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Wprowadzenie

Współcześnie, w literaturze światowej, wiele miejsca poświęca się problemom
analizy i modelowania zjawisk o charakterze przestrzennym. Jedno z podstawo-
wych narzędzi analiz regionalnych stanowi modelowanie przestrzenne. Termin
„ekonometria przestrzenna” zaproponował Paelinck we wczesnych latach sie-
demdziesiątych XX wieku. Można przyjąć, że to właśnie wówczas powstał nowy
dział ekonometrii, opisujący problemy specyfikacji i estymacji modeli ekonome-
trycznych, wynikające z występowania autokorelacji przestrzennej. Ekonometria
przestrzenna umożliwia badanie zależności przestrzennych, a także uwzględnia-
nie ich w modelach ekonometrycznych. Z punktu widzenia ekonomii, ekonome-
tria przestrzenna otwiera drogę do lepszego zrozumienia związków i zależności
między regionami, co umożliwia lepsze opisywanie systemów ekonomicznych.
Dziś ekonometria przestrzenna bywa rozumiana szeroko jako zestaw metod i na-
rzędzi statystycznych oraz ekonometrycznych do przestrzennej analizy danych,
uwzględniających wielorakie efekty przestrzenne, obecne zarówno w danych dys-
kretnych, jak i ciągłych.

Przez wiele lat ekonometria przestrzenna pozostawała w cieniu głównych
nurtów ekonometrii. W 1988 roku Anselin pisał o niej, że „jest ignorowana
w większości klasycznych podręczników ekonometrii” (por. Anselin, 1988a: 1,
tłumaczenie własne). Dekadę później Anselin i Bera podkreślali, że ekonometria
przestrzenna nadal „nie jest obecna w głównym nurcie ekonometrii” (por. An-
selin, Bera, 1998: 237–238, tłumaczenie własne). W swojej pracy zauważali, że
badacze zajmujący się analizami empirycznymi dostrzegają potrzebę zmierzenia
się z problemami związanymi z obecnością autokorelacji przestrzennej danych
używanych w modelowaniu regionalnym.

Warto zauważyć znaczący udział w rozwoju ekonometrii przestrzennej nie
wydawnictw stricte ekonometrycznych, lecz czasopism związanych z naukami
regionalnymi, takich jak: „Journal of Regional Science”, „Regional Science and
Urban Economics”, „Papers in Regional Science”, „International Regional Scien-
ce Review”, „Geographical Analysis”, „Journal of Geographical Systems”. Dopiero
w nowym milenium sytuacja ta zaczęła się szybko zmieniać i ekonometria prze-
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strzenna trafiła do głównego nurtu ekonometrii, znajdując swoje miejsce w naj-
lepszych wydawnictwach ekonometrycznych, między innymi: „Econometrica”,
„Econometric Reviews”, „Econometric Theory”, „Journal of Applied Econome-
trics”, „Journal of Business and Economic Statistics”, „Journal of Econometrics”,
„Review of Economics and Statistics”.

Lata osiemdziesiąte i dziewięćdziesiąte XX wieku to na arenie międzynaro-
dowej intensywny rozwój ekonometrii przestrzennej. Powstały wówczas prace:
Spatial Processes: Models and Applications Cliffa i Orda (1981), Spatial Econo-
metrics: Methods and Models Anselina (1988a), nazywana „biblią” ekonometrii
przestrzennej oraz New Directions in Spatial Econometrics autorstwa Floraxa i An-
selina (1995).

Na rozwój ekonometrii przestrzennej wpłynęło również opracowanie tzw. no-
wej ekonomii geograficznej, NEG (ang. New Economic Geography; por. Krugman,
1991a, b; Fujita et al., 1999a, b). Jej twórca— Paul Krugman— został uhonoro-
wany Nagrodą Nobla w roku 2008. Prace Krugmana uzasadniały na gruncie teorii
ekonomii wykorzystanie analizy przestrzennej w badaniach regionalnych. Dawa-
ły również teoretyczne podstawy modelowania regionalnej konwergencji oraz
koncentracji przestrzennej aktywności ekonomicznej. Obecnie, zgodnie z obo-
wiązującymi trendami, badanie wzrostu gospodarczego w kontekście teorii NEG
jednoznacznie wymaga zastosowania narzędzi ekonometrii przestrzennej.

Najwięcej opracowań książkowych z dziedziny ekonometrii przestrzennej po-
wstało jednak w pierwszej dekadzie XXI wieku. Można tu wymienić Spatial
Autocorrelation and Spatial Filtering. Gaining Understanding Through Theory and
Scientific Visualization Griffitha (2003), Advances in Spatial Econometrics: Metho-
dology, Tools and Applications Floraxa i Anselina (2004), Spatial Econometrics.
Statistical Foundations and Applications to Regional Convergence Arbii (2006),
Spatial Econometrics. Methods and Applications pod redakcją Arbii i Baltagiego
(2009) oraz Introduction to Spatial Econometrics LeSage’a i Pace’a (2009). Na uwa-
gę zasługuje monografia Handbook of Regional Science pod redakcją Nijkampa
i Fischera (2014), która dotyczy regionalistyki, ale zawiera 150 stron poświę-
conych ekonometrii przestrzennej, a także książka o charakterze aplikacyjnym,
Modern Spatial Econometrics in Practice: A Guide to GeoDa, GeoDaSpace and
PySAL Anselina i Reya (2014).

Wśród nowszych opracowań zagranicznych można wymienić między innymi
Spatial Econometrics: Qualitative and Limited Dependent Variables pod redakcją
Baltagiego, LeSage’a i Pace’a (2016) oraz Spatial Econometrics autorstwa Kele-
jiana i Pirasa (2017). Pierwsze jest zbiorem artykułów, poświęconych głównie
metodom szacowania modeli dla dyskretnych zmiennych zależnych z zależno-
ściami przestrzennymi (przy użyciu metody największej wiarogodności) oraz dla
binarnych i licznikowych zmiennych zależnych (przy użyciu metod bayesow-
skich). Z kolei drugie, dzięki rzetelnemu wprowadzeniu i formalizacji założeń
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i zasad, stanowi podstawowe opracowanie współczesnych osiągnięć ekonometrii
przestrzennej. Obejmuje modele regresji przestrzennej, macierze wag, procedury
szacowania (ze szczególnym uwzględnieniem uogólnionej metody momentów,
zaawansowanych procedur przedtestowych i bayesowskiej analizy danych) oraz
omawia komplikacje związane z ich wykorzystaniem.

W Polsce, oprócz przekładów z lat 1982–83 prekursorskich monografii Pa-
elincka i Klassena (1979) oraz Klaassena i innych (1979), ukazały się nieliczne
publikacje książkowe z tego zakresu. Jako pierwsza została wydana Ekonome-
tria przestrzenna pod redakcją Zeliasia (1991), później Ekonometria i statystyka
przestrzenna z wykorzystaniem programu R CRAN Kopczewskiej (2007), a także
Ekonometryczna analiza wielowymiarowych procesów gospodarczych Szulc (2007),
poświęcona wybranym elementom ekonometrii przestrzennej i tematyce pól lo-
sowych. Dopiero wieloautorska monografia Ekonometria przestrzenna. Metody
i modele analizy danych przestrzennych pod redakcją Sucheckiego (2010), w tak
szerokim zakresie omawiała nowoczesne metody i modele ekonometrii prze-
strzennej. Wkrótce po niej, w 2012 roku, ukazało się opracowanie pod tą samą
redakcją pt. Ekonometria przestrzenna II. Modele zaawansowane, zawierające opis
współczesnych zaawansowanych metod i modeli ekonometrycznych (wraz z przy-
kładami ich zastosowań). W roku 2016 ukazała się kolejna pozycja w tej serii,
Ekonometria przestrzenna III. Modele wielopoziomowe — teoria i zastosowania
autorstwa Łaszkiewicz, będąca omówieniem zasad modelowania wielopoziomo-
wego z perspektywy analizy danych zlokalizowanych przestrzennie.

W literaturze widoczne jest ciągłe poszerzanie zakresu zastosowań modeli
autoregresji przestrzennej. Opracowania opisujące badania empiryczne potwier-
dzające wagę efektów przestrzennych powstają między innymi w naukach spo-
łecznych, geografii, biologii, ochronie środowiska, a także w ekonomii. Problem
efektów przestrzennych coraz częściej uwzględnia się również w badaniach roz-
woju regionalnego. Rozważane są, między innymi, przestrzenne aspekty konwer-
gencji regionalnej, infrastruktury regionów, a nawet demografii.

Ze względu na rosnącą popularność stosowania metod ekonometrii prze-
strzennej w badaniach empirycznych oraz dynamiczny rozwój związanej z tym
metodologii, powstaje potrzeba tworzenia spójnych, uzasadnionych matematycz-
nie podstaw wnioskowania ekonometrycznego. Wiele z dostępnych w Polsce i na
świecie opracowań nie traktuje tego aspektu ekonometrii z dostateczną uwagą.
Prowadzi to czasem do nieścisłości, a w efekcie może niestety nie pozostawać
bez znaczenia dla wyciąganych wniosków. Za pośrednictwem naszego opraco-
wania staramy się wypełnić lukę istniejącą na rodzimym rynku wydawniczym
i przedstawić polskim czytelnikom publikację o formalnych podstawach me-
tod ekonometrii przestrzennej. Przedstawione treści (nieznacznie uzupełnione)
mogą stanowić bazę wykładu kursowego z ekonometrii przestrzennej dla studen-
tów matematyki, statystyki czy ekonometrii. Pozycja ta może też być punktem
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wyjścia dla osób rozwijających teorię ekonometrii. W szczególności czytelników
zainteresowanych teorią asymptotyczną estymatorów w kontekście ekonometrii
przestrzennej.

Tematyka podjęta w monografii

Niniejsza monografia prezentuje najnowsze rezultaty z zakresu teorii asymp-
totycznych dla modeli stochastycznych ekonometrii przestrzennej. Omówione
w książce wyniki pracy naukowej autorów poprzedzone są przeglądem wybra-
nych klasycznych zagadnień tej dziedziny ekonometrii, przedstawionych w nowo-
czesnym ujęciu. Przeprowadzone rozumowania osadzone są w ramach precyzyj-
nego wywodu matematycznego, a tym samym dają czytelnikom solidne podstawy
do empirycznych badań ekonomicznych oraz do dalszych rozważań metodolo-
gicznych. Opracowanie to ma na celu przybliżenie podstawowych i wybranych
zaawansowanych metod stochastycznych ekonometrii przestrzennej, ze szczegól-
nym uwzględnieniem ich własności asymptotycznych.

Elementem centralnym prezentowanej teorii jest zagadnienie asymptotyki
przestrzennej macierzy wag. Od lat dziewięćdziesiątych XX wieku wiadomo, że
zachowanie macierzy wag— przy rosnącym do nieskończoności rozmiarze pró-
by—ma decydujące znaczenie dla własności modeli ekonometrii przestrzennej
(chociażby identyfikowalności parametrów czy własności związanych z nimi esty-
matorów). W niniejszej publikacji autorzy podjęli temat rozszerzalności znanych
teorii ekonometrii przestrzennej na bardziej obszerne klasy schematów interakcji
przestrzennych. Dzięki konstrukcji tzw. niesumowalnych macierzy wag, w spe-
cyfikacji modelu zjawiska można uwzględnić bardziej złożone zależności między
badanymi jednostkami.

Problem macierzy niesumowalnych w kontekście ekonometrii przestrzennej
jako pierwsi dostrzegli Gupta i Robinson (2018). Uzyskali oni wynik o zgod-
ności pewnych estymatorów opartych na metodzie największej wiarogodności.
Pytanie o rozkład asymptotyczny oszacowań pozostało jednak otwarte. Dopiero
w pracy Olejnik i Olejnik (2020) sformułowano teorię matematyczną podającą
kompletną odpowiedź w kontekście procesów z autoregresją zmiennej zależnej.
W niniejszej monografii rozszerzamy tę teorię. W szczególności zajmujemy się
specyfikacją modeli ekonometrycznych z autoskorelowanym składnikiem loso-
wym, w których dopuszczona jest możliwość zależności przestrzennych wyższego
rzędu z wektorowym współczynnikiem zależności. Przedstawione tutaj wyniki nie
były wcześniej publikowane. Uzyskane przez nas centralne twierdzenie graniczne
stosujemy również do udowodnienia zbieżności według dystrybuanty standary-
zowanych statystyk: I Morana, testu mnożników Lagrange’a oraz informanty
Rao, przy zastosowaniu niesumowalnych macierzy wag przestrzennych.
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W rozdziale I wprowadzamy podstawowe pojęcia i oznaczenia, wykorzy-
stywane w dalszej części pracy. Definiujemy formalnie pojęcie przestrzennego
procesu stochastycznego i przedstawiamy ideę przestrzennej macierzy wag (wraz
z przykładami). Przedstawiamy również podstawowe dla ekonometrii przestrzen-
nej pojęcie autokorelacji przestrzennej oraz popularne statystyki stosowane do
testowania obecności tego zjawiska.

W kolejnym rozdziale dokonujemy przeglądu popularnych specyfikacji mo-
deli ekonometrii przestrzennej. Prezentację zaczynamy od tych najprostszych
(model czystej autoregresji przestrzennej, autoregresji przestrzennej SAR, mo-
del z przestrzennie autoskorelowanym składnikiem losowym SEM), a kończy-
my na najbardziej złożonych, rozważanych często tylko teoretycznie, modelach
wyższych rzędów klasy SARAR, czy modeli ze średnią ruchomą SARARMA.
W dalszej części omawiamy teorię pozwalającą na poprawną interpretację osza-
cowań parametrów modeli autoregresji przestrzennej, opartą na przekształceniu
równania specyfikacji modelu do postaci jawnej w celu wyliczenia tzw. efek-
tów bezpośrednich i pośrednich. Znaczna część tego rozdziału została poświę-
cona podstawom matematycznym wybranych procedur estymacji. W szczegól-
ności pokazujemy, że mimo niezgodności estymatora najmniejszych kwadratów
w przypadku ogólnym, dla pewnych klas macierzy wag (w przeciwieństwie do
innych metod) może on oferować dobrej jakości oszacowania. Zaprezentowa-
ne metody estymacji obejmują również metody: zmiennych instrumentalnych,
największej wiarogodności, uogólnioną metodą najmniejszych kwadratów oraz
uogólnioną metodę momentów.

W rozdziale III badamy własności statystyk testowych, a w szczególności sta-
tystyki Morana. Przeprowadzamy formalne rozumowania prowadzące do uzyska-
nia właściwych rozkładów asymptotycznych, przy zastosowaniu niesumowalnych
macierzy wag przestrzennych. Rozważamy również problem tzw. niestacjonar-
ności oraz— na bazie znanego testu niestacjonarności przestrzennej — prezen-
tujemy procedurę testową Kosfelda–Lauridsena–Olejnika.

W rozdziale IV przedstawiamy kompletny wywód formalny, wykazujący
zgodność estymatorów quasi-największej wiarogodności (QNW) dla modeli au-
toregresyjnych. Elementem nowatorskim jest ominięcie w sformułowanej teorii
założenia o sumowalności przestrzennej macierzy wag, co poszerza stosowalność
przestrzennych modeli ekonometrycznych. W prezentowanych rozumowaniach
stosujemy złagodzone wymagania, dotyczące rozkładu składnika losowego mo-
delu. W szczególności, rozkład ten nie musi być gaussowski, a elementy wektora
zaburzeń nie muszą być niezależne. Opuszczamy również założenie równości
rozkładów między elementami. Co więcej, dopuszczamy funkcje gęstości od-
powiednich rozkładów o ogonach grubszych niż zakłada standardowa teoria
asymptotyczna.
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W rozdziale V monografii zamieszczamy autorskie centralne twierdzenie gra-
niczne dla form liniowo-kwadratowych. Przy pomocy tego wyniku uzyskujemy
twierdzenia o rozkładzie granicznym oszacowań estymatorów QNW. W szczegól-
ności wykazujemy asymptotyczną normalność oszacowań pochodzących z gaus-
sowskiej estymacji QNW, przy niejednorodnych i niegaussowskich zaburzeniach.
Istotnym elementem jest rozluźnienie warunków nakładanych na asymptotyczne
zachowanie się macierzy wag użytych w specyfikacji modelu przestrzennego.
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Wstęp

Regresja liniowa jest jedną z najpopularniejszych technik eksploracji danych, za-
kłada jednak, że obserwacje w próbie są warunkowo niezależne. To założenie
niekoniecznie jest spełnione w przypadku danych przestrzennych, np. danych
geograficznych lub w szczególnym przypadku danych pochodzących z badań zja-
wisk zachodzących w przestrzeni. Wówczas na przebieg obserwowanego procesu
często wpływa relacja sąsiedztwa, a ogólniej — układ odległości między jednost-
kami podlegającymi badaniu. W takim przypadku mamy do czynienia z tzw.
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autokorelacją przestrzenną. Ze swojej natury, autokorelacja przestrzenna jest ści-
śle związana z rozmieszczeniem jednostek oraz interakcjami przestrzennymi, a jej
idea wykorzystuje pierwsze prawo geografii, sformułowane w 1970 roku przez
Waldo Toblera: Everything is related to everything else, but near things are more
related than distant things (Tobler, 1970: 236).

Reguła Toblera mówi o tym, że siła oddziaływań między obiektami blisko
położonymi w przestrzeni jest większa, niż pomiędzy obiektami znajdującymi
się w dużym oddaleniu. W naszym opracowaniu słowo „przestrzeń” będziemy
rozumieć w szerokim sensie. Zauważmy, że możemy mieć do czynienia nie tylko
z przestrzenią fizyczną czy geograficzną. Zbiór jednostek, z których pochodzą da-
ne, może być właściwie dowolnym zbiorem, o ile określona jest relacja sąsiedztwa
bądź metryka reprezentująca odległość między jego elementami. W szczególno-
ści, przestrzenią może być oś punktów czasowych (tak jak w teorii szeregów
czasowych), wycinek mapy reprezentujący obszar geograficzny, a także czaso-
przestrzeń powstająca jako iloczyn kartezjański dowolnej przestrzeni abstrakcyj-
nej i osi czasowej (tak jak w badaniach panelowych).

Uwzględnienie prawa Toblera w analizach empirycznych wymaga precyzyjne-
go zdefiniowania pojęć bliskości (sąsiedztwa) lub odległości. W takim przypad-
ku możliwym będzie uwzględnienie w modelu zjawiska zależności, na przykład
korelacyjnej bądź regresyjnej, zmiennych losowych reprezentujących obserwacje
pochodzące z jednostek bliskich sobie w przestrzeni. Zauważmy, że w przypadku
szeregów czasowych kierunek uporządkowania jest naturalny. Przykład prostej
autoregresji yt = ρyt−1 + εt, gdzie t = 1, 2, . . . , T , pokazuje, że mamy tu do
czynienia z jednokierunkową zależnością o zwrocie zgodnym z upływem czasu,
a (niesymetryczna ze względu na przyczynowość) relacja bliskości ograniczona
jest do sąsiednich okresów. Ogólnie w przestrzeni nie ma jednak takiego intu-
icyjnego uporządkowania, zależności mogą być wielokierunkowe, a ich zwrot nie
musi być jednoznacznie określony. Niemniej jednak, siła zależności przestrzen-
nych będzie zależna od odległości pomiędzy obiektami.

W niniejszym rozdziale wprowadzone zostaną podstawowe pojęcia i oznacze-
nia wykorzystywane w dalszej części pracy. W części pierwszej przedstawiona
zostanie formalna definicja przestrzennego procesu stochastycznego. W kolej-
nej sekcji zaprezentujemy ideę przestrzennej macierzy wag. Zdefiniowanie tego
pojęcia umożliwi wprowadzenie do modeli matematycznych informacji a priori
o zależnościach przestrzennych. Ostatnia część rozdziału poświęcona będzie defi-
nicji autokorelacji przestrzennej. Zaprezentujemy tam również przegląd popular-
nych testów statystycznych, stosowanych do wykrywania obecności autokorelacji
przestrzennej w analizowanych danych. W szczególności rozważamy popularną
statystykę I Morana na poziomie zarówno globalnym jak i lokalnym. Ścisłe ma-
tematycznie rozumowanie dotyczące rozkładów asymptotycznych tej statystyki
zaprezentowane zostanie jednak dopiero w rozdziale III.
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1. Procesy stochastyczne w przestrzeni

1.1. Interakcje przestrzenne

W przypadku analiz procesów ekonomicznych obserwowanych w przestrzeni
można założyć, że jednostki przestrzenne, np. regiony, nie stanowią niezależ-
nych, odizolowanych gospodarek, ale wzajemnie na siebie oddziałują. Zgodnie
z prawem Toblera, im bliżej położone są dwa obiekty w przestrzeni, tym większa
jest siła interakcji między nimi. Występowanie zależności przestrzennych wy-
nika najczęściej z charakteru procesów ekonomicznych, które są ograniczone
w przestrzeni, a ich intensywność stanowi funkcję odległości. W efekcie, zależ-
ności przestrzenne występują wówczas, gdy wartość zmiennej z jednej lokalizacji
jest uzależniona od jej wartości w innych lokalizacjach. Oddziaływania te mo-
gą wynikać z heterogeniczności przestrzennej (ang. spatial heterogeneity), czyli
przestrzennego zróżnicowania procesu ekonomicznego, bądź też z tzw. efektów
przestrzennych (ang. spatial effects), wśród których wyróżniamy efekty zewnętrz-
ne (ang. externalities) oraz efekty rozprzestrzeniania się (ang. spillover effects).

Heterogeniczność przestrzenna wiąże się z problemem niestabilności relacji
ekonomicznych w przestrzeni geograficznej, co może skutkować niestabilnością
parametrów strukturalnych w modelu ekonometrycznym (por. Anselin, 1988a;
Suchecki [red.] 2010). W przypadku występowania heterogeniczności przestrzen-
nej wskazuje się na występowanie tzw. reżimów przestrzennych (ang. spatial regi-
mes), czyli obszarów, które ze względu na przebieg procesów ekonomicznych są
wewnętrznie spójne. Zauważmy bowiem, że zjawiska ekonomiczne mogą inaczej
przebiegać np. w regionach centralnych i peryferyjnych, w dużych aglomeracjach
i na obszarach wiejskich czy w krajach tzw. starej i nowej Unii Europejskiej.

Przestrzenne efekty zewnętrzne są zjawiskiem polegającym na przeniesieniu
części korzyści ekonomicznych wynikających z działalności jednego podmiotu na
podmioty sąsiednie, bez odpowiedniej rekompensaty. Na występowanie efektów
zewnętrznych mogą wpływać efekty występujące między producentami i konsu-
mentami lub grupami producentów. Przykładem—właściciel przedsiębiorstwa,
zlokalizowanego w pobliżu miasta uniwersyteckiego, który będzie odnosił korzy-
ści w postaci możliwości zatrudnienia lepiej wykształconej kadry pracowniczej,
nie ponosząc kosztów na rzecz ich edukacji czy samego uniwersytetu.

Rozprzestrzenianie się jest w pewnym sensie jednym z efektów zewnętrznych,
choć dotyczy sytuacji, w której badane zjawisko wpływa samo na siebie, powodu-
jąc zależności przestrzenne. Na przykład, przedsiębiorca otwierający sklep, klub
lub restaurację może zdecydować się na lokalizację obok sklepu tej samej bran-
ży. Wówczas tworzy się pewnego rodzaju klaster podmiotów, oferujący szeroki
wybór towarów i usług, przyciągający większą grupę konsumentów. Zauważ-
my, że zarówno w przypadku występowania efektów zewnętrznych jak i efektów



18 Wprowadzenie do modelowania przestrzennego

rozprzestrzeniania się obserwujemy kumulowanie się aktywności ekonomicznej
w przestrzeni, jednak jego przyczyny są różne.

Niezależnie od procesów ekonomicznych leżących u podstaw badanego zja-
wiska, obserwowane efekty przestrzenne, nazywane również efektami zarażania
(ang. contagion effects), mogą mieć dwojaką naturę. Powiemy, że ma miejsce wła-
ściwy efekt zarażania (ang. true contagion effect), gdy poziom określonego pro-
cesu ekonomicznego na pewnym obszarze ma dodatni wpływ na jego rozwój na
obszarach sąsiednich (przestrzenne dodatnie sprzężenie zwrotne). O pozornym
efekcie zarażania (ang. spurious contagion effect) mówimy, gdy zamiast rzeczy-
wistego wpływu obserwujemy występowanie pewnych wspólnych, sprzyjających
warunków zewnętrznych. Dla przykładu można rozważyć grupowanie się przed-
siębiorstw, wynikające z faktu istnienia wspólnych korzyści ze współdzielenia
lokalizacji, np. współpraca (właściwy efekt zarażania) lub korzystania z określo-
nej właściwości samej lokalizacji, np. ulgi podatkowe, dogodna infrastruktura
komunikacyjna (pozorny efekt zarażania).

Rozróżnienie analityczne powyższych efektów może mieć miejsce w doborze
odpowiedniej postaci algebraicznej przestrzennego modelu ekonometrycznego
(por. przegląd specyfikacji w rozdziale II). Niemniej jednak, podanie prostego
przepisu na reprezentację zjawiska ekonomicznego poprzez specyfikację modelu
nie jest możliwe. Należy zauważyć, że w przypadku rzeczywistych procesów ma-
my najczęściej do czynienia z kombinacją różnych efektów, działających jawnie
lub w sposób niebezpośredni, prowadzących wspólnie do autokorelacji prze-
strzennej danych.

Poza opisanymi wcześniej mechanizmami, na występowanie zależności prze-
strzennych może mieć również wpływ pewien aspekt czysto techniczny. Jak wy-
jaśnia Olejnik (Suchecki [red.] 2010), na etapie przygotowywania analiz dane
są grupowane pod względem przynależności do jednostek administracyjnych
(takich jak gminy, powiaty, województwa), a nie struktury badanego zjawiska.
W konsekwencji, jeśli wartości analizowanej zmiennej wykraczają poza ustalone
granice, między sąsiadującymi ze sobą obiektami obserwujemy występowanie in-
terakcji. Zagadnienie to nazywane jest problemem MAUP (ang. Modifiable Areal
Unit Problem, patrz Arbia, 1989) i jest kategoryzowane jako błąd pomiaru, wyni-
kający z rozbieżności między jednostką administracyjną poddawaną pomiarowi
a obszarem, na którym zjawisko faktycznie ma miejsce. Problem ten jest częstą
przyczyną obciążeń analiz statystycznych, w których odgórne nadanie regionom
granic administracyjnych powoduje, że zależności przestrzenne i heterogenicz-
ność danych przestrzennych mogą nawet być generowane sztucznie. Powszechnie
uznaje się, iż jeśli nie ma możliwości pozyskania danych nieobarczonych błędem
MAUP, wówczas pewnym sposobem na eliminację jego skutków jest uwzględ-
nienie autokorelacji przestrzennej w postaci modelu ekonometrycznego.
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1.2. Definicja przestrzennego procesu stochastycznego

Rozważmy zbiór obiektów w przestrzeni lokalizacji P = 1, . . . , N . W dalszej
części opracowania dla uproszczenia będziemy nazywać je lokalizacjami, jed-
nostkami przestrzennymi bądź— dla lepszego zilustrowania omawianego poję-
cia — regionami. Poszczególne jednostki będziemy identyfikować z ich indeksa-
mi: i = 1, . . . , N .

W praktyce, w ekonometrii przestrzennej, przez przestrzenny proces stocha-
styczny rozumie się (najczęściej kolumnowy) wektor losowy

x =


x1
x2
...
xN

 ,

w którym każda ze współrzędnych xi, 1 6 i 6 N , jest zmienną losową określoną
na jednej wspólnej przestrzeni probabilistycznej (Ω,F ,P) reprezentującą wartość
procesu, obserwowaną w odpowiednich lokalizacjach i ∈ P . Struktura losowości,
a tym samym struktura zależności pomiędzy poszczególnymi zmiennymi pro-
cesu, modelowana jest poprzez dystrybuantę rozkładu łącznego. Tak więc, jeśli
x̃ = [x̃1, x̃2, . . . , x̃N ]T ∈ RN jest wektorem liczbowym potencjalnych realizacji
procesu x, to dystrybuanta stochastycznego procesu przestrzennego dana jest
przez zależność

Fx(x̃1, x̃2, . . . , x̃N ) =
√

(2π)−N detV

∫
{x6 x̃}

e−
1
2
QV(x−µ0)dx,

gdzie µ0 jest wektorem odpowiednich wartości oczekiwanych, a RN 3 x 7→
QV(x) ∈ R jest formą kwadratową o dodatnio określonej (symetrycznej) macie-
rzy V, której macierzowa odwrotność reprezentuje strukturę zależności procesu
przestrzennego.

Zauważmy, że jeśli rozważamy ustalony i skończony zbiór lokalizacji P =
{1, . . . , N}, to — z punktu widzenia aparatu matematycznego— teoria prze-
strzennych procesów stochastycznych może być sprowadzona do teorii wektorów
losowych ustalonego, skończonego wymiaru. Aby rozważać własności o charak-
terze asymptotycznym, musimy jednak rozszerzyć definicję procesu przestrzen-
nego. W praktyce interesują nas często wartości pewnej liczbowej (losowej) cha-
rakterystyki θ(x) obserwowanego procesu x. Taką charakterystyką może być
pewna statystyka (funkcja obserwacji) procesu lub estymator nieznanego para-
metru. W teorii ekonometrii w naturalny sposób pojawiają się wtedy takie pojęcia
jak zgodność czy asymptotyczna normalność, które wymagają (chociażby poten-
cjalnej) możliwości nieograniczonego zwiększania rozmiaru próby. W praktyce
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nie dysponujemy jednak wieloma realizacjami tego samego procesu losowego,
a raczej jedną jego trajektorią. Zatem wnioskowanie opiera się na założeniu, że
to dziedzina przestrzenna procesu potencjalnie rośnie nieograniczenie. Innymi
słowy, asymptotyka zjawiska przestrzennego obserwowana jest nie przez wie-
lokrotne próbkowanie trajektorii procesu, a raczej przez zwiększanie rozmiaru
dziedziny przestrzennej N do nieskończoności.

Definicja
Niech (Ω,F ,P) będzie ustaloną przestrzenią probabilistyczną. Przez prze-
strzenny proces stochastyczny będziemy rozumieć funkcję losową x = x(N)
postaci

N 3 N 7→ x =


x1
x2
...
xN

 ∈
N

×
i=1

L0(Ω,F ,P),

W przypadku standardowych modeli statystki i ekonometrii, w których ele-
menty próby są niezależne, potencjalny wzrost rozmiaru próby można łatwo
interpretować jako np. uzupełnienie/rozszerzenie próby o dodatkowe, niezależne
obserwacje o analogicznej strukturze losowości. Mianowicie moglibyśmy doko-
nać dodatkowego losowego wyboru elementów populacji lub iteratywnie wyko-
nywać eksperyment i rozszerzać próbę o zarejestrowane wyniki pomiarów.

Gdy próba ma jednak charakter przestrzenny, a obserwacje pochodzą z fi-
zycznych lokalizacji, wówczas zbudowanie podobnej interpretacji może nastrę-
czać pewne trudności. Podstawowym problemem jest brak fizycznej możliwości
rozszerzenia próby. Jeśli, dla przykładu, badanie dotyczy krajów członkowskich
Unii Europejskiej, wówczas wzrost próby mógłby nastąpić tylko w przypadku
rozszerzania wspólnoty. Pozostaje zatem pytanie o sposób rozumienia takie-
go hipotetycznego rozszerzenia, a w efekcie również, o sposób interpretowania
asymptotycznego zachowania się statystyki N 3 N 7→ θ(x), przy rosnącym
N → ∞. Poniżej przedstawimy krótko trzy możliwe interpretacje, oparte na
różnych wzorcach hipotetycznego wzrostu rozmiaru próby.

Najprostsze podejście polega na przyjęciu asymptotyki trywialnej (ang. simple
asymptotics), polegającej na założeniu, że jesteśmy w stanie potencjalnie prze-
prowadzić cały eksperyment ponownie i, tym samym, zebrać kolejne, niezależne
próbki wartości całego obserwowanego wektora. Takie podejście ma oczywiste
ograniczenie. Ponieważ, de facto, nigdy takiego ponownego losowania i pomiaru
nie wykonujemy, w efekcie dokonujemy wnioskowania statystycznego na pod-
stawie tylko jednej realizacji procesu przestrzennego. Co za tym idzie, taka hipo-
tetyczna asymptotyka nie pozostawia miejsca na wzrost ilości informacji o zależ-
nościach przestrzennych pomiędzy obserwacjami. W prawdzie można sformuło-
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wać twierdzenia o własnościach asymptotycznych statystyk w tym modelu, lecz
w praktyce trudno jest obronić zasadność użycia takiego wyniku do wniosko-
wania dla próby skończonej — efektywnie jednoelementowej! Dodatkowo, hipo-
tetyczna wielkość próby zawsze stanowi wielokrotność wyjściowej wartości N .

Drugim modelem jest tzw. asymptotyka rosnącej dziedziny (ang. increasing
domain asymptotics). Zakłada ona, że jesteśmy w stanie zwiększać nieograni-
czenie rozmiar próby poprzez rozszerzanie fizycznej dziedziny procesu. Inaczej,
w efekcie zwiększania średnicy dziedziny przestrzennej zaliczane są do niej coraz
to nowe jednostki. Istotne jest, aby nowo dołączone obszary charakteryzowały się
podobną strukturą zależności przestrzennych procesu. Ostatecznie, istnieje pew-
na liczba η > 0 ograniczająca od dołu minimalną odległość między dowolnymi
jednostkami przestrzennymi.

Podejściem w pewnym sensie odwrotnym w stosunku do powyższego jest
koncepcja asymptotyki wypełniania (ang. infill asymptotics), w której zakłada się
ograniczenie średnicy dziedziny przestrzennej. W takim przypadku nowe jed-
nostki przestrzenne pojawiają się w sposób równomierny, np. pomiędzy istnieją-
cymi lokacjami w próbie. W efekcie, minimalna odległość pomiędzy jednostkami
przestrzennymi dąży do zera.

2. Przestrzenna macierz wag

2.1. Definicja i przykłady

Aby opisać i uwzględnić w modelu ekonometrycznym przestrzenną strukturę
sąsiedztwa, stosuje się tzw. macierz wag przestrzennych (ang. spatial weight ma-
trix), której elementy mają interpretację mnożników nadających wagi składni-
kom w zależności linowej. Zwykle przyjmowana jest ona a priori i uważa się,
że ma charakter egzogeniczny. Zauważmy, że w polskiej terminologii zamiennie
używany jest termin przestrzenna macierz wag, patrz Suchecki [red.] (2010).

Definicja
Przyjmijmy, że zbiór liczb naturalnych {1, . . . , N} indeksuje elementy w N -
-elementowej próbie jednostek przestrzennych podlegającej badaniu. Macierz
kwadratową W = [wij ]16i,j6N o wymiarach N×N , reprezentującą liczbowo
moc zależności między obiektami, nazywamy macierzą wag przestrzennych.
Dla dowolnych 1 6 i 6= j 6 N , element wij reprezentuje wpływ, jaki wywiera
jednostka przestrzenna j na jednostkę i.

Należy tutaj zaznaczyć, że w większości przypadków (również w tym rozdzia-
le) przyjmuje się, że macierz wag ma zerową przekątną, tj. wii = 0, dla wszyst-
kich 1 6 i 6 N , a wszystkie elementy macierzy są nieujemne. W ogólności tak
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jednak być nie musi. W przypadku macierzy wag przestrzennych, rozważanych
na potrzeby przestrzennych modeli ekonometrycznych, których oryginalna spe-
cyfikacja podlega liniowemu przekształceniu (np. usuwaniu efektów stałych) to
założenie nie musi być spełnione (patrz Olejnik, Olejnik, 2020).

