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Abstract

Our aim is to overview and discuss some of the most popular approaches to the
notion of a tolerance relation in algebraic structures with the special emphasis
on lattices.
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1. Introduction

The idea of tolerance relations seen as a formalization of the intuitive notion
of resemblance was present in the late works of Poincaré who introduced
the sets of impressions to describe sensations concerning objects hardly
indiscernible [2].

In 1962 Zeeman formally introduced the notion of a tolerance as a re-
lation that is reflexive and symmetric, but not necessarily transitive [29].
Studying models of visual perceptions, Zeeman found it useful to axioma-
tize the notion of similarity and formalized the notion of tolerance spaces.
The idea of “being within tolerance” or of “closeness” or “resemblance” is
universal enough to appear, quite naturally, in almost any setting. It is
particularly natural in practical applications: real-life problems, more often
than not, deal with approximate input data and require only viable results
with a tolerable level of exactness. Therefore, the topic became popular
among researchers from different areas such as linguistics, information the-
ory, humanities, social sciences, but also logic and mathematics. Studies
on tolerance spaces were conducted by Szrejder [28], Arbib [1], Pogonowski
[27] and others.Since then, numerous books and papers concerning this
topic have appeared.
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There are different approaches to tolerance relations, so we decided to
present here a short survey of them. This paper is meant as an inspira-
tion to wider and more complete studies of results obtained in this area,
particularly in algebraic structures.

As a natural generalization of congruences, tolerances appeared to be
a very useful tool in universal algebra. In an algebraic structure A =
(A,F ) by tolerances we mean only those reflexive and symmetric relations
which are compatible with the operations from F . Some authors (see, e.g.,
[23]) call them admissible relations. Formally speaking, a reflexive and
symmetric relation R on an algebra A = (A,F ) is a tolerance iff for every
n-ary operation f ∈ F and for all a1, . . . , an, b1, . . . , bn ∈ A, such that
(ai, bi) ∈ T for i = 1, . . . , n we have (f(a1, . . . , an), f(b1, . . . , bn)) ∈ T .

Therefore, R ⊆ A2 is a tolerance on an algebra A = (A,F ) iff R is
reflexive, symmetric and closed under the operations from F (according to
coordinates). In other words, it means that R is a reflexive and symmetric
subalgebra of A2.

It is clear that every congruence of an algebra A is a tolerance on it
and then the notion of a tolerance in universal algebra can be regarded as
a generalization of the notion of a congruence.

Tolerances play an important role in the theory of Maltsev conditions
(see for example [25] or [12]). Moreover, as we show in the next sections,
they are particularly useful in lattice theory.

There are many ways to deal with tolerances, the most common ones
consist in describing tolerances as some types of covering systems (e.g.,
[4, 19]) or characterizing them as homomorphic images of congruences (see
[11]). In the case of finite lattices we can also use polarities [23] or Galois
connections [17].

2. Covering systems

The most natural way of studying a tolerance is by considering the system
of its blocks.

Let T be a tolerance on a given algebra A = (A,F ) (or even more
general, on a given set A). Since tolerances are a generalization of congru-
ences (equivalence relations, respectively) and every congruence determines
uniquely a quotient algebra (a partition of a given set), we should look for
a generalization of the concept of a congruence class (or an equivalence
class, in general).
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In fact, there are two possible ways of performing this task. First, we
can consider a class [a]T ⊆ A containing a given element a ∈ A defined as
the set of all elements from A tolerant with a:

[a]T = {b ∈ A : (a, b) ∈ T}.

On the other hand, we can consider subsets B ⊆ A such that B2 ⊆ T .
Such subsets are called preblocks of T . Blocks of T are maximal (under
inclusion) preblocks of T .

