player II such that for any mixed strategy x = (x1, x2, … xm) for player 
I and for any mixed strategy y = (y1, y2, … ym) for player II, 

and

For a broader discussion, see also Raghavan (2002) and Hillas and Kohlberg 
(2002), as well as Khan and Sun (2002), all in Aumann and Hart (2002). 

Nash equilibrium of the prisoner’s dilemma game implies the outcome, 
where both players defect and reach the jointly minimal payoff. The Nash equi-
librium is reached by the players following their individual profit maximising 
strategy, which implies that they would prefer the choice yielding their person-
al maximum payoff. In particular, the decision faced by each player is that the 
choice of the strategy “cooperate” is less productive than the choice of the strate-
gy “defect”, i.e. C > A in the example above. Knowing this, each player anticipates 
the strategy of the counterparty, and tries to maximise his profit, given the strat-

4 A bimatrix game is a finite non-cooperative game with two players I and II, with payoff 
matrices P and R, respectively.
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egy, i.e. max((B,D)|counterparty strategy “defect”). Chammach and Rapoport 
(1965) show that the analogous result for the Nash equilibrium holds for several 
available strategies.

Another way to present the same problem is the diagram of choices of one of 
the players, depending on the unknown decision of another player:

Fig. 3. Diagram of choices for one-period game

In this form, a solution can be found by dividing the game into parts, so-
called subgames, with subgame perfect Nash equilibria (see also Harsanyi, Selten, 
1988). In the example above, the overall game would consist of two subgames 
played by player II, with the choice of player I set as exogenous in each of the 
subgames. The Nash equilibrium derived in this way is also (“defect”, “defect”). 

Overall, the one-period prisoner’s dilemma game implies that if players fol-
low a rational expectation of anticipating the counterparty’s move, the equili-
brium will always be suboptimal form the perspective of (i) individual payoffs 
and (ii) the overall welfare.

2.2. Multi-period interactions

In a repeated prisoner’s dilemma game, the uncooperative equilibrium is not 
straightforward any more. The cooperation can be theoretically supported either 
in an infinitely repeated game (see, e.g. Rubinstein, 1982), or in a game with a fi-
nite number of iterations and an uncertainty about the counterparty’s strategy 
(see, e.g. Kreps et al., 1982). 

Player I

Player II

(a,a)

cooperate

cooperatecooperate

defect

defect defect

(B,c) (c,B) (d,d)

Player II
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As a starting point, consider a two-period game of a prisoner’s dilemma with 
a payoff structure as in section 2.1. The cumulative payoffs of players I and II, 
depending on possible sequences of choices between “cooperate” and “defect” 
strategies, are the following:

Iteration 1 Iteration 2 Sum payoff

(c,c)

(c,c) (200,200)
(c,d) (100,250)
(d,c) (250,100)
(d,d) (125,125)

(c,d)

(c,c) (100,250)
(c,d) (0,300)
(d,c) (150,150)
(d,d) (25,175)

(d,c)

(c,c) (250,100)
(c,d) (150,150)
(d,c) (300,0)
(d,d) (175,25)

(d,d)

(c,c) (125,125)
(c,d) (25,175)
(d,c) (175,25)
(d,d) (50,50)

Fig. 4. Matrix of payoffs for multi-period game

The solution of this game can be found by identifying subgame perfect Nash 
equilibria and using backward induction (see, e.g. Harsanyi, Selten, 1988). In the 
final iteration of the game, each player decides between their two strategies, con-
tingent on the outcome of the previous iterations, i.e. starting in the respective 
point in the decision tree. The above calculation shows that for any outcome 
of iteration 1, the strategy “defect” is optimal, in the sense of Nash equilibrium, 
for each player. As a result, through backward induction, the players would have 
to decide on their moves for iteration 1, knowing that the outcome of iteration 
2 will be (“defect”, “defect”). Comparing the payoffs from rows with (d, d) in 
iteration 2, again, a Nash equilibrium would be (“defect”, “defect”) in iteration 1. 

The same logic can be applied to finitely repeated games. The players an-
ticipate the last round, where it is optimal (in the Nash sense) to defect, and de-
fect in the previous round, going along the decision tree back to the first round. 
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However, when the horizon is infinite or the end point is distant and uncertain, 
other equilibria may occur. One of the possibilities is a strategy, which starts with 
a cooperative move and always reflects the move of the opponent in the pre-
vious round, the so-called “tit-for-tat” strategy. Kreps, Milgrom, Roberts, and 
Wilson (1982) show that in a prisoner’s dilemma game with a small probability 
of a small fraction of players having a “tit-for-tat” strategy, this strategy starts to 
dominate and other players converge to it as well. As an outcome, players may as 
well reach a welfare-optimal equilibrium of cooperation in each round. Confirm-
ing this empirically, Axelrod (1984) reports on a contest of an N-step prisonner’s 
dilemma, where participants needed to submit the strategies. In fact, the “tit-for-
tat” strategy, submitted by A. Rapoport, appeared to be the dominating strategy 
in the contest (see also, e.g. Chammach, Rapoport 1965, and Rapoport 1970).