Poniżej zamieszczamy przykłady macierzy wag przestrzennych, powszech-
nie stosowanych w badaniach ekonomicznych z geograficzną dziedziną procesu
przestrzennego.
Przykład

Macierz W = [f(dij)]16i,j6N —gdzie dij oznacza odległość (najczęściej eu-
klidesową) między lokalizacjami i oraz j (najczęściej centroidami obiektów
przestrzennych), a f : [0,∞) → [0,∞) jest dowolną funkcją malejącą—
nazywamy przestrzenną macierzą odległości. W praktyce najczęściej stosu-
je się funkcję wykładniczą lub potęgową. W przypadku funkcji wykładni-
czej przestrzenna macierz odległości przyjmuje postać W = [e−αdij ]16i,j6N ,
gdzie parametr α > 0 przyjmowany jest a priori. Dla funkcji potęgowej zaś
W = [dij

−α]16i,j6N , gdzie parametr α jest dodatni.
Należy tutaj wspomnieć, że do uzyskania pożądanych własności asymptotycz-

nych modeli przestrzennych w przypadku macierzy odległości opartej na funkcji
potęgowej, może okazać się konieczne zastosowanie tzw. punktu odcięcia. Za-
kłada się wtedy dodatkowo, że dla jednostek przestrzennych i, j takich, że dij
przekracza określony poziom D, wzajemny wpływ jednostek jest znikomy, a więc
wij = 0, dla dij > D. Alternatywnie rozważa się też możliwość przeskalowania
macierzy W jej największą wartością własną (np. Elhorst, 2001; Vega, Elhorst,
2015; Olejnik, Olejnik, 2020; patrz również rozważenia dotyczące asymptotyki
przestrzennej macierzy wag dalej w tym rozdziale).
Przykład

Przestrzenną macierzą ustalonego promienia nazywamy macierz W, której
elementy wij są równe 1, jeśli odległość dij pomiędzy dwoma lokalizacja-
mi 1 6 i, j 6 N nie przekracza pewnej, ustalonej a priori odległości d∗,
a w przeciwnym wypadku są równe zero. Mamy zatem

wij =

{
1, 0 6 dij 6 d∗

0, dij > d∗
.

Przykład
Macierz, której elementy określają, czy dwa obiekty przestrzenne mają wspól-
ną granicę, czy też nie, nazywamy przestrzenną macierzą wspólnych granic.
Dokładniej, elementy macierzy W = [wij ]16i,j6N są zdefiniowane następu-
jąco

wij =

{
1, jeśli obiekty i i j mają wspólną granicę
0, w pozostałych przypadkach .
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Przykład
Macierz W = [wij ]16i,j6N , której elementy określone są przynależnością
obiektu j do zbioru k-najbliższych sąsiadów, NNk, zgodnie ze wzorem

wij =

{
1, dla j ∈ NNk

0, w pozostałych przypadkach .

nazywamy przestrzenną macierz k-najbliższych sąsiadów.

W praktyce do najczęściej wykorzystywanych macierzy wag należą te oparte
na odległości oraz sąsiedztwie (por. Anselin, 1988a), choć w przypadku niektó-
rych analiz badacze widzą potrzebę uogólniania klasycznych definicji, czy wręcz
poszukują nowych, bardziej elastycznych metod określania struktury przestrzen-
nej. W szczególności rozważane są schematy anizotropowe, a nawet, co wiąże się
z ryzykiem endogeniczności macierzy W, oparte na wartościach zmiennych ob-
serwowanych (por. Deng, 2008; Corrado, Fingleton, 2011; Kelejian, Piras, 2014;
Olejnik i in., 2020).

Dyskusja na temat poprawnego określenia struktury przestrzennej badanego
procesu poprzez odpowiednią macierz wag trwa od powstania omawianej dys-
cypliny. Poszukując dróg do jak najwierniejszego oddania zróżnicowań struktu-
ry przestrzennej, w literaturze można znaleźć liczne przykłady metod i proce-
dur uwzględniających dodatkowe informacje wzbogacające specyfikację modelu.
Przykładem może być tu praca Daceya (1968), który zbudował asymetryczną
macierz wag, łączącą binarną macierz sąsiedztwa z wielkością regionu oraz dłu-
gością wspólnych granic. Cliff i Ord (1981) zaproponowali macierz wag zawie-
rającą kombinację miary odległości i długości wspólnych granic. Z kolei Bodson
i Peeters (1975) przedstawili koncepcję macierzy dostępności, łączącą odległość
pomiędzy poszczególnymi regionami z różnymi kanałami komunikacyjnymi. Na
macierz odległości nałożyli oni wagi, związane z dostępnością środków trans-
portu, takich jak drogi czy linie kolejowe.

Innym ciekawym przykładem jest przestrzenna macierz wag Besnera (2002),
skonstruowana na podstawie miar podobieństw w zmiennych socjoekonomicz-
nych. W pracy Getis i Aldstadt (2004) zaproponowano model, w którym prze-
strzenna macierz wag została skonstruowana w oparciu o lokalną statystykę
Getisa-Orda Gi (por. Getis, Ord 1992; Ord, Getis 1995).

Z kolei w pracy Panak (2006) zaproponowano uwzględnienie w macierzy
wag zarówno aspektów czysto geograficznych, jak i powiązań infrastruktury ko-
munikacyjnej. Założono, iż czas podróży między obiektami przestrzennymi lepiej
reprezentuje przestrzenną strukturę badanego procesu niż klasyczna macierz wag
przestrzennych. Badając liczbę i jakość połączeń kolejowych i lotniczych oraz
klasę dróg i autostrad wykazano, iż wybrane jednostki, odległe od siebie geo-
graficznie, są tak dobrze skomunikowane, że są „bliżej” siebie niż wynikałoby
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to z odległości euklidesowej i powinny być rozważane jako obiekty sąsiednie.
Podobnie jak w przypadku wcześniej opisanych macierzy wag, konstrukcja wy-
magała ustalenia wielu nieznanych parametrów a priori.

W literaturze spotyka się również próby parametryzacji macierzy wag (np. El-
horst, Halleck, 2013), jednak należy zachować tu szczególną ostrożność. Jak
zauważa Anselin (1988a), równoczesna estymacja parametrów macierzy wag
z współczynnikami równania może prowadzić do problemów z efektywnością
estymacji, a także z interpretacją tak otrzymanych wyników. Dodatkowo może
wskazywać na istnienie zależności pozornych.

Problem właściwej specyfikacji macierzy wag przestrzennych pozostaje otwar-
ty. Trudno jednak o jednoznaczne wytyczne ze względu na zróżnicowanie czyn-
ników wpływających na strukturę zależności przestrzennych i ich zależność od
przedmiotu badań. Należy też zauważyć, że niektóre analizy empiryczne wymaga-
ją zastosowania niestandardowych koncepcji reprezentacji struktury przestrzen-
nej. Wystarczy tu choćby wskazać problem obiektów brzegowych i odizolowanych
przestrzennie, niepozostających w bezpośrednim sąsiedztwie z innym obiektem,
a przecież nie stanowiących wyalienowanych gospodarek. W niektórych bada-
niach struktura przestrzenna powinna zatem uwzględniać również oddziaływania
komunikacyjne, ekonomiczne i socjoekonomiczne (np. dojazdy do pracy, kon-
takty handlowe, a nawet powiązania etniczne).

Innym zagadnieniem jest problem dopuszczalnej ilości zależności wyrażonej
w macierzy wag, tak aby modelowanie i wnioskowanie ekonometryczne pozo-
stawało możliwe. Ten problem nakreślamy w następnym podrozdziale.

2.2. Asymptotyka macierzy wag

Zdefiniowanie przestrzennej macierzy wag umożliwia sformułowanie pojęcia
opóźnienia przestrzennego, które jest analogiem operatora opóźnienia, znane-
go z teorii szeregów czasowych. Przypomnijmy, że dla procesu stochastycznego
(xt) operator opóźnienia L jest definiowany poprzez zależność L[xt] = xt−1.
Określenie opóźnienia przestrzennego, ze względu na swoistą „wielokierunko-
wość” procesu, nie jest tak intuicyjne, jak w przypadku szeregów czasowych.

Definicja
Niech x = (xi)

N
i=1 będzie przestrzennym procesem stochastycznym, i niech

W = [wij ]16i,j6N ustaloną macierzą wag. Opóźnieniem przestrzennym
(ang. spatial lag) L[xi] procesu x w lokacji 1 6 i 6 N nazywamy średnią
ważoną wartości procesu x w lokacjach sąsiadujących

L[xi] =
N∑
j=1

wijxj .
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Zatem sąsiedztwo, a także wagi, określone są przez odpowiednie elementy
przestrzennej macierzy wag. Dokładniej, element wij można liczbowo inter-
pretować jako siłę wpływu jednostki przestrzennej j na jednostkę i.

Interpretację wartości elementów wij jako wag przestrzennych ułatwia po-
wszechność stosowania macierzy tzw. standaryzowanych (określenie zamien-
ne: normalizowanych) wierszowo, o elementach nieujemnych, tj.

∑N
j=1wij =

1, dla 1 6 j 6 N , oraz wij > 0, dla 1 6 i, j 6 N . W modelach eko-
nometrycznych rozważać będziemy przestrzenne opóźnienie zmiennej zależnej
Wy = (Lyi)

N
i=1 =

(∑N
j=1wijyj

)N
i=1

, przestrzenne opóźnienie zmiennych eg-
zogenicznych WX = (Lxi)

N
i=1 =

(∑N
j=1wijxj

)N
i=1

oraz składnika losowego
Wε = (Lεi)

N
i=1 =

(∑N
j=1wijεj

)N
i=1

. Umieszczenie w modelu opóźnienia prze-
strzennego pozwala na uwzględnienie w specyfikacji badanego zjawiska samoza-
leżności o charakterze przestrzennym.

Rozważając własności asymptotyczne, takie jak zgodność czy zbieżność roz-
kładów, pojęcie macierzy wag należy uzupełnić (podobnie jak w przypadku de-
finicji przestrzennego procesu stochastycznego) o zależność od rozmiaru próby.
Zatem przez macierz wag będziemy rozumieć nie pojedynczą macierz określo-
nego rozmiaru, ale macierzową funkcję rozmiaru próby N 3 N 7→ W = WN .
Stosując się jednak do terminologii powszechnie przyjętej w literaturze ustalamy
notację pomijającą indeks dolny N .

Pożądane własności statystyk badanego przestrzennego procesu stochastycz-
nego można uzyskać tylko, wtedy gdy macierz W, występująca w specyfikacji
modelu statystycznego, spełnia pewne dodatkowe założenia. Aby uwzględnienie
aspektu przestrzennego w modelu miało sens, siła interakcji między jednostka-
mi przestrzennymi zawartych w macierzy wag nie może być zbyt mała, ani też
zbyt duża. Nadmiar zależności przestrzennych między wartościami procesu mo-
że sprawić, że wzrost rozmiaru próby nie będzie skutkował dostatecznie dużym
wzrostem informacji o estymowanych parametrach. Problem niedostatku zależ-
ności przestrzennych opisanych macierzą W wydaje się mniejszy. Dla modeli
ekonometrycznych z opóźnieniem przestrzennym składnika losowego, jednostaj-
na zbieżność elementów wij , 1 6 i, j 6 N do zera może pozwolić na estymację
nieznanych parametrów prostszą metodą estymacji, niż jest to możliwe w ogól-
nym przypadku (patrz Lee, 2002; Mynbaev, Ullah, 2008; Mynbaev, 2010 oraz
podrozdział 2.1 w rozdziale II). W poniższych rozważaniach skupimy się za-
tem na problemie ograniczenia łącznej siły interakcji przestrzennych, zawartych
w macierzy wag.

Typowym założeniem asymptotycznym używanym do ograniczenia zależno-
ści przestrzennych w macierzy wag jest wymaganie jednostajnej sumowalności
wierszy i kolumn. Przypomnijmy, że dla dowolnej macierzy A = [aij ] o roz-
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miarach N ×N zdefiniowane są następujące normy

‖A‖1 = max
16j6N

N∑
i=1

|wij |,

‖A‖∞ = max
16i6N

N∑
j=1

|wij |.

(1.1)

Wówczas założenie o sumowalności wierszy i kolumn wymaga jednostajnej ze
względu na rozmiar próby ograniczoności powyższych norm macierzyW (por. za-
łożenie II.C w rozdziale II), tj.

sup
N=1,2,...

(‖WN‖1 + ‖WN‖∞) <∞. (1.2)

Jak argumentowano w pracy Olejnik i Olejnik (2020), takie założenie może
okazać się zbyt restrykcyjne w przypadku wielu nawet dość naturalnych kon-
strukcji macierzy wag. Jest ono szczególnie problematyczne w przypadku asymp-
totyki wypełniania (patrz podrozdział 1.2), jednak złagodzenie warunku (1.2)
może być konieczne również w przypadku asymptotyki rosnącej dziedziny. Na
przykład, dla macierzy opartej na potędze odwróconej odległości (ang. Inverse
Distance Weighting, IDW), czyli

wij =
1

dist(i, j)α
,

popularny przypadek interakcji newtonowskiej (α = 2) (por. Anselin, 2002),
przy równomiernie rozproszonej na płaszczyźnie dziedzinie, prowadzi do prze-
strzennej macierzy wag, która nie jest sumowalna w sensie (1.2). Ogólniej, dla
ustalonego 1 6 j 6 N , przez n(j, δ) oznaczmy liczbę jednostek przestrzen-
nych i pozostających pod wpływem jednostki j, dla których dist (i, j) ≈ δ. Jeśli
n(j, δ) > const · δα−1, jak jest najczęściej w α-wymiarowej przestrzeni euklide-
sowej, wówczas kolumny takiej macierz nie są sumowalne, gdyż

lim
∆→∞

∫ ∆

0
n(j, δ) · δ−α dδ = ∞.

Jeśli natomiast n(j, δ) 6 const · δ2α−1−ϵ, dla pewnego ϵ > 0, wówczas kolumny
macierzy wag okażą się sumowalne z kwadratem, z uwagi na zbieżność

lim
∆→∞

∫ ∆

0
n(j, δ) ·

(
δ−α

)2
dδ = ∞.



Przestrzenna macierz wag 27

Istnieje zatem potrzeba rozszerzania standardowej teorii asymptotycznej na przy-
padek macierzy nie koniecznie sumowalnych.

Czytelnicy zaznajomieni z matematyczną teorią ekonometrii czy geostaty-
styki zauważają z pewnością powszechną obecność teorii przestrzeni Hilberta
w tych dziedzinach. Można by więc oczekiwać, że w miejscu warunku (1.2) na-
turalnym ograniczeniem będzie nie bezwzględna sumowalność, ale sumowalność
z kwadratem. Jak wynika z rozważań w Olejnik i Olejnik (2020), związek opty-
malnego warunku ograniczoności przestrzennej macierzy wag—mogący zastąpić
warunek (1.2) — z teorią ciągów sumowalnych z kwadratem jest nieco bardziej
subtelny. Okazuje się, że zamiast rozważać własności wierszy i kolumn macie-
rzy W z osobna, należy ograniczyć normę operatora opóźnienia przestrzennego
wyznaczonego przez W. Innymi słowy, przestrzenna macierz wag traktowana
jest nie jako zbiór wierszy i kolumn, a raczej operator na RN , którego norma
spektralna podlega ograniczeniu

sup
N=1,2,...

‖W‖ <∞. (1.3)

W rozdziale II, gdzie dokonujemy przeglądu klasycznych metod estymacji
ekonometrycznych, odwołujemy się do standardowej teorii opartej na warunku
(1.2). Z kolei w rozdziałach III, IV i V rozwijamy zapoczątkowaną w pracach
Gupta i Robinson (2018) oraz Olejnik i Olejnik (2020) teorię własności asymp-
totycznych, opartych na warunku (1.3).

Nietrudno jest zauważyć, że warunek (1.2) implikuje warunek (1.3), co wy-
nika ze znanej nierówności ‖A‖2 6 ‖A‖1‖A‖∞, dla dowolnej macierzy A—
patrz równanie (1.1). Łatwo również wskazać taki ciąg macierzyAn, n = 1, 2, . . .,
dla którego supn∈N‖A‖ jest skończone i jednocześnie wartość ‖A‖1 + ‖A‖∞
może być dowolnie duża. Nieoczywiste jest jednak wskazanie standaryzowanej
wierszowo przestrzennej macierzy wag W, w której liczba niesumowalnych ko-
lumn rośnie do nieskończoności. Taką konstrukcję wykonujemy poniżej.

Przykład
Zdefiniujmy zbiory B1 = {2}, B2 = {3, 4}, B3 = {5, 6, 7}, a dalej Bk =

{l +maxBk−1}kl=1 dla k = 4, 5, . . . Oczywiście, zbiory Bk, dla k > 1, są pa-
rami rozłączne oraz

⋃∞
k=1Bk = N \ {1}. Zatem każda liczba całkowita i > 2

jednoznacznie wyznacza parę liczb (k(i), l(i)) zdefiniowaną przez zależności

i ∈ Bk(i),
i = minBk(i) − 1 + l(i).

Innymi słowy, k(i) jest numerem tego zbioru Bk, do którego należy i,
a l(i) jest numerem porządkowym liczby i w rosnącym ciągu elementów
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zbioru Bk(i). Zauważmy, że dla dowolnego i > 2 mamy i > l(i). Zdefiniujmy
również nieskończoną macierz W̃ = [w̃ij ]16i,j<∞ w taki sposób, że wszystkie
jej elementy są równe zero, poza elementami w̃1,2 = 1 oraz w̃i,l(i) = 1

k(i) ,
w̃i,i+1 = 1− 1

k(i) , dla wszystkich i > 2.
Pokażemy, że żadna kolumna W̃ nie jest sumowalna. W tym celu za-

uważmy, że jeśli j > 1 jest numerem kolumny oraz k > j, wówczas istnieje
i ∈ Bk takie, że j = l(i) i w̃ij =

1
k . Zatem, dla dowolnego i = 1, 2, . . . mamy

∞∑
i=1

w̃ij >
∞∑
k=j

1

k
= ∞.

Niech ‖W̃‖ będzie indukowaną normą spektralną macierzy W̃—macierzy
rozumianej jako operator na przestrzeni Hilberta l2 ciągów nieskończonych,
sumowalnych z kwadratem. Wówczas ‖W̃‖ 6 1 + π√

6
. Istotnie, przy ozna-

czeniach

W̃U =
[
w̃ijI{i<j}

]
16i,j<∞ ,

W̃L =
[
w̃ijI{i>j}

]
16i,j<∞ ,

gdzie funkcja indykatorowa (i, j) 7→ I{i<j} dana jest formułą

I{i<j} =

{
1, i < j
0, i > j

,

macierz W̃ możemy rozłożyć w następujący sposób: W̃ = W̃U + W̃L. Wy-
starczy więc pokazać, że ‖W̃U‖ 6 1 oraz ‖W̃U‖ 6 π√

6
. Niech FN , dla

N > 1, będzie podprzestrzenią l2 zdefiniowaną przez FN =
{
x = (xi)

∞
i=1 ∈

l2 : xi = 0 dla i > N
}
. Oczywiście podprzestrzeń F =

⋃∞
N=1 FN nie-

skończonych ciągów o skończonej liczbie niezerowych elementów jest gęstym
podzbiorem l2. Zauważmy zatem, że

‖W̃U‖2 = sup
x∈l2

‖W̃Ux‖2

‖x‖2
= sup

x∈F

‖W̃Ux‖2

‖x‖2

= sup
N∈N

sup
x∈FN

‖W̃U(N)x‖2

‖x‖2
= sup

N∈N
‖W̃U(N)‖2

6 sup
N∈N

‖W̃U(N)‖1‖W̃U(N)‖∞ = 1.
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Następnie oznaczmy przez cj , j > 1, kolumny macierzy W̃L. Łatwo zauważyć,
że wektory cj , j > 1, są ortogonalne, gdyż odpowiadające im zbiory indeksów
elementów niezerowych l−1({j}), j > 1, są parami rozłączne. Co więcej,
mamy ‖cj‖2 =

∑∞
k=j

1
k2

6 π2

6 . Z nierówności Bessela, dla dowolnego x ∈ l2
wnioskujemy, że

‖(W̃U)
T‖2 =

∞∑
j=1

|cTj x|2 6
π2

6
‖x‖,

czyli w efekcie ‖W̃L‖ 6 π√
6
.

Ostatecznie zdefiniujemy macierz W = W(N) = [wij ]16i,j6N w sposób
następujący. Połóżmy wij = w̃ij , dla wszystkich 1 6 i, j 6 N , z wyjątkiem
wn,n−1 = 1− 1

k(n) . Zauważmy, że prawdziwe jest ograniczenie

‖W‖ 6 ‖W̃‖+ 1.

Co więcej, macierz W jest standaryzowana wierszowo, gdyż
∑N

j=1w1j =

w1,2 = 1 oraz
∑N

j=1wij =
1

k(i) + 1− 1
k(i) = 1, dla wszystkich 2 6 i 6 N .

Przykład
Z powyższego przykładu łatwo wywnioskować istnienie niesumowalnej sy-
metrycznej przestrzennej macierzy wag o ograniczonej normie spektralnej.
Istotnie, warunek normalizacji wierszowej łatwo zamienić na warunek syme-
trii stosując przekształcenie

Wsym =
W +WT

2
.

3. Autokorelacja przestrzenna

W tym podrozdziale zdefiniujemy i omówimy pojęcie autokorelacji przestrzennej.
Przyjrzymy się także klasycznym sposobom mierzenia i testowania obecności tego
zjawiska na poziomie lokalnym jak i globalnym. Zatem przyjmijmy następującą
definicję.

Definicja
Autokorelacją przestrzenną danych pochodzących z przestrzennego procesu
losowego nazywamy tendencję do przyjmowania zbliżonych wartości w jed-
nostkach sąsiadujących lub bliskich przestrzennie. Przestrzenny proces sto-
chastyczny, dla którego obserwuje się takie zjawisko, nazywamy procesem
przestrzennie autoskorelowanym.
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Zauważmy, że przytoczona definicja nie jest ścisła i nie wskazuje stopnia
autokorelacji procesu w sposób kwantytatywny. Formalnie można by opisać licz-
bowo autozależność procesu przestrzennego x = (xi)i∈P używając macierzy
korelacji

Corr
[
xi, xj

]
, i, j ∈ P .

W praktyce jednak nie stosuje się takiego podejścia. Zamiast macierzy współ-
czynników przyjmuje się różne jednoparametrowe liczbowe mierniki autokore-
lacji w zależności uszczegółowionej definicji autokorelacji. Wszystkie są jednak
oparte na pewnego rodzaju zależności wartości zmiennej xi, 1 6 i 6 N , od war-
tości opóźnienia przestrzennego L[xi] =

∑N
j=1wijxj (patrz definicja na s. 24).

Należy wyróżnić dwa rodzaje autokorelacji przestrzennej: dodatnią i ujemną.
W przypadku autokorelacji dodatniej, wartości obserwowanej zmiennej z są-
siednich jednostek są do siebie podobne. Mamy wówczas do czynienia z prze-
strzennym grupowaniem się (w sensie lokalizacji) wysokich bądź niskich war-
tości obserwowanej zmiennej. Z kolei w przypadku ujemnej autokorelacji prze-
strzennej będziemy obserwować wysokie wartości zmiennej otoczone niskimi
(i odwrotnie), układając się w ten sposób we wzór przypominający szachownicę.
Badania empiryczne wskazują, że większość zjawisk ekonomicznych obserwo-
wanych w przestrzeni charakteryzuje się dodatnimi oddziaływaniami, co jest
zgodne z prawem Toblera. Autokorelacja ujemna jest obserwowana w praktyce
dość rzadko.

Autokorelację przestrzenną możemy badać na poziomie lokalnym lub global-
nym. Istnienie globalnej autokorelacji przestrzennej oznacza występowanie za-
leżności przestrzennych w obrębie całego badanego obszaru, średnio dla wszyst-
kich lokalizacji. Globalna autokorelacja przestrzenna uwidacznia się więc po-
przez ogólną tendencję do grupowania się podobnych wartości w przestrzeni.
Natomiast lokalną autokorelację przestrzenną definiuje się jako istnienie zależ-
ności przestrzennych danego obiektu z jego otoczeniem. Zatem jej identyfikacja
umożliwia wskazanie położenia lokalnych klastrów wartości podobnych. Mo-
że też prowadzić do wychwycenia tzw. lokalizacji nietypowych (ang. outliers).
W kolejnych podrozdziałach przedstawimy klasyczne metody testowania wystę-
powania zjawisk, zarówno globalnej, jak i lokalnej autokorelacji przestrzennej
procesu losowego.

3.1. Testowanie globalnej autokorelacji przestrzennej

Istnieje kilka rodzajów wskaźników testujących grupowanie się danych. Wszyst-
kie przedstawione poniżej statystyki mierzą stopień współzależności przestrzen-
nych. Do najpowszechniejszych należą statystyki: I Morana, Geary’ego oraz sta-
tystyka G(d). Jak dotąd, najpopularniejszą klasą testów służących wykrywaniu
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autokorelacji przestrzennej są te oparte na pracy Morana (1950). Test I Morana
może być także użyty do weryfikacji trafności doboru macierzy wagW, reprezen-
tującej przestrzenną strukturę zależności procesu losowego. Statystyka I Morana
służy więc do oceny stopnia skorelowania przestrzennego pomiędzy sąsiadujący-
mi lokalizacjami. Zmodyfikowana przez Cliffa i Orda (1973) pod kątem potrzeb
ekonometrii przestrzennej procedura testowania jest przestrzennym analogiem
testu Durbina-Watsona (Durbin, Watson, 1950; 1951). Statystyka I Morana służy
do testowania obecności globalnej autokorelacji przestrzennej według schematu
opisanego macierzą wag W.

Definicja
Rozważmy proces przestrzenny x = (x1, . . . , xN )T. Wówczas wartość glo-
balnej statystyki I Morana dla standaryzowanej wierszowo macierzy wag
W = [wij ]16i,j6N wyraża się wzorem

I =

∑N
i=1

∑N
j=1wij(xi − x̄)(xj − x̄)∑N

i=1(xi − x̄)
,

gdzie x̄ = 1
N

∑N
i=1 xi oznacza średnią z realizacji badanego procesu. Ogólniej,

jeśli przestrzenna macierz wag W nie jest wierszowo standaryzowana, a co
za tym idzie

∑N
i=1

∑N
j=1wij 6= N , wówczas statystyka I Morana przyjmuje

postać normalizowaną

I =
N∑N

i=1

∑N
j=1wij

·
∑N

i=1

∑N
j=1wij(xi − x̄)(xj − x̄)∑N

i=1(xi − x̄)2
. (1.4)

Jeżeli macierz W opisuje stan rzeczywisty, tj. duże wagi odpowiadają rzeczy-
wistym korelacjom, to wartość statystyki I Morana będzie miała tendencję do
przyjmowania wartości dużych, co do wartości bezwzględnej. Można więc po-
wiedzieć, że statystyka I Morana jest w pewnym sensie ważonym przestrzennie
współczynnikiem (auto)korelacji, służącym do wykrywania odchyleń w losowym
rozkładzie przestrzennym procesu x.

Aby wykorzystać statystykę I Morana do ustalenia, czy sąsiadujące ze sobą
wartości są bardziej do siebie podobne niż to wynika z losowości badanego
zjawiska, rozpatrzmy następujące hipotezy testowe:

H0 : brak autokorelacji przestrzennej, przy hipotezie alternatywnej,
H1 : występowanie zależności przestrzennych.

Zwyczajowo, w przypadku, gdy statystyka I Morana przyjmuje wartości bli-
skie I0 = −1 / (N − 1), uważa się, że wartość I nie daje podstaw do odrzucenia
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hipotezy zerowej. W przeciwnym przypadku zaś, odrzucając H0 wnioskujemy
o istnieniu pewnych istotnych statystycznie zależności przestrzennych. Zakłada-
jąc brak heterogeniczności przestrzennej danych, przyjmuje się, że gdy I > I0,
obserwuje się autokorelację przestrzenną dodatnią, zaś dla I < I0 autokorelację
ujemną. Zauważmy, że dla dostatecznie dużych N , w przypadku braku autokore-
lacji przestrzennej, statystyka przyjmować będzie wartości bliskie zeru. Chociaż
w praktyce wartość statystyki Morana często nie przekracza, co do modułu, war-
tości jeden, należy zaznaczyć, że w odróżnieniu od klasycznego współczynnika
korelacji Pearsona nie jest to regułą. W rzeczywistości, jak sugeruje Kossowski
(2010), za de Jong i inni (1984), mamy nierówności

N · λmin

2
∑N

i=1

∑N
j=1wij

6 I 6 N · λmax

2
∑N

i=1

∑N
j=1wij

,

gdzie λmin i λmax są odpowiednio najmniejszą i największą wartością własną
iloczynu M(W + WT)M, a macierz M jest operatorem rzutu na przestrzeń
ortogonalną do podprzestrzeni wektorów stałych. Co więcej, wskazywana tra-
dycyjnie wartość I0 = −1(N − 1) nie zawsze jest poprawna, co wyjaśniamy
w rozdziale III.

Powyżej przedstawiono popularną w literaturze postać procedury testowej
Morana. Można jednak zwrócić uwagę na fakt, że w zasadzie poprawna hipoteza
zerową powinna brzmieć następująco:

H0 : brak zależności przestrzennych w procesie x.

Odrzucenie hipotezy zerowej nie informuje nas bowiem, czy przyczyną zależno-
ści przestrzennych jest autokorelacja przestrzenna procesu, czy heterogeniczność
przestrzenna (por. Anselin, 1988a).

Poziom istotności testu Morana może być obliczony za pomocą standaryzo-
wanej statystyki I Morana. Przy pewnych założeniach jej rozkład można przy-
bliżyć standardowym rozkładem normalnym (patrz rozdział III), a dokładniej

I − E (I)√
Var (I)

' N (0, 1).

W praktyce często stosuje się również tzw. test randomizacyjny oparty na warto-
ści statystyki I Moran obliczanych dla generowanych losowo permutacjach pró-
by przestrzennej. Mianowicie, w ramach tej procedury próbkuje się przestrzeń
wszystkich permutacji π zbioru {1, . . . , N}. Dla każdego wylosowanego w ten
sposób π oblicza się wartość statystyki Morana I(π) dla procesu xπ = x◦π, gdzie
wartości procesu xπ = (xπ1 , . . . , x

π
N ) określone są przez równość xπi = xπ−1(i),

dla wszystkich jednostek przestrzennych 1 6 i 6 N . Wówczas tzw. pseudowar-
tość p (ang. pseudo p-value) określana jest jako iloraz liczby permutacji π, dla
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których I(π) 6 I(idπ), gdzie idπ jest permutacją identycznościową, przez liczbę
wszystkich permutacji w próbce.

Podobne zastosowanie ma przestawiona poniższej statystyka Geary’ego.

Definicja
Rozważmy proces przestrzenny x = (x1, . . . , xN )T oraz macierz wag prze-
strzennych W = [wij ]ij6N . Statystykę określoną wzorem

c =
N − 1

2
∑N

i=1

∑N
j=1wij

·
∑N

i=1

∑N
j=1wij(xi − xj)

2∑N
i=1(xi − x̄)2

,

gdzie x̄ = 1
N

∑N
i=1 xi, nazywamy globalną statystyką Geary’ego.

W przypadku, gdy wartość tej statystyki spełnia c < 1, mamy do czynienia
z autokorelacją przestrzenną dodatnią, natomiast dla c > 1 wnioskujemy o wy-
stępowaniu autokorelacji ujemnej. Wartość statystyki c ≈ 1 świadczy o braku
autokorelacji. Podobnie jak w przypadku statystyki I Morana, zakres możliwych
wartości statystyki Geary’ego jest pewną funkcją macierzy W (patrz de Jong
i inni, 1984), chociaż w praktyce mieszczą się w przedziałach: [0, 1)—dla auto-
korelacji dodatniej oraz (1, 2]—dla autokorelacji ujemnej.

Kolejną popularną statystyką przestrzenną jest opracowana przez Getisa i Or-
da (1992) statystyka G(d), mierząca siłę przestrzennego skorelowania pomiędzy
poszczególnymi lokalizacjami, będącymi w obrębie ustalonego otoczenia d. Sta-
tystyka ta jest funkcją promienia d, a więc pozwala na ustalenie średniej siły
zależności od przyjętego promienia oddziaływań.

Definicja
Niech x = (x1, . . . , xN )T będzie procesem przestrzennym oraz niech wij(d)
oznacza elementy niestandaryzowanej przestrzennej macierzy wag dla ustalo-
nego otoczenia d, tj. wij(d) = 1, gdy jednostki przestrzenne 1 6 i 6= j 6 N
są odległe od siebie o nie więcej niż d, oraz wij(d) = 0 w przeciwnym
wypadku. Statystykę postaci

G(d) =

∑N
i=1

∑N
j=1wij(d)xixj∑N

i=1

∑N
j=1 xixj

,

nazywamy globalną statystyką G(d).

Podobnie jak w przypadku statystki I Morana, wnioskowanie statystyczne
opiera się na założeniu, że standaryzowana statystyka G(d) ma w przybliżeniu
standardowy rozkład normalny

G(d)− E (G(d))√
Var (G(d))

' N (0, 1).
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Wartości dwóch pierwszych momentów statystyki G(d) mogą zostać wyznaczone
przy dodatkowych założeniach dotyczących własności stochastycznych procesu
x. Na przykład, przy pewnych założeniach można przyjąć, że wartość pierwszego
momentu statystyki G(d) wyraża się wzorem

E (G(d)) =

∑N
i=1

∑N
j=1wij(d)

N(N − 1)
.

Dodatnie wartości statystyki G(d)−EG(d) wskazują na przestrzenne grupowa-
nie się wysokich (ang. hot spots), ujemne zaś niskich wartości badanej zmiennej
(ang. cold spots); patrz Suchecki [red.] (2010).

3.2. Testowanie lokalnej autokorelacji przestrzennej

W praktyce badań ekonometrycznych nierzadko okazuje się, że zależności prze-
strzenne mogą nie mieć charakteru globalnego. Mogą być one obserwowane lo-
kalnie —w pewnych rejonach dziedziny przestrzennej, natomiast w innych mogą
występować w mniejszym natężeniu lub nie występować w ogóle. W takim wy-
padku w analizach empirycznych stosuje się testy i statystyki LISA (ang. Local
Indicator of Spatial Autocorrelation). Za ich pomocą bada się lokalną autokore-
lację przestrzenną, czyli korelację wartości zmiennej w wybranej lokalizacji z jej
sąsiadami (por. Anselin, 1988a: 284). W tym wypadku najczęściej wykorzystuje
się lokalną statystykę Ii Morana, dla i ∈ {1, . . . , N}, wyrażającą się wzorem

Ii =
N∑N

j=1

∑N
k=1wjk

·
∑N

j=1wij(xi − x̄)(xj − x̄)∑N
j=1(xj − x̄)2

.

Obliczenie statystyki Ii dla wszystkich obserwacji umożliwia wykrycie lokalnych
zgrupowań porównywalnych wartości procesu przestrzennego.

Podobną statystyką jest lokalna statystyka Geary’ego o następującej postaci:

ci =
N − 1

2
∑N

j=1

∑N
k=1wjk

·
∑N

j=1wij(xi − xj)
2∑N

j=1(xj − x̄)2
.

Wartość statystyki przekraczająca 1 wskazuje na obecność ujemnej lokalnej auto-
korelacji przestrzennej, w przeciwnym wypadku mamy do czynienia z dodatnią
lokalną autokorelacją.

W praktyce, zarówno dla celów analizy globalnej, jak i lokalnej, najpow-
szechniej jednak stosowane są statystyki Morana. Statystyka globalna oferuje
jedną charakterystykę dla całej próby, bedącą średnią lokalnych statystyk Ii Mo-
rana. Należy zatem zauważyć, że w przypadku, gdy autokorelacja przestrzenna
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nie występuje globalnie, statystyka I Morana nie jest z reguły w stanie wykryć
obecności pojedynczych klastrów. Z kolei lokalne statystyki Ii Morana liczone są
dla każdej lokalizacji osobno, co daje możliwość wykrycia lokalnych zgrupowań.