It is easy to check that in the case of equivalence relations both the
above definitions coincide and lead to the same notion of equivalence classes.
However, in general, it is not true for tolerance relations.
Example 1. Let us consider the set of cookies of two sizes: big and small,
each of them being either red or yellow. We say that two cookies are similar
if they are both of the same size or colour. It is obvious that this relation of
similarity among cookies is a tolerance. Let us observe that the tolerance
class containing a small red cookie consists of all cookies that are small or
red. At the same time there are two different blocks containing this cookie:
the block of red cookies and the block of small cookies. Of course, they are
not disjoint and their common part consists of small red cookies.
Example 2. Let us consider the lattice L shown in Figure 1 and the tol-
erance T generated on it by all pairs (x, y) ∈ L2 such that x ≺ y.

0

1

a b

c d

Fig. 1. Lattice L from Example 2

Since (0, a), (0, b) ∈ T , by compatibility of T with lattice operations,
we get (0, c) = (0 ∨ 0, a ∨ b) ∈ T . Similarly, we obtain (b, 1) ∈ T . However,
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it is not true that (0, d) ∈ T . Therefore, there are two different blocks of
T containing b: {0, a, b, c} and {b, c, d, 1} but [b]T = L.

In general, neither classes nor blocks of a tolerance are disjunctive.
The fact that they can overlap constitutes an essential difference between
congruences and tolerances, which makes the second ones useful in many
practical applications, for example in the rough set theory (see, e.g., [26]
or [24]) or in the conceptual analysis (see [17]).

In fact, as it follows from the result below, only the notion of blocks is
significant.

Lemma 3. Let T be a tolerance relation on a set A and let A/T denote the
set of all blocks of T on A. Then, for every a ∈ A, we have

(i) [a]T =
⋃{α ∈ A/T : a ∈ α};

(ii) α ∈ A/T iff α =
⋂{[b]T : b ∈ α}.

A proof is identical as in the case of algebraic tolerances, which can be
found in [4]. If we deal with tolerances on an algebraic structure, blocks can
be characterized by means of an algebraic function over the given structure
([4]).

There are many papers investigating blocks of tolerances of different
algebras. In particular, Chajda and Duda proved in [7] what follows.

Theorem 4. Let T be a tolerance on an algebra A. Every block of T is a
subalgebra of A iff A is idempotent.

Let us recall that an algebra A = (A,F ) is idempotent iff its every
operation is idempotent, i.e., f(a, . . . , a) = a for every f ∈ F and a ∈ A.

Since every lattice is an idempotent algebra, we conclude immediately
that blocks of tolerances of a lattice are its sublattices. What is more, they
are always convex sublattices (see [9] or [3]).

It is well-known that there is a one-to-one correspondence between
congruences of a given algebra A = (A,F ) and these partitions of the
underlying set A which preserve the substitution property for all operations
from F . As it was proved independently by Grätzer and Wenzel in [18]
and by Chajda, Niederle and Zelinka in [8], there is a similar one-to-one
correspondence between tolerance relations of an algebra A = (A,F ) and
a normal covering system of subsets of the set A.

The covering system {αi}i∈I of the set A is called normal if it fulfills
the following conditions:
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(i) it forms an antichain;
(ii) it fulfills the substitution property for the set F of operations of the

algebra A, i.e., for every n-ary operation f ∈ F and all i1, . . . , in ∈ I
there exists j ∈ I such that f(αi1 , . . . , αin) ⊆ αj ;

(iii) for every B ⊆ A, if B 6⊆ αi for every i ∈ I, then there exists C ⊆ B
such that C contains exactly two elements and C 6⊆ αi for every i ∈ I.

All classes of a given congruence of an algebra A = (A,F ) form an
algebra (called the quotient algebra) which belongs to the variety generated
by A. In the case of tolerances the situation is different. It is not difficult
(see, e.g., [4]) to find examples of an algebra A and a tolerance T on it
such that the basic operations from A cannot be defined uniquely on the
blocks of T .
Example 5. Let us consider an algebra A = ({a, b, c}, f) with a binary
operation defined by f(x, y) = a for all x, y ∈ {a, b, c}. Let T be a tolerance
on A generated by the set {(a, b), (a, c)}. Since (b, c) 6∈ T , there are two
blocks of T : α = {a, b} and β = {a, c}. Notice that

f(α, β) = {f(x, y) : x ∈ α, y ∈ β} = {b}.
Thus, we cannot define uniquely the result of operation f on blocks α and
β, as {b} is a subset both α and β.