To summarise, this section illustrates how the same set-up of interactions 
can accommodate materially different equilibria, only depending on the horizon 
of the interactions. In particular, in a game with a one-off interaction, an uncoop-
erative equilibrium is achieved, where agents receive their second-worst pay-offs 
and overall welfare is suboptimal. A similar result is achieved in a multi-step set-
ting with the end-point of interaction being commonly known and not distant. 
In contrast, a setting of multi-period interactions with indefinite (or very distant) 
end-point, may likely result in a cooperative behaviour with higher individual 
pay-offs and, consequently, a higher overall welfare. All these results are based on 
rational maximisation of profits from the individual perspective. 

In the next section, the theoretic equilibria of one-period and multi-period 
prisoner’s dilemma are related to social interactions.

3. Social interactions in the equilibrium of prisoner’s 
dilemma – cognitive applications

The results discussed in section 2 can be used in social sciences in two 
distinct but complementary ways. First, they can serve as theoretical explan-
atory model to understand different attitudes of social agents towards coop-
erative behaviours, depending on whether the horizon of social interaction is 
finite or not. Second, from the point of view of cognitive science, they provide 
a successful computational framework to model complex interactions between 
intelligent agents.
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The explanatory power of the above analysis may seem rather obvious. The 
correlation between the anticipated horizon of interaction and the increase of 
cooperative attitudes appears to be fully compatible with everyday experience. 
In case of both commercial and social interactions, individuals seem to be more 
likely to cooperate depending on the expected horizon of coexistence. The same 
is supposed to be true even for international relations.5 What is less obvious is 
how this observation can be used as a persuasive or negotiating tool to obtain 
optimal point from the perspective of individual payoffs or overall welfare.

The most intriguing aspect of the results presented above is that they can 
provide a sufficient mathematical explanation for the whole complex of phenom-
ena documented in social psychology. We mean the well-documented fact that 
the willingness to cooperate increases if agents are faced with potential infinity 
and inevitability of interaction (see, e.g. Aronson 2011, Darley, Berscheid 1967). 
For example, it has been observed that xenophobic attitudes decrease as a result 
of the interaction between people of different ethnic groups, provided that it was 
seen as unavoidable for the future coexistence (Aronson 2011).

Conventionally, these socio-psychological phenomena have been explained 
in purely psychological terms. They can, for example, be interpreted within be-
havioural learning paradigm (as one of many instances of the attitudes shaped 
by the behaviours), or, alternatively, regarded as an example of cognitive-disso-
nance reduction (Aronson 2011). Sometimes they are simply considered to be 
self-explanatory, or at least explainable by common-sense reasons.

While being intuitively appealing, conventional approaches seem insufficient 
for a precise and formal analysis of social interactions. Also, predictions about 
likely human behaviours need a more formal underlying model. Consequently, 
conventional approaches to understanding socio-psychological phenomena are 
of limited use for the purposes of the operationally-oriented cognitive science. 
This leads us to the second point mentioned above, i.e. the use of computational 
framework to model complex interactions between intelligent agents. In contrast 
to the socio-psychological explanations, the mathematical framework presented 
in section 2 provides sufficient formal theory for computational modelling of at-
titude changes in short-term and longer-term social interactions.

5 However, the issue becomes more complex when more sophisticated models are consid-
ered. In at least some cases the results considered here can lead to counterintuitive conclusions. 
Consider, for instance, arms race games or war games with the conventional/nuclear distinction 
as a determinant of interaction horizon.
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While the theory is very appealing, there still remains a methodological prob-
lem of adequacy, i.e., the correspondence of theory to reality. In other words, it 
seems important to ask whether the theory is true. While this issue is essential if 
the realistic explanatory theory is needed (i.e., if you want to describe what is re-
ally going on in agents’ minds), it seems less important form the instrumentalist 
point of view. In fact, if the proposed formalism is to be applied in the operation-
ally-oriented cognitive science, the issue of adequacy becomes irrelevant. The 
reason for this is that the model simulating human behavior must not necessarily 
work the same way as human mind. In the following, we leave it open for discus-
sion, whether the above should be interpreted in a realistic or instrumentalistic 
manner (even though we are inclined to the latter opinion). This is, in fact, part 
of a wider problem of the epistemological status of a game-theoretic approach as 
a whole, which, nevertheless, has been successfully applied from the very begin-
ning of cognitive science.

4. Conclusion

In this paper, we discuss the social reactions from a perspective of the game 
theoretical model of prisoner’s dilemma. The model results in largely different 
equilibria, depending on the length of the interaction between agents. In a short-
lived interaction, the model results in a suboptimal point of overall welfare due 
to the fact that agents maximise their short-term profit and act in an uncooper-
ative manner. In an interaction of long indefinite duration, the model results in 
an optimal point of overall welfare due to the fact that agents, maximising their 
long-term overall profit, act in a cooperative manner. Overall, this paper pres-
ents theoretically founded explanation of the strategically different behaviour in 
short-term and long-term social interactions, providing successful computation-
al framework for cognitive modelling.
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