Należy również zwrócić uwagę na pewien sposób wizualnego określenia typu
występującej autokorelacji przestrzennej, czyli tzw. moranowski wykres rozpro-
szenia (ang. Moran scatterplot). Jak zaproponował Anselin (1996), aby w łatwy
sposób wychwycić obecność zależności przestrzennych, w planarnym układzie
współrzędnych można zaznaczyć punkty o współrzędnych(

(xi − x̄),

N∑
j=1

wij(xj − x̄)

)
, i = 1, . . . , N .

Na tak skonstruowanym wykresie, możliwy jest jeden z trzech przypadków. Jeśli
obserwujemy przewagę punktów układających się w ćwiartkach I i III, wskazu-
je to obecność autokorelacji dodatniej. Gdy, z kolei, większość punktów wpada
do ćwiartek II i IV, mamy so czynienia z autokorelacją ujemną. Brak widocz-
nej przewagi w żadnej z par ćwiartek układu współrzędnych świadczy o braku
autokorelacji przestrzennej.
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Wstęp

W wielu badaniach przestrzenny charakter struktury danych oraz ich przestrzen-
ne zależności stanowią samodzielny przedmiot zainteresowań. Jednak w innych
analizach autokorelacja przestrzenna stanowi problem poboczny, analogiczny do
autokorelacji składnika losowego, występującej w szeregach czasowych. Zarówno
w pierwszym, jak i w drugim przypadku nieuwzględnienie autokorelacji prze-
strzennej może prowadzić do oszacowań pozbawionych pożądanych własności,
takich jak efektywność, nieobciążoność, a nawet zgodność. Efektem takiego po-
dejścia może być wnioskowanie statystyczne oparte na niepełnej informacji. Do-
datkowo, dwukierunkowa natura interakcji przestrzennych uniemożliwia prze-
niesienie rozwiązań problemu autokorelacji w teorii szeregów czasowych na no-
wy, przestrzenny grunt.

W modelach ekonometrii przestrzennej zjawisko autokorelacji przestrzen-
nej uwzględnia się poprzez włączenie do postaci strukturalnej modelu skład-
nika, najczęściej w formie liniowej, odpowiadającego przestrzennemu opóźnie-
niu wybranych zmiennych (patrz podrozdział 2.2 w rozdziale I). O autoregresji
przestrzennej mówimy, gdy opóźnienie przestrzenne dotyczy zmiennej zależnej
lub składnika losowego. Natomiast, jeśli rozważane jest opóźnienie przestrzen-
ne zmiennych egzogenicznych, mamy do czynienia z modelem zawierającym
przestrzenną regresją krzyżową.

W tym rozdziale dokonamy przeglądu najbardziej popularnych postaci struk-
turalnych modeli przestrzennych, a następnie przedstawimy wybrane metody es-
tymacji ich parametrów. Zauważmy, że aby zagwarantować pożądane własności
wymienionych estymatorów, koniecznym jest przyjęcie szeregu założeń doty-
czących: zachowania asymptotycznego macierzy wag przestrzennych, własności
zmiennych egzogenicznych oraz rozkładu prawdopodobieństwa zaburzeń loso-
wych. W tej części pracy nie będziemy przedstawiać kompletnej matematycznie
teorii dotyczącej prezentowanych metod. Podkreślimy jednak te z założeń, które
odróżniają teorie standardowe od autorskiego podejścia, prezentowanego w roz-
działach kolejnych. W szczególności złagodzone zostaną wymagania wyrażone
poniżej w założeniach II.B, II.C i II.D.

Założenie II.A
Macierz W = [wij ]16i,j6N jest standaryzowana wierszowo i ma zerową prze-
kątną, tzn. dla każdego 1 6 i 6 N mamy

∑N
j=1wij = 1 oraz wii = 0.

Założenie II.B
Wiersze i kolumny macierzy W są jednostajnie bezwzględnie sumowalne,
czyli istnieje (niezależna od N ) stała C > 0, dla której
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max
16i,j6N

{ N∑
k=1

|aik|+
N∑
k=1

|akj |
}
< C ,

jednostajnie dla wszystkich możliwych rozmiarów próby N ∈ N.

Założenie II.C
Wartości zmiennych egzogenicznychX są jednostajnie ograniczone przy N =
1, 2, . . . Co więcej, istnieje asymptotyczna macierz kowariancji z próby dla
zmiennych egzogenicznych 1

NXTX, przy N → ∞, i jest ona nieosobliwa.

Założenie II.D
Składnik zaburzeń losowych modelu przestrzennego ma N -wymiarowy roz-
kład normalny N (0, σ2I).

Wprawdzie założenie II.A nie jest konieczne dla twierdzeń o asymptotycznych
własnościach estymatorów, niemniej jednak ze względów aplikacyjno-interpre-
tacyjnych (interpretacja elementów macierzy jako wag) oraz technicznych (patrz
twierdzenie II.2) macierze wag stosowane w modelach ekonometrycznych często
podlegają operacji standaryzacji wierszowej (ang. row standardization). Operacja
standaryzacji wierszowej polega na przemnożeniu każdego elementu macierzy
W = [wij ]ij6N w ustalonym wierszu przez odwrotność sumy elementów tego
wiersza. Innymi słowy mamy

Wstd :=

[
wij∑N
k=1wik

]
ij6N

.

Powszechnie uważa się, że standaryzacja macierzy wag umożliwia porówny-
wanie oszacowań parametrów między modelami. Co prawda istnieją argumenty
uzasadniające takie stwierdzenie, jednak nie jest ono pozbawione pewnych wad.
Można zauważyć, że przemnożenie wierszy macierzy przez różne liczby automa-
tycznie usuwa z niej informację o względny siłach interakcji w tych wierszach.
W szczególności wielkości uzyskane w każdej kolumnie macierzy standaryzowa-
nej wierszowo nie są już porównywalne. Idąc dalej, w przypadku macierzy od-
wróconej odległości, standaryzacja wierszowa może wręcz powodować problemy
interpretacyjne. Jak twierdzi Anselin (1988a: 23–24, tłumaczenie własne): „nor-
malizacja wierszowa macierzy wag, w której wagi są proporcjonalne do [potę-
gi — przyp. aut.] odwrotności odległości powoduje, że interpretacja ekonomiczna
oparta na zaniku oddziaływań wraz z odległością nie jest już poprawna”; por. też
Kelejian i Prucha (2010). Spotykaną w literaturze, choć mało spopularyzowaną
alternatywą dla standaryzacji jest odpowiednie przeskalowywanie całej macierzy
wag (patrz Elhorst, 2001; Vega, Elhorst, 2015; Olejnik, Olejnik, 2020). W takim
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wypadku, co ważne, zachowywana jest względna wielkość wag w całej macie-
rzy, przy jednoczesnym wprowadzeniu ograniczenia na całkowitą moc interakcji
przestrzennych. W rozdziałach III, IV i V świadomie pomijamy założenie stan-
daryzacji wierszowej, aby zachować ogólność rozważań.

1. Modele autoregresji przestrzennej

1.1. Przegląd specyfikacji

Niech W = [wij ]16i,j6N będzie ustaloną macierzą wag przestrzennych, o wy-
miarach N ×N . Przyjmijmy też, że kolumny macierzy X o wymiarach N × k
są wektorami obserwacji zmiennych egzogenicznych (z uwzględnieniem wyrazu
wolnego), wnoszących do modelu dodatkową zewnętrzną informację o badanym
procesie. W najprostszym przypadku, przy braku zmiennych objaśniających, spe-
cyfikacja modelu może uwzględniać jedynie autozależności przestrzenne procesu
generującego obserwacje (ang. data generating process). Taki model nazywamy
modelem czystej autoregresji przestrzennej.

Definicja
Modelem czystej autoregresji przestrzennej (pierwszego rzędu) nazywamy
model o specyfikacji opisanej równaniem

y = ρWy + ε, (2.1)

w którym y = [y1, . . . , yN ]T jest obserwowanym procesem przestrzennym,
a ε = [ε1, . . . , εN ] to składnik losowy o rozkładzie normalnym z zerową war-
tością oczekiwaną i stałą wariancją σ2I, gdzie σ2 jest nieznanym parametrem.
Parametr ρ nazywamy współczynnikiem autoregresji przestrzennej.

Zauważmy, że Wy =
(∑N

i=1wijyj
)N
j=1

jest wektorem średnich wartości
procesu w jednostkach sąsiednich, a więc równanie (2.1) możemy zapisać alter-
natywnie jako

yi = ρ

N∑
i=1

wijyj + εi.

Macierz W odzwierciedla zakładane zależności między lokalizacjami prze-
strzennymi (wij dla lokalizacji i-tej i j-tej), a tym samym pomiędzy poszcze-
gólnymi elementami procesu y. Przestrzenny charakter procesu w modelu jest
zatem uwzględniany poprzez składnik ρWy.

W praktyce dostępne są pewne zmienne egzogeniczne, które objaśniają ba-
dany proces przestrzenny (w najprostszym przypadku składnik stały). Model,
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którego specyfikacja uwzględnia dodatkowe zmienne X nazywany jest modelem
autoregresji przestrzennej — SAR (ang. Spatial Autoregressive Model), jak również
modelem opóźnień przestrzennych (ang. Spatial Lag Model).

Definicja
Przy przyjętych powyżej oznaczeniach, model oceniający zmianę poziomu
procesu przestrzennego y w oparciu o wartość procesu w sąsiednich lokali-
zacjach oraz determinanty procesu X, postaci

y = ρWy +Xβ + ε

ε ∼ N
(
0, σ2I

)
,

gdzie ρ jest współczynnikiem autoregresji przestrzennej, a β wektorem pa-
rametrów nachylenia (ang. slope), nazywamy modelem autoregresji prze-
strzennej (zmiennej objaśnianej) — SAR.

W przypadku, gdy zależność przestrzenna pojawia się wewnątrz procesu za-
kłóceń losowych, czyli błędy modelu dla poszczególnych lokalizacji są skorelo-
wane z błędami w lokalizacjach sąsiednich, mówimy o modelu z przestrzennie
autoskorelowanym składnikiem losowym— SEM (ang. Spatial Error Model).

Definicja
Przy przyjętych powyżej oznaczeniach, modelem z przestrzennie autosko-
relowanym składnikiem losowym (SEM) nazywamy model postaci

y = Xβ + u

u = λWu+ ε

ε ∼ N
(
0, σ2I

)
,

(2.2)

gdzie u = (u1, . . . , uN ) to N-wymiarowy wektor skorelowanych przestrzen-
nie składników losowych, zaś ε to proces generujący błędy modelu o roz-
kładzie normalnym z zerową wartością oczekiwaną i wariancją równą σ2I.
Parametr λ jest współczynnikiem przestrzennej korelacji składnika losowego.

Zakładając, że macierz I−λW jest nieosobliwa, model SEM dany w równaniu
(2.2) można poddać przekształceniom

y = Xβ + (I− λW)−1 ε

(I− λW)y = (I− λW)Xβ + ε

y = λWy +Xβ − λWXβ + ε,

prowadzącym do specyfikacji równoważnej, zdefiniowanej poniżej.
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Definicja
Przy przyjętych wcześniej oznaczeniach, model postaci

y = λWy +Xβ − λWXβ + ε

ε ∼ N
(
0, σ2I

)
,

nazywamy przestrzennym modelem Durbina (SDM, ang. Spatial Durbin
Model).

W literaturze można spotkać również ogólny model przestrzenny (SGM,
ang. Spatial General Model), który łączy w sobie dwa powyższe modele. W tym
wypadku mamy do czynienia zarówno z autoregresją przestrzenną, jak i z prze-
strzenną autokorelacją składnika losowego. Model ten w literaturze nazywany
jest również modelem typu Cliffa-Orda (por. Cliff, Ord, 1973).

Definicja
Przy przyjętych powyżej oznaczeniach, ogólnym modelem przestrzennym
nazywamy model postaci

y = ρWy +Xβ + u

u = λMu+ ε

ε ∼ N
(
0, σ2I

)
,

gdzie W i M są potencjalnie różnymi macierzami wag przestrzennych.

W rozważaniach teoretycznych pojawia się również rozszerzenie przedsta-
wionych specyfikacji na przypadek tzw. przestrzennych modeli wyższych rzędów
(ang. higher-order spatial models). Co więcej, przez analogię do szeregów czaso-
wych ARMA, wprowadza się również pojęcie przestrzennej średniej ruchomej
składnika losowego, uzyskując specyfikację SARARMA(p, q, r), dla p, q, r > 1
(ang. Spatial Autoregressive Autocorrelated Moving Average Model).

Definicja
Niech W1, . . . ,Wp oraz M1, . . . ,Mq będą macierzami wag przestrzennych.
Przy przyjętych wcześniej oznaczeniach, modelem SARAR(p, q) nazywamy
model o specyfikacji

y = ρ1W1y + ρ2W2y + . . .+ ρpWpy +Xβ + u

u = λ1M1u+ λ2M2u+ . . .+ λqMqu+ ε,

gdzie ε ∼ N
(
0, σ2I

)
, a ρ1, . . . , ρp oraz λ1, . . . , λq są przestrzennymi para-

metrami autoregresyjnymi.
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Definicja
Niech W1, . . . ,Wp, M1, . . . ,Mq oraz V1, . . . ,Vr będą macierzami wag
przestrzennych. Przy przyjętych wcześniej oznaczeniach, modelem typu SA-
RARAR rzędu (p, q, r) nazywamy model o specyfikacji

y = ρ1W1y + ρ2W2y + . . .+ ρpWpy +Xβ + u

u = λ1M1u+ λ2M2u+ . . .+ λqMqu+ ε

ε = ψ + ϕ1V1ψ + ϕ2V2ψ + . . .+ ϕrVrψ

ψ ∼ N
(
0, σ2I

)
,

gdzie ϕ1, . . . , ϕr są parametrami średniej ruchomej.

Zaznaczmy, że w modelach wyższych rzędów SARAR i SARARMA wprowa-
dzenie zbyt wielu macierzy wag przestrzennych może okazać się problematyczne.
Trudność sprawia np. właściwe określenie tzw. przestrzeni parametrów (ang. pa-
rameter space) dla przestrzennych współczynników autoregresyjnych (pewne pró-
by rozwiązania tego problemu były proponowane w publikacji Elhorst i inni
(2012). Wówczas, aby zagwarantować identyfikowalność wszystkich parametrów
modelu, konieczne może okazać się wprowadzanie dodatkowych założeń. Za-
tem, mimo że specyfikacje modeli wyższych rzędów dostarczają niewątpliwie
ciekawych możliwości aplikacyjnych (por. Olejnik i inni, 2020), w praktyce war-
tości parametrów rzędu p, q oraz r najczęściej nie wykraczają poza 0, 1 bądź 2.
W przypadku modeli o większej liczbie macierzy, problem identyfikowalności
parametrów można złagodzić ostrożnie dobierając macierze wag. Na przykład,
Gupta i Robinson rozważali model o nieskończonej (a dokładnie rosnącej wraz
z rozmiarem próby) liczbie macierzy, stosując dla nich warunek pewnego rodzaju
„ortogonalności” (por. Gupta, Robinson, 2015).

Analogicznie do modeli szeregów czasowych z rozkładami opóźnień (ang. di-
stributed lag models), przestrzenne opóźnienie może dotyczyć również zmiennych
egzogenicznych modelu. Mówimy wówczas o modelach regresji krzyżowej SCM
(ang. Spatial Cross-regressive Models). Jak się okazuje, uwzględnienie przestrzen-
nie opóźnionych wartości deterministycznych zmiennych objaśnianych w postaci
strukturalnej modelu, nie powoduje dodatkowych trudności estymacyjnych. Roz-
szerzenie modelu SAR o regresję krzyżową prowadzi z kolei do specyfikacji SADL
(ang. Spatial Autoregressively Distributed Lag Model).

Definicja
Przy przyjętych wcześniej oznaczeniach, model autoregresji zmiennej obja-
śnianej z regresją krzyżową (SADL) definiujemy poprzez specyfikację

y = ρWy +Xβ +WXγ + ε

ε ∼ N
(
0, σ2I

)
,

(2.3)
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gdzie γ jest współczynnikiem opóźnienia przestrzennego zmiennych obja-
śniających.

Zauważmy, że nieliniowy warunek ograniczający

γ + ρβ = 0, (2.4)

powoduje, że model SADL sprowadza się do opisanej wcześniej specyfikacji SDM,
równoważnej SEM. Należy tutaj zaznaczyć, iż w literaturze przedmiotu termin
przestrzenny model Durbina bywa również używany do określenia specyfikacji
(2.3) bez warunku (2.4). Jako przykład może tutaj posłużyć monografia LeSage
i Pace (2009).

1.2. Interpretacja parametrów modeli autoregresji przestrzennej

W przypadku procesów, w których występuje autokorelacja przestrzenna, nie-
wątpliwą zaletą uwzględnienia jej w modelu jest poprawienie własności staty-
stycznych oszacowań parametrów. Dodatkowo, modele przestrzenne zawierające
składnik odpowiadający za autoregresję zmiennej objaśnianej dostarczają bada-
czom dodatkowych możliwości interpretacyjnych. W tym podrozdziale przed-
stawiamy teorię pozwalającą na poprawną interpretację oszacowań parametrów
nachylenia. Rozumowanie oparte jest na pomyśle zaprezentowanym w pracy Le-
Sage i Pace (2009), polegającym na przekształceniu równania specyfikacji modelu
SARAR(1, 0) do postaci jawnej.

W naszym uogólnieniu, przyjmijmy, że obserwujemy pewien proces prze-
strzenny y = (y1, . . . , yN ) zgodny ze specyfikacją SARAR(p, q), uwzględniającą
dodatkowo efekt regresji krzyżowej. Bez straty ogólności możemy jednak założyć,
że q = 1, a zatem

y =

p∑
n=1

ρnWny +Xβ +WXγ + Jδ + u

u = λMu+ ε,
(2.5)

gdzie ε ∼ N
(
0, σ2I

)
jest wektorem zaburzeń losowych modelu, X i J są macie-

rzami zmiennych objaśniających, ρ1, . . . , ρp oraz λ parametrami autoregresyjny-
mi, β = (β1, . . . , βk), γ = (γ1, . . . , γk) i δ wektorami parametrów nachylenia.
Przyjmijmy również, że kolumny macierzy J zawierają zmienne niepodlegające
interpretacji w kategoriach wpływu, np. wyraz wolny czy zmienne indykatorowe
dla efektów stałych. Oczywiście, jeżeli zmienna Xl, 1 6 l 6 k, nie występuje
w modelu explicite lub w formie opóźnionej przestrzennie, można przyjąć odpo-
wiednio γl = 0 lub βl = 0. Zakładając odwracalność macierzy I−

∑p
n=1 ρnWn
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oraz I−λM, powyższe równanie możemy rozwiązać ze względu na y, uzyskując
równość (

I−
p∑

n=1

ρnWn

)
· y = Xβ +WXγ + Jδ + u.

Mamy zatem

Ey =

k∑
l=1

(
I−

p∑
n=1

ρnWn

)−1(
βlI+ γlW

)
Xl

+

(
I−

p∑
n=1

ρnWn

)−1

Jδ.

(2.6)

Zauważmy, że w przypadku specyfikacji (2.5) prosta interpretacja wartości
elementów parametru β jako krańcowych efektów poszczególnych zmiennych
na wartości zmiennej y może być niewłaściwa. Istotnie, jakiekolwiek zaburzenie
zmiennej objaśniającej w danej lokalizacji wywiera wpływ na wartość zmiennej
zależnej w tej samej lokalizacji nie tylko bezpośredni, lecz także pośredni, poprzez
lokalizacje sąsiednie. Wnioskowanie na podstawie uzyskanych oszacowań należy
zatem oprzeć na równości (2.6).

Ustalmy dowolną liczbę 1 6 l 6 k. Aby poprawnie ocenić marginalny wpływ
zmiennej objaśniającejXl na wartości procesu y, należy obliczyć macierz efektów
krańcowych jako pochodną wektorową wartości oczekiwanej Ey. W ten sposób
uzyskujemy macierz

El(W) =
[
elij
]
16i,j6N

:=
d(Ey)

dXl
=

(
I−

p∑
n=1

ρnWn

)−1

(βlI+ γlW),

gdzie elij wyraża efekt krańcowy zmiennej l w lokalizacji j na wartość yi, któ-
ry uwzględnia zależności przestrzenne. Rozszerzając terminologię wprowadzoną
przez LeSage’a i Pace’a (2009), elementy macierzy El(W) leżące na głównej prze-
kątnej nazwiemy efektami bezpośrednimi (ang. direct impacts/effects) zmiennej
Xl, a pozostałe elementy— efektami pośrednimi (ang. indirect impacts/effects).
Przykładem zastosowania teorii efektów przestrzennych może być badanie opi-
sane w pracy Olejnik i Olejnik (2019).

2. Estymacja modelu przestrzennego rzędu (1, 0)

Dla modelu klasy SARAR(1, 0) wyrażonego specyfikacją

y = ρWy +Xβ + ε

ε ∼ N
(
0, σ2I

)
,

(2.7)
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estymator MNK jest w ogólności obciążony, a nawet niezgodny. Poniżej przed-
stawimy dwie alternatywne metody estymacji: metodę zmiennych instrumental-
nych (MZI) oraz metodę największej wiarogodności (MNW). Wcześniej jednak
sformułujemy pewną istotną uwagę dotyczącą dziedziny wartości parametru au-
toregresyjnego ρ. W tym celu przytoczymy tu twierdzenie Greszgorina. Wyni-
kający z niego wniosek (twierdzenie II.2) jest kluczowy dla standaryzowanych
wierszowo przestrzennych macierzy wag.

Twierdzenie II.1 (Greszgorin)
Niech W = [wij ]16i,j6N będzie dowolną macierzą liczbową, a liczby Ri, dla
1 6 i 6 N , będą zdefiniowane jako sumy modułów elementów macierzy W,
poza przekątną, w odpowiednich wierszach, tj.

Ri =

i−1∑
j=1

|wij |+
N∑

j=i+1

|wij |.

Wówczas dla dowolnej, choćby zespolonej, wartości własnej λ istnieje 1 6 iλ 6
N , takie, że

|λ− wiλiλ | 6 Riλ .

Dowód. Niech xλ =
(
xλ1 , . . . , x

λ
N

)
będzie wektorem własnym macierzy W, od-

powiadającym dowolnej ustalonej wartości własnej λ. Wybierzmy jeden dowolny
indeks 1 6 iλ 6 N spełniający warunek |xiλ | > |xi|, dla wszystkich 1 6 i 6 N .
Bezpośrednio z definicji wartości własnej mamy więc

iλ−1∑
j=1

wijx
λ
j +

N∑
j=iλ+1

wijx
λ
j = (λ− wiλiλ) · x

λ
iλ
.

Zatem

|λ− wiλiλ | 6
iλ−1∑
j=1

∣∣∣wij

xλj

xλiλ

∣∣∣+ N∑
j=iλ+1

∣∣∣wij

xλj

xλiλ

∣∣∣ 6 Riλ .

Jeśli za przestrzeń możliwych wartości parametru autoregresyjnego ρ przyj-
miemy otwarty przedział (−1, 1), wówczas macierz operatora różnicowania prze-
strzennego (ang. spatial difference) ∆(ρ) = I− ρW będzie nieosobliwa, dla do-
wolnej standaryzowanej macierzy W z zerową przekątną oraz dowolnej wartości
parametru autoregresyjnego ρ.
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Twierdzenie II.2
Niech W będzie macierzą standaryzowaną wierszowo o zerowej przekątnej.
Wówczas dla dowolnego ρ ∈ (−1, 1) mamy

det (I− ρW) > 0

oraz
(I− ρW)−1 = I + ρW + ρ2W2 + . . .

Dowód. Najpierw pokażemy nie wprost, że det (I− ρW) 6= 0, dla każdego
ρ ∈ (−1, 1). W tym celu załóżmy przeciwnie, że istnieje pewne −1 < ρ̃ < 1, dla
którego det (I− ρ̃W) = 0. Wówczas oczywiście ρ̃ 6= 0 oraz dla λ = 1 / ρ̃ mamy
det (λI−W) = 0. Zatem λ jest wartością własną macierzy W. Z twierdzenia
Greszgorina (twierdzenie II.1) wynika więc istnienie indeksu iλ, dla którego

|λ− wiλiλ | 6 Riλ .

Ponieważ na mocy założonych własności macierzy W mamy wiλiλ = 0 i Riλ =
1, więc −1 < λ < 1. Te nierówności z kolei pociągają za sobą alternatywę
warunków

ρ̃ < 1 lub 1 < ρ̃,

z których każdy prowadzi do sprzeczności z założeniem, że ρ̃ ∈ (−1, 1).
Zauważmy, że funkcja przypisująca dowolnej liczbie ρ wartość wyznaczni-

ka det (I− ρW) jest funkcją ciągłą. Dodatkowo, w punkcie ρ0 = 0 przyjmu-
je ona wartość dodatnią, tj. det (I− ρ0W) = det I = 1 > 0. Zatem gdyby
det (I− ρW) < 0 dla pewnego ρ ∈ (−1, 1), wówczas istniałaby pewna licz-
ba ρ1 leżąca pomiędzy ρ i ρ0, dla której det (I− ρ1W) = 0, co ponownie
prowadziłoby do sprzeczności. Wynika z tego, że prawdziwa jest nierówność
det (I− ρW) > 0, dla wszystkich ρ ∈ (−1, 1).

Można wykazać, że funkcja, która przypisuje macierzy A = [aij ]16i,j6N

wartość ‖A‖1 := max16i6N
∑N

j=1|aij | jest multiplikatywną normą macierzową
(patrz Horn, Johnson, 2013). Ponieważ ‖ρW‖1 = ρ < 1, macierz I − ρW jest
odwracalna i zachodzi żądane rozwinięcie w szereg macierzowy.

2.1. Estymacja metodą najmniejszych kwadratów

Najprostszym sposobem estymacji parametrów modelu ekonometrycznego jest
metoda MNK. W przypadku modelu przestrzennego SAR nie gwarantuje ona
jednak dobrej jakości oszacowań. Okazuje się, że dla pewnej klasy przestrzen-
nych macierzy wag estymator MNK jest zgodny (por. Lee, 2002). Co więcej,
inne metody estymacji, np. MNW, mogą prowadzić do oszacowań niezgodnych
(Mynbaev, 2011). Fakt ten przybliżamy w obecnym podrozdziale.
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Zauważmy najpierw, że zmienna Wy (występująca po prawej stronie rów-
nania opisującego specyfikację SAR) jest endogeniczna. Istotnie, przekształcając
(2.7) otrzymamy

y = (I− ρW)−1Xβ + (I− ρW)−1ε,

a zatem, uwzględniając fakt, iż ε ∼ N
(
0, σ2I

)
, możemy wyliczyć

E εTWy = E
(
εTW

(
(I− ρW)−1Xβ + (I− ρW)−1ε

))
= E

[
εTW(I− ρW)−1Xβ

]
+ E

[
εTW(I− ρW)−1ε

]
= σ2 trW(I− ρW)−1,

(2.8)

przy czym w ogólności nie jest prawdą, że trW(I− ρW)−1 = 0. Przy ozna-
czeniach

Z =
[
X Wy

]
,

δ =
[
βT ρ

]T ,

estymator MNK δ̂MNK parametru δ ma postać

δ̂MNK =
(
ZTZ

)−1
ZTy = δ0 +

(
ZTZ

)−1
ZTε.

Jak wynika z ostatniej równości, właściwości estymatora MNK (takie jak
nieobciążoność czy zgodność) zależą od zachowania asymptotycznego zmiennej
losowej (ZTZ)−1ZTε. Na przykład, jak pokazuje Lee (2002), przy pewnych na-
turalnych założeniach dotyczących zbieżności macierzy korelacji dla zmiennych
objaśniających: 1

NZTZ, estymator δ̂MNK jest asymptotycznie nieobciążony, gdy
1
N E (ZTε) zbiega do zera. Ten warunek będzie z kolei spełniony, jeśli endoge-
niczny komponent Z (czyli zmienna Wy) okaże się asymptotycznie egzogenicz-
ny. Dokładniej, ponieważ 1

N E (XTε) = 0, decydująca jest następująca zbieżność

1

N
E εTWy =

σ2

N
tr
(
W(I− ρW)−1

) N→∞−−−−→ 0.

Co więcej, powyższy warunek może również implikować zbieżność błędu esty-
matora δ̂MNK do zera według prawdopodobieństwa, a w efekcie zgodność δ̂MNK.

Ostatecznie, pozostaje pytanie: dla jakich przestrzennych macierzy wag W =
[wij ]ij6N można zastosować metodę najmniejszych kwadratów do estymacji mo-
delu SAR. W oryginalnym rozumowaniu zawartym w pracy Lee (2002) rozważa-
no macierze, będące wynikiem standaryzacji macierzy odległości (bez punktów
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odcięcia) z założeniem asymptotyki rosnącej dziedziny (patrz s. 21). Okazuje się,
że gdy wiersze takiej macierzy są niesumowalne, tj. limN→∞

∑N
j=1|wij | = ∞,

dla każdego i > 0, to w wyniku operacji normalizacji wierszowej otrzymamy
nową macierz W, dla której można zastosować autorskie twierdzenie II.3.
Twierdzenie II.3
Niech W = [wij ]ij6N będzie macierzą standaryzowaną wierszowo o zerowej
przekątnej (założenie II.A), dla której

lim
N→∞

max
16i,j6N

|wij | = 0.

Wówczas endogeniczność zmiennej Wy zanika asymptotycznie, szybciej niż od-
wrotność rozmiaru próby N−1, a dokładniej zachodzi

lim
N→∞

1

N
E εTWy = 0.

Dowód. Uwzględniając wyprowadzoną wcześniej równość (2.8), wystarczy po-
kazać, że

lim
N→∞

1

N
trW(I− ρW)−1 = 0.

W tym celu zauważmy, że jeśli pewne macierze A = [aij ]16i,j6N i B =
[bij ]16i,j6N są standaryzowane wierszowo, wówczas macierzowy iloczyn A ·B =
[cij ]16i,j6N jest również standaryzowana wierszowo. Istotnie,

N∑
j=1

cij =
N∑
j=1

N∑
k=1

aikbkj =
N∑
k=1

aik ·
( N∑

j=1

bkj

)
= 1.

Wynika stąd, że macierz W oraz jej kolejne potęgi macierzowe W2,W3, . . . są
standaryzowane wierszowo. OznaczmyV = (I− ρW)−1,V = [vij ]16i,j6N oraz
Wk =

[
w

(k)
ij

]
16i,j6N

, dla k > 0. Na podstawie twierdzenia II.2 prawdziwe jest
rozwinięcie V =

∑∞
k=0 ρ

kWk. Zatem, dla każdego 1 6 j 6 N wnioskujemy, że
N∑
j=1

vij =
N∑
j=1

∞∑
k=0

ρkw
(k)
ij =

∞∑
k=0

ρk
N∑
j=1

w
(k)
ij =

∞∑
k=0

ρk =
1

1− ρ
.

Dla G = W · V, przy czym G = [gij ]16i,j6N , oraz MN = max16i,j6N |wij |
uzyskujemy ostatecznie

1

N
trW(I− ρW)−1 =

1

N

N∑
i=1

gii =
1

N

N∑
i=1

N∑
k=1

wikvki 6
MN

1− ρ
,

Na mocy przyjętych założeń, prawa strona tej nierówności zbiega do zera wraz
z N → ∞.
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2.2. Estymacja metodą zmiennych instrumentalnych

Opisana poniżej procedura estymacji, oparta na metodzie MZI, wykorzystuje
pomysł ze znanej pracy Kelejiana i Pruchy (1998). Polega ona na tym, by bu-
dowę instrumentów dla zmiennej Wy oprzeć na wartości oczekiwanej EWy.
Korzystając z twierdzenia II.2 mamy

EWy = W(I− ρW)−1Xβ +W(I− ρW)−1 E ε

= W
(
I+ ρW + ρ2W2 + . . .

)
Xβ

= WXβ +W2X · ρβ +W3X · ρ2β + . . .

Zatem EWy jest pewną (nieskończoną) kombinacją liniową kolumn macie-
rzy WX, W2X, W3X, itd. Ponadto, optymalnym instrumentem dla macierzy
zmiennych objaśniających X jest ona sama. Sugeruje to, że zbiór instrumentów
można wybrać spośród liniowo niezależnych kolumn macierzy[

X WX W2X . . .
]
.

Przyjmijmy zatem, że wybrana została macierz instrumentów H. Załóżmy, że
dla dostatecznie dużego N jest ona macierzą pełnego rzędu P > K+1, gdzie K
to liczba kolumn w X. Załóżmy, że H zawiera co najmniej liniowo niezależne
kolumny macierzy

[
X WX

]
. Wówczas, przy oznaczeniach Z =

[
X Wy

]
oraz δ =

[
βT ρ

]T, estymator MZI ma postać

δ̂MZI =
(
ẐTẐ

)−1
ẐTy,

gdzie Ẑ = PHZ =
[
X Ŵy

]
, Ŵy = PHWy oraz PH = H(HTH)−1HT.

Przy pewnych dodatkowych założeniach powyższy estymator jest zgodny, a jego
wariancja jest wówczas asymptotycznie równa

Var δ̂MZI = σ̂2
(
ZTH(HTH)−1HTZ

)−1,

gdzie σ̂2 = 1
N (y − Zδ̂)

T
(y − Zδ̂).

2.3. Estymacja metodą największej wiarogodności

Jedną z podstawowych metod estymacji modeli przestrzennych jest metoda naj-
większej wiarogodności. Tak jak w przypadku klasycznym (patrz Lehmann, Ca-
sella, 1998), jako wartość estymatora metoda ta wskazuje taką wartość parametru
specyfikacji procesu generującego obserwacje (ang. data generating process), dla
którego prawdopodobieństwo odnotowania faktycznie zgromadzonych wartości
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próby jest największe. Wykorzystanie metody MNW w ekonometrii przestrzen-
nej sugerował już w latach osiemdziesiątych Anselin (1988a) i do dziś pozostaje
ona narzędziem często wybieranym przez praktyków. Należy też zwrócić uwagę
na mnogość współczesnych opracowań teoretycznych, w których rozwijana jest
metoda MNW. W efekcie, uzyskuje się narzędzie estymacyjne stosowalne do
nawet bardzo rozbudowanych specyfikacji przestrzennych.

Metoda MNK bywała krytykowana w literaturze przedmiotu ze względu
na związane z nią trudności obliczeniowe i konieczność zastosowania specja-
listycznych numerycznych metod optymalizacji. Obecnie jednak, ze względu na
gwałtowny rozwój technologii komputerowych, zwłaszcza obliczenia współbież-
ne, wzrost mocy obliczeniowej komputerów oraz szeroki wachlarz rozwiązań al-
gorytmicznych (patrz, np. Kossowski, Hauke, 2011; Bivand i inni, 2013), obawy
powtarzane jeszcze w książce Suchecki [red.] (2010) należy uznać za niewspół-
czesne.