Even if it is possible to define the operations on blocks of a tolerance
T of an algebra A uniquely, the corresponding quotient algebra need not
belong to the variety generated by A, as we can see later in Example 4.

Formally speaking, an algebra A = (A,F ) is called tolerance factorable
if for every tolerance T on A, every f ∈ F and every blocks α1, . . . , αn of
T there is a unique block β of T such that

{f(a1, . . . , an) : a1 ∈ α1, . . . , an ∈ αn} ⊆ β.
If A is tolerance factorable, then for every tolerance T on A it is possible
to form the quotient algebra A/T by defining β := f(α1, . . . , αn) for every
n-ary operation f ∈ F and every system of blocks α1, . . . , αn of T . The
quotient algebra in the case of tolerances not being congruences is called
the factor algebra.

We say that a variety V is tolerance factorable if all its algebras are
tolerance factorable. A variety V is called strongly tolerance factorable if it
is tolerance factorable and for every A ∈ V and every tolerance T on A it
holds A/T ∈ V.
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It is clear that every tolerance-trivial algebra, i.e., algebra without
tolerances not being congruences, is tolerance factorable. Therefore, for
example the variety of Boolean algebras is not only tolerance factorable but
also strongly tolerance factorable. The essential question remains, which
algebras with proper tolerances enjoy that property.

In 1982 Czédli [10] proved that the variety of lattices is strongly toler-
ance factorable, although it is not tolerance-trivial. Up to 2012 no other
example of such a variety was known. In [5] Chajda, Czédli and Halaš
proved that this property is preserved by forming independent joins of
varieties, providing infinitely many strongly tolerance factorable varieties
with proper tolerances.

Anyway, it is the variety of lattices which behaves surprisingly well with
respect to tolerance relations. The fact was discovered and investigated by
Czédli, who proved in [10] that if L is a lattice and T is a tolerance on
L, then for any blocks α, β of T there is exactly one block containing
α ∧ β = {a ∧ b : a ∈ α, b ∈ β} and exactly one block containing α ∨ β =
{a ∨ b : a ∈ α, b ∈ β}, which means that we can form a quotient structure
L/T . Moreover, the structure is a lattice and the partial order of blocks
in it coincides with the order of ideals generated by them in the lattice of
ideals of L and – by the duality principle – it is dual to the order of filters
generated by the blocks in the lattice of filters of L. Formally, if we denote
by (A] and [A), respectively, an ideal and a filter generated by the subset
A of a lattice L, then for any α, β ∈ L/T ,

α ≤ β iff (α] ⊆ (β] iff [β) ⊆ [α).

However, even in the case of lattices, many properties typical for quo-
tient structures are not, in general, valid for factor structures. Some of
them, like the homomorphism theorem and the second isomorphism the-
orem for lattice congruences, can be imitated in the set of all tolerances
partially ordered by a particular restriction of a regular (i.e., inclusion)
order of tolerances (see [20]). The resulted poset is not always a lattice,
but it can be converted into a specific commutative join-directoid.

In [10], Czédli formulated also a set of necessary and sufficient condi-
tions for a covering of the underlying set L of a lattice L to be its normal
covering.
Theorem 6. Let L = (L,∧,∨) be a lattice. The covering {αi}i∈I of L is
the family of blocks of a certain tolerance T on L iff the following conditions
hold:
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1. Every αi for i ∈ I is a sublattice of L.
2. For every i, j ∈ I

[αi) = [αj) iff (αi] = (αj ].

3. For every i, j ∈ I there exist m,n ∈ I such that
{a ∨ b : a ∈ [αi), b ∈ [αj)} = [αm),

{a ∨ b : a ∈ (αi], b ∈ (αj ]} ⊆ (αm],

{a ∧ b : a ∈ [αi), b ∈ [αj)} ⊇ [αn),

{a ∧ b : a ∈ (αi], b ∈ (αj ]} = (αn].
4. Let x ∈ L, b ∈ αi for some i ∈ I. If for any b ∈ αi∩ (a] there is j ∈ J

such that {b, x} ⊆ αj, then x ∈ (αj ]. Dually, if for any b ∈ αi ∩ [a)
there is j ∈ J such that {b, x} ⊆ αj, then x ∈ [αj).