Ponieważ z założenia składnik losowy ε ma wielowymiarowy rozkład nor-
malny N (0, σ2I), również y, będący afiniczną transformacją ε, ma rozkład gaus-
sowski. Zatem funkcja gęstości RN 3 y 7→ fy(y) rozkładu zmiennej y przyjmuje
postać

fy(y) =
1√

(2π)N detΩy

exp

{
−1

2
(y − Ey)TΩ−1

y (y − Ey)

}
,

gdzie Ey = (I− ρW)−1Xβ oraz Ωy := Vary = σ2(I−ρW)−1
(
I−ρWT

)−1.
A zatem, rozwijając powyższe możemy zbudować funkcję wiarogodności z pa-
rametrami ρ, β i σ2 przy obserwacji y zmiennej y

Ly(ρ,β, σ
2) =

det∆(ρ)√
(2πσ2)N

exp

{
− 1

2σ2
(∆(ρ)y −Xβ)T (∆(ρ)y −Xβ)

}
,

gdzie ∆(ρ) = I − ρW. Zauważmy, że przyłożenie do funkcji wiarogodności
funkcji ściśle rosnącej nie zmienia argumentu maksymalizującego. W szczegól-
ności, w przypadku rozkładów z rodziny wykładniczej, do której należy rozkład
normalny (patrz Lehmann, Casella, 1998), wygodnie jest użyć w tym celu funk-
cji logarytmicznej. A więc, logarytmując obustronnie i dokonując podstawienia
y = y, otrzymujemy funkcję (zmienną losową) log-wiarogodności postaci

lnLy(ρ,β, σ
2) = −N

2
ln (2πσ2) + ln det∆(ρ)

− 1

2σ2
(∆(ρ) · y −Xβ)T(∆(ρ) · y −Xβ).
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Oczywiście, odnalezienie estymatora MNW wymaga wskazania takich warto-
ści parametrów ρ, β i σ2, dla których lnLy(ρ,β, σ

2) przyjmuje wartość możliwie
najmniejszą, dla każdego ustalonego zestawu wartości obserwowanej zmiennej
y z osobna. Należy jednak najpierw poczynić następujące obserwacje. Po pierw-
sze, funkcja log-wiarogodności lnLy(ρ,β, σ

2) jest ciągła, ale jej dziedzina, czyli
przestrzeń dopuszczalnych wartości parametrów, nie jest zbiorem zwartym. Co
za tym idzie, należy sprawdzić, czy żądane maksimum jest w ogóle osiągane. Po
drugie, gdyby nie składnik ln det∆(ρ), maksymalizacja lnLy(ρ,β, σ

2) mogłaby
odbyć się zwykłą metodą analityczną, podobnie jak ma to miejsce w przypad-
ku modelu nieprzestrzennego. Zatem, argument optymalny, jeśli istnieje, jest
odnajdywany metodami numerycznymi. Obliczanie wartości wyznacznika ma-
cierzy ∆(ρ) dla dużych rozmiarów próby N okazuje się złożone obliczeniowo.
Co więcej — w ogólności — składnik ln det∆(ρ), jako funkcja ρ, nie musi być
nawet funkcją wklęsłą, a więc numeryczne metody optymalizacji wypukłej nie
mają tu zastosowania.

Złożoność tego problemu można jednak zredukować poprzez zastosowanie
pewnej metody prowadzącej do usunięcia zmiennych β i σ2 z optymalizowanej
funkcji celu. Metoda ta nosi nazwę metody wyrugowywania parametrów przez
koncentrację (ang. concentrating out). Obrazowo można powiedzieć, że prowa-
dzi ona do zmniejszenia liczby parametrów problemu optymalizacyjnego poprzez
wycięcie z dziedziny funkcji celu pewnej krzywej (a ogólnie hiperpowierzchni),
określającej zależność między optymalnymi parametrami, a więc przechodzącej
tym samym przez punkty optymalne. Taką krzywą znajduje się najczęściej anali-
tycznie, stosując warunki różniczkowe pierwszego rzędu. W naszym przypadku
możemy wyliczyć następujące pochodne cząstkowe funkcji celu

∂ lnLy(ρ,β, σ
2)

∂β
=

1

2σ2
· ∂

∂β

(
∆(ρ)y −Xβ

)T(
∆(ρ)y −Xβ

)
=

1

σ2
(
XT∆(ρ)y −XTXβ

)
,

∂ lnLy(ρ,β, σ
2)

∂σ2
= − 1

2σ4
(
∆(ρ)y −Xβ

)T(
∆(ρ)y −Xβ

)
− N

2σ2
.

Zauważmy, że uzyskane wyrażenia nie zawierają problematycznego wyznacz-
nika ln det∆(ρ). Przyrównując jednocześnie do zera powyższe pochodne, otrzy-
mujemy żądane zależności optymalnych wartości β i σ2 od ρ, mianowicie

β̂(ρ) =
(
XTX

)−1
XT(I− ρW)y

σ̂2(ρ) =
1

N

(
y − ρWy −Xβ̂(ρ)

)T(
y − ρWy −Xβ̂(ρ)

)
.
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Uwzględniając powyższe zależności w oryginalnej funkcji celu lnLy(ρ,β, σ
2)

uzyskujemy funkcję zależną tylko od jednego parametru ρ, tj.

lnLy

(
ρ, β̂(ρ), σ̂2(ρ)

)
= −N

2

(
ln
(
2π · σ̂2(ρ)

)
+ 1
)
+ ln det∆(ρ). (2.9)

Rozważmy teraz problem istnienia rozwiązania wskazanego problemu opty-
malizacyjnego. Ponieważ funkcja celu ρ 7→ lnLy

(
ρ, β̂(ρ), σ̂2(ρ)

)
jest ciągła na

całej przestrzeni dopuszczalnych wartości parametru ρ, wiadomo, że osiąga ona
swoje ekstremum na każdym zbiorze (zwartym) postaci przedziału domkniętego
[−1+ϵ, 1−ϵ] ⊂ (−1, 1), dla dowolnie małej liczby ϵ > 0. Możemy zatem zauwa-
żyć, że wystarczy zbadać asymptotyczne zachowanie funkcji celu w sąsiedztwie
punktów skrajnych −1 i 1.

Przyjmijmy oznaczenie MX = I−X(XTX)−1XT. Jest oczywiste, że funkcja

ρ 7→ σ̂2(ρ) =
1

N

(
(I− ρW)y −Xβ̂(ρ)

)T(
(I− ρW)y −Xβ̂(ρ)

)
=

1

N

(
MX(I− ρW)y

)T(
MX(I− ρW)y

)
= a · ρ2 + b · ρ+ c,

będąca trójmianem kwadratowym zmiennej ρ, przy czym

a =
1

N
yTWTMXWy

b =
2

N
yTMXWy

c =
1

N
yTMXy,

przyjmuje wartości nieujemne. Co więcej, wartość zero w punktach ρ = −1
i ρ = 1 może ona przyjąć tylko wtedy, gdy zachodzi jeden z warunków

y = Wy +Xβ̂(1),

y = −Wy +Xβ̂(−1),

z których każdy implikuje, w praktyce nierealistyczny, a w teorii mało ciekawy,
warunek idealnego dopasowania danych. Możemy zatem przyjąć, że skończone
są następujące granice

lim sup
ρ→−1

(
−N

2

(
ln
(
2πσ̂2(ρ)

)
+ 1
))

<∞
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oraz
lim sup

ρ→1

(
−N

2

(
ln
(
2πσ̂2(ρ)

)
+ 1
))

<∞.

Przechodząc do drugiego składnika w formule (2.9), opisującej skoncentro-
waną log-wiarogodność, zauważmy, że wyrażenie ln det∆(ρ) jest (ujemnie) ko-
ersywne na krańcach przestrzeni dopuszczalnych wartości dla parametru ρ w na-
stępującym sensie

lim
ρ→1

(ln det∆(ρ)) = lim
ρ→−1

(ln det∆(ρ)) = −∞.

Zatem, również dla funkcji ρ 7→ lnLy

(
ρ, β̂(ρ), σ̂2(ρ)

)
mamy

lim
ρ→1

lnLy

(
ρ, β̂(ρ), σ̂2(ρ)

)
= −∞

oraz
lim
ρ→1

lnLy

(
ρ, β̂(ρ), σ̂2(ρ)

)
= −∞,

z czego wynika, że przyjmuje ona swoje maksimum w otwartym przedziale
(−1, 1).

Maksymalizacja skoncentrowanej log-wiarogodności lnLy

(
ρ, β̂(ρ), σ̂2(ρ)

)
prowadzi do estymatora największej wiarogodności parametru autoregresyjne-
go, tj.

ρ̂MNW = argmax
−1<ρ<1

lnLy

(
ρ, β̂(ρ), σ̂2(ρ)

)
.

Pozostaje jednak kwestia jednoznaczności wartości tak określonego estymatora
stanowiąca osobne zagadnienie. Problem identyfikowalności parametru autore-
gresyjnego ρ formalnie rozwiążemy dopiero w rozdziale III. Tymczasem przyj-
mijmy, że operacja argmax (·) wybiera wartość argumentu maksymalizujące-
go dowolnie, ale w sposób mierzalny, tzn. tak, że ρ̂MNW jest dobrze określoną
zmienną losową. Należy tu zaznaczyć, że w praktyce oszacowanie ρ̂MNW jest
uzyskiwane metodami numerycznymi, chociaż niektóre polskojęzyczne opraco-
wania mogą wprowadzać w błąd, sugerując procedury oparte na przyrównywaniu
pierwszej pochodnej funkcji ρ 7→ lnLy

(
ρ, β̂(ρ), σ̂2(ρ)

)
do zera; por. Suchecki

[red.], 2010. Oszacowania pozostałych parametrów uzyskujemy z wcześniejszych
warunków różniczkowych pierwszego rzędu, czyli

β̂MNW =
(
XTX

)−1
XT · (I− ρ̂MNWW)y,

σ̂2MNW =
1

N

∥∥y − ρ̂MNWWy −Xβ̂(ρ̂MNW)
∥∥2

=
1

N

∥∥(I−PX) · (I− ρ̂MNWW)y
∥∥2,
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gdzie PX jest macierzą operatora rzutu ortogonalnego na przestrzeń liniową roz-
piętą przez kolumny macierzy zmiennych objaśniających X. Można zauważyć,
że efektywnie metoda MNW maksymalizuje (skoncentrowaną) wiarogodność
w celu znalezienia wartości parametru autoregresyjnego, a pozostałe parametry
wyliczane są najmniejszych kwadratów.

3. Estymacja modelu przestrzennego rzędu (0, 1)

Pierwszym zagadnieniem ekonometrii przestrzennej, rozważanym w literaturze
dotyczącej problemów regionalnych, była analiza efektów zależności przestrzen-
nych składnika losowego w liniowym modelu regresji. Początki opisu problemu
oraz pierwsze próby jego rozwiązania przypadają na lata siedemdziesiąte XX
wieku (por. Fisher, 1971; Cliff, Ord, 1973; Hordijk, 1974). Opracowania z tam-
tego okresu zaowocowały wieloma dalszymi ocenami własności różnorodnych
estymatorów oraz testów statystycznych.

Przypomnijmy, że zależności przestrzenne składnika losowego w liniowym
modelu regresji opisuje specyfikacja SARAR(0, 1)

y = Xβ + u

u = λWu+ ε

ε ∼ N
(
0, σ2εI

)
λ ∈ (−1, 1).

Zakładając odpowiednią postać macierzy wag (np. standaryzowanie wierszo-
we, czyli założenie II.A) i uwzględniając twierdzenie II.2, otrzymujemy u =

(I− λW)−1ε, zatem możemy wnioskować o normalności rozkładu wektora
reszt u, a w szczególności o jego momentach. Mamy zatem

Eu = (I− λW)−1 E ε = 0

oraz

Var (u) = EuuT − EuEuT

= E (I− λW)−1εεT
(
I− λWT

)−1

= (I− λW)−1 · σ2εI ·
(
I− λWT

)−1

= σ2ε(I− λW)−1
(
I− λWT

)−1.

Przy oznaczeniu

Ωu(λ) = σ2ε (I− λW)−1 (I− λWT
)−1, (2.10)
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otrzymujemy u ∼ N (0,Ωu(λ)), a w efekcie możemy wnioskować o normalności
rozkładu zmiennej zależnej y, tj. y ∼ N (Xβ,Ωu(λ)).

3.1. Nieadekwatność uogólnionej metody najmniejszych kwadratów

Ze względu na zaobserwowaną w wariancji zmiennej zależnej nieznaną macierz
Ωu(λ), będącą funkcją estymowanego parametru, klasyczny estymator UMNK
nie ma zastosowania w przypadku modelu z autoskorelowanym składnikiem lo-
sowym. W przypadku tego modelu metoda zmiennych instrumentalnych również
nie gwarantuje pożądanych własności oszacowań parametrów. Podobny problem
dotyczy wszystkich ogólniejszych modeli z autoskorelowanym składnikiem loso-
wym, czyli również modeli SARAR(1, 1) i modeli wyższych rzędów oraz modeli
klasy Durbina.

3.2. Estymacja metodą największej wiarogodności

Jak zauważyliśmy wcześniej, zmienna zależna ma rozkład gaussowski, a dokład-
niej y ∼ N

(
Xβ, σ2εΩu(λ)

)
. Związana z nią funkcja gęstości RN 3 y 7→ fy (y)

przyjmuje postać

fy(y) =
exp

{
−1

2 (y − Ey)TΩu(λ)
−1 (y − Ey)

}
√
(2π)N detΩu(λ)

, (2.11)

gdzie Ey = Xβ, a Vary = Ωu(λ) dana jest w (2.10). Rozwijając (2.11) możemy
zbudować funkcję wiarogodności z parametrami β, λ i σ2ε, przy obserwacji y
zmiennej y

Ly(β, λ, σ
2
ε) =

detΓ(λ)√
(2πσ2ε)

N
exp

{
− 1

2σ2ε
‖Γ(λ)y − Γ(λ)Xβ‖2

}
,

gdzie Γ(λ) := I−λW. Podobnie jak w przypadku procedury estymacji najwięk-
szej wiarogodności przestrzennego modelu autoregresyjnego SAR, logarytmując
obustronnie i podstawiając y = y otrzymujemy funkcję log-wiarogodności po-
staci

lnLy(β, λ, σ
2
ε) = −N

2
ln
(
2πσ2ε

)
+ ln detΓ(λ)

− 1

2σ2ε

(
Γ(λ)y − Γ(λ)Xβ

)T(
Γ(λ)y − Γ(λ)Xβ

)
.

Ponownie, odnalezienie estymatora MNW wymaga znalezienia takich wartości
parametrów β, λ i σ2ε, dla których lnLy(β, λ, σ

2
ε) przyjmuje wartość możliwie



Estymacja modelu przestrzennego rzędu (0, 1) 57

najmniejszą, dla każdego ustalonego zestawu wartości obserwowanej zmiennej
y z osobna. W celu wyrugowania zmiennych β i σ2ε z optymalizowanej funkcji
celu wyprowadzamy następujące pochodne cząstkowe

∂ lnLy

∂β
=

1

2σ2ε
· ∂

∂β

(
Γ(λ)y − Γ(λ)Xβ

)T(
Γ(λ)y − Γ(λ)Xβ

)
=

1

σ2ε

(
XTΩu(λ)y −XTΩu(λ)Xβ

)
,

∂ lnLy

∂σ2ε
= − 1

2σ4ε

(
Γ(λ)y − Γ(λ)Xβ

)T(
Γ(λ)y − Γ(λ)Xβ

)
− N

2σ2ε
.

Przyrównując powyższe pochodne jednocześnie do zera, otrzymujemy żądane
zależności optymalnych wartości β i σ2ε od λ, mianowicie

β̂(λ) =
(
XTΩu(λ)X

)−1
XTΩu(λ)y,

σ̂2ε(λ) =
1

N

(
y −Xβ̂(λ)

)T
Ωu(λ)

(
y −Xβ̂(λ)

)
.

Powyższe równania można zapisać za pomocą przestrzennego odpowiednika kla-
sycznej transformacji Cochrana-Orcutta, znanej z analizy szeregów czasowych.
Mianowicie, ustalając notację ỹ = y − λWy oraz X̃ = X − λWX, możemy
zapisać

β̂(λ) =
(
X̃TX̃

)−1
X̃Tỹ,

σ̂2ε(λ) =
1

N

(
ỹ − X̃β̂(λ)

)T(
ỹ − X̃β̂(λ)

)
.

Uwzględniając wskazane zależności w oryginalnej funkcji celu lnLy(β, λ, σ
2
ε),

uzyskujemy funkcję zależną od jednego tylko parametru, tj.

λ 7→ lnLy

(
β̂(λ), λ, σ̂2ε(λ)

)
= −N

2

(
ln
(
2πσ̂2ε(λ)

)
+ 1
)
+ ln detΓ(λ).

Dla modelu SEM, podobnie jak w przypadku modelu SAR, można wykazać,
że powyższa (zredukowana przez rugowanie) funkcja log-wiarogodności osiąga
swoje maksimum po zbiorze argumentów λ ∈ (−1, 1). Argument maksymalizu-
jący, to estymator największej wiarogodności parametru autoregresyjnego, czyli

λ̂MNW := argmax
−1<λ<1

lnLy

(
β̂(λ), λ, σ̂2λ

)
.

Oszacowania pozostałych parametrów uzyskujemy z wcześniejszych warunków
różniczkowych pierwszego rzędu, czyli

β̂MNW := β̂
(
λ̂MNW

)
=
(
XTΩu(λ̂MNW)X

)−1
XTΩu(λ̂MNW)y,
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σ̂2MNW := σ̂2ε
(
λ̂MNW

)
=

1

N

(
y −Xβ̂(λ̂MNW)

)T
Ωu(λ̂MNW)

(
y −Xβ̂(λ̂MNW)

)
.

Można zauważyć, że efektywnie metoda MNW maksymalizuje wiarogodność
w celu znalezienia wartości parametru autoregresyjnego składnika losowego,
a pozostałe parametry wyliczane są zgodnie z uogólnioną metodą najmniejszych
kwadratów.

4. Estymacja modelu przestrzennego rzędu (1, 1)

Przyjmijmy następującą specyfikację modelu SARAR(1, 1)

y = ρWy +Xβ + u

u = λMu+ ε

ε ∼ N (0, σ2εI),

gdzie macierze wag przestrzennych W oraz M mogą, choć nie muszą, być sobie
równe, a przestrzenie wartości parametrów autoregresyjnych wyznaczone są przez
nierówności

−1 < ρ < 1 oraz − 1 < λ < 1.
Na wstępie zauważmy, że Eu = (I− λM)−1 E ε = 0, i dalej

Var (u) = EuuT − EuEuT

= E (I− λM)−1εεT
(
I− λMT

)−1

= (I− λM)−1 · σ2εI ·
(
I− λMT

)−1

= σ2ε(I− λM)−1
(
I− λMT

)−1.

Zatem, przy oznaczeniu

Ωu(λ) =
(
(I− λMT)(I− λM)

)−1,

mamy u ∼ N
(
0,Ωu(λ)

)
. Ponieważ

y = (I− ρW)−1Xβ + (I− ρW)−1(I− λM)−1ε,

możemy wnioskować również o normalności rozkładu zmiennej zależnej oraz
o jej momentach, które są równe

Ey = (I− ρW)−1Xβ,

Var (y) = σ2ε(I− ρW)−1(I− λM)−1
(
I− λMT

)−1(
I− ρWT

)−1

= σ2ε(I− ρW)−1Ωu(λ)
(
I− ρWT

)−1.
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Ostatecznie wprowadzamy oznaczenie

Ωy(ρ, λ) := Var (y) = (I− ρW)−1Ωu(λ)
(
I− ρWT

)−1. (2.12)

Wykażemy, że w modelu SARAR(1, 1), podobnie jak w przypadku modelu
SEM, zmienna Wy jest endogeniczna. Istotnie, mamy

E εTWy = E εTW(I− ρW)−1Xβ + E εTW(I− ρW)−1(I− λM)−1ε

= σ2ε trW(I− ρW)−1(I− λM)−1,

przy czym, w ogólności, nie jest prawdą, że

trW(I− ρW)−1(I− λM)−1 = 0,

zatem estymator MNK nie musi być zgodny.

4.1. Estymacja z wykorzystaniem uogólnionej metody momentów

Zauważmy, że chociaż w przypadku modelu SARAR(1, 1) można przeprowadzić
rozumowanie dotyczące estymacji metodą zmiennych instrumentalnych, podob-
ne do tego zaprezentowanego dla modelu SARAR(1, 0), to jednak estymator
MZI nie uwzględnia skorelowania składnika losowego. Z tego właśnie powo-
du Kelejian i Prucha (1998) zaproponowali dwustopniowe rozszerzenie metody
MNK (ang. Generalized Spatial Two-Stage Least Squares, GS2SLS), poprzez zasto-
sowanie uogólnionej metody momentów (ang. Generalized Method of Moments,
GMM). Poniżej zaprezentujemy w pewnym skrócie kolejne etapy tej procedury.

Etap 1

Estymujemy model regresyjno-autoregresyjny

y = ρWy +Xβ + u, (2.13)

ignorując chwilowo autoskorelowanie składnika losowego. Stosujemy w tym celu
opisaną wcześniej metodę zmiennych instrumentalnych. Przyjmijmy, że użytą
macierzą instrumentów jest macierz

H =
[
X WX W2X

]
.

Wówczas, rzut macierzy Z =
[
X Wy

]
na macierz instrumentów H przyjmuje

postać
Ẑ = PHZ = PH ·

[
X Wy

]
=
[
X PHWy

]
,
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gdzie PH = H(HTH)
−1

HT. W rezultacie otrzymujemy estymator

δ̂MZI =
(
ẐTẐ

)−1
ẐTy,

δ̂MZI =
[
β̂T
MZI ρ̂MZI

]T ,

parametru cząstkowego δ =
[
βT ρ

]T.
Etap 2

Za pomocą δ̂MZI z etapu pierwszego możemy wyznaczyć oszacowanie reszt u
modelu regresyjno-autoregresyjnego (2.13), tj.

ũ = y − Z · δ̂MZI = y − ρ̂MZIWy −X · β̂MZI.

Celem tego etapu jest oszacowanie dodatkowego parametru autoregresji u, czyli
λ, z zastosowaniem pewnego estymatora metody momentów. Dokładniej, roz-
ważmy zależność

u = λMu+ ε,
ε ∼ N

(
0, σ2εI

)
.

Oczywiście, bezpośrednie zastosowanie wartości oczekiwanej, prowadzi do pu-
stego informacyjnie równania 0 = Eu = λM · Eu + E ε = λ · 0 + 0, gdyż
Ẑ, tak jak Z i X, zawiera składnik stały. Pomysł Kelejiana i Pruchy polega na
wykorzystaniu drugich momentów układu

ε = u− λMu

Mε = Mu− λM2u.
(2.14)

Stosując wektorowy wzór skróconego mnożenia, z pierwszego równania uzysku-
jemy

εTε = uTu− 2 · λuTMu+ λ2uTMTMu,

z drugiego

εTMTMε = (Mu)TMu− 2 · λuTMTM2u+ λ2
(
M2u

)T
M2u,

a krzyżowy iloczyn skalarny odpowiadających sobie stron równań układu (2.14)
daje

εT ·Mε = uTMu− λuTM2u− λuTMTMu+ λ2uTMTM2u.
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Z założenia o rozkładzie ε wynika, że E εTAε = σ2ε trA, dla dowolnej ma-
cierzy A, por. lemat III.1. Przykładając zatem do powyższych równań operator
średniej wartości oczekiwanej 1

NE oraz grupując wyrażenia, otrzymujemy układ
z niewiadomymi λ, λ2, σ2ε. Układ ten może być dalej użyty na potrzeby meto-
dy momentów, przy czym wartości zaburzenia u będą aproksymowane resztami
ũ = y − Z · δ̂MZI z etapu pierwszego. Zatem, uwzględniając dodatkowo założe-
nie o przekątnej macierzy M, tj. trM = 0, i oznaczając za Kelejianem i Pruchą
(1998)

G =


2
N ũT ˜̄u − 1

N
˜̄uT ˜̄u 1

2
N
˜̄uT ˜̄̄u − 1

N
˜̄̄uT ˜̄̄u tr

(
MTM

)
1
N ũT ˜̄̄u+ 1

N
˜̄uT ˜̄u − 1

N
˜̄uT ˜̄̄u 0


oraz

g =

 1
N ũTũ
1
N
˜̄uT ˜̄u

1
N ũT ˜̄u

 ,

gdzie ˜̄u := M · ũ i ˜̄̄u := M2 · ũ są obrazami przestrzennymi reszt modelu,
pozostaje nam rozwiązanie równania

G ·

 λλ2
σ2ε

 = g.

Ponieważ układ ten jest nadmiernie identyfikowany, estymatory uogólnionej me-
tody momentów uzyskujemy przybliżając strony równania metodą najmniejszych
kwadratów. Oznacza to, że

[
λ̂UMM σ̂2UMM

]
= argmin

λ, σ2
ε

g −G

 λλ2
σ2ε

T g −G

 λλ2
σ2ε

 .

Zauważmy, że wskazany problem optymalizacyjny jest wypukły, a zatem jego
rozwiązanie nie nastręcza żadnych trudności.

Jak wynika z twierdzeń Kelejiana i Pruchy (1998), przy pewnych natural-
nych założeniach, które przytoczymy na końcu podrozdziału, zarówno estymator
λ̂UMM, jak i jego prostsza wersja, tj. pierwsza współrzędna macierzy G−1g, są
zgodne, czyli dla dowolnie małej liczby ξ > 0 mamy

lim
N→∞

P
(∣∣λ̂UMM − λ0

∣∣ < ξ
)
= 0,

gdzie λ0 jest prawdziwą wartością parametru autoregresji składnika losowego u.
Pierwszy z tych estymatorów okazuje się jednak bardziej efektywny.
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Etap 3

W ostatnim kroku należy dokonać przestrzennej transformacji Cochrana-Orcutta
modelu (2.13), tj. przyjąć

y∗ = y − λ̂UMM ·Wy,

X∗ = X− λ̂UMM ·WX,

Z∗ = Z− λ̂UMM ·WZ,

przy czym Z∗ =
[
X∗ Wy∗]. Przekształcony model przybiera zatem postać

y∗ = Z∗δ + ε.

Powyższe równanie estymujemy ponownie, stosując procedurę MZI, a uzyska-
ny estymator nazywamy, za Kelejianem i Pruchą, uogólnionym przestrzennym
dwustopniowym estymatorem najmniejszych kwadratów (GS2SLS). Wynik etapu
trzeciego w postaci zamkniętej można zapisać jako

δ̂GS2SLS =
(
(Ẑ∗)

T
(Ẑ∗)

)−1
(Ẑ∗)

T
y∗,

gdzie Ẑ∗ jest rzutem Z∗ na macierz H (patrz etap pierwszy) o następującej
postaci

Ẑ∗ = PHZ∗ =
[
X− λ̂UMM ·WX PHWy − λ̂UMM ·PHW2y

]
. (2.15)

4.2. Własności asymptotyczne estymatora GS2SLS

Za Kelejianem i Pruchą (1998) przyjmijmy następujące założenia.

• MacierzeW orazMmają zerowe przekątne i są standaryzowane wierszowo.

• Macierze W, M, jak i (I− ρW)−1 oraz (I− λM)−1 są jednostajnie bez-
względnie sumowalne, tzn. spełniony jest dla każdej z nich z osobna waru-
nek opisany w założeniu (II.B).

• Macierz zmiennych objaśniających X jest macierzą pełnego rzędu, a jej
elementy są co do modułu jednostajnie ograniczone dla wszystkich N ∈ N.

• Kolumny macierzy instrumentów H to pewien podzbiór łącznie liniowo
niezależnych kolumn wybrany spośród kolumn macierzy[

X WX W2X . . . MX MWX MW2X . . .
]
.
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• Następujące granice istnieją i są macierzami pełnego rzędu:

QHH = lim
N→∞

1

N
HTH,

QHZ = lim
N→∞

1

N
HTZ,

QHMZ = lim
N→∞

1

N
HTMZ,

Φ(λ) = lim
N→∞

1

N
HT (I− λM)−1 (I− λMT

)−1
H,

oraz macierz QHZ − λQHMZ jest pełnego rzędu, dla wszystkich wartości
λ ∈ (−1, 1).

• Przy oznaczeniu

G∗ =

 2
NuTū − 1

N ūTū 1
2
N ūT ¯̄u − 1

N
¯̄uT ¯̄u tr

(
MTM

)
1
NuT ¯̄u+ 1

N ūTū − 1
N ūT ¯̄u 0

 ,

gdzie ū := Mu oraz ¯̄u := M2u, macierz GT
∗G∗ jest odwracalna i norma

macierzy
(
GT

∗G∗
)−1 jest jednostajnie ograniczona przy N ∈ N.

Wówczas, jak dowodzą autorzy owej pracy, prawdziwe jest następujące twierdze-
nie o zachowaniu asymptotycznym.

Twierdzenie II.4
Przy powyższych założeniach, oba estymatory GMM parametru λ: λ̂UMM oraz
G−1g są zgodne. Co więcej, zgodne są również związane z nimi estymatory para-
metru wariancji σ2ε. Zgodny i

√
n-asymptotycznie normalny jest także estymator

GS2SLS, a dokładniej
√
n
(
δ̂GS2SLS − δ0

)
→ N (0,Φ),

gdzie δ0 jest prawdziwą wartością parametru δ, a macierz Φ jest granicą według
prawdopodobieństwa macierzy σ2ε ·

(
1
N (Ẑ∗)TẐ∗

)−1, zarówno dla (Ẑ∗)T danego
przez (2.15) z użyciem λ̂UMM, jak i pierwszej współrzędnej G−1g. Dla obu
estymatorów wariancja składnika losowego z próby uzyskana w etapie trzecim,
tj.

1

N

(
y∗ − Z∗δ̂GS2SLS

)T(
y∗ − Z∗δ̂GS2SLS

)
jest zgodnym estymatorem parametru σ2ε.
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4.3. Estymacja metodą największej wiarogodności

Jak zauważyliśmy wcześniej, zmienna zależna y ma rozkład gaussowski

y ∼ N
(
(I− λW)−1Xβ, σ2εΩy(ρ, λ)

)
,

zatem związana z nią funkcja gęstości RN 3 y 7→ fy(y) przyjmuje postać

fy(y) =
exp

{
−1

2(y − Ey)TΩy(ρ, λ)
−1(y − Ey)

}
√
(2π)N detΩy(ρ, λ)

, (2.16)

gdzie Ey = (I− λW)−1Xβ oraz

Ωy(ρ, λ) = Var(y) = σ2ε(I− ρW)−1
(
I− λM

)−1(
I− λMT

)−1(
I− ρWT

)−1.

A zatem, uwzględniając powyższe w równości (2.16), możemy zbudować funkcję
wiarogodności dla parametrów ρ, β, λ i σ2ε, przy obserwacji y zmiennej y

Ly

(
ρ,β, λ, σ2ε

)
=

detΘ(ρ, λ)√
(2πσ2ε)

N
exp

{
−‖Θ(ρ, λ)y − Γ(λ)Xβ‖2

2σ2ε

}
,

gdzie dla uproszczenia zapisu

Γ(λ) = I− λM, ∆(ρ) = I− ρW,

Θ(ρ, λ) = Γ(λ)∆(ρ).

Podobnie jak w przypadku estymacji MNW modeli przestrzennych z pojedyn-
czą autoregresją, logarytmując obustronnie i podstawiając y = y otrzymujemy
funkcję log-wiarogodności postaci

lnLy

(
ρ,β, λ, σ2ε

)
= −N

2
ln
(
2πσ2ε

)
+ ln detΘ(ρ, λ)

− 1

2σ2ε
‖Θ(ρ, λ)y − Γ(λ)Xβ‖2 .

(2.17)

Konstrukcja estymatora MNW wymaga identyfikacji, dla każdego ustalonego
zestawu wartości obserwowanej zmiennej y z osobna, takich wartości parame-
trów ρ, β, λ i σ2ε, dla których lnLy(ρ,β, λ, σ

2
ε) przyjmuje wartość możliwie

najmniejszą. Aby wyrugować zmienne β i σ2ε z optymalizowanej funkcji celu,
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wyprowadzamy następujące pochodne cząstkowe

∂ lnLy

∂β
=

1

2σ2ε
· ∂

∂β
‖Θ(ρ, λ)ỹ − Γ(λ)Xβ‖2

=
−1

σ2ε

(
XTΩu(λ)

−1∆(ρ)y −XTΩu(λ)
−1Xβ

)
,

∂ lnLy

∂σ2ε
= − 1

2σ4ε
‖Θ(ρ, λ)y − Γ(λ)Xβ‖2 − N

2σ2ε
.

Przyrównując powyższe formuły jednocześnie do zera, otrzymujemy żądane za-
leżności optymalnych wartości β i σ2 od ρ i λ

β̂(ρ, λ) =
(
XTΩu(λ)

−1X
)−1

XTΩu(λ)
−1∆(ρ)y,

σ̂2ε(ρ, λ) =
1

N
‖Θ(ρ, λ)ỹ − Γ(λ)Xβ‖2 .

Uwzględniając te zależności w oryginalnej funkcji celu (2.17), uzyskujemy funkcję
zależną od dwóch parametrów: ρ i λ.

Dla modelu SARAR(1, 1), podobnie jak w przypadku modelu SAR, można
wykazać, że zredukowana funkcja log-wiarogodności

(ρ, λ) 7→ lnLy

(
ρ, β̂(ρ, λ), λ, σ̂2ε(ρ, λ)

)
osiąga swoje maksimum po zbiorze argumentów (ρ, λ) ∈ (−1, 1) × (−1, 1)
prawie pewnie, a współrzędne argumentu maksymalizującego prowadzą do esty-
matorów największej wiarogodności parametrów autoregresyjnych, mianowicie(

ρ̂MNW, λ̂MNW
)
:= argmax

−1<ρ,λ<1
lnLy

(
ρ, β̂(ρ, λ), λ, σ̂2(ρ, λ)

)
.

Oszacowania pozostałych parametrów uzyskujemy z wcześniejszych warunków
różniczkowych pierwszego rzędu, czyli

β̂MNW = β̂
(
ρ̂MNW, λ̂MNW

)
,

σ̂2MNW = σ̂2
(
ρ̂MNW, λ̂MNW

)
.

Powyższe równania można przekształcić za pomocą przestrzennego odpo-
wiednika klasycznej transformacji Cochrana-Orcutta, znanej z analizy szeregów
czasowych. Ustalając notację

ỹ = y − λ̂MNWMy,

X̃ = X− λ̂MNWMX,

∆̃y = ∆(ρ̂MNW)y − λ̂MNWM∆(ρ̂MNW)y,
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możemy zapisać

β̂MNW =
(
X̃TX̃

)−1
X̃T∆̃y,

σ̂2MNW =
1

N

(
∆̃y − X̃β̂MNW

)T(
∆̃y − X̃β̂MNW

)
.

W szczególnym przypadku, gdy M = W, mamy również

∆̃y = ∆(ρ̂MNW)y − λ̂MNWW∆(ρ̂MNW)y

= y − ρ̂MNWWy − λ̂MNWWy + λ̂MNWρ̂MNWW2y

= y − λ̂MNWWy −
(
ρ̂MNWWy − ρ̂MNWλ̂MNWW2y

)
= ỹ − ρ̂MNWWỹ = ∆(ρ̂MNW) · ỹ,

a zatem

β̂MNW =
(
X̃TX̃

)−1
X̃T∆(ρ̂MNW)ỹ,

σ̂2MNW =
1

N

∥∥∆(ρ̂MNW)ỹ − X̃β̂MNW
∥∥2.
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Wstęp

W tym rozdziale zostaną przedstawione wybrane testy statystyczne ekonometrii
przestrzennej. Omówimy własności statystyki I Morana oraz tzw. testu mnożni-
ków Lagrange’a. W szczególności zaprezentujemy dokładne formuły określające
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momenty rozkładów tych statystyk dla skończonej próby. Co więcej, używając
naszego centralnego twierdzenia granicznego (twierdzenie V.1), wyprowadzimy
ich rozkład asymptotyczny. Co istotne, przeprowadzone rozumowanie będzie
stanowić ścisły matematycznie dowód. Wzorując się na pracy Kelejiana i Pruchy
(2001), uwzględnimy przypadek, w którym elementy przestrzennej macierzy wag
zależą od wielkości próby. Jednak—w przeciwieństwie do wspomnianej pracy—
unikniemy ograniczającego założenia o sumowalności jej wierszy i kolumn. Takie
podejście umożliwia stosowanie szerszej klasy przestrzennych macierzy wag.

W podrozdziale trzecim omówimy test specyfikacji regresji krzyżowej, opar-
ty na rozkładzie F , czyli ilorazie niezależnych rozkładów χ2. W podrozdziale
czwartym, przedstawiamy procedurę testową tzw. niestacjonarności przestrzen-
nej Kosfelda–Lauridsena, w skorygowanej przez nas formie.

1. Testy oparte na asymptotycznym rozkładzie statystyki
Morana

W rozdziale I przytoczyliśmy popularnie stosowaną w badaniach empirycznych
postać statystyki I Morana, patrz równanie (1.4) w definicji na s. 31. Natural-
nie można jednak oczekiwać, że właściwa postać statystyki testowej oceniają-
cej obecność autokorelacji przestrzennej będzie zależna od rozkładu badanego
procesu przestrzennego y. Podobnie, zależny od niego będzie również rozkład
samej statystki I , a w szczególności dwa pierwsze momenty (wartość oczekiwa-
na i wariancja) potrzebne do jej normalizacji. W efekcie, postulowana wcześniej
zbieżność rozkładów

I − E I√
Var I

' N (0, 1),

może mieć miejsce tylko wtedy, gdy poczynimy pewne założenia dotyczące spe-
cyfikacji modelu dla procesu y, a więc i nałożymy odpowiednie ograniczenia na
samą macierz wag przestrzennych W.

Powyższe zagadnienie było rozważane przez wielu teoretyków ekonometrii.
Jako pierwsi zajęli się nim Cliff i Ord (1972), którzy na grunt ekonometrii prze-
strzennej przenieśli rozumowanie Durbina i Watsona (1950, 1951). W swoich
rozważaniach jako punkt wyjścia przyjęli oni iloraz norm

‖Wε‖2

‖ε‖2
=

εTWTWε

εTε

i badali rozkład asymptotyczny bardziej ogólnej statystyki postaci ilorazu form
kwadratowych

Q(ε,W) =
εTWε

εTε
,
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przy czym występujący w powyższych wzorach element ε oznaczał wektor reszt
liniowego modelu ekonometrycznego.

Rozkłady asymptotyczne statystki I Morana i statystyk pochodnych były ba-
dane w kolejnych latach również przez Sena (1976), Pinkse’a (1999), Kelejiana
i Pruchę (2001), a ostatnio przez Borna i Breitunga (2011). Niemniej jednak
w niniejszej monografii przedstawiamy teorię własności asymptotycznych staty-
styki I Morana we własnym, oryginalnym ujęciu, którego unikatową cechą jest
zastosowanie nowego centralnego twierdzenia granicznego. W rezultacie pre-
zentowane przez nas własności są prawdziwe dla większej klasy macierzy wag
przestrzennych, niż sugeruje literatura przedmiotu. O zasadności rozszerzania
teorii asymptotycznych na przypadek macierzy niesumowalnych można przeczy-
tać również w rozdziale IV.

Dla zaprezentowanych w tym rozdziale rozważań kluczowe będą następujące
dwa lematy.
Lemat III.1
Załóżmy, że A jest macierzą kwadratową o rozmiarze N × N i dowolnych
elementach liczbowych aij , 1 6 i, j 6 N . Niech ξ = (ξ1, . . . , ξN ) będzie prze-
strzennym procesem losowym o wielowymiarowym rozkładzie normalnym, z pa-
rametrami

E ξ = µ = (µ1, . . . , µN ),
Var ξ = σ2I,

dla pewnego σ2 > 0. Wówczas dla formy kwadratowej

R2 3 x 7→ KA(x) = xTAx (3.1)

mamy
EKA(ξ) = KA(µ) + σ2 trA.

Dodatkowo, jeśli E ξ = µ = 0, wtedy mamy

VarKA(ξ) = σ4 tr
(
ATA+A2

)
.

Dowód. Przy powyższych oznaczeniach możemy wyliczyć

EKA(ξ) = E(ξTAξ) = E
( N∑

i=1

N∑
j=1

ξiaijξj

)
=

N∑
i=1

N∑
j=1

E(ξiaijξj)

=
∑
i ̸=j

aijEξiξj +
N∑
i=1

aiiEξ2i =
∑
i ̸=j

aijµiµj +
N∑
i=1

aii(1 + µ2i )

=
N∑
i=1

N∑
j=1

aijµiµj +
N∑
i=1

aii = KA(µ) + trA.
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Załóżmy, że E ξ = µ = 0. Aby wyprowadzić żądane wyrażenie jako wartość
wariancji zmiennejKA(ξ), wyliczymy najpierw wartość drugiego momentu. I tak
mamy

EK2
A(ξ) = E

(
ξTAξ

)2
= E

( N∑
i=1

N∑
j=1

ξiaijξj

)2

= E
( N∑

i=1

N∑
j=1

ξiaijξj

)( N∑
k=1

N∑
l=1

ξkaklξl

)

= E
N∑
i=1

N∑
j=1

N∑
k=1

N∑
l=1

ξiaijξjξkaklξl

=

N∑
i=1

N∑
j=1

N∑
k=1

N∑
l=1

aijaklEξiξjξkξl.

Wynik ostatniej równości można uprościć. Zauważmy, że wartość E ξiξjξkξl jest
różna od zera tylko wtedy, gdy wartość żadnego z indeksów i, j, k, l nie jest róż-
na od wartości wszystkich pozostałych. Istotnie, gdyby— dla ustalenia uwagi —
wartość indeksu i spełniała i /∈ {j, k, l}, wówczas na mocy założeń mielibyśmy
E ξiξjξkξl = E ξi · E ξjξkξl = 0. Analogicznie mamy j ∈ {i, k, l}, k ∈ {i, j, l}
oraz l ∈ {i, j, k}. W ten sposób w zbiorze wszystkich indeksów 1 6 i, j, k, l 6 N
możemy wyróżnić cztery następujące przypadki:

a) i 6= j, i = k, l = j—wówczas składniki w powyższej sumie są postaci

aijaij E ξ2i ξ2j = a2ij E ξ2i E ξ2j = a2ijσ
4,

b) i 6= j, i = l, k = j—wówczas składniki w powyższej sumie są postaci

aijaji E ξ2i ξ2j = E ξ2i E ξ2j = aijajiσ
4,

c) i = j, k = l 6= j—wówczas składniki w powyższej sumie są postaci

aiiajj E ξ2i ξ2j = aiiajj E ξ2i E ξ2j = aiiajjσ
4,

d) i = j = k = l—wówczas składniki w powyższej sumie są postaci

aiiaii E ξ4i = a2ii · 3σ4.
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Zatem uzyskujemy

EK2
A(ξ) =

N∑
i=1

N∑
j=1

N∑
k=1

N∑
l=1

aijakl E ξiξjξkξl

= σ4
N∑
i=1

N∑
j=1
j ̸=i

aijaij + σ4
N∑
i=1

N∑
j=1
j ̸=i

aijaji + σ4
N∑
i=1

N∑
j=1
j ̸=i

aiiajj + 3σ4
N∑
i=1

aii

= σ4 trATA+ σ4 trA2 + σ4(trA)2.

Lemat III.2
Niech A będzie dowolną macierzą kwadratową o rozmiarach N × N i niech
ξ = (ξ1, . . . , ξN ) będzie przestrzennym procesem losowym o wielowymiaro-
wym rozkładzie normalnym N (0, σ2P), gdzie P jest niezerową macierzą rzutu
ortogonalnego. Wówczas dla dowolnej potęgi p ∈ R oraz formy kwadratowej
KA, patrz równanie (3.1), mamy

E
(
KA(ξ)

KI(ξ)

)p

=
EKp

A(ξ)

EKp
I (ξ)

,

gdzie KI(ξ) = ξTIξ = ξTξ.

Dowód. Oczywiście iloraz KA(ξ)
KI(ξ)

= ξTAξ
ξTξ

jest niezmienniczy ze względu na
przeskalowanie argumentu ξ, tj. dla dowolnego c 6= 0 mamy KA(c·ξ)

KI(c·ξ) = KA(ξ)
KI(ξ)

.
Można więc zauważyć, że zmienna losowa KA(ξ)

KI(ξ)
jest niezależna według praw-

dopodobieństwa od długości wektora ξ, a zatem również od zmiennej KI(ξ) =
ξTξ. W rezultacie mamy

EKp
A(ξ) = E

((
KA(ξ)

KI(ξ)

)p

·Kp
I (ξ)

)
= E

(
KA(ξ)

KI(ξ)

)p

· EKp
I (ξ).

Lemat III.3
Niech ξ = ξ(N) będzie zmienną losową zbieżną według rozkładu do zmiennej
o rozkładzie normalnym N (0, 1) oraz niech ζ = ζ(N) będzie zmienną losową
zbieżną według prawdopodobieństwa do liczby s (stałej), różnej od zera. Wów-
czas iloraz ξ

ζ jest zbieżny według rozkładu do zmiennej losowej o rozkładzie
normalnym N (0, s−1).
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Dowód powyższego lematu można łatwo przeprowadzić, opierając się na
zadaniach 8.1.3 oraz 8.2.6 z książki Jakubowskiego i Sztencla (2001).

W dalszej części rozdziału wyprowadzimy dokładne formuły, określające mo-
menty rozkładu dla małej próby oraz rozkłady asymptotyczne statystyki I Mo-
rana. W tym celu będziemy rozważać dwa modele procesu generującego dane
SAR oraz SEM.

1.1. Rozkład statystyki Morana dla procesu czystej autoregresji

Rozważmy następujący proces generujący obserwacje y = (y1, . . . , yN ), którego
losowość jest opisana przez model oparty na specyfikacji czystej autoregresji
przestrzennej SAR

y = ρWy + ε

ε ∼ N
(
0, σ2I

)
.

Zauważmy, że przy odpowiednich założeniach dotyczących przestrzeni dopusz-
czalnych wartości parametru ρ oraz macierzy wag W, powyższe równanie, rów-
noważne jest specyfikacji

y = (I− ρW)−1ε

ε ∼ N
(
0, σ2I

)
.

Gdy przemianujemy parametr ρ na λ, ze względu na brak zmiennych objaśnia-
jących, uzyskamy specyfikację SEM, czyli

y = u

u = (I− λW)−1ε

ε ∼ N
(
0, σ2I

)
.

Hipoteza zerowa o braku autokorelacji przestrzennej procesu y sprowadza
się do równości

H0 : ρ = λ = 0.
W takim przypadku odpowiednia postać statystyki I Morana wyraża się wzorem

I =
N

W
· y

TWy

yTy
=

N∑N
i=1

∑N
j=1wij

·
∑N

i=1

∑N
j=1wijyiyj∑n
i=1 y

2
i

,

gdzie, dla zwartości zapisu, przyjmujemy oznaczenie

W =
N∑
i=1

N∑
j=1

wij . (3.2)
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Zauważmy, że H0 jest hipotezą prostą, która jednoznacznie wyznacza rozkład
prawdopodobieństwa wartości procesu przestrzennego y. Korzystając z lema-
tu III.2, a następnie lematu III.1, przy założeniu prawdziwości hipotezy zerowej,
możemy wyliczyć wartość oczekiwaną i wariancję statystyki I Morana. Zatem

E0 I = E
(
N

W
· y

TWy

yTy

)
=
N

W
· EyTWy

EyTy
=
N

W
· σ

2 trW

N · σ2
,

a więc, przy założeniu o zerowej przekątnej macierzy W, mamy E I = 0. Po-
dobnie możemy wyliczyć

Var0 (I) = E0 I
2 = E

(
N

W
· y

TWy

yTy

)2

=
N2

W 2
· E (yTWy)2

E (yTy)2

=
N2

W 2
·
σ2 tr

(
WTW +W2

)
(2N +N2) · σ2

=
N

N + 2
· 1

W 2
· tr
(
WTW +W2

)
.

Aby ustalić rozkład graniczny statystyki I Morana, musimy poczynić pew-
ne dodatkowe założenia dotyczące zachowania asymptotycznego macierzy wag
przestrzennych W. Mianowicie załóżmy, że zachodzi zbieżność

lim
N→∞

‖Wsym‖∥∥Wsym
∥∥
F

= 0,

gdzie ‖Wsym‖ jest wartością normy operatorowej (spektralnej) macierzyWsym :=
W+WT

2 , czyli największą wartością osobliwą. Liczba ‖Wsym‖F to tzw. norma
Frobeniusa, czyli średnia kwadratowa wszystkich wartości własnych Wsym, zna-
na również jako norma Hilberta-Schimdta. Zauważmy, że powyższy warunek jest
dość naturalny. Istotnie, w klasycznych centralnych twierdzeniach granicznych
zakłada się, że żaden ze składników rozważanej sumy zmiennych losowych nie
jest elementem dominującym. W naszym warunku wymagamy, aby żadna z war-
tości osobliwych macierzy Wsym nie dominowała w sumie kwadratów wszystkich
tych wartości.

Wyliczone przez nas wartości momentów statystyki I Morana przy prawdzi-
wości hipotezy zerowej są dokładne, jednakże nie dają nam pełnej informacji
o kształcie jej rozkładu dla małej próby. Znajomość takiego rozkładu jest oczy-
wiście potrzebna do wyznaczenia poziomów krytycznych dla wartości statystki
testowej, które odpowiadają różnym poziomom istotności testu statystycznego.
Zatem w praktyce do ich wyznaczenia wykorzystuje się aproksymację rozkładu
znormalizowanej statystyki I Morana, tj. statystyki Inorm = I−E0I√

Var0 I
, rozkładem

normalnym N (0, 1). Fakt takiej zbieżności dystrybuant musi być jednak formal-
nie wykazany.
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Zauważmy, że twierdzenie V.1 implikuje następującą zbieżność (według roz-
kładu, oznaczaną dalej symbolem D−→) przy rozmiarze próby N rosnącym do
nieskończoności

ξ :=
N
W yTWy√

1
W 2 tr (WTW +W2)

D−→ N (0, σ2).

Jednocześnie klasyczne twierdzenia wielkich liczb implikują, że ζ = 1
N+2y

Ty

zbiega według prawdopodobieństwa do σ2. Zatem— korzystając z lematu III.3 —
wnioskujemy, że

Inorm =
I√

Var0 I
=

N + 2√
tr (WTW +W2)

yTWy

yTy
=
ξ

ζ

D−−→N (0, 1).

1.2. Rozkład statystyki Morana dla procesu autoregresji ze składową
stałą

Rozważmy teraz model mechanizmu generującego obserwacje procesu prze-
strzennego y, oparty na specyfikacji SAR ze składnikiem stałym

y = ρWy + c · 1+ ε

ε ∼ N
(
0, σ2I

)
,

gdzie 1 jest N -elementowym wektorem jedynek, a parametr c ∈ R parame-
trem określającym wyraz wolny modelu. Hipoteza zerowa o braku autokorelacji
przestrzennej procesu y wyraża się równością

H0 : ρ = 0.

Ponownie H0 jest hipotezą prostą.
W przypadku obecnej specyfikacji modelu dla procesu y odpowiednia postać

statystyki I Morana powinna również uwzględnić obecność składnika stałego.
Ponieważ przy założeniu prawdziwości hipotezy zerowej mamy Ey = c, możemy
szacować wartość c przez ȳ = 1

N

∑N
i=1 yi. Zatem właściwą w tym wypadku

postać statystyki I Morana możemy zapisać wzorem

I =
N

W
· (y − ȳ)TW(y − ȳ)

(y − ȳ)T(y − ȳ)
,

gdzie ȳ = ȳ · 1, a W dane jest przez (3.2). Zauważmy, że powyższa formuła
zgodna jest z definicją (1.4).
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Aby wyliczyć parametry rozkładu, wprowadzimy dodatkowe oznaczenia. Za-
uważmy, że macierz D = 1

N 1 · 1T wyznacza operator średniej, czyli w szcze-
gólności ȳ = Dy. Zatem y − ȳ = (I − D)y. Analogicznie jak w przypadku
poprzedniego modelu, korzystając z lematów III.2 i III.1, możemy wyliczyć war-
tość oczekiwaną i wariancję statystyki I Morana przy założeniu prawdziwości
hipotezy zerowej. I tak, ponieważ (I − D)y = (I − D)ε, uwzględniając (3.2)
mamy

E0 I = E
(
N

W
· (y − ȳ)TW(y − ȳ)

(y − ȳ)T(y − ȳ)

)
=
N

W
· E εT(I−D)TW(I−D)ε

E εT(I−D)T(I−D)ε

=
N

W
· σ

2 tr (I−D)TW(I−D)

σ2 tr (I−D)T(I−D)
.

Nietrudno zaobserwować, że macierz D jest symetryczna (DT = D) i idempo-
tentna, gdyż D2x = ¯̄x = x̄ = Dx, dla dowolnego x ∈ RN , a więc D2 = D.

Przy założeniu o zerowej przekątnej macierzy W, mamy

tr (I−D)TW(I−D) = tr (W −WD) = − trD = −
N∑
i=1

1

N
= −1.

Podobnie uzyskujemy wartość z mianownika

tr (I−D)T(I−D) = tr (I−D) =

N∑
i=1

(
1− 1

N

)
= N − 1,

co daje

E0 I = − N

N − 1
· 1

W
,

a w przypadku, gdy macierz W jest standaryzowana wierszowo (co implikuje
równość W = N ) mamy (por. rozdział I)

E0 I = − 1

N − 1
.

Ponownie lematy III.2 i III.1 pozwalają wyliczyć żądaną wariancję. Uwzględ-
niając symetryczność i idempotentność macierzy D możemy zapisać

E0 I
2 = E

(
N

W
· (y − ȳ)TW(y − ȳ)

(y − ȳ)T(y − ȳ)

)2

=
N2

W 2
·
E
(
yT(I−D)TW(I−D)y

)2
E
(
yT(I−D)T(I−D)y

)2
=
N2

W 2
·
tr
(
(I−D)WTR+ (I−D)R2

)
+ 1

2 · tr (I−D) +
(
tr (I−D)

)2 ,
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gdzie R = W(I−D), a zatem

Var0 I = E0 I
2 − (E0 I)

2

=
N2

W 2
·

(
tr
(
WT(I−D)R+R2

)
N2 − 1

+
2N

(N + 1)(N − 1)2

)
.

Gdy macierz W jest standaryzowana wierszowo, czyli W · 1 = 1 oraz W = N ,
wówczas

WD = W · 1

N
1 · 1T =

1

N
(W · 1) · 1T =

1

N
1 · 1T = D.

W takim wypadku wyrażenie określające wariancję statystyki I Morana można
dalej uprościć do postaci

Var0 I =
tr (WT −WTD+W)W

N2 − 1
+

1

(N − 1)2
.

Na koniec zauważmy, że przy założeniach

sup
N∈N

‖W‖ <∞

oraz
lim

N→∞
‖Wsym‖F = ∞,

korzystając z ogólniejszego twierdzenia III.4, sformułowanego w następnym pod-
rozdziale, możemy wnioskować o zbieżności statystyki normalizowanej

Inorm =
I − E0 I√
Var0 I

N→∞−−−−−→ N (0, 1).

Warto też zaobserwować, że warunek rozbieżności normy ‖Wsym‖F do nie-
skończoności, jest równoważny takiej rozbieżności dla samej macierzy W =
[wij ]16i,j6N , jeśli elementy wij są nieujemne.

1.3. Rozkład statystyki Morana dla procesów autoregresji w obecności
zmiennych objaśniających

Rozważania z poprzedniego podrozdziału uogólnimy teraz na przypadek specy-
fikacji procesu generującego obserwacje, opartej na modelu SAR ze zmiennymi
objaśniającymi, tj.

y = ρWy +Xβ + ε

ε ∼ N (0, σ2I),
(3.3)
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gdzie X jest macierzą o rozmiarze N × k obserwacji zmiennych objaśniających,
a β wektorem odpowiadających im parametrów. Jak poprzednio, hipoteza zerowa
o braku autokorelacji przestrzennej procesu y jest hipotezą prostą postaci

H0 : ρ = 0.

Przyjmijmy następujące konwencjonalne oznaczenia

P = X(XTX)−1XT, M = I−P.

Macierze P i M reprezentują rzuty ortogonalne, a więc w szczególności są sy-
metryczne i idempotentne. Ponadto przyjmijmy, że β̂ jest oszacowaniem MNK
parametru β przy prawdziwości hipotezy zerowej, tj. β̂ = (XTX)−1XTy. Wów-
czas odpowiednia w przypadku powyższej specyfikacji postać statystyki I Mora-
na, uwzględniająca obecność zmiennych objaśniających, to

I =
N

W
· (y −Xβ̂)TW(y −Xβ̂)

(y −Xβ̂)T(y −Xβ̂)
=
N

W
· y

TMTWMy

yTMTMy

=
N∑N

i=1

∑N
j=1wij

·
∑N

i=1

∑N
j=1wij(yi − xiβ̂)(yj − xiβ̂)∑N

i=1(yi − xiβ̂)2
,

gdzie xi, 1 6 i 6 N , to wiersze macierzy X, a liczba W zdefiniowana jest
równaniem (3.2).

Analogicznie jak w przypadku poprzedniego modelu, korzystając z lema-
tów III.2 i III.1, możemy wyliczyć wartość oczekiwaną i wariancję statysty-
ki I Morana przy założeniu prawdziwości hipotezy zerowej. I tak, ponieważ
My = Mε, mamy

E0 I = E
(
(y −Xβ̂)TW(y −Xβ̂)

(y −Xβ̂)T(y −Xβ̂)

)
=
N

W
· EyTMTWMy

EyTMy

=
N

W
· σ

2 trMWM

σ2 trM

1

N − k
· N
W

· trMW.

Lematy III.2 i III.1 pozwalają również wyliczyć żądaną wariancję statystyki
I Morana. Najpierw uzyskujemy jej drugi moment:

E0 I
2 = E

(
(y −Xβ̂)TW(y −Xβ̂)

(y −Xβ̂)T(y −Xβ̂)

)2

=
N

W
· E (yTMTWMy)2

E (yTMy)2

=
N2

W 2
·
tr
(
MWTMW + (MW)2

)
+ (trMW)2

2 · trM+ (trM)2
,
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a zatem

Var0 I = E0 I
2 − (E0 I)

2

=
N2

W 2

(
tr
(
MWTMW + (MW)2

)
+ (trMW)2

(N − k)(N − k + 2)
+

(trMW)2

(N − k)2

)
.

Do wyznaczenia przedziału krytycznego dla procedury testowej wykorzystu-
je się aproksymację rozkładu znormalizowanej statystyki I Morana, tj. statystyki
Inorm = I−E0 I√

Var0 I
rozkładem normalnym N (0, 1). Jak zaznaczyliśmy już w pod-

rozdziale 1.3, fakt takiej zbieżności musi być jednak formalnie wykazany. Poniżej
prezentujemy autorskie twierdzenie o takiej zbieżności.

Twierdzenie III.4
Niech W będzie macierzą wag przestrzennych spełniającą warunki

sup
N∈N

‖W‖ <∞, lim
N→∞

‖Wsym‖F = ∞,

gdzieWsym := W+WT

2 oraz niech y będzie procesem przestrzennym zgodnym ze
specyfikacją SAR w równaniu (3.3). Wówczas normalizowana statystyka Morana
Inorm = I−E0 I√

Var0 I
, gdzie wartości momentów zostały wyznaczone powyżej, zbiega

według rozkładu do N (0, 1).

Dowód. Z uwagi na oszacowanie

‖Wsym(I−P)‖2F = ‖Wsym‖2F − 2 tr (PWT
symWsymP) + ‖WsymP‖2F

= ‖Wsym‖2F − ‖WsymP‖2F
> ‖Wsym‖2F − ‖W‖2 · ‖P‖2F
= ‖Wsym‖2F − k · ‖W‖2,

równość My = Mε oraz lemat III.1 mamy rozbieżność

V0 := Var0
1

W
yTMTWMy =

2

W
· ‖Wsym‖F

N→∞−−−−→ ∞.

Oznaczmy

ξ =
1
W yTMWMy − 1

N yTMy · E0 I√
V0

.

Mamy wówczas

ξ =
1
W yTMWMy − σ2

W trMW
√
V0

+
1
W

(
σ2 − 1

N−ky
TMy

)
√
V0

,
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przy czym drugi składnik w powyższej sumie zbiega do zera według prawdo-
podobieństwa. Istotnie, zgodnie z przyjętymi założeniami mianownik rozbieżny
jest do nieskończoności, a z teorii estymacji MNK wynika, że zmienna

ζ :=
1

N − k
(y −Xβ̂)T(y −Xβ̂)

zbiega według prawdopodobieństwa do σ20 . Zatem, korzystając z lematu III.3
wnioskujemy, że

I − E0 I√
V0

=
ξ

ζ

N→∞−−−−−→ N
(
0,

1

σ2

)
.

Powyższa zbieżność implikuje w szczególności, że

lim
N→∞

Var0 I√
V0

= lim
N→∞

Var0

(I − E0 I√
V0

)
=

1

σ2
,

a zatem

Inorm =
I − E0 I√
Var0 I

=

√
V0

Var0 I
· I − E0 I√

V0

N→∞−−−−−→ N (0, 1).

Rozważmy teraz model mechanizmu generującego obserwacje procesu prze-
strzennego y, oparty na specyfikacji SEM ze zmiennymi objaśniającymi

y = Xβ + u

u = λWu+ ε

ε ∼ N (0, σ2I),

gdzie X jest macierzą o rozmiarze N × k obserwacji zmiennych objaśniających,
a β wektorem odpowiadających im parametrów. Hipotezą zerową jest stwier-
dzenie o braku autokorelacji przestrzennej procesu y wyrażone przez równość

HSEM
0 : λ = 0.

Tak jak w poprzednim podrozdziale, specyfikacja modelu dla procesu y w przy-
padku prawdziwościHSEM

0 jest tożsama w przypadku hipotezyH0 dla omówionej
już specyfikacji SAR. Wynika stąd, iż postać statystyki I Morana oraz procedura
testowa są takie same w obu przypadkach. Naturalnie jednak, z uwagi na różne
hipotezy alternatywne, można spodziewać się różnych funkcji mocy testu.
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1.4. Uwagi praktyczne dotyczące statystyki I Morana

Analizując powyższe rozumowania, łatwo zauważyć, że czynnik 1
W , patrz (3.2),

występujący w tradycyjnej definicji statystyki I Morana nie spełnia roli nor-
malizującej. Można nawet powiedzieć, że w pewnym sensie „przeszkadza” przy
przekształcaniu wzorów. Istotnie, należałoby się spodziewać, że czynnikiem nor-
malizującym będzie raczej wyrażenie związane z wariancją (a dokładniej od-
chyleniem standardowym) formy kwadratowej, występującej w liczniku formu-
ły opisującej właściwą statystykę, tj. yTW̃y, gdzie W̃ jest macierzą w pewien
sposób związaną z macierzą wag przestrzennych W i zależną od specyfikacji
procesu przestrzennego. Taka wariancja jest proporcjonalna do wartości śladu
tr (W̃T + W̃)W̃, która z kolei w ogólności nie jest równa i nie jest propor-
cjonalna do sumy

∑N
i=1

∑N
j=1wij (por. Kelejian, Prucha, 2001; Olejnik, 2013).

Co ciekawe, w pierwszych pracach dotyczących statystyki I Morana rozważano
symetryczne macierze zero-jedynkowe, dla których mamy równość

1

2
tr (WT +W)W =

1

2
‖W‖2F =

N∑
i=1

N∑
j=1

w2
ij =W .

Jest jednak faktem, że w badaniach empirycznych powszechnie stosuje się
postać statystyki I Morana z czynnikiem „normalizującym” 1

W . To w zasadzie
nie jest błędem metodologicznym, jeśli statystyką testową jest postać już znor-
malizowana pierwiastkiem odpowiedniej wariancji. Chcielibyśmy jednak w tym
miejscu z pełną mocą podkreślić, że należy zachować ostrożność przy porówny-
waniu wartości nieznormalizowanych odchyleniem standardowym wartości sta-
tystki I Morana, dla różnych macierzy wag, w szczególności o innym rozmiarze
próby N . Tak uzyskane wartości mogą nie być porównywalne. W takim wypad-
ku procedurą gwarantującą metodologiczną poprawność jest porównywanie albo
znormalizowanych wartości statystyki tj. Inorm, albo też explicite wyznaczanych
przez nie wartości p (ang. p-values).

Kolejną istotną kwestią aplikacyjną, na którą należy zwrócić szczególną uwagę
jest stosowalność poszczególnych form statystyki I Morana w przypadku róż-
nych specyfikacji de facto stosowanych do modelowania procesu przestrzennego.
Niestety, często spotyka się w badaniach empirycznych stosowanie niewłaściwej
postaci statystyki I Morana. Na przykład stosuje się wzór

I =
N∑N

i=1

∑N
j=1wij

·
∑N

i=1

∑N
j=1wij (yi − ȳ) (yj − ȳ)∑n

i=1 (yi − ȳ)2
,

gdzie ȳ = 1
N

∑N
i=1 yi, czyli postać statystyki właściwą do badania autokore-

lacji procesu jedynie ze składnikiem stałym, w przypadku, gdy proces y =
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(y1, . . . , yN ) jest explicite procesem regresyjno-autoregresyjnym z nietrywialną
macierzą zmiennych objaśniających. Nierzadko też można przeczytać w publika-
cjach różnych autorów nieprawdziwe stwierdzenie, że E I = − 1

N−1 , niezależnie
od założeń dotyczących postaci losowości procesu przestrzennego (por. Suchecki
[red.], 2010). Innym, często powtarzanym błędem jest formułowanie stwierdzeń
dotyczących asymptotyki statystyki testowej I Morana bez jakichkolwiek założeń
odnośnie asymptotycznego zachowania macierzy wag przestrzennych W.

2. Testy oparte na mnożnikach Lagrange’a

W tym podrozdziale opiszemy metodę testowania obecności autokorelacji prze-
strzennej w obserwowanym przestrzennym procesie stochastycznym, opartą na
tzw. mnożnikach Lagrange’a (ang. LM, Lagrange/Lagrangian Multipliers, patrz
Anselin, 1988b). Jest to podejście alternatywne dla testów opartych na statystyce
I Morana, ale — jak się często okazuje — asymptotycznie z nim zgodne. Przed-
stawioną tu procedurę, w dość ogólnej, choć nieprzestrzennej formie, po raz
pierwszy zaprezentowano w pracy Silvey’a (1959). Nieco wcześniej Rao (1948)
opisał właściwie równoważną procedurę testową, opartą na zachowaniu infor-
manty (pochodnej logarytmu funkcji wiarogodności) dla parametru wyznacza-
jącego hipotezę zerową. Stąd testy omawiane w tym podrozdziale są również
nazywane testami informanty Rao (ang. Rao’s Score Tests, patrz Anselin, 2001).

2.1. Test mnożników Lagrange’a dla procesu czystej autoregresji

Rozważmy następującą specyfikację procesu czystej autoregresji przestrzennej
SAR/SEM:

y = ρWy + ε

ε ∼ N (0, σ2I),

gdzie y jest modelowanym procesem przestrzennym. Rozważmy także procedurę
estymacyjną największej wiarogodności parametru σ2, stosowaną przy ograni-
czeniu wynikającym z hipotezy zerowej o braku autokorelacji przestrzennej, tj.

H0 : ρ = 0.

W wyniku otrzymujemy program optymalizacyjny, który możemy rozwiązywać
metodą mnożników Lagrange’a. Zatem, najpierw poszukujemy punktów zerowa-
nia się pochodnej funkcji

L(ρ, σ2, α) = lnLy(ρ, σ
2)− α · g(ρ),
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gdzie

Ly(ρ, σ
2) = −N

2
ln(2πσ2) + ln det∆(ρ)− 1

2σ2
(∆(ρ) · y)T(∆(ρ) · y),

jest funkcją wiarogodności parametrów procesu, ∆(ρ) = I−ρW, a g(ρ) = ρ jest
funkcją nakładanego ograniczenia (tj. g(ρ) = 0). Według Silvey’a (1959), staty-
stykę testową dla H0 można zbudować w oparciu o wartość kwadratu mnożnika
α = α(y) rozwiązującego równanie

∂L
∂(ρ, σ2, α)

= 0,

a dokładniej rozważając jego wartości normalizowaną wariancją, czyli

LM =
α2

Varα
.

Takie podejście jest zgodne z konwencjonalną interpretacją mnożników Lagran-
ge’a, jako efektu krańcowego ograniczenia (tutaj ρ = 0) nałożonego na wartość
optymalną funkcji celu (w naszym przypadku funkcji log-wiarogodności).

Metoda poszukiwania ekstremum warunkowego Lagrange’a prowadzi do na-
stępującego układu równań

∂ lnLy

∂ρ
= trW∆(ρ)−1 +

1

2σ2
· 2 · yTWT∆(ρ)y = α

∂ lnLy

∂σ2
= − N

2σ2
+

1

σ2
(∆(ρ) · y)T(∆(ρ) · y) = 0

∂(αρ)

∂α
= ρ = 0,

z którego wyliczamy formułę

α =
N

yTy
· yTWy.

Wartości statystyki α bliskie zeru będziemy uważać za wspierające hipotezę ze-
rową, a odległe od zera za wskazujące na jej odrzucenie.

Ostatecznie możemy zauważyć, że statystyka LM równa jest normalizowanej
statystyce Morana Inorm, a więc (jak wynika z rozważań w poprzednim podroz-
dziale dotyczących asymptotycznych własności statystyki I) jej wartość zbiega
według dystrybuanty do rozkładu χ2 z jednym stopniem swobody, tj.

LM
N→∞−−−−→ χ2(1).
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Innym podejściem do uzyskania statystyki testowej jest normalizacja infor-
manty za pomocą funkcji informacji Fishera. Istotnie, niech

S(ρ, σ2) = ∂ lnLy

∂ρ
= trW∆(ρ)−1 +

1

σ2
· yTWT∆(ρ)y

będzie funkcją informanty (ang. score) oraz niech

I(ρ, σ2) = −E
(
∂2 lnLy

(∂ρ)2
| ρ, σ2

)
= trW∆(ρ)−1W∆(ρ)−1 + trWTW.

będzie funkcją informacji Fishera dla parametru autoregresyjnego. Wówczas, jak
wiadomo (patrz Lehmann, Casella, 1998), dla prawdziwych wartości parametrów
mamy ES(ρ, σ2) = 0 oraz VarS(ρ, σ2) = I(ρ, σ2). Zatem test informanty Rao
przyjmuje postać

RS =

(
S(ρ, σ2)

)2
VarS(ρ, σ2)

=
(S(ρ, σ2))2

I(ρ, σ2)
,

co przy założeniu prawdziwości hipotezy zerowej daje

RS =
(S(0, σ2))2

I(0, σ2)
=

(
1
σ2y

TWy + trW
)2

tr (WTW +W2)
.

Co ciekawe, wykonując naturalne podstawienie σ2 = σ̂2 := 1
ny

Ty oraz uwzględ-
niając równość trW = 0, uzyskujemy

LM =
(yTWy)2(

1
N yTy

)2 · tr (WTW +W2)
= RS.

2.2. Testy mnożników Lagrange’a dla procesów o specyfikacjach
regresjno-autoregresyjnych SAR oraz SEM

Rozważmy następującą specyfikację procesu regresji z autoregresją składnika lo-
sowego SEM

y = Xβ + u

u = λWu+ ε

ε ∼ N (0, σ2I),

gdzie y jest modelowanym procesem przestrzennym, X jest macierzą wartości
zmiennej objaśniającej, a β wektorem odpowiadających tym zmiennym parame-
trów nachylenia. Rozważmy też problem optymalizacyjny wynikający z proce-
dury MNW dla parametrów β i σ2, przy ograniczeniu wynikającym z hipotezy
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zerowej o braku autokorelacji przestrzennej

H0 : λ = 0.

Analogicznie jak w przypadku czystego modelu SEM, poszukujemy zatem punk-
tów zerowania się pochodnej funkcji Lagrange’a

L(β, λ, σ2, α) = lnLy(β, λ, σ
2)− α · g(α),

gdzie

Ly(β, λ, σ
2) = −N

2
ln(2πσ2) + ln detΓ(λ)− 1

2σ2
‖Γ(λ)(y −Xβ)‖2,

jest funkcją wiarogodności parametrów procesu, Γ(λ) = I − ρW, a funkcja
λ 7→ g(λ), poprzez równanie g(λ) = 0, definiuje nakładane ograniczenie.