5. If for any convex sublattice K of L and any a, b ∈ K there is i ∈ I
such that a, b ∈ αi, then K ⊆ αj for some j ∈ I.

Moreover, if L is a finite lattice, then the last two conditions follow from
the conditions 1–3.

In the case of lattices of finite height, blocks of any tolerance relation –
as convex sublattices – are intervals and hence as the corollary of the above
theorem we obtain the following theorem (see [18]).
Theorem 7. Let L = (L,∧,∨) be a lattice of a finite height. The covering
{αi}i∈I of L is the family of blocks of a certain tolerance T on L iff the
following conditions hold:

1. Every αi for i ∈ I is of the form [0i, 1i], where 0i, 1i ∈ L and 0i < 1i.
2. For distinct i, j ∈ I, 0i 6= 0j and 1i 6= 1j.
3. For any i, j ∈ I there are m,n ∈ I such that

1i ∨ 1j ≤ 1m, 1i ∧ 1j = 1n,

0i ∨ 0j = 0m, 0i ∧ 0j ≥ 0n.

3. Gluings and polarities

As we see from the previous section, any tolerance on a finite lattice (or
more general, on a lattice of a finite height) decomposes the lattice into
intervals, which themselves form a lattice (the quotient lattice). The inter-
vals can be seen as the partial maps in an atlas and the factor lattice can
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be regarded as a general map indicating the relations between the partial
maps. This attitude was adopted particularly by Wille in the theory of con-
cept lattices, which forms a part of the theoretical basis for investigations
on artificial intelligence ([17]).

The situation simplifies further when we focus on glued tolerances of a
lattice L. A tolerance T on L is called glued if its transitive closure is the
total relation on the lattice.

In [13], Herrmann and Day proved that every finite lattice can be seen
as an L/T -gluing of a family of blocks of any glued tolerance T on L. The
notion of K-gluing, where K is a finite lattice, was introduced by Herrmann
in [21] as a natural generalization of the original Hall–Dilworth construction
of gluing a filter and an ideal ([15]).

Wille describes the idea of Herrmann’s construction as analogous to
that used in drawing maps. If the area supposed to be set out in a map is
too big to make the map legible, we can split it up into an atlas – a collection
of maps covering the area together with an additional map which provides
the information how the partial maps are related. It is common that the
partial maps overlap to make data more accessible. Of course, the partial
maps can be “glued” together to obtain the map of the whole area.

Let (Li)i∈K be a family of finite lattices and let an index set K be the
underlying set of a finite lattice K = (K,≤). The family (Li)i∈K is called
a K-atlas with overlapping neighbours if the following conditions hold for
all i, j ∈ K:
(i) if Li ⊆ Lj , then i = j;
(ii) if i < j and there is no k ∈ K such that i < k < j, then Li ∩ Lj 6= ∅;
(iii) if i < j and Li∩Lj 6= ∅, then the orders of lattices Li and Lj coincide

on Li ∩ Lj and the interval Li ∩ Lj is at the same time a filter of Li

and an ideal of Lj ;
(iv) Li ∩ Lj = Li∧j ∩ Li∨j .

The structure L = (
⋃
Li∈K ,≤), where ≤ is the transitive closure of the

union of orders of all lattices Li for i ∈ K, is called the sum of the K-atlas
with overlapping neighbours or simply the K-gluing of the family (Li)i∈K .

One can prove the following (see [13] or [17]).
Theorem 8. Let (Li)i∈K be a K-atlas with overlapping neighbours. The
sum of the K-atlas is a lattice L for which the lattices Li, where i ∈ K,
are blocks of some glued tolerance T on L and the mapping i 7→ Li is an
isomorphism of K onto the factor lattice L/T .
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Conversely, if T is a glued tolerance on a lattice L, then the family of
blocks of T forms an L/T -atlas with overlapping neighbours, whose L/T -
gluing is the lattice L.