Metoda Lagrange’a poszukiwania ekstremum warunkowego prowadzi do na-
stępującego układu równań

∂ lnLy

∂λ
= trWΓ(λ)−1 +

1

2σ2
· 2 · (y −Xβ)TWTΓ(λ)(y −Xβ) = α

∂ lnLy

∂σ2
= − N

2σ2
+

1

σ2
‖Γ(λ)(y −Xβ)‖2 = 0

∂ lnLy

∂β
=

1

σ2
XTΓ(λ)TΓ(λ)(y −Xβ) = 0

∂(αλ)

∂α
= λ = 0,

z czego uzyskujemy

α(y) = (
1

N
yTMy)−1yTMWMy,

gdzie M = I−XT(XTX)−1XT. Przeprowadzając odpowiednie wyliczenia moż-
na wykazać, iż Varα jest asymptotycznie równoważna wartości VaryTMWMy.
Stąd, przyjmuje się następującą definicję statystyki testowej

LMSEM =
(yTMWMy)2(

1
N yTMy

)2 · tr (WTMWM+ (WM)2
) .

Jak wynika z rozważań dotyczących asymptotycznych własności statystyki I Mo-
rana (patrz twierdzenie III.4), statystyka testu mnożników Lagrange’a zbiega we-
dług dystrybuanty do rozkładu χ2(1).
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Podobnie rozważać można specyfikację SAR dla procesu y, patrz specyfikacja
(3.5). W takim przypadku analogiczne rozumowanie prowadzi do statystyki

LMSAR =

(
1
N yTMy

)−2 · (yTWMy)2

tr
(
WTMWM+ (WM)2

)
+ ‖MW(I−M)y‖2

,

zbieżnej według dystrybuanty do rozkładu χ2(1).

3. Test F dla modelu z krzyżowymi zależnościami
przestrzennymi zmiennych objaśniających

Najprostszą formą zależności przestrzennych w modelu ekonometrycznym są
przestrzenne zależności krzyżowe zmiennych objaśniających. Taki model ma
wówczas postać (patrz również specyfikacja SADL w równaniu (2.3))

y = Xβ +WXγ + ε

ε ∼ N (0, σ2I).

Występujący powyższej element WX stanowi przestrzenną, średnią, ważoną
wartości poszczególnych zmiennych objaśniających w sąsiednich lokalizacjach,
a γ to wektor odpowiadających im parametrów. Ponadto przyjmijmy, że k jest
liczbą kolumn w macierzyX. Hipoteza zerowa o braku przestrzennych zależności
krzyżowych zmiennych objaśniających to hipoteza prosta

H0 : γ = 0,

przy złożonej hipotezie alternatywnej

H1 : γ 6= 0.

Okazuje się, że obecność takiej formy zależności może być testowana, ana-
logicznie jak dla modeli klasycznych, za pomocą testu F . Istotnie, przyjmijmy
statystykę testową postaci

F =
N − 2k

k
·
ε̂TH0

ε̂H0 − ε̂TH1
ε̂H1

ε̂TH1
ε̂H1

,

gdzie ε̂H0 jest wektorem reszt uzyskanym z estymacji modelu metodą MNK bez
składnika WXγ, a ε̂H1 jest wektorem reszt z estymacji tego modelu uwzględ-
niającego składnik WXγ. Gdy hipoteza zerowa jest prawdziwa, wartość ε̂TH1

ε̂H1

nie powinna być znacznie mniejsza niż ε̂TH0
ε̂H0 , relatywnie do wartości σ2.
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Przy oznaczeniu MX = I − X(XTX)−1XT oraz MZ = I − Z(ZTZ)−1ZT,
Z =

[
X WX

]
mamy

F =
N − 2k

k
· y

TMXy − yTMZy

yTMZy
=

1
kε

T(MX −MZ)ε
1

N−2kε
TMZε

1
k‖(MX −MZ)ε‖2

1
N−2k‖MZε‖2

,

przy czym MX − MZ jest macierzą rzutu ortogonalnego, gdyż zachodzi ma-
cierzowa nierówność MZ 6 MX, a więc MZMX = MXMZ = MZ. Licznik
i mianownik mają rozkłady chi-kwadrat z, odpowiednio, k i N − 2k stopniami
swobody. Ponadto mamy

E (MZε)
T(MX −MZ)ε = trMZ(MX −MZ) = 0,

zatem licznik i mianownik są niezależne. Ostatecznie, statystyka F ma rozkład
Fishera-Snedecora z (k, 2N − k) stopniami swobody.

4. Testowanie niestacjonarności przestrzennej

Problem niestacjonarności w przypadku procesów przestrzennych jako pierwszy
rozważał Fingleton (1999). W swojej pracy zauważył, że niestacjonarność prze-
strzenna, analogicznie jak w przypadku szeregów czasowych, może prowadzić do
wystąpienia regresji pozornej (por. Olejnik, 2008, 2013). W literaturze propono-
wane były różne procedury testowe, umożliwiające wykluczenie występowania
problemu niestacjonarności przestrzennej. Podejścia te z reguły stanowiły analo-
gi do testów znanych z ekonometrii klasycznej (tj. nieprzestrzennej). Na przykład
Lauridsen (1999) zaproponował procedurę analogiczną do testu Dickey–Fullera,
a późniejsza praca Kosfelda i Lauridsena (2004) jest poświęcona podejściu opar-
temu na teście Walda. My jednak przyjrzymy się w tym podrozdziale procedurze
zaczerpniętej z pracy Kosfelda i Lauridsena (2006). Na jej przykładzie pokażemy,
na czym polega problem poprawnej specyfikacji przestrzennej niestacjonarności.
Ostatecznie prezentujemy tutaj oryginalną, poprawioną przez nas wersję owej
procedury.

Jako punkt wyjścia przyjmijmy model SEM postaci

y = Xβ + u

u = λWu+ ε

ε ∼ N (0, σ2I),
(3.4)

gdzie ρ, β i σ2 są nieznanymi parametrami. Jak wynika z rozważań w poprzed-
nim rozdziale, przy założeniu zerowej przekątnej i standaryzacji wierszowej ma-
cierzy wag przestrzennych W, naturalną przestrzenią dopuszczalnych wartości
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parametru autoregresji składnika losowego ρ jest przedział (−1, 1). Niestety, gdy
wartość parametru ρ jest bliska jedności, wówczas oszacowania parametrów mo-
delu przestają być stabilne. Przypadek graniczny, gdy ρ = 1, jest nazywany prze-
strzennym pierwiastkiem jednostkowym. Ponadto, przez analogię do szeregów
czasowych, proces autoregresji, dla którego parametr autoregresyjny implikuje
osobliwość macierzy I − ρW jest nazywany— zgodnie z powszechnie przyjętą
w literaturze konwencją — procesem niestacjonarnym. Podobnie można zdefi-
niować niestacjonarność przestrzenną dla modelu o specyfikacji z autoregresją
zmiennej objaśnianej SAR, inaczej — SARAR(1, 0).

Zauważmy, że tak zdefiniowana niestacjonarność przestrzenna nie jest rów-
noważna brakowi stacjonarności (rozumianej standardowo jako niezmienniczość
charakterystyk rozkładów skończenie wymiarowych ze względu na przesunięcia)
procesu przestrzennego, ani słabej, ani mocnej. Należy zauważyć, że niestacjo-
narność przestrzenna jest zjawiskiem określonym w kontekście specyficznego
modelu dla obserwowanego procesu przestrzennego.

Zaproponowana przez Kosfelda i Lauridsena (2006) dwustopniowa procedura
testowa jest oparta na teście mnożników Lagrange’a, który jest stosowany na
obu jej etapach. Najpierw testuje się hipotezę o braku korelacji przestrzennej,
tj. hipotezę

H0 : ρ = 0.

Gdy zostanie ona odrzucona, a więc zostanie stwierdzona obecność autokorelacji
przestrzennej, wówczas Kosfeld i Lauridsen proponują ponowne wykonanie testu
mnożników Lagrange’a dla modelu przekształconego operatorem ∆ = I − W,
a więc

∆y = ∆Xβ +∆u = ∆Xβ + ε.

Autorzy zdają się jednak nie zauważać, że w przypadku granicznym specyfikacja
(3.4) jest w zasadzie wewnętrznie sprzeczna. Istotnie, gdy ρ = 1, zmienna ε =
∆u = (I − W)u nie może mieć rozkładu normalnego ε ∼ N (0, σ2I) przy
osobliwej macierzy ∆.

Alternatywnie, w drugim etapie, możemy zastosować podejście Kosfelda–
Lauridsena–Olejnika, w którym hipoteza zerowa

H ′
0 : ρ = 1.

prowadzi do zmodyfikowanej specyfikacji

y = Xβ + u

u = λWu+ ε

ε ∼ N (0, σ2P),
(3.5)
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gdzieP jest macierzą rzutu ortogonalnego na przestrzeń będącą zbiorem wartości
operatora liniowego ∆, czyli

P = ∆(∆T∆)+∆T = ∆ ·∆+.

Przez A+, dla dowolnej macierzy A, oznaczamy jej pseudoodwrotność Moore’a-
Penrose’a. Jeśli dalej w konstrukcji testu Lagrange’a uwzględni się fakt, że macierz
wariacji składnika losowego ε nie jest pełnego rzędu, otrzymuje się właściwy test
fazy drugiej.

Analogiczna procedura może zostać zastosowana w celu badania przestrzen-
nej niestacjonarności każdej ze stochastycznych zmiennych rozważanego modelu.
Wtedy należy wykonać regresję danej zmiennej na czynnik stały (patrz Olejnik,
2013; Kosfeld, Lauridsen, 2006). Praca Olejnik (2008) podaje przykład bada-
nia empirycznego, w którym rozważana jest przestrzenna stacjonarność procesu
konwergencji w Unii Europejskiej.



Rozdział IV
Zgodność oszacowań estymatorów
QNW dla modeli przestrzennych

Wstęp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
1. Podstawowe definicje . . . . . . . . . . . . . . . . . . . . . . . . . . 92

1.1. Specyfikacje niegaussowskie modeli autoregresji przestrzennej 92
1.2. Gaussowskie estymatory quasi-największej wiarogodności . . . 93

1.2.A. Estymator QNW dla specyfikacji SAR z zaburzeniem
niegaussowskim . . . . . . . . . . . . . . . . . . . . . . 94

1.2.B. Estymator QNW dla specyfikacji SEM z zaburzeniem
niegaussowskim . . . . . . . . . . . . . . . . . . . . . . 94

2. Zgodność estymatorów QNW . . . . . . . . . . . . . . . . . . . . . 95
2.1. Założenia formalne . . . . . . . . . . . . . . . . . . . . . . . . 95
2.2. Stwierdzenia pomocnicze . . . . . . . . . . . . . . . . . . . . . 100
2.3. Twierdzenia o zgodności, dowód dla modelu SEM . . . . . . . 109
2.4. Dowód twierdzenia o zgodności dla modelu SAR . . . . . . . 118

Wstęp

Procedury estymacji modeli przestrzennych, oparte na metodzie największej wia-
rogodności, były opisywane i stosowane w praktyce już od początków ekonome-
trii przestrzennej (patrz Anselin, 1988a). Jednak, jak zauważa Anselin w rozdzia-
le 5.2 cytowanej publikacji, elementy próby przestrzennej z samej definicji nie są
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niezależne, a więc nie mogą być w takim wypadku stosowane klasyczne twierdze-
nia i teorie dotyczące zachowania asymptotycznego estymatorów MNW. Wynika
stąd potrzeba odrębnego formalnego dowodu twierdzeń opisujących właściwo-
ści takich estymatorów dla parametrów modeli przestrzennych. Rozumowania te
pojawiły się dopiero ponad dekadę później, niemniej jednak, odpowiednia teo-
ria była oczekiwana przez specjalistów, co częściowo i nieformalnie uzasadniało
stosowanie tej metodologii przez praktyków.

Przełomem okazał się artykuł Lee (2004), w którym przedstawiono spójną
matematycznie teorię właściwości asymptotycznych oszacowań quasi-największej
wiarogodności (QNW) dla parametrów autoregresyjnego modelu przestrzennego.
Wyprowadzone tam rozumowanie opiera się na wcześniejszych pracach Kelejiana
i Pruchy, gdzie sformułowano centralne twierdzenie graniczne dla form kwadra-
towych pojawiających się w wyrażeniach opisujących asymptotyczne zachowanie
odpowiednich estymatorów.

Praca Lee (2004) zapoczątkowała dynamiczny rozwój teorii estymatorów
opartych na metodzie największej wiarogodności, sięgający nawet dalece rozbu-
dowanych specyfikacji modeli autoregresji przestrzennej. Na przykład Lee i Yu
(2010) proponują estymator największej wiarogodności dla przestrzennego mo-
delu z indywidualnymi i czasowymi efektami stałymi (ang. individual and time
fixed effects) dla danych panelowych. Dodatkowo, w swojej pracy sformułowali
oni poprawkę usuwającą obciążenie dla estymatora wariancji. Z kolei w artykule
Lee i inni (2010) rozważano dalsze rozszerzenie tych teorii na panele niezba-
lansowane oraz ich zastosowanie do modelowania sieci społecznych (ang. social
networking models). Rozumowania Lee (2004) były również wykorzystywane do
analizy specyfikacji modeli z dynamiczną (ze względu na opóźnienie czasowe)
zależnością zmiennej objaśnianej (patrz Yu i inni, 2008). Shi i Lee (2017) opi-
sywali podejście największej wiarogodności do estymacji dynamicznego modelu
panelowego z efektami interaktywnymi. Z kolei Qu i Lee (2017) rozważali modele
dynamiczne, w których dopuszcza się macierz wag zmienne w czasie.

W ostatnich latach obserwuje się wzrost popularności aplikacji modeli au-
toregresyjnych wyższych rzędów, a w szczególności specyfikacji SARAR rzędu
(r, 0), dla r > 1. W efekcie, zyskują one również zainteresowanie teoretyków.
Dla przykładu, Gupta i Robinson (2015) rozważają estymator oparty na metodzie
największej wiarogodności dla modelu o specyfikacji z rosnącą do nieskończo-
ności (wraz ze wzrostem rozmiaru próby) liczbą parametrów autoregresyjnych
r = r(N). Innymi słowy, badają asymptotykę oszacowań modelu SARAR(r, 0),
gdzie limN→∞ r(N) = ∞. Z kolei praca Li (2017) przedstawia analizę impulsu-
odpowiedzi (inaczej charakterystykę impulsową) dynamicznego modelu pane-
lowego z autoregresją wyższego rzędu i efektami stałymi. Badane są również
alternatywne metody estymacji. Na uwagę zasługuje również praca Han i inni
(2017), gdzie do estymacji stosowane jest podejście bayesowskie, oraz opraco-
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wanie Badingera i Eggera (2013), w którym zaproponowano ulepszony wariant
estymatora uogólnionej metody momentów.

Istotną cechą teorii opracowanej przez Lee (2004), którą nazywać tu będzie-
my standardową teorią asymptotyczną, jest założenie nakładane na zachowanie
asymptotyczne macierzy wag przestrzennych, wymagające tzw. sumowalności
macierzy. Dokładniej, powiemy, że macierz wag przestrzennych W = WN =
[wN,ij ]i,j6N jest sumowalna, jeśli

sup
N∈N

{ N∑
k=1

|wN,ij |+
N∑
k=1

|wN,ij | : 1 6 i, j 6 N

}
<∞,

czyli gdy zostaje spełniony warunek wyrażony w założeniu II.B w rozdziale II. Jak
zauważono (patrz Olejnik, Olejnik (2020), wymaganie to w sposób zauważalny
ogranicza stosowalność metod estymacji. Po pierwsze, nie pozwala na mode-
lowanie ekonometryczne zależności przestrzennych o większym niż sumowal-
ny (w sensie macierzy wag) stopniu interakcji między jednostkami. Po dru-
gie, w przypadkach, gdy oryginalna specyfikacja modelu jest dodatkowo prze-
kształcana poprzez pewną transformację liniową, przeprowadzenie rozumowa-
nia z użyciem standardowej analizy asymptotycznej wymaga pewności, że użyta
transformacja zachowuje sumowalność macierzy wag. Niestety, taka konieczność
dodatkowo komplikuje ewentualne rozważania teoretyczne. Dla ilustracji załóż-
my przez chwilę, że rozważamy pewną specyfikację modelu przestrzennego typu
SAR

y = ρWy +Xβ + ε.

Następnie przekształcamy wyjściową specyfikację, stosując pewną transforma-
cję liniową T (np. zamianę współrzędnych lub filtr), o której dla uproszczenia
załóżmy, że jest odwracalna. Wówczas, otrzymujemy specyfikację przekształconą

ỹ = ρW̃ỹ + X̃β + Tε,

gdzie ỹ = Ty, X̃ = TX oraz W̃ = TWT−1. Jeśli nawet oryginalna macierz W
jest sumowalna, to nowa macierz W̃ nie musi być sumowalna nawet w prostym
przypadku, gdy T jest izometrią. Jednocześnie, dla normy spektralnej problem
nie występuje, gdyż zwyczajnie zachodzi równość ‖W‖ = ‖W̃‖.

W tym rozdziale prezentujemy spójną i matematycznie kompletną teorię
estymacji quasi-największej wiarogodności dla modeli przestrzennej autoregresji
wyższych rzędów, w ramach której uzyskujemy rozszerzenie zakresu jej stosowal-
ności poprzez zastąpienie warunku sumowalności macierzy przez ograniczenie
jej normy spektralnej. Twierdzenia dotyczące specyfikacji autoregresji zmien-
nej zależnej zostały pierwotnie opublikowane w pracy Olejnik, Olejnik (2020).
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Elementem nowatorskim w obecnej monografii jest przeniesienie tej teorii na
przypadek specyfikacji z przestrzenną zależnością autoregresyjną składnika loso-
wego. Szczególną uwagę będziemy przykładać do zupełności rozważań matema-
tycznych, prowadzących do kluczowych wyników.

1. Podstawowe definicje

Niech d > 1 będzie dowolną liczbą całkowitą. Będziemy rozważać przestrzen-
ne modele autoregresyjne ustalonego rzędu d, mianowicie model SARAR(d, 0)
oraz SARAR(0, d). Dla uproszczenia notacji związanej z mnogością macierzy wag
występującą w wyprowadzanych formułach, zastosujemy następujące oznaczenia.
Niech A1, . . . ,Ad będą macierzami kwadratowymi tego samego wymiaru oraz
A = 〈A1, . . . ,Ad〉T będzie (kolumnowym) wektorem złożonym z tychże ma-
cierzy. Niech ρ ∈ Rd, ρ = (ρ1, . . . , ρd)

T, będzie wektorem liczbowym. Wówczas
definiujemy macierz

ρTA :=
d∑

r=1

ρrAr.

Można zauważyć, że dla zdefiniowanego w ten sposób iloczynu zachodzi nastę-
pujący ciąg nierówności

‖ρTA‖ =
∥∥∥ d∑

r=1

ρrAr

∥∥∥ 6
d∑

r=1

|ρr| · ‖Ar‖ 6 ‖ρ‖ ·

√√√√ d∑
r=1

‖Ar‖

6 d · ‖ρ‖ ·max
r6d

‖Ar‖,

gdzie symbol ‖·‖ oznacza tradycyjnie normę l2 dla wektorów i operatorową
normę spektralną dla macierzy, tj. normą spektralną macierzy.

1.1. Specyfikacje niegaussowskie modeli autoregresji przestrzennej

Przyjmijmy teraz, że W1, . . . ,Wd są ustalonymi macierzami. Chociaż będą one
występować w roli przestrzennych macierzy wag, celowo, dla zachowania istotnej
w dalszej części rozdziału ogólności, nie zakładamy zerowania się ich przekąt-
nych ani standaryzacji wierszowej. Oznaczmy przez W wektor złożony z tych
macierzy, tj. W = 〈W1, . . . ,Wd〉T. Rozważmy model ekonometryczny o specy-
fikacji typu SARAR(d, 0), z niekoniecznie gaussowskim składnikiem losowym.
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Stosując taką notację możemy model zapisać w postaci

y = ρTWy +Xβ + ε

E ε = 0

Var (ε) = σ2I,
(4.1)

gdzie X jest macierzą k zmiennych objaśniających, a ρ ∈ P ⊂ Rd, β ∈ Rk

i σ2 > 0 są nieznanymi parametrami. Nieznany jest również rozkład wektora
zaburzeń modelu ε, który jednak nie podlega estymacji, a traktowany jest raczej
jako nieliczbowy parametr poboczny (ang. non-numerical nuisance parameter).
Podobnie niegaussowski model typu SARAR(0, d) przyjmie postać

y = Xβ + u

u = λTWu+ ε

E ε = 0

Var ε = σ2I,

(4.2)

gdzie λ ∈ L ⊂ Rd jest wektorem parametrów autoregresji, a elementy ε, X, β
i σ2 rozumiane są analogicznie.

1.2. Gaussowskie estymatory quasi-największej wiarogodności

W przypadku modeli o specyfikacji (4.1) oraz (4.2), gdy nieznany jest rozkład
prawdopodobieństwa składnika losowego, nie jest również dostępna postać funk-
cji gęstości rozkładu obserwowanej zmiennej zależnej. Zatem, w odróżnieniu od
teorii prezentowanej w rozdziale II, nie możemy bezpośrednio zastosować pro-
cedury estymacji największej wiarogodności. Jak się jednak okazuje, przy pew-
nych technicznych założeniach dotyczących między innymi przestrzennej ma-
cierzy wag i momentów rozkładu zaburzenia modelu, nieznana funkcja log-
wiarogodności asymptotycznie upodabnia się do funkcji log-wiarogodności dla
zaburzenia gaussowskiego. Ostatecznie, jak dowiedziemy w następnych podroz-
działach, ten fakt pozwala na stosowanie estymatora największej wiarogodności,
wyznaczonego dla przypadku gaussowskiego składnika losowego, nawet w przy-
padku dużych odstępstw od normalności rozkładów. Wynikający stąd estymator
nazwiemy gaussowskim estymatorem quasi-największej wiarogodności (QNW,
ang. Quasi-Maxmium Likelihood, QML).
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1.2.A. Estymator QNW dla specyfikacji SAR z zaburzeniem niegaussowskim

Analogicznie jak w rozdziale II, dla specyfikacji z równania (4.1), przy założeniu
o gaussowskim błędzie, można wyprowadzić postać gęstości zmiennej zależnej

fy(y) =
1√

(2π)N detΩy

exp
{
‖ỹ − ρTWy −Xβ‖2

}
,

a następnie uzyskać funkcję log-wiarogodności

lnLy(ρ,β, σ
2) = −N

2
ln (2πσ2) + ln |det∆(ρ)|

− 1

2σ2
(∆(ρ) · y −Xβ)T(∆(ρ) · y −Xβ),

(4.3)

gdzie∆(ρ) = I−ρTW. W przeciwieństwie do poprzednich rozważań, nie zakła-
damy dodatniości wyznacznika przekształcenia∆(ρ). Należy zauważyć, że gdyby
przestrzeń dla parametru ρ była niespójna lub nie zawierała zera, dopuszczalna
byłaby sytuacja, w której wyznacznik przekształcenia ∆(ρ) uzyskiwałby wartości
ujemne. Natomiast — podobnie jak w przypadku estymacji modelu pierwszego
rzędu— z różniczkowych warunków koniecznych optymalizacji lnLy(ρ,β, σ

2)
uzyskujemy

β̂(ρ) =
(
XTX

)−1
XT
(
I− ρTW

)
y,

σ̂2(ρ) =
1

N

∥∥y − ρTWy −Xβ̂(ρ)
∥∥2. (4.4)

Ostatecznie, wartość estymatora ρ̂SAR_QNW uzyskujemy, znajdując argument mak-
symalizujący funkcję skoncentrowanej log-wiarogodności

P 3 ϱ 7→ lnLy

(
ϱ, β̂(ϱ), σ̂2(ϱ)

)
= −N

2

(
ln
(
2π · σ̂2(ϱ)

)
+ 1
)
+ ln

∣∣ det∆(ϱ)
∣∣,

(4.5)
gdzie P jest przestrzenią dopuszczalnych wartości wektorowego parametru ρ.
W obecnym opracowaniu nie będziemy rozważać możliwych metod określania
zbioru P , jednak temat ten jest szeroko dyskutowany w literaturze (np. Elhorst
i inni (2012); Olejnik i inni, 2020). Definicję estymatora QNW dopełniają rów-
ności β̂SAR_QNW = β̂(ρ̂SAR_QNW) oraz σ̂2SAR_QNW = σ̂2(ρ̂SAR_QNW).

1.2.B. Estymator QNW dla specyfikacji SEM z zaburzeniem niegaussowskim

Analogicznie, do specyfikacji z równania (4.2), można wyprowadzić postać gęsto-
ści zmiennej zależnej przy założeniu o normalności rozkładu błędu losowego ε, tj.

fy(ỹ) =
1√

(2π)N detΩy

exp
1

2

∥∥ỹ − λTWỹ −Xβ + λTWXβ
∥∥.
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W dalszej kolejności możemy uzyskać funkcję log-wiarogodności

lnLy

(
β,λ, σ2

)
= −N

2
ln(2πσ2) + ln |detΓ(λ)|

− 1

2σ2
(
Γ(λ) · (y −Xβ)

)T(
Γ(λ) · (y −Xβ)

)
,

(4.6)

gdzie Γ(λ) = I−λTW. Podobnie jak w przypadku estymacji modelu SAR, z ko-
niecznych warunków różniczkowych optymalizacji lnLy(β,λ, σ

2) otrzymujemy

β̂(λ) =
(
XTΓ(λ)TΓ(λ)X

)−1
XTΓ(λ)TΓ(λ)y,

σ̂2(λ) =
1

N

(
y −Xβ̂(λ)

)T
Γ(λ)TΓ(λ)

(
y −Xβ̂(λ)

)
.

(4.7)

Ostatecznie, wartość estymatora λ̂SEM_QNW uzyskujemy, odnajdując argument
maksymalizujący funkcję skoncentrowanej log-wiarogodności

L 3 λ 7→ lnLy

(
β̂(λ),λ, σ̂2(λ)

)
=

− N

2

(
ln
(
2π · σ̂2(λ)

)
+ 1
)
+ ln |detΓ(λ)|,

(4.8)

gdzie L jest przestrzenią dopuszczalnych wartości wektorowego parametrów λ.
Kwestię określenia zbioru L można rozstrzygać w taki sam sposób, jak pro-
blem identyfikacji przestrzeni P . Definicję estymatora QNW dopełniają równości
β̂SEM_QNW = β̂(λ̂SEM_QNW) oraz σ̂2SEM_QNW = σ̂2(λ̂SEM_QNW).

2. Zgodność estymatorów QNW

Poniżej przedstawiamy ścisłe dowody zgodności estymatorów quasi-największej
wiarogodności zdefiniowanych w poprzednim podrozdziale. Nasze rozumowanie
wykorzystuje elementy dość ogólnej teorii asymptotycznej, opisanej w monografii
Pötschera i Pruchy (1997). Argumentację rozpoczynamy od przytoczenia założeń
formalnych koniecznych dla ścisłości wywodu.

2.1. Założenia formalne

Aby przeprowadzić argumentację dowodu formalnego, musimy poczynić nastę-
pujące założenia.

Założenie IV.A
Normy spektralne przestrzennych macierzy wag modelu są ograniczone, tj.

sup
N∈N

max
r6d

‖Wr‖ <∞.
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Założenie IV.BSAR
Zbiór P jest zwartym podzbiorem Rd i dla każdego ρ ∈ P macierz ∆(ρ) =
I− ρTW jest nieosobliwa. Ponadto, dla każdego ρ ∈ P zachodzi

sup
N∈N

∥∥(I− ρTW)−1
∥∥ <∞.

Założenie IV.C
Dla dowolnego N ∈ N istnieje liczba N̄ > N i semi-ortogonalna macierz E,
tj. taka, że EET = I, oraz istnieje N̄ -elementowy wektor losowy ε̄, o wła-
snościach

a) E ε̄ = 0 oraz Var (ε̄) = σ2I,

b) elementy wektora ε̄ są czwórkami niezależne, a ich czwarte momenty są
wspólnie ograniczone,

dla którego wektor zaburzeń modelu ε spełnia zależność ε = E · ε̄.

Założenie IV.D
Macierz X jest deterministyczną macierzą obserwacji k zmiennych objaśnia-
jących. Ponadto, dla X2

N := 1
NXTX, mamy

a) supN∈N
∥∥X2

N

∥∥ <∞,

b) dla każdego N ∈ N macierz X2
N jest nieosobliwa,

c) supN∈N
∥∥(X2

N )−1
∥∥ <∞.

Założenie IV.ESAR
Dla dowolnych dwóch różnych dopuszczalnych wartości ϱ1,ϱ2 ∈ P parame-
tru ρ, co najmniej jeden z poniższych warunków jest spełniony:

lim inf
N→∞

1√
N

∥∥(I− ϱT1W)(I− ϱT2W)−1
∥∥
F

N

√∣∣det (I− ϱT1W)(I− ϱT2W)−1
∣∣ > 1 (4.9)

lub
lim inf
N→∞

∥∥∥ 1√
N

MX(I− ϱT1W)(I− ϱT2W)−1Xβ
∥∥∥ > 0, (4.10)

dla każdego β ∈ Rk.
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Założenia IV.A i IV.BSAR dotyczą kluczowych warunków ograniczoności, na-
kładanych na macierz (macierze—w przypadku modeli wyższych rzędów) wag
oraz na implikowaną przez nią funkcję operatora opóźnienia przestrzennego

P 3 ϱ 7→ ∆(ϱ) = I− ϱTW.

Wymaganie jednostajnej ograniczoności norm macierzy WN gwarantuje, że ilość
interakcji przestrzennych, a tym samym stopień autozależności procesu generują-
cego próbę, pozwala na zmniejszanie błędu estymatora wraz ze wzrostem N . Jak
argumentują Olejnik i Olejnik (2020), użycie w tym celu normy spektralnej ma-
cierzy jest w pewnym sensie optymalne. Dokładniej, gdyby norma którejkolwiek
z macierzy Wr, 1 6 r 6 d, nie była ograniczona, czyli

lim sup
N→∞

‖Wr‖ = ∞,

wówczas zbiór możliwych wartości parametru autoregresyjnego ρr, który odpo-
wiada tej macierzy, mogłyby być ograniczony do zbioru jednoelementowego {0},
formalnie wykluczając autoregresję przestrzenną.

Zauważmy, że wymaganie odwracalności operatora opóźnienia przestrzen-
nego ∆(ρ), ρ ∈ P jest w istocie dość naturalne. W przeciwnym wypadku, nie
można by było uzyskać jednoznacznej postaci jawnej modelu, czyli rozwiązu-
jącej jego równanie ze względu na zmienną zależną. Warunek ograniczoności
norm macierzy ∆(ρ)−1, ρ ∈ P gwarantuje taką odwracalność również w sen-
sie asymptotycznym. Z kolei postulat zwartości przestrzeni parametrów P ma
charakter czysto techniczny.

Warto zauważyć, że założenie IV.C dotyczące rozkładu składnika losowego
ε nie wymaga, aby jego elementy były gaussowskie, niezależne lub posiadały ten
sam rozkład. Zamiast tego postulowana jest postać zaburzenia losowego jako re-
zultat pewnego ortogonalnego przekształcenia zmiennych losowych, niezależnych
jedynie czwórkami. Zauważmy, że w efekcie zakładamy jedynie nieskorelowanie
elementów wektora ε, gdyż mamy

E ε = E (Eε̄) = E · E ε̄ = 0,
Var ε = E (Eε̄ε̄TET) = σ2EET = σ2I,

(4.11)

zgodnie ze specyfikacją (4.1). Odróżnienie warunku niezależności od braku ko-
relacji zmiennych εi, gdzie 1 6 i 6 N , jest istotne ze względu na brak założenia
normalności ich rozkładu łącznego. Należy również rozgraniczyć brak założenia
równości rozkładów dla elementów składnika losowego od ich heteroskedastycz-
ności. Warto zauważyć, że w naszej teorii nie zakładamy tożsamości rozkładów,
niemniej jednak utrzymujemy założenie równości odpowiednich wariancji, co
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wynika z równania (4.11). Prostym sposobem poradzenia sobie z heteroske-
dastycznością zaburzenia losowego ε mogłoby być zastosowanie przekształcania
normalizującego wariancję, czyli sprowadzającego model do postaci z losowością
homoskedastyczną. Jednak, żeby uprościć rozumowanie, nie stosujemy takiego
podejścia. Alternatywne podejście do problemu heteroskedastyczności zapropo-
nowali Liu i Yang (2015). Ich unikalny pomysł pozwala na uwzględnienie w pro-
cedurze MNW heteroskedastyczności składnika losowego o nieznanym profilu
wariancji.

Założenie IV.D przyjmuje strukturę wartości obserwacji zmiennych objaśnia-
jących, która zapewnia identyfikowalność parametru β w kontekście wybranej
metody estymacji. Warunek jednostajnej ograniczoności norm macierzy X2

N =
1
NXTX jednocześnie kontroluje wielkość wszystkich obserwacji w macierzy X,
w taki sposób, aby żadna z nich nie wywierała dominującego wpływu na osza-
cowanie parametru nachylenia. Założenie o odwracalności macierzy X2

N jest zu-
pełnie naturalne, ze względu na konieczność zapewnienia braku współliniowości
między zmiennymi objaśniającymi. Jak zauważono w publikacji Olejnik i Olejnik
(2020), warunek „odwracalności asymptotycznej”, tj. supN∈N‖(X2

N )−1‖ < ∞,
nie jest w istocie różny od klasycznego lim supN∈N‖(XTX)−1‖ = 0, koniecz-
nego nawet w przypadku zwykłej nieprzestrzennej metody najmniejszych kwa-
dratów. Z kolei warunek ograniczoności norm macierzy X2

N zabezpiecza nas
przed sytuacją, w której niektóre obserwacje mają dominujący wpływ na wartości
oszacowań parametrów nachylenia, co mogłoby wykluczać gaussowski rozkład
asymptotyczny. Zauważmy też, że klasyczna analiza asymptotyczna, oparta na
warunku sumowalności macierzy W, wymaga wprost ograniczoności elemen-
tów macierzy X, a więc jest w tym względzie bardziej restrykcyjna.

W naszych rozumowaniach zakładamy, że obserwacje w macierzy X mają
charakter niedeterministyczny (założenie IV.D), niemniej jednak możliwe są roz-
szerzenia tej teorii, w których X ma charakter losowy. Na przykład, można by
przyjąć, że założenia dotyczące X są spełnione na pewnym zbiorze A = A(N)
o malejącym do zera prawdopodobieństwie, tj. takim, że limN→∞ P (Ω \A) = 0.
Co więcej, gdy założenia dotyczące składnika losowego modelu ε są spełnione
warunkowo względem stochastycznego procesu wektorowego X, wówczas teo-
ria przedstawiona w tym rozdziale prowadzi do zgodności estymatorów quasi-
największej wiarogodności. Istotnie, dla dowolnego z omawianych tu estymato-
rów (oznaczmy go θ̂) i odpowiadającej mu wartości prawdziwej θ0, twierdze-
nia IV.10 lub IV.11 implikują

lim
N→∞

P
(
‖θ̂ − θ0‖ | X

)
= 0

prawie pewnie, dla dowolnej liczby δ > 0. Zatem z twierdzenia o zbieżności



Zgodność estymatorów QNW 99

zmajoryzowanej Lebesgue’a mamy

lim
N→∞

P
(
‖θ̂ − θ0‖ > δ

)
= lim

N→∞
E
[
P
(
‖θ̂ − θ0‖ > δ | X

)]
= 0,

czyli estymator θ̂ jest zgodny. Zauważmy, że warunkowanie założeń względem X
pociąga za sobą, m.in. E

[
ε | X

]
= 0 oraz E

[
εεT | X

]
= σ20I. Zmienna X nie

musi być niezależna (według prawdopodobieństwa) od reszt ε (por. założenie E2
w pracy Shi, Lee, 2017). Należy jednak pamiętać, że w przypadku takiej teorii wy-
prowadzenie rozkładu asymptotycznego oszacowań może być możliwe w pełnej
ogólności jedynie warunkowo ze względu na wartości zmiennych w macierzy X.

Założenie IV.ESAR ma charakter techniczny. Zapewnia ono taką strukturę za-
leżności w macierzy wag przestrzennych, która pozwala na asymptotyczną iden-
tyfikację prawdziwej wartości parametru ρ. Dokładniej, gwarantuje ono, że do-
wolne dwie wartości ϱ1, ϱ2 ∈ P parametru ρ implikują wystarczająco rozbieżne
ciągi wartości gaussowskiej funkcji wiarogodności. Wtedy, obserwowane dane
dostarczają wystarczającą ilość informacji, aby zidentyfikować parametr autore-
gresyjny. Te informacje mogą pochodzić z samej struktury zależności przestrzen-
nych, przy spełnionym warunku (4.9) albo z zależności zmiennej y od wartości
opóźnień przestrzennych zmiennych X, gdy działającym warunkiem w założe-
niu IV.ESAR jest warunek (4.10). Dokładniej, jeśli zgodnie ze specyfikacją (4.1)
zachodzi

y ≈ ρTWy +Xβ,

wówczas
y ≈ Xβ + ρTW∆(ρ)−1Xβ,

a więc, można by powiedzieć, że W∆(ρ0)
−1X stanowi niejawną zmienną ob-

jaśniającą.
Do rozważań dotyczących specyfikacji modelu z autoregresją składnika loso-

wego, zawierającego niesumowalną macierz wag, wprowadzamy również założe-
nia IV.BSEM oraz IV.ESEM, które są odpowiednikami założeń IV.BSAR oraz IV.ESAR.
Warto zwrócić uwagę na fakt, iż identyfikowalność problemu estymacji w przy-
padku modelu SEM jest niezależna od właściwości występujących w specyfikacji
zmiennych egzogenicznych.

Założenie IV.BSEM
Zbiór L jest zwartym podzbiorem Rd i dla każdego λ ∈ L macierz ∆(λ) =
I− λTW jest nieosobliwa. Ponadto, dla każdego λ ∈ L zachodzi

sup
N∈N

∥∥(I− λTW)−1
∥∥ <∞.
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Założenie IV.ESEM
Dla dowolnych dwóch różnych dopuszczalnych wartości λ1,λ2 ∈ L parame-
tru λ mamy

lim inf
N→∞

1√
N

∥∥(I− λT
1W)(I− λT

2W)−1
∥∥

N

√∣∣det (I− λT
1W)(I− λT

2W)−1
∣∣ > 1. (4.12)

2.2. Stwierdzenia pomocnicze

Poniższa definicja i następujący po niej lemat zostały zaadaptowane z opracowa-
nia Pötschera i Pruchy (1997).

Definicja
Niech Q = Q(N) będzie funkcją rzeczywistą, określoną na pewnym zbiorze
Θ ⊂ Rd i niech θ0 ∈ Θ będzie ustalonym elementem tej przestrzeni. Powiemy,
że θ0 jest identyfikowalnie jedynym (ang. identifiably unique) argumentem
maksymalizującym funkcję Q, jeśli, dla każdego δ > 0 mamy

lim inf
N→∞

(
inf

θ∈Θ: ∥θ−θ0∥>δ
Q(θ0)−Q(θ)

)
> 0. (4.13)

Lemat IV.1
Niech R = R(N,λ), dla λ ∈ L, będzie zmienną losową, a R̄ = R̄(N) funkcją
określoną na przestrzeni L, taką, że

sup
λ∈L

|R(λ)− R̄(λ)| → 0

według prawdopodobieństwa, przy N → ∞. Jeśli λ0 jest identyfikowalnie jedy-
nym argumentem maksymalizującym funkcję R̄ (patrz definicja powyżej) oraz
zmienna losowa λ̂ = λ̂(N), o wartościach w zbiorze L, maksymalizuje R,
tzn. spełnia równość

R(λ̂) = sup
λ∈L

R(λ) (4.14)

prawie pewnie, wówczas λ̂ jest zgodnym estymatorem λ0, czyli ‖λ0− λ̂‖ zbiega
do zera według prawdopodobieństwa.

Dowód. Oznaczmy E = E(δ) =
{
λ ∈ L : ‖λ0 − λ̂‖ > δ

}
. Dla dowolnego

podciągu ciągu wszystkich liczb naturalnych możemy znaleźć dalszy podciąg
(Nn)n∈N, dla którego

lim
n→∞

sup
λ∈L

∣∣R(Nn,λ)− R̄(Nn,λ)
∣∣ = 0
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prawie pewnie. Używając warunku (4.13) dla Q = R̄ mamy

lim inf
N→∞

(
inf
λ∈E

(
R̄(Nn,λ0)− R̄(Nn,λ)

))
> η > 0,

dla pewnej liczby η > 0. Zatem wnioskujemy, że

lim inf
n→∞

[
inf
λ∈E

(
R(Nn,λ0)−R(Nn,λ)

)]
>

lim inf
n→∞

(
R(Nn,λ0)− R̄(Nn,λ0)

)
+ lim inf

n→∞

[
inf
λ∈E

(
R̄(Nn,λ0)− R̄(Nn,λ)

)]
+ lim inf

n→∞

[
inf
λ∈E

(
R̄(Nn,λ)− R̄(Nn,λ0)

)]
> η − 2 · lim inf

n→∞

[
inf
λ∈E

(
R(Nn,λ)− R̄(Nn,λ)

)]
= η > 0

prawie pewnie, a więc

inf
λ∈E

(
R(Nn,λ0)−R(Nn,λ)

)
> η

2
> 0,

dla wystarczająco dużych n ∈ N. Skoro, według założenia (4.14), R(Nn,λ0) nie
przekracza R(Nn, λ̂(Nn)), wynika stąd, że ‖λ̂(Nn) − λ0‖ < δ. Z dowolności
wybranego pierwotnie podciągu liczb naturalnych uzyskujemy ostatecznie żądaną
zbieżność według prawdopodobieństwa: λ̂ → λ0, przy N → ∞.

Lemat IV.2
Niech R = R(N,ρ), dla ρ ∈ R, będzie zmienną losową, a R̄ = R̄(N) funkcją
określoną na przestrzeni R, taką, że

sup
ρ∈R

|R(ρ)− R̄(ρ)| → 0

według prawdopodobieństwa, przy N → ∞. Jeśli ρ0 jest identyfikowalnie jedy-
nym argumentem maksymalizującym funkcję R̄ (patrz definicja powyżej lema-
tu IV.1) oraz zmienna losowa ρ̂ = ρ̂(N), o wartościach w zbiorze R, maksy-
malizuje R, tzn. spełnia równość

R(ρ̂) = sup
ρ∈R

R(ρ) (4.15)

prawie pewnie, wówczas ρ̂ jest zgodnym estymatorem ρ0, czyli ‖ρ0 − ρ̂‖ zbiega
do zera według prawdopodobieństwa.
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Do tezy lematu IV.2 prowadzi rozumowanie analogiczne do dowodu lema-
tu IV.1 z ρ w miejscu λ i z R w miejscu L.

Lemat IV.3
Przy złożeniu IV.BSEM istnieje otwarty ograniczony nadzbiór UL ⊂ Rd przestrze-
ni parametrów L, niezależny od N ∈ N, taki, że operator Γ(λ) = I−λTW jest
odwracalny dla każdego λ ∈ UL. Ponadto mamy

sup
λ∈UL

sup
N∈N

‖I− λTW‖ <∞

oraz
sup
λ∈UL

sup
N∈N

‖(I− λTW)−1‖ <∞.

Dowód. Użyjemy rozumowania przedstawionego oryginalnie w pracy Olejnik
i Olejnik (2020). Dla dowolnej macierzy (ciągu macierzy) A definiujemy wiel-
kość ‖A‖A := supN∈N‖A‖. Rozważmy zbiór A = {A : ‖A‖A < ∞}. Jak
można wykazać, stosując klasyczną argumentację, funkcja A 7→ ‖A‖A jest (nie-
ujemnie) jednorodna i podaddytywna, zaś zbiór A w nią wyposażony stanowi
algebrę Banacha z jednością. Istotnie, mnożeniem w tej algebrze jest mnożenie
odpowiadających sobie wyrazów ciągu macierzowego, a jego element neutralny
stanowi macierz (ciąg macierzy) I. Korzystając ze stwierdzenia 1.7 w monografii
Takesakiego (1979), zbiór

G(A) = {A : istnieje B ∈ A takie, że AB = I}

jest otwarty w A. Odwzorowanie Γ przekształcające Rd w A jest ciągłe, a zatem
przeciwobraz V względem Γ zbioru G(A) jest również otwarty w Rd.

Można zauważyć, że funkcja γ : V → R określona wzorem γ(λ) = ‖(I −
λTW)−1‖A jest ciągła. Istotnie, z wniosku 1.8 (Takesaki, 1979) wynika, że funk-
cja przypisująca elementowi algebry jego element odwrotny G(A) 3 A 7→ A−1

jest ciągła względem normy w G(A). Z samej definicji również norma ‖·‖A jest
funkcją ciągłą na A, a w rezultacie ciągła jest funkcja γ, będąc ich złożeniem.
Ostatecznie, zbiór

U =
{
λ ∈ V : γ(λ) < 2 sup

λ′∈L
γ(λ′) <∞

}
jest otwarty w V , a tym samym otwarty w Rd. Korzystając z założenia IV.BSEM
mamy L ⊂ V , gdyż Γ(L) ⊂ G(A). Co więcej, dla każdego λ ∈ L zachodzi

γ(λ) 6 sup
λ′∈L

γ(λ′) < 2 · sup
λ′∈L

γ(λ′),
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a więc L ⊂ U z samego określenia zbioru U. Dodatkowo, uwzględniając zwar-
tość przestrzeni L, zbiór UL można również wybrać jako ograniczony i wciąż
zawierający L. Wystarczy przyjąć

UL := U ∩
{
λ ∈ Rd : ‖λ‖ < max

λ′∈L
‖λ′‖

}
.

W ten sposób uzyskujemy oczywistą nierówność

sup
λ∈UL

sup
N∈N

‖I− λTW‖ < 2 + max
λ′∈L

· sup
N∈N

max
r6d

‖Wr‖ <∞.

Lemat IV.4
Przy złożeniu IV.BSAR istnieje otwarty ograniczony nadzbiór UR ⊂ Rd przestrze-
ni parametrów R, niezależny od N ∈ N, taki, że operator ∆(ρ) = I − ρTW
jest odwracalny dla każdego ρ ∈ UP oraz mamy

sup
ρ∈UP

sup
N∈N

‖I− ρTW‖ <∞,

sup
ρ∈UP

sup
N∈N

‖(I− ρTW)−1‖ <∞.

Rozumowanie przebiega analogicznie do dowodu lematu IV.3, z zastąpieniem
symboli λ i L przez ρ oraz P .

Lemat IV.5
Rozważmy funkcję logLy daną wzorem (4.6), określoną na dziedzinie Rk ×
U × (0,∞), gdzie zbiór U ⊂ Rd dany jest w lemacie IV.3, parametryzowaną
wartością y ∈ R. Dla uproszczenia zapisu przyjmijmy następujące oznaczenia

u(β) = y −Xβ, ε(λ,β) = Γ(λ)u(β),

W̃λ
r = Wr · Γ(λ)−1 = Wr · (I− λTW)−1, dla 1 6 r 6 d.

Pierwsze pochodne cząstkowe funkcji logL są dane wzorami

∂ logLy

∂σ2
= −n

2

1

σ2
+

1

2σ4
ε(λ,β)Tε(λ,β),

∂ logLy

∂β
=

1

σ2
ε(λ,β)TΓ(λ)X,

∂ logLy

∂λ
=

[
− trW̃λ

r +
1

σ2
ε(λ,β)TWru(β)

]
16r6d

.
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Pochodne cząstkowe drugiego rzędu to

∂2 logLy

∂λ∂λ
=

[
− trW̃λ

r1W̃
λ
r2 −

1

σ2
u(β)TWT

r1Wr2u(β)

]
16r1,r26d

,

∂2 logLy

∂λ∂β
=

[
− 1

σ2
u(β)T(WT

r Γ(λ)− Γ(λ)TWr)X

]
16r6d

,

∂2 logLy

∂λ∂σ2
=

[
− 1

σ4
ε(λ, β)TWru(β)

]
16r6d

,

∂2 logLy

∂β∂β
= − 1

σ2
XTΓ(λ)TΓ(λ)X,

∂2 logLy

∂σ2∂β
= − 1

σ4
ε(λ,β)TΓ(λ)X,

∂2 logLy

∂σ2∂σ2
= −n

2

1

σ4
+

1

σ6
ε(λ,β)Tε(λ,β).

Z kolei pochodne cząstkowe trzeciego rzędu są dane wzorami:

∂3 logLy

∂λ∂λ
=
[
− tr

(
W̃λ

r1W̃
λ
r2W̃

λ
r3

)
− tr

(
W̃λ

r1W̃
λ
r3W̃

λ
r2

)]
16r1,r2,r36d

,

∂3 logLy

∂σ2∂λ∂λ
=

[
1

σ4
u(β)TWT

r1Wr2u(β)

]
16r1,r26d

,

∂3 logLy

∂λ∂β∂σ2
=

[
1

σ4
u(β)T(WT

r Γ(λ)− Γ(λ)TWr)X

]
16r6d

,

∂3 logLy

∂β∂β∂σ2
=

1

σ4
XTΓ(λ)TΓ(λ)X,

∂3 logLy

∂σ2∂σ2∂β
=

2

σ6
ε(λ,β)TΓ(λ)X,

∂3 logLy

∂σ2∂σ2∂σ2
= − n

σ6
+

3

σ8
ε(λ,β)Tε(λ,β),

∂3 logLy

∂β∂β∂λ
=

[
1

σ2
XT
(
WT

r Γ(λ) + Γ(λ)TWr

)
X

]
16r6d

,

∂3 logLy

∂β∂λ∂λ
=

[
− 1

σ2
u(β)T

(
WT

r1Wr2 +WT
r2Wr1

)
X

]
16r1,r26d

,

∂3 logLy

∂β∂β∂β
= 0.
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Powyższe formuły uzyskuje się przez bezpośrednie wyliczenie pochodnych,
zgodnie z zasadami macierzowego rachunku różniczkowego. Dla wygody czytel-
nika podajemy najważniejsze własności pozwalające na samodzielne wyprowa-
dzenie kolejnych pochodnych.

Jeśli t jest parametrem skalarnym, a x parametrem wektorowym, wówczas
dla dowolnej macierzy A oraz funkcji macierzowych B(t), C1(x), C2(x), przy
odpowiednich założeniach różniczkowalności i wykonywalności działań, praw-
dziwe są następujące stwierdzenia. Po pierwsze, własności liniowości pociągają
za sobą wzory:

d(Ax) = Adx, dA = 0dx, d(C1(x)
T) = (dC1(x))

T,
d

dt
trB(t) = tr

( d

dt
B(t)

)
.

Ponadto, z formuły Jacobiego dla macierzy nieosobliwych, tj.

d

dt
detB(t) = tr

((
B(t)

detB(t)

)−1

· d

dt
B(t)

)
,

można wyprowadzić równość

d

dt
log (detB(t)) = tr

(
B(t)−1 d

dt
B(t)

)
.

Następujący przepis na różniczkę iloczynu:

d(C1(x)C2(x)) = d(C1(x)) ·C2(x) +C1(x) · dC2(x)

jest analogiem wzoru znanego z analizy funkcji rzeczywistych. Ostatecznie, za
sprawą tożsamości B(t)−1B(t) = I , z powyższego wynika wzór opisujący po-
chodną macierzy odwrotnej

d

dt

(
B(t)−1

)
= −B(t)−1

(
d

dt
B(t)

)
B(t)−1.

Lemat IV.6
Niech ε będzie składnikiem losowym modelu, spełniającym założenie IV.C dla
pewnej semi-ortogonalnej macierzy E o wymiarach N × N̄ oraz dla pewnego
N -elementowego wektora zaburzeń losowych ε̄. Wówczas, dla dowolnej macie-
rzy A mamy

E (εTATAε) = σ2 · ‖A‖2F
oraz

Var (εTATAε) 6 3N · ‖A‖4 · sup
N ′∈N

sup
i6N̄(N ′)

E ε̄4i ,

gdzie zmienne losowe ε̄i, 1 6 i 6 N̄ są elementami wektora ε̄.
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Dowód. Wyliczając wartość oczekiwaną formy kwadratowej ε̄TATAε̄, otrzy-
mujemy

E εTATAε = E ε̄TETATAEε̄ = trETATAE = trATA = ‖A‖2F,

gdyż z założenia IV.C wynika, że ‖E‖ = 1. Aby dowieść zapowiedzianej nierów-
ności dla wariancji, oznaczmy Ω = ETATAE oraz przyjmijmy, że liczby ωij ,
1 6 i, j 6 N̄ będą elementami macierzy Ω. Wtedy uzyskujemy równość

E εTATAε = trETATAE = σ2 ·
N̄∑
i=1

ωii,

a zatem

(E εTATAε)2 = σ2 ·
N̄∑
i=1

ωii · σ2 ·
N̄∑
j=1

ωjj = σ4 ·
N̄∑

i,j=1

ωiiωjj .

Dalej wyliczamy drugi moment formy kwadratowej εTATAε = ε̄TΩε̄ w na-
stępujący sposób

E (εTATAε)2 = E (ε̄TΩε̄)2 =
N̄∑
i=1

N̄∑
j=1

N̄∑
i′=1

N̄∑
j′=1

ωijωi′j′ E ε̄iε̄j ε̄i′ ε̄j′

=

N̄∑
i=1

ωii E ε̄4i + σ4 ·
N̄∑
i=1

N̄∑
j=1
i ̸=j

(ωiiωjj + ωijωij + ωijωji).

Ostatecznie, uwzględniając fakt, że ‖Ω‖ = ‖ETATAE‖ 6 12 · ‖A‖2, mamy

Var (εTATAε) = E (εTATAε)2 − (E εTATAε)2

= 2σ4 · ‖Ω‖2F +
N̄∑
i=1

(
E ε̄4i − 3σ4

)
· ω2

ii

6 3N · ‖Ω‖2 · sup
N ′∈N

sup
i6N̄(N ′)

E ε̄4i

6 3N · ‖A‖4 · sup
N ′∈N

sup
i6N̄(N ′)

E ε̄4i .
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Lemat IV.7
Niech U ⊂ Rd będzie zbiorem otwartym i L ⊂ U jego zwartym podzbiorem.
Jeśli Q : U → Rm jest funkcją różniczkowalną oraz dla pewnej stałej M < ∞
zachodzi

sup
x∈L

‖Q(x)‖+ sup
x∈U

∥∥∥dQ
dx

∥∥∥ < M ,

wówczas Q ma własność Lipschitza na zbiorze L z pewną stałą KL = KL(M).

Dowód. Zauważmy, że istotnie, Q, jako funkcja różniczkowalna, jest ograni-
czona na zbiorze zwartym. Niech δ będzie odległością zbioru L od dopełnienia
zbioru U , czyli

δ = inf
{
‖x− ξ‖ : x ∈ L ∧ ξ ∈ Rd \ U

}
.

Ze zwartości zbioru L możemy wnioskować, że ta odległość jest różna od zera.
Istotnie, zdefiniujmy funkcję

L 3 x 7→ δx = inf
{
‖x− ξ‖ : ξ ∈ Rd \ U

}
,

która jest półciągła z góry jako infimum funkcji ciągłych (a więc też półciągłych
z góry). Zgodnie z twierdzeniem Bolzano-Weierstrassa, L 3 x 7→ δx osiąga
swoje maksimum, a więc maxx∈L δx = δ. Zatem, gdyby δ było równe zero,
mielibyśmy element x∗ w L, dla którego δx∗ = 0, i w konsekwencji istniałby
ciąg (ξn) elementów spoza U zbieżny do x∗ ∈ L ⊂ U . Ostatni wniosek jest
jednak sprzeczny z założeniem, że U jest zbiorem otwartym.

Niech x i y będą dowolnymi elementami zbioru L. Jeśli ‖x − y‖ < δ,
wówczas odcinek

x,y := {αx+ βy : α, β > 0 ∧ α+ β = 1}

zawiera się w całości w U , jak wynika z określenia liczby δ. Wtedy, przy ozna-
czeniu Q̄(t) = Q(x+ t · (y − x)), dla t ∈ [0, 1], również mamy

‖Q (y)−Q (x)‖ =
∥∥∥∫ 1

0

dQ̄

dt
(t) dt

∥∥∥
=
∥∥∥∫ 1

0
(y − x)T · dQ

dx
(x+ t · (y − x)) dt

∥∥∥ 6M · ‖y − x‖.

Jeśli przeciwnie, ‖y − x‖ > δ, wówczas

‖Q(x)−Q(y)‖ 6 ‖Q(x)‖+ ‖Q(y)‖ 6 2M

δ
· ‖x− y‖.
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Lemat IV.8
Rozważmy funkcję logLy daną wzorem (4.3), określoną na dziedzinie UP ×
Rk × (0,∞), gdzie zbiór UP ⊂ Rd dany jest w lemacie IV.4 parametryzowaną
wartością y ∈ R. Aby uprościć zapis, przyjmijmy następujące oznaczenia

W̃ρ
r = Wr ·∆(ρ)−1 = Wr ·

(
I− ρTW

)−1,

dla 1 6 r 6 d, oraz
ε(ρ,β) = y − ρTWy −Xβ.

Pierwsze pochodne cząstkowe funkcji logLy dane są wzorami

∂ logLy

∂σ2
= −n

2

1

σ2
+

1

2σ4
ε(ρ,β)Tε(ρ,β),

∂ logLy

∂β
=

1

σ2
ε(ρ,β)TX,

∂ logLy

∂ρ
=

[
− trW̃ρ

r +
1

σ2
ε(ρ,β)TWry

]
16r6d

.

Pochodne cząstkowe drugiego rzędu to

∂2 logLy

∂ρ∂ρ
=

[
− trW̃ρ

r1W̃
ρ
r2 −

1

σ2
yTWT

r1Wr2y

]
16r1,r26d

,

∂2 logLy

∂ρ∂β
=

[
− 1

σ2
yTWrX

]
16r6d

,

∂2 logLy

∂ρ∂σ2
=

[
− 1

σ4
ε(ρ,β)TWry

]
16r6d

,

∂2 logLy

∂β∂β
= − 1

σ2
XTX,

∂2 logLy

∂σ2∂β
= − 1

σ4
ε(ρ,β)TX,

∂2 logLy

∂σ2∂σ2
= −n

2

1

σ4
+

1

σ6
ε(ρ,β)Tε(ρ,β).

Z kolei pochodne cząstkowe trzeciego rzędu dane są wzorami

∂3 logLy

∂ρ
=
[
− tr

(
W̃ρ

r1W̃
ρ
r2W̃

ρ
r3 + W̃ρ

r1W̃
ρ
r3W̃

ρ
r2

)]
16r1,r2,r36d

,

∂3 logLy

∂σ2∂ρ∂ρ
=

[
1

σ4
yTWT

r1Wr2y

]
16r1,r26d

,
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∂3 logLy

∂ρ∂β∂σ2
=

[
1

σ4
yTWrX

]
16r6d

,

∂3 logLy

∂β∂σ2
=

1

σ4
XTX,

∂3 logLy

∂σ2∂σ2∂β
=

2

σ6
ε(ρ,β)TX,

∂3 logLy

∂σ2∂σ2∂σ2
= − n

σ6
+

3

σ8
ε(ρ,β)Tε(ρ,β),

∂3 logLy

∂β∂β∂ρ
= 0,

∂3 logLy

∂β∂ρ∂ρ
= 0,

∂3 logLy

∂β∂β∂β
= 0.

Formuły wymienione w powyższym lemacie uzyskuje się przez bezpośrednie
wyliczenie pochodnych zgodnie z zasadami macierzowego rachunku różniczko-
wego (por. komentarz po lemacie IV.5).

Lemat IV.9
Niech Y0 będzie zmienną losową i niech X = XN , Y = YN będą ciągami
zmiennych losowych, takimi, że Y N→∞−−−−→ Y0 według rozkładu oraz X N→∞−−−−→ 0
według prawdopodobieństwa. Wówczas ciąg zmiennych losowych o elementach
będących iloczynem X · Y dąży według prawdopodobieństwa do zera.

Dowód. Niech δ > 0 będzie dowolne. Możemy wybrać liczbę K ∈ R, dla
której P (|Y0| > K) < δ. Dodatkowo można założyć, że P (|Y0| = K) = 0, gdyż
dystrybuanta zmiennej Y0 może mieć co najwyżej przeliczalną liczbę skoków.
Dla dowolnego ϵ > 0 mamy oszacowanie

P (|X · Y | > ϵ) = P (|X| · |Y | > ϵ)

6 P (|Y | > K) + P (|X| ·K > ϵ)
N→∞−−−−→ P (|Y0| > K) < δ.

Z dowolności δ > 0 mamy żądaną zbieżność.

2.3. Twierdzenia o zgodności, dowód dla modelu SEM

Zagadnienie zgodności gaussowskich estymatorów quasi-największej wiarogod-
ności dla modeli autoregresyjnych typu SAR zostało rozstrzygnięte w pracy
Olejnik i Olejnik (2020), gdzie zaprezentowano formalny dowód poniższego
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twierdzenia IV.10. W tym podrozdziale skupiamy się jednak na sformułowa-
niu i dowodzie nowego wyniku, dotyczącego modeli autoregresyjnych typu SEM
(twierdzenie IV.11).
Twierdzenie IV.10
Przy założeniach IV.A, IV.BSAR, IV.C, IV.D i IV.ESAR estymatory ρ̂SAR_QNW,
β̂SAR_QNW oraz σ̂2SAR_QNW parametrów specyfikacji (4.1) są zgodne, tj. dla do-
wolnej liczby δ > 0 mamy

lim
N→∞

P
(
‖ρ̂SAR_QNW − ρ0‖ > δ

)
= 0,

lim
N→∞

P
(
‖β̂SAR_QNW − β0‖ > δ

)
= 0,

lim
N→∞

P
(
‖σ̂2SAR_QNW − σ20‖ > δ

)
= 0,

gdzie ρ0, β0, σ20 są prawdziwymi wartościami odpowiednich parametrów, a roz-
kład zaburzenia modelu ε jest dowolny.
Twierdzenie IV.11
Przy założeniach IV.A, IV.BSEM, IV.C, IV.D i IV.ESEM estymatory λ̂SEM_QNW,
β̂SEM_QNW oraz σ̂2SEM_QNW parametrów specyfikacji (4.2) są zgodne, tj. dla do-
wolnej liczby δ > 0 mamy

lim
N→∞

P
(
‖λ̂SEM_QNW − λ0‖ > δ

)
= 0,

lim
N→∞

P
(
‖β̂SEM_QNW − β0‖ > δ

)
= 0,

lim
N→∞

P
(
‖σ̂2SEM_QNW − σ20‖ > δ

)
= 0,

gdzie λ0, β0, σ20 są prawdziwymi wartościami odpowiednich parametrów, a roz-
kład zaburzenia modelu ε jest dowolny.
Dowód. Dla uproszczenia zapisu, pominiemy indeks dolny w nazwach esty-
matorów, ustalając λ̂ := λ̂SEM_QNW, β̂ := β̂SEM_QNW oraz σ̂2 := σ̂2SEM_QNW.
Przypomnijmy również popularne oznaczenie PA dla operatora projekcji na
podprzestrzeń rozpiętą przez kolumny dowolnie wybranej macierzy A, tj. PA =
A · (ATA)−1AT. Dla dopełnienia przyjmujemy również MA = I−PA.

Korzystając bezpośrednio z określenia estymatora λ̂ wnioskujemy, że jego
wartość maksymalizuje na zbiorze L funkcję skoncentrowanej wiarogodności
L 3 λ 7→ lnLy(β̂(λ),λ, σ̂

2(λ)) daną w równaniu (4.8). Zatem, maksymalizuje
ona również funkcję losową λ 7→ R(λ), określoną wzorem

R(λ) =
1

N
lnLy

(
β̂(λ),λ, σ̂2(λ)

)
+

1

2
ln (2π) +

1

2

= −1

2
ln σ̂2(λ) +

1

N
ln |detΓ(λ)|,

(4.16)
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przy czym σ̂2(λ) zdefiniowane jest w równaniu (4.7). Niech UL będzie otwartym
nadzbiorem przestrzeni L danym w lemacie IV.3. Łatwo zauważyć, że funkcja R
jest poprawnie określona na również na zbiorze UL.

Zdefiniujmy funkcję deterministyczną

UL 3 λ 7→ R̄(λ) =
1

N
ln |detΓ(λ)| − 1

2
ln
(σ20
N

‖Γ(λ)Γ(λ0)
−1‖F

)
.

Stosując standardowe zasady różniczkowania funkcji macierzowych można po-
kazać, że pochodne cząstkowe funkcji R̄ są określone w całym zbiorze UL na-
stępującym wzorem

∂R̄(λ)

∂λr
= −trWrΓ(λ)

−1

N
+

tr
(
Γ(λ0)

−T(WrΓ(λ) + Γ(λ)Wr)Γ(λ0)
−1
)

2 · ‖Γ(λ)Γ(λ0)−1‖2F
,

dla λ ∈ UL oraz 1 6 r 6 d. Z kolei, na podstawie lematu IV.3 stwierdzamy, że
następujące wartości są skończone:

BW := sup
N∈N

max
r′6d

‖Wr′‖,

BL := sup
λ′∈L

‖λ′‖,

Binv := sup
λ′∈L

sup
N∈N

‖(I− λ′TW)−1‖.

(4.17)

Można zatem wnioskować, że pochodna funkcji R̄(λ) jest ograniczona na zbiorze
UL. Istotnie, dla pierwszego składnika mamy nierówność∣∣∣ 1

N
trWrΓ(λ)

−1
∣∣∣ 6 1

N

∑{
e ∈ R : det (WrΓ(λ)

−1 − e · I) = 0
}

6 ‖WrΓ(λ)
−1‖ 6 BW ·Binv <∞.

Podobnie możemy otrzymać ograniczenie wyrażenia w liczniku drugiego skład-
nika:∣∣∣ 1

N
tr
(
Γ(λ0)

−T(WrΓ(λ) + Γ(λ)Wr)Γ(λ0)
−1
)∣∣∣

6
∥∥Γ(λ0)

−T(WrΓ(λ) + Γ(λ)Wr)Γ(λ0)
−1
∥∥

6 2BW · (1 + d · BL ·BW) ·B2
inv.

Z kolei ograniczenie (z dołu) wyrażenia w mianowniku wynika z nierówności

N = ‖I‖2F = ‖Γ(λ)Γ(λ0)
−1 · Γ(λ0)Γ(λ)

−1‖2F
6 ‖Γ(λ)Γ(λ0)

−1‖2F · ‖Γ(λ0)Γ(λ)
−1‖2F,
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która prowadzi do oszacowania
1

N
‖Γ(λ)Γ(λ0)

−1‖2F > 1

‖Γ(λ0)Γ(λ)−1‖2
> (1 + dBLBW)−2B−2

inv . (4.18)

Aby wykazać zgodność estymatora λ̂, wykorzystamy udowodniony wcześniej
lemat IV.1. Pokażemy, że różnica między wartościami funkcji R i R̄, tj.∣∣R̄(λ)−R(λ)

∣∣ = ∣∣∣∣ln σ̂2(λ)
σ2
0

N ‖Γ(λ)Γ(λ0)−1‖2F

∣∣∣∣,
maleje do zera według prawdopodobieństwa wraz ze wzrostem rozmiaru próby,
jednostajnie względem λ ∈ L. Uwzględniając równość

y = Xβ + Γ(λ0)
−1ε

oraz wykorzystując równości (4.7), dla dowolnego λ ∈ L, uzyskujemy

σ̂2(λ) =
1

N

(
y −Xβ̂(λ)

)T
Γ(λ)TΓ(λ)

(
y −Xβ̂(λ)

)
=

1

N

∥∥MΓ(λ)XΓ(λ)y
∥∥2

=
1

N

∥∥MΓ(λ)XΓ(λ)Xβ0 +MΓ(λ)XΓ(λ)Γ(λ0)
−1ε
∥∥

=
1

N

∥∥MΓ(λ)XΓ(λ)Γ(λ0)
−1ε
∥∥

=
σ20
N

∥∥Γ(λ)Γ(λ0)
−1
∥∥2
F
− ξ1(λ) + ξ2(λ),

(4.19)

gdzie wyrazy resztowe ξ1(λ) oraz ξ2(λ) określone są wzorami

ξ1(λ) =
1

N

∥∥PΓ(λ)XΓ(λ)Γ(λ0)
−1ε
∥∥

ξ2(λ) =
1

N

∥∥Γ(λ)Γ(λ0)
−1ε
∥∥2 − σ20

N

∥∥Γ(λ)Γ(λ0)
−1
∥∥2
F
.

(4.20)

Istotnie, ostatnią równość w (4.19) uzyskujemy z twierdzenia Pitagorasa, przez
wzajemną ortogonalność operatorów MA i PA, dla A = Γ(λ)X, gdyż∥∥Γ(λ)Γ(λ0)

−1ε
∥∥2 = ∥∥MΓ(λ)XΓ(λ)Γ(λ0)

−1ε
∥∥2+∥∥PΓ(λ)XΓ(λ)Γ(λ0)

−1ε
∥∥2.

Zauważmy teraz, że reszta ξ1(λ) dąży według prawdopodobieństwa do zera,
jednostajnie względem λ, z uwagi na oszacowania, wynikające z lematu IV.6
i z własności ‖PΓ(λ)X‖ 6 1 oraz

‖PΓ(λ)X‖F = rankΓ(λ)X = rankX = k.
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Po pierwsze, dla dowolnego λ ∈ L mamy

|E ξ1(λ)| =
1

N
E
∥∥PΓ(λ)XΓ(λ)Γ(λ0)

−1ε
∥∥2

=
1

N

∥∥PΓ(λ)XΓ(λ)Γ(λ0)
−1
∥∥2
F

6 ‖Γ(λ0)
−1‖2 · ‖Γ(λ)‖2 · 1

N
‖PΓ(λ)X‖2F

6 B2
inv (1 + d · BL ·BW)2

k2

N
,

zgodnie z lematem IV.6, patrz również (4.17). Co za tym idzie, zachodzi zbieżność
limN→∞ E ξ1(λ) = 0, jednostajnie względem λ ∈ L. Po drugie,

Var ξ1(λ) =
1

N2
Var

(∥∥PΓ(λ)XΓ(λ)Γ(λ0)
−1ε
∥∥2)

6 3

N

∥∥PΓ(λ)XΓ(λ)Γ(λ0)
−1
∥∥4 sup

N ′∈N
sup

i6N̄(N ′)

E ε̄4i 6 C

N
,

dla pewnej stałej 0 < C <∞, a to z kolei, z uwagi na założenie IV.C, implikuje
zbieżność limN→∞Var ξ1(λ) = 0, jednostajnie względem λ ∈ L.

Wykażemy też, że reszta ξ2(λ) dąży według prawdopodobieństwa do zera,
jednostajnie względem λ ∈ L. Zgodnie z lematem IV.6 mamy

E
( 1

N
‖Γ(λ)Γ(λ0)

−1ε‖2
)
=
σ20
N

∥∥Γ(λ)Γ(λ0)
−1
∥∥2
F
,

a więc E ξ2(λ) = 0. Wariancję ξ2 szacujemy podobnie jak w przypadku składnika
ξ1, mianowicie

Var ξ2(λ) =
1

N2
Var

∥∥Γ(λ)Γ(λ0)
−1ε
∥∥2

6 3

N
‖Γ(λ)Γ(λ0)

−1‖4 · sup
N ′∈N

sup
i6N̄(N ′)

E ε̄4i

6 3B4
inv (1 + d · BL ·BW)4

N
sup
N ′∈N

sup
i6N̄(N ′)

E ε̄4i ,

a w konsekwencji Var ξ2(λ) zbiega jednostajnie do zera na zbiorze UL.
Z powyższych obserwacji oraz z faktu, że wartości σ2

0
N ‖Γ(λ)Γ(λ0)

−1‖2F są
jednostajnie odsunięte od zera, patrz (4.18), możemy wywnioskować jednostajną
zbieżność według prawdopodobieństwa

ξ1(λ) + ξ2(λ)
σ2
0

N ‖Γ(λ)Γ(λ0)
−1‖2F

N→∞−−−−→ 0,
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a w konsekwencji również stwierdzić, że wyrażenie

2
(
R̄(λ)−R(λ)

)
= ln

σ̂2(λ)
σ2
0

N ‖Γ(λ)Γ(λ0)
−1‖2F

= ln

(
1 +

ξ1(λ) + ξ2(λ)
σ2
0

N ‖Γ(λ)Γ(λ0)
−1‖2F

)
dąży do zera według prawdopodobieństwa, jednostajnie względem λ ∈ L. Za-
tem pokazaliśmy zbieżność supλ∈L |R(λ)− R̄(λ)| → 0 i aby skorzystać z le-
matu IV.1 wykażemy, że λ0 jest identyfikowalnie jedynym argumentem maksy-
malizującym funkcję R̄. Rozumowanie przeprowadzimy nie wprost.

Zauważmy najpierw, że R̄(λ0) > R̄(λ) dla każdego λ ∈ L. Istotnie, ponie-
waż zachodzi równość

R̄(λ0) =
1

N
ln detΓ(λ0)−

1

2
ln (σ20),

z elementarnej nierówności pomiędzy średnią arytmetyczną a średnią geome-
tryczną mamy

2
(
R̄(λ0)− R̄(λ)

)
=

2

N
ln |detΓ(λ0)| − ln (σ20)−

2

N
ln |detΓ(λ)|

+ ln

(
σ20
N

‖Γ(λ)Γ(λ0)
−1‖2F

)
= ln

1
N ‖Γ(λ)Γ(λ0)

−1‖2F
|detΓ(λ)Γ(λ0)

−1|2/N
> 0,

gdzie licznik ułamka pod logarytmem można interpretować jako średnią arytme-
tyczną kwadratów wartości własnych macierzy Γ(λ)Γ(λ0)

−1, a mianownik—
jako średnią geometryczną kwadratów tych wartości. Co więcej, na podstawie
założenia IV.ESEM możemy stwierdzić, że

lim inf
N→∞

(
R̄(λ0)− R̄(λ)

)
> 0, λ ∈ L. (4.21)

Załóżmy, że λ0 nie jest identyfikowalnie jedynym argumentem maksymali-
zującym funkcję R̄, jak określono w nierówności (4.13), czyli

0 6 lim inf
N→∞

(
inf

λ∈L : ∥λ−λ0∥>δ

(
R̄(λ0)− R̄(λ)

))
6 0.

Istnieje więc liczba δ > 0 oraz ściśle rosnący ciąg liczb naturalnych (Nn)n∈N,
dla których wskazać można ciąg (λ̃n)n∈N elementów przestrzeni L spełniający{

λ̃n

}
n∈N

⊂ E(δ) := {λ ∈ L : ‖λ− λ0‖ > δ}
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oraz
0 6 lim

Nn→∞

(
R̄(λ0)− R̄(λ̃n)

)
6 0.

Zbiór E(δ) jest zwarty, jako domknięty podzbiór zwartej przestrzeni L. Możemy
więc wybrać dalszy podciąg (λ̃mn)n∈N ciągu (λ̃n)n∈N, zbieżny w L. Oznaczając
λ̃ = limn→∞ λ̃mn , na podstawie własności (4.21) wnioskujemy, że

ϵ := lim inf
N→∞

(
R̄(λ0)− R̄(λ̃)

)
> 0.

Z zaobserwowanej wcześniej ograniczoności pochodnej funkcji R̄ oraz le-
matu IV.7 wynika, że R̄ ma własność Lipschitza na przestrzeni L z pewną
stałą KL, niezależną od rozmiaru próby. Dla dostatecznie dużych wartości in-
deksu n, tzn. dla wartości n przekraczających pewien poziom n0 ∈ N, mamy
‖λ̃mn − λ̃‖ 6 ϵ

3KL
. Ostatecznie, pożądana sprzeczność wynika z nierówności

trójkąta poprzez następujące oszacowanie

ϵ = lim inf
N→∞

(
R̄(λ0)− R̄(λ̃)

)
6 lim inf

Nmn→∞

(
R̄(λ0)− R̄(λ̃)

)
6 lim inf

Nmn→∞

(
|R̄(λ0)− R̄(λ̃mn)|+ |R̄(λ̃mn)− R̄(λ̃)|

)
6 lim inf

Nmn→∞
|R̄(λ0)− R̄(λ̃mn)|+ lim inf

Nmn→∞
|R̄(λ̃mn)− R̄(λ̃)|

6 lim inf
Nmn→∞

|R̄(λ0)− R̄(λ̃mn)|+KL · ϵ

3KL
=
ϵ

3
.

Wynika stąd, iż λ0 jest identyfikowalnie jedynym argumentem maksymalizują-
cym funkcję R̄. Ponieważ estymator λ̂ jest — wprost ze swojej definicji — argu-
mentem maksymalizującym funkcję R, określoną formułą (4.16), udowodniony
fakt zbieżności jednostajnej według prawdopodobieństwa

sup
λ∈L

|R(λ)− R̄(λ)| N→∞−−−−→ 0

pozwala użyć lematu IV.1 do ustalenia zgodności estymatora λ̂.
Pozostało nam zatem uzasadnić zgodność estymatorów λ̂ oraz σ̂2. Uwzględ-

niając równania (4.7) oraz pamiętając o zależności β̂ = β̂(λ̂), otrzymujemy

β̂ = PΓ(λ̂)XΓ(λ̂)y = PΓ(λ̂)XΓ(λ̂)(Xβ0 + Γ(λ0)
−1ε) = I · β0 + ζN ,

gdzie ζN = PΓ(λ̂)XΓ(λ̂)Γ(λ0)
−1ε. Pokażemy teraz, że zaburzenie ζN zbiega

do zera według prawdopodobieństwa. Najpierw zauważmy, iż na mocy założe-
nia IV.D mamy

1√
N

‖XT‖ 6 1√
N

‖XT‖F 6 1√
N

√
k · ‖XTX‖ 6 C

√
k, (4.22)
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dla pewnej stałej 0 < C < ∞. Ponadto, dla dowolnego λ ∈ L, prawdziwa jest
nierówność

1∥∥(XTΓ(λ)TΓ(λ)X
)−1∥∥ = emin

(
XTΓ(λ)TΓ(λ)X

)
6 emin(X

TX) · emin
(
Γ(λ)TΓ(λ)

)
6 1∥∥(XTX

)−1∥∥ · 1∥∥(Γ(λ)TΓ(λ))−1∥∥ ,
więc w konsekwencji otrzymujemy∥∥(XTΓ(λ)TΓ(λ)X)−1

∥∥ 6
∥∥(XTX)−1

∥∥ · ‖(Γ(λ)TΓ(λ))−1‖.

Z powyższych obserwacji wynikają oszacowania spełnione prawie pewnie:

∥∥(XTΓ(λ̂)TΓ(λ̂)X)−1
∥∥ 6 1

n
·
∥∥Γ(λ̂)−1

∥∥2 · ∥∥∥( 1

N
XTX

)−1∥∥∥
6 B2

inv
N

sup
N ′∈N

∥∥∥( 1

N ′X
TX
)−1∥∥∥ 6 C ′

N

oraz∥∥XTΓ(λ̂)TΓ(λ̂)Γ(λ0)
−1
∥∥ 6 ‖XT‖ · ‖Γ(λ̂)‖2 · ‖Γ(λ0)

−1‖

6 C ·
√
kN · (1 + dBLBW)2Binv 6 C ′√kN ,

dla pewnej stałej C ′ <∞.
Z uwagi na zależność

Γ(λ̂) = Γ(λ0) + (λ0 − λ̂)TW

mamy

Γ(λ̂)TΓ(λ̂) = G(λ0)
TΓ(λ0) +G(λ0)

T(λ0 − λ̂)TW

+ Γ(λ0)(λ0 − λ̂)TWT + (λ0 − λ̂)TWT(λ0 − λ̂)TW.

Zatem zaburzenie ζN możemy dalej rozłożyć na sumę zaburzeń składowych
ζN = χN + ζ ′N + ζ ′′N + ζ ′′′N , gdzie

χN =
(
XTΓ(λ̂)TΓ(λ̂)X

)−1
XTΓ(λ̂)Tε,

ζ ′N =
(
XTΓ(λ̂)TΓ(λ̂)X

)−1
XTΓ(λ̂)T(λ0 − λ̂)TWΓ(λ0)

−1ε,
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ζ ′′N =
(
XTΓ(λ̂)TΓ(λ̂)X

)−1
XTΓ(λ̂)(λ0 − λ̂)TWTΓ(λ0)

−1ε,

ζ ′′′N =
(
XTΓ(λ̂)TΓ(λ̂)X

)−1
XT(λ0 − λ̂)TWT(λ0 − λ̂)TWΓ(λ0)

−1ε.

Teraz wykażemy zbieżność ζN do zera według prawdopodobieństwa, wska-
zując ograniczenia i zbieżności kolejnych składników. Mamy, patrz (4.22),

E‖χN‖2 = E
(∥∥(XTΓ(λ̂)TΓ(λ̂)X)−1

∥∥2 · ‖XTΓ(λ̂)Tε‖2
)

6
(
C ′

N

)2

· σ20 · ‖Γ(λ0)X‖2F 6
(
C ′

N

)2

· k · ‖Γ(λ0)X‖2

6 (C ′ · Ck)2

N
(1 + dBLBW)2 ,

czyli χN zbiega do zera w Rk, a z uwagi na nierówność Czebyszewa zbiega
również według prawdopodobieństwa. Kolejny składnik rozważymy, ograniczając
jego pierwszy moment. Mianowicie, oznaczając U = XTΓ(λ̂)TΓ(λ̂)X, mamy

E‖ξ′N‖ 6 E
∥∥∥∥( 1

N
U

)−1 ∥∥∥∥∥∥∥ 1√
N

XT
∥∥∥‖Γ(λ0)‖‖λ0 − λ̂‖

∥∥WΓ(λ0)
−1
∥∥‖ε‖

6 C ′′ · 1√
N

E
(
‖λ0 − λ̂‖ · ‖ε‖

)
,

dla odpowiednio dobranej stałej C ′′ <∞. Z nierówności Schwarza wnioskujemy,
że

1√
N

E
(
‖λ0 − λ̂‖ · ‖ε‖

)
6
√
σ20 · E ‖λ0 − λ̂‖2.

Dla dowolnej liczby δ > 0 zachodzi

E
(
‖λ0 − λ̂‖2

)
6 δ + sup

λ,λ′∈L
‖λ− λ′‖ · P

(
‖λ0 − λ̂‖ > δ

) N→∞−−−−→ δ,

zatem λ̂ zbiega do λ0 również w L2, co daje zbieżność E‖ζ ′N‖ do zera we-
dług prawdopodobieństwa. Dla składników ζ ′′N oraz ζ ′′′N można przeprowadzić
analogiczne rozważania.

Aby wykazać zgodność estymatora σ̂2, przypomnijmy, że σ̂2 = σ̂2(λ̂). Zgod-
nie z reprezentacją opisaną przez równości (4.19) i (4.20) mamy

σ̂2(λ̂) =
σ20
N

‖Γ(λ̂)Γ(λ0)
−1‖2F − ξ1(λ̂) + ξ2(λ̂).

Ponadto, ze względu na wykazaną, jednostajną względem λ zbieżność elementów
ξ1(λ) i ξ2(λ) do zera, możemy wywnioskować, że

0 6
∣∣− ξ1(λ̂) + ξ2(λ̂)

∣∣ 6 sup
λ∈L

|ξ1(λ̂)|+ sup
λ∈L

|ξ2(λ̂)|
N→∞−−−−→ 0
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według prawdopodobieństwa. Pozostaje zatem wykazać, iż

lim
N→∞

σ20
N

∥∥Γ(λ̂)Γ(λ0)
−1
∥∥2
F
= σ20

według prawdopodobieństwa. Zauważmy, że funkcja

UL 3 λ 7→ θ(λ) :=
∥∥Γ(λ)Γ(λ0)

−1
∥∥2
F

jest różniczkowalna, a jej pochodne cząstkowe, dla 1 6 r 6 d,

UL 3 λ 7→ ∂θ

∂λr
(λ) =

σ20
N

tr
(
Γ(λ0)

−T(WT
r +Wr)Γ(λ0)

−1
)

+
σ20
N

d∑
r′=1

λr′
∥∥Wr′Γ(λ0)

−1
∥∥2
F

są — ze względu na argument λ i rozmiar próby N — jednostajnie ograniczone
przez pewną wartość, wynikającą z założeń IV.A i IV.BSEM. Istotnie, mamy∣∣∣σ20

N
tr
(
Γ(λ0)

−T(WT
r +Wr)Γ(λ0)

−1
)∣∣∣ 6 2σ20BWB2

inv

oraz ∣∣∣∣σ20N
d∑

r′=1

λr′‖Wr′Γ(λ0)
−1‖2F

∣∣∣∣ 6 dσ20BLB
2
WB2

inv.

Na mocy lematu IV.7 wnioskujemy zatem, że na przestrzeni L funkcja θ spełnia
warunek Lipschitza, z pewną stałą Kθ

L. Otrzymujemy ostatecznie∣∣∣‖Γ(λ̂)Γ(λ0)
−1‖2F − σ20

∣∣∣ = |θ(λ̂)− θ(λ0)| 6 Kθ
L · ‖λ̂− λ0‖

N→∞−−−−→ 0

według prawdopodobieństwa.

2.4. Dowód twierdzenia o zgodności dla modelu SAR

W tym podrozdziale przedstawiamy dowód twierdzenia IV.10 o zgodności es-
tymatora QNW dla dla modelu, którego specyfikacja (patrz równanie (4.1))
uwzględnia przestrzenną autokorelację zmiennej zależnej. Schemat rozumowa-
nia argumentującego tezę twierdzenia prowadzona jest w sposób analogiczny
do dowodu twierdzenia IV.11. Mianowicie wykorzystywane jest pojęcie identy-
fikowalnie jedynego argumentu maksymalizującego, zbieżność jednostajna ciągu
funkcji wiarogodności oraz, prowadzący do zgodności, lemat IV.2. Niemniej
jednak, różne specyfikacje modelu procesu generującego obserwacje wymagają
szczególnego w obu przypadkach szacowania elementów resztowych i zaburzeń
losowych estymatorów.
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Dowód. Ponownie, dla uproszczenia zapisu w nazwach estymatorów pomi-
niemy indeks dolny ustalając: ρ̂ := ρ̂SAR_QNW, β̂ := β̂SAR_QNW oraz σ̂2 :=
σ̂2SAR_QNW. Przyjmujemy też popularne oznaczenie macierzy rzutowych PX =

X(XTX)−1XT oraz MX = I−PX.
Przypomnijmy, że wartość estymatora ρ̂ została określona jako ta maksy-

malizująca z prawdopodobieństwem 1 funkcję skoncentrowanej wiarogodności
P 3 ρ 7→ lnLy

(
ρ, β̂(ρ), σ̂2(ρ)

)
daną w równaniu (4.5). Co za tym idzie,

maksymalizuje ona również na zbiorze P funkcję losową

UP 3 ρ 7→ R(ρ) =
1

N
lnLy

(
ρ, β̂(ρ), σ̂2(ρ)

)
+

1

2
ln (2π) +

1

2

= −1

2
ln (σ̂2(ρ)) +

1

N
ln |det∆(ρ)|,

(4.23)

gdzie zbiór UP jest otwartym nadzbiorem przestrzeni P danym w lemacie IV.4,
natomiast σ̂2(ρ), dla ρ ∈ UP , dane jest w równaniu (4.4). Dodatkowo zdefiniuj-
my funkcję deterministyczną UP 3 ρ 7→ R̄(ρ) określoną formułą

R̄(ρ) = −1

2
ln
(σ20
N

‖∆(ρ)∆(ρ0)
−1‖F + ‖MX∆(ρ)∆(ρ0)

−1Xβ0‖2
)

+
1

N
ln |det∆(ρ)|.

(4.24)

Jak można wyliczyć, stosując standardowe zasady różniczkowania funkcji
macierzowych, pochodne cząstkowe funkcji R̄ określone są w całym zbiorze UP
i są równe

∂R̄(ρ)

∂ρr
=

σ2
0

2N χ1(ρ) +
1
2N χ2(ρ)

σ2
0

N ‖∆(ρ)∆(ρ0)−1‖2F +
1
N ‖MX∆(ρ)∆(ρ0)−1Xβ0‖2

− 1

N
tr
(
Wr∆(ρ)−1

)
,

dla ρ ∈ UP , 1 6 r 6 d, gdzie

χ1(ρ) =
∂‖∆(ρ)∆(ρ0)

−1‖2F
∂ρr

= tr
(
∆(ρ0)

−T
(
Wr∆(ρ) +∆(ρ)Wr

)
∆(ρ0)

−1
)
,

oraz

χ2(ρ) =
∂‖MX∆(ρ)∆(ρ0)

−1Xβ0‖2

∂ρr
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= − 1

N
βT
0X

T∆(ρ)T∆(ρ0)
−TMXWr∆(ρ0)

−1Xβ0

+ β0X
T∆(ρ0)

−TWT
r MX∆(ρ)∆(ρ0)

−1Xβ0.

Na podstawie lematu IV.4 można wnioskować, że pochodne te są ograniczone
na całym zbiorze UP . Istotnie, przy oznaczeniach

BW = sup
N∈N

max
r6d

‖Wr‖ <∞,

BP = sup
ρ∈P

‖ρ‖ <∞,

B∆ = sup
ρ∈P

sup
N∈N

‖I− ρTW‖ <∞,

Binv = sup
ρ∈P

sup
N∈N

‖(I− ρTW)−1‖ <∞,

(4.25)

ostatni składnik wzoru opisującego pochodne cząstkowe R̄ spełnia nierówność∣∣∣ 1
N

trWr∆(ρ)−1
∣∣∣ 6 1

N

∑{
e ∈ R : det (Wr∆(ρ)−1 − e · I) = 0

}
6 ‖Wr∆(ρ)−1‖ 6 BW ·Binv <∞,

dla ρ ∈ UP . Podobnie szacujemy wartość elementu 1
N χ1:∣∣∣ 1

N
χ1(ρ)

∣∣∣ 6 ∥∥∆(ρ0)
−T(Wr∆(ρ) +∆(ρ)Wr)∆(ρ0)

−1
∥∥

6 2BW ·B∆ ·B2
inv <∞.

Ograniczenie wartości elementu 1
N χ2 możemy z kolei skonstruować odwołując

się do submultiplikatywności normy i tożsamości ‖X‖2 = ‖XTX‖, przez co
otrzymujemy∣∣∣ 1

N
χ2(ρ)

∣∣∣ 6 2‖β0‖2 sup
N ′∈N

∥∥∥ 1

N ′X
TX
∥∥∥ ·BWB∆B2

inv <∞.

Zauważmy też, że wartości wyrażenia σ2
0

N ‖∆(ρ)∆(ρ0)
−1‖2F są odcięte od zera

jednostajnie względem ρ ∈ UP (wartość ρ0 traktujemy jako ustaloną). Wniosek
ten wypływa z następującego oszacowania

N = ‖I‖2F =
∥∥∆(ρ)∆(ρ0)

−1 ·∆(ρ0)∆(ρ)−1
∥∥2
F

6
∥∥∆(ρ)∆(ρ0)

−1
∥∥2
F
·
∥∥∆(ρ0)∆(ρ)−1

∥∥2
F
,
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które prowadzi do

σ20
N

∥∥∆(ρ)∆(ρ0)
−1
∥∥2
F
> 1

‖∆(ρ0)∆(ρ)−1‖2
> (B∆ ·Binv)

−2 > 0.

Aby wykazać zgodność estymatora ρ̂, wykorzystamy lemat IV.2. Pokażemy,
że bezwzględna różnica między wartościami powyższych dwóch funkcji, a więc
|R(ρ) − R̄(ρ)| maleje do zera według prawdopodobieństwa wraz ze wzrostem
wielkości próby, jednostajnie względem ρ ∈ P . Biorąc pod uwagę równość

y = ∆(ρ0)
−1Xβ0 +∆(ρ0)

−1ε

oraz (4.4), dla dowolnego ρ ∈ R, uzyskujemy

σ̂2(ρ) =
1

N
‖MX∆(ρ)y‖2

=
1

N

∥∥MX∆(ρ)∆(ρ0)
−1Xβ0 +MX∆(ρ)∆(ρ0)

−1ε
∥∥

=
1

N

∥∥MX∆(ρ)∆(ρ0)
−1Xβ0

∥∥2 + σ20
N

‖∆(ρ)∆(ρ0)
−1‖2F

+ χ(ρ)− ξ1(ρ) + ξ2(ρ),

(4.26)

gdzie wyrazy resztowe ξ1(ρ), ξ2(ρ) oraz χ(ρ) są określone wzorami

χ(ρ) =
2

N
βT
0X

T∆(ρ)T∆(ρ0)
−TMX∆(ρ)∆(ρ0)

−1ε,

ξ1(ρ) =
1

N

∥∥PX∆(ρ)∆(ρ0)
−1ε
∥∥2,

ξ2(ρ) =
1

N

∥∥∆(ρ)∆(ρ0)
−1ε
∥∥2 − σ20

N
‖∆(ρ)∆(ρ0)

−1‖2F.

(4.27)

Istotnie, powyższe równości wynikają ze wzoru skróconego mnożenia dla kwa-
dratu sumy oraz z twierdzenia Pitagorasa mamy poprzez wzajemną ortogonal-
ność operatorów MX i PX.

Zauważmy teraz, że wartość oczekiwana składnika χ(ρ) wynosi zero, dla
wszystkich ρ ∈ UP oraz jego wariancja jest jednostajnie ograniczona, tj.

E (χ(ρ))2 =
4

N2

∥∥βT
0X

T∆(ρ)T∆(ρ0)
−TMX∆(ρ)∆(ρ0)

−1
∥∥2

6 4

N
‖β0‖2 sup

N ′∈N

∥∥∥ 1

N ′X
TX
∥∥∥B4

∆B4
inv <∞.

Wykażemy też, że reszta ξ1(ρ) dąży według prawdopodobieństwa do 0, jednostaj-
nie względem ρ, z uwagi na następujące oszacowania, wynikające z lematu IV.6
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oraz z własności: ‖PX‖ i ‖PX‖F = rank(X) = k. Po pierwsze, dla dowolnego
ρ ∈ P mamy

E ξ1(ρ) =
1

N
E
∥∥PX∆(ρ)∆(ρ0)

−1ε
∥∥2 = 1

N

∥∥PX∆(ρ)∆(ρ0)
−1
∥∥2
F

6 ‖∆(ρ0)
−1‖2 · ‖∆(ρ)‖2 · 1

N
‖PX‖2F 6 k2

N
B2

∆B2
inv,

czyli limN→∞ E ξ1(ρ) = 0, jednostajnie względem ρ ∈ L. Po drugie,

Var ξ1(ρ) =
1

N2
Var

∥∥PX∆(ρ)∆(ρ0)
−1ε
∥∥2

=
3

N

∥∥PX∆(ρ)∆(ρ0)
−1
∥∥4 sup

N ′∈N
sup

i6N̄(N ′)

E ε̄4i

6 3

N
B4

∆B4
inv 6

C

N
,

dla pewnej stałej C <∞, co implikuje zbieżność Var ξ1(ρ) do zera, jednostajnie
względem ρ ∈ L, z uwagi na założenia IV.A, IV.BSAR i IV.C, patrz (4.25).

Podobnie, reszta ξ2(ρ) dąży według prawdopodobieństwa do zera, jednostaj-
nie względem ρ ∈ P . Istotnie, zgodnie z lematem IV.6 otrzymujemy

E
( 1

N

∥∥∆(ρ)∆(ρ0)
−1ε
∥∥2) =

σ20
N

∥∥∆(ρ)∆(ρ0)
−1
∥∥2
F
,

a więc E ξ2(ρ) = 0. Następnie uzyskujemy oszacowanie

Var ξ2(ρ) =
1

N2
Var

∥∥∆(ρ)∆(ρ0)
−1ε
∥∥2

=
3

N

∥∥∆(ρ)∆(ρ0)
−1
∥∥4 sup

N ′∈N
sup

i6N̄(N ′)

E ε̄4i 6 3

N
B4

∆B4
inv 6

C

N
,

dla pewnej stałej C <∞, co implikuje zbieżność limN→∞Var ξ2(ρ) = 0.
Z przedstawionych obserwacji oraz z faktu, że wartości σ2

0
N ‖∆(ρ)∆(ρ0)

−1‖2F
są jednostajnie odsunięte od zera, możemy wywnioskować jednostajną zbieżność
według prawdopodobieństwa

χ(ρ)− ξ1(ρ) + ξ2(ρ)
σ2
0

N ‖∆(ρ)∆(ρ0)−1‖2F +
1
N ‖MX∆(ρ)∆(ρ0)−1Xβ0‖2

N→∞−−−−→ 0,

a w konsekwencji również zbieżność różnicy R(ρ)− R̄(ρ) do zera jednostajnie
względem ρ ∈ P , z uwagi na oszacowanie

(
R(ρ)− R̄(ρ)

)2 6 1

4
ln2

(
1 +

χ(ρ)− ξ1(ρ) + ξ2(ρ)
σ2
0

N ‖∆(ρ)∆(ρ0)−1‖2F

)
.
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Zatem, aby skorzystać z lematu IV.2 pozostaje wykazać, że ρ0 jest identyfi-
kowalnie jedynym argumentem maksymalizującym funkcję R̄. Rozumowanie
przeprowadzimy nie wprost.

Zauważmy najpierw, że R̄(ρ0) > R̄(ρ) dla każdego ρ ∈ P . Istotnie, przy-
pominając (4.24) możemy wyliczyć, że

R̄(ρ0) =
1

N
ln |det∆(ρ0)| −

1

2
ln(σ20).

Zatem, na podstawie elementarnej nierówności między średnią arytmetyczną
a średnią geometryczną mamy

R̄(ρ0)− R̄(ρ) =
1

2
ln

1
N ‖∆(ρ)∆(ρ0)

−1‖2F
|det∆(ρ)∆(ρ0)−1|

2
N

> 0,

gdzie licznik ułamka pod logarytmem można interpretować jako średnią arytme-
tyczną kwadratów wartości własnych macierzy∆(ρ)∆(ρ0)

−1, a mianownik jako
ich średnią geometryczną. Co więcej, na podstawie założenia IV.ESAR możemy
stwierdzić, że

lim inf
N→∞

(
R̄(ρ0)− R̄(ρ)

)
> 0, ρ ∈ P . (4.28)

Załóżmy teraz przeciwnie, że ρ0 nie jest identyfikowalnie jedynym argumen-
tem maksymalizującym funkcję R̄, jak określono w nierówności (4.13), czyli

0 6 lim inf
N→∞

(
inf

ρ∈P : ∥ρ−ρ0∥>δ
R̄(ρ0)− R̄(ρ)

)
6 0.

Istnieje więc liczba δ > 0 oraz ściśle rosnący ciąg liczb naturalnych (Nn)n∈N,
tj. podciąg ciągu rozmiarów prób (N)N∈N, dla których można wskazać ciąg
(ρ̃n)n∈N elementów przestrzeni P spełniający

{ρ̃n}n∈N ⊂ E(δ) := {ρ ∈ P : ‖ρ− ρ0‖ > δ}

oraz
0 6 lim inf

Nn→∞

(
R̄(ρ0)− R̄(ρ)

)
6 0.

Zbiór E(δ) jest domknięty w zwartej przestrzeni P , a zatem jest sam zwarty. Mo-
żemy więc wybrać podciąg (ρ̃mn)n∈N ciągu (ρ̃n)n∈N, zbieżny w P . Oznaczając
ρ̃ = limn→∞ ρ̃mn , na podstawie własności (4.28), wnioskujemy, że liczba

ϵ := lim inf
N→∞

(
R̄(ρ0)− R̄(ρ)

)
jest dodatnia.
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Z zaobserwowanej wcześniej ograniczoności pochodnej funkcji R̄ oraz le-
matu IV.7 wynika, że R̄ ma własność Lipschitza na przestrzeni L z pewną
stałą KP , niezależną od wielkości próby. Dla dostatecznie dużych wartości in-
deksu n, tzn. dla wartości n przekraczających pewien poziom n0 ∈ N, mamy
‖ρ̃mn − ρ̃‖ < ε

3KP
. Ostatecznie, oczekiwana sprzeczność wynika z nierówności

trójkąta poprzez następujące oszacowanie

ϵ = lim inf
N→∞

(
R̄(ρ0)− R̄(ρ̃)

)
6 lim inf

Nmn→∞

(
R̄(ρ0)− R̄(ρ̃)

)
6 lim inf

Nmn→∞

(
|R̄(ρ0)− R̄(ρ̃mn)|+ |R̄(ρ̃mn)− R̄(ρ̃)|

)
6 lim inf

Nmn→∞
|R̄(ρ0)− R̄(ρ̃mn)|+ lim inf

Nmn→∞
|R̄(ρ̃mn)− R̄(ρ̃)|

6 lim inf
Nmn→∞

|R̄(ρ0)− R̄(ρ̃mn)|+KP · ϵ

3KP
=
ϵ

3
.

Zatem, ρ0 jest identyfikowalnie jedynym argumentem maksymalizującym funk-
cję R̄. Ponieważ estymator ρ̂ jest — wprost ze swojej definicji — argumentem
maksymalizującym funkcję R, określoną formułą (4.23), udowodniony fakt zbież-
ności jednostajnej według prawdopodobieństwa

sup
ρ∈P

∣∣R(ρ)− R̄(ρ)
∣∣ N→∞−−−−→ 0

pozwala użyć lematu IV.1 do ustalenia zgodności estymatora ρ̂.
Pozostało zatem uzasadnić zgodność estymatorów β̂ oraz σ̂2. Uwzględniając

(4.4) oraz pamiętając, że β̂ = β̂(ρ̂), możemy uzyskać

β̂ = (XTX)−1XT∆(ρ̂)y = (XTX)−1XT∆(ρ̂)∆(ρ0)
−1(Xβ0 + ε)

= (XTX)−1XT
(
(I− ρT0W) + (ρ̂− ρ0)

TW
)
∆(ρ0)

−1(Xβ0 + ε)

= I · β0 + ζN + ζ′N ,

gdzie

ζN = (XTX)−1XT(ρ̂− ρ0)
TW∆(ρ0)

−1Xβ0,
ζ′N = (XTX)−1XT∆(ρ̂)W∆(ρ0)

−1ε.

Pokażemy, że oba te składniki zaburzenia losowego estymatora β̂ zbiegają do zera
według prawdopodobieństwa. Najpierw zauważmy, iż na mocy założenia IV.D
mamy

1√
N

‖XT‖ 6 1√
N

‖XT‖F 6 1√
N

√
k · ‖XTX‖ 6 C

√
k, (4.29)
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dla pewnej stałej C <∞. Otrzymujemy zatem nierówność

E ‖ζN‖ = E
∥∥∥( 1

N
XTX

)−1 1√
N

XT(ρ̂− ρ0)
TW∆(ρ0)

−1 1√
N

Xβ0

∥∥∥
6 Cζ · kd · ‖β0‖E‖ρ̂− ρ0‖,

gdzie
∞ > Cζ > C2 sup

N ′∈N

∥∥∥ 1

N ′X
TX
∥∥∥BWBinv.

Korzystając z nierówności Czebyszewa, dla dowolnej liczby ϵ > 0 i n ∈ N
otrzymujemy nierówność

P (‖ζN‖ > ϵ) 6 1

ϵ
E
(
‖ζN‖I∥ζN∥>ϵ

)
6 Cζkd‖β0‖

ϵ
E‖ρ̂− ρ0‖

6 Cζkd‖β0‖
ϵ

E
(
‖ρ̂− ρ0‖I∥ρ̂−ρ0∥> 1

n
+ ‖ρ̂− ρ0‖I∥ρ̂−ρ0∥6 1

n

)
6 Cζkd‖β0‖

ϵ
BP P

(
‖ρ̂− ρ0‖ >

1

n

)
+
Cζkd‖β0‖

nϵ
.

Wyliczając odpowiednie granice otrzymujemy zatem

0 6 lim
n→∞

[
lim

N→∞
P (‖ζN‖ > ϵ)

]
6 lim

n→∞

Cζkd‖β0‖
nϵ

= 0,

a ponieważ wartość w nawiasie kwadratowym nie zależy od n, mamy zbieżność
limN→∞ P (‖ζN‖ > ϵ) = 0. Podobnie, używając submultiplikatywności normy
macierzowej, wnioskujemy o zbieżności∥∥Var ζ′N∥∥ 6 Cζ′ · k · ‖Var εε

T‖
N

=
Cζ′ · kσ20

N

N→∞−−−−→ 0,

gdzie stała Cζ′ spełnia

∞ > Cζ′ > C2 sup
N ′∈N

∥∥∥ 1

N ′X
TX
∥∥∥2B2

invB
2
∆.

Oznacza to, że również każda z wariancji k współrzędnych ζ ′N,m, 1 6 m 6 k

wektora ζ′N zbiega wraz ze wzrostem rozmiaru próby do zera, a co za tym idzie,
dla każdego m 6 k oraz ϵ > 0, mamy

P (‖ζN‖ > ϵ) 6
k∑

m=1

P (|ζN,m| > ϵ) 6
k∑

m=1

Var ζ ′N,m

ϵ

6 k

ϵ
‖Var ζ ′N,m‖ N→∞−−−−→ 0.
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Aby wykazać zgodność estymatora σ̂2 = σ̂2(ρ̂), rozwijamy równanie (4.4)
otrzymując

σ̂2(ρ̂) =
1

N

∥∥y − ρ̂TWy −Xβ̂(ρ̂)
∥∥2

=
1

N
(ε− ϑN −φN )T(ε− ϑN −φN )

=
εTε

N
+

ϑT
NϑN

N
+

φT
NφN

N
+

2εTϑN

N
+

2εTφN

N
+

2ϑT
NφN

N
,

(4.30)

gdzie

ϑN = (ρ̂− ρ0)
TWy,

φN = X · (β̂ − β0).
(4.31)

Zauważmy, że w konsekwencji słabego prawa wielkich liczb mamy zbieżność
1
N εTε do σ20 według prawdopodobieństwa. Istotnie, na mocy założenia IV.C
zachodzi

1

N
εTε =

1

N
(Eε̂)TEε̂ =

1

N
ε̄Tε̄

N→∞−−−−→ σ20 ,

gdyż dla dowolnego ϵ > 0, uwzględniając lemat IV.6 mamy

P
(∣∣∣ 1
N

ε̄Tε̄− σ20

∣∣∣ > ϵ

)
6 Var(ε̄Tε̄)

N2ϵ
=

3 supN ′∈N supi6N̄(N ′) E ε̄4i
Nϵ

N→∞−−−−→ 0.

Wskażemy teraz ograniczenie dla pozostałych składników w równaniu (4.30).
Łatwo też zauważyć, że

∥∥ 1√
N
φN

∥∥ dąży według prawdopodobieństwa do zera.
Wynika to z obserwacji, iż przy dowolnym ϵ > 0 zgodność estymatora β̂ impli-
kuje ograniczenie

P
(∥∥∥ 1√

N
φN

∥∥∥ > ϵ

)
6 P

(∥∥∥ 1√
N

X
∥∥∥ · ‖β̂ − β0‖ > ϵ

)
N→∞−−−−→ 0.

Element ϑN