Since, as it is easy to notice, the intersection of a family of glued tol-
erances on a lattice L is again a glued tolerance, then there is the smallest
(under inclusion) glued tolerance, which is called the skeleton tolerance of
L. The factor lattice of L by the skeleton tolerance is said to be the skeleton
S(L) of L. Therefore, any finite lattice L can be seen as the S(L)-gluing
of the blocks of its skeleton. It is particularly useful in the case of finite
modular or distributive lattices since the blocks of their skeleton tolerance
are regular and easy to describe (see for example [22, 14, 19]).

Example 9. Figure 3 depicts a K-atlas with overlapping neighbours along
with the lattice K. The K-gluing of this atlas gives the three generated
free distributive lattice FD(3) presented in Figure 2. On the other hand,
Bi, where i ∈ K, are the blocks of the skeleton tolerance of FD(3) and
K = S(FD(3)).

Fig. 2. The lattice FD(3)

We can notice now that the factor lattice of a distributive lattice need
not be distributive, so it need not belong to the variety generated by it.
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Fig. 3. The K-atlas with overlapping neighbours (left) and the lattice K
(right)

There is also another way of describing tolerances on finite lattices,
namely by means of polarities (see [23]).

By a polarity in a lattice L we mean a pair (f, g) of mappings L→L such
that f is a decreasing ∨-endomorphism, g is an increasing ∧-endomorphism
and f(g(x)) ≤ x ≤ g(f(x)) for every x ∈ L.

Hobby and McKenzie observed that there is a one-to-one connection
between polarities and tolerance relations in finite lattices.
Theorem 10. Let L be a finite lattice. If T is a tolerance on L, then

f(x) :=
∧
{y : (x, y) ∈ T},

g(x) :=
∨
{y : (x, y) ∈ T}

define the polarity (f, g) such that

T = {(x, y) : f(x ∨ y) ≤ x ∧ y}.
On the other hand, if (f, g) is a polarity in a lattice L, then there is

exactly one tolerance on L such that f, g, T fulfill the above conditions.
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Additionally, the tolerance T is glued iff the ∧-endomorphism g defined
above is strictly decreasing (or, what is equivalent, the ∨-endomorphism f
is strictly increasing).

4. Homomorphic images of congruences

Let A = (A,F ) and B = (B,F ′) be algebras with the same signature.
If φ : A → B is a surjective homomorphism and T is a tolerance on A,
then φ(T ) = {(φ(x), φ(y)) : (x, y) ∈ T} is a tolerance on B (see [16]). In
particular, if T is congruence, then φ(T ) is a tolerance, but not necessarily
a congruence. In other words, the homomorphic image of any congruence
is a tolerance.

Czédli and Grätzer proved in [11] that in the case of lattices the inverse
holds, i.e., every lattice tolerance is a homomorphic image of some lattice
congruence.
Theorem 11. Let T be a tolerance of a lattice L. Then there are a lattice
K, a congruence θ on K and a surjective homomorphism φ : K → L such
that T = φ(θ).

The construction of the lattice K, the congruence θ and the homo-
morphism φ is very natural and based on facts proved by Czédli in [10].
Namely,

K := {(α, a) : α ∈ L/T, a ∈ α},
the lattice operations on K are defined coordinate-wise, i.e.,

(α, a) ∧ (β, b) := (α ∧ β, a ∧ b),
and dually for ∨. The congruence θ is defined by

((α, a), (β, b)) ∈ θ iff α = β

and the homomorphism is given by (α, a) 7→ a.
Czédli and Kiss in [12] characterized by means of a Maltsev-like con-

dition those varieties in which tolerances are homomorphic images of con-
gruences of some algebras within the variety. They observed that among
them there are all varieties of lattices, all varieties of unary algebras and
the variety of semilattices. Chajda, Czédli, Halaŝ and Lipparini proved in
[6] that also all varieties defined by a set of linear equations enjoy that
property. By a linear identity they mean an identity s = t such that each
variable occurs at most once in each of the terms s and t.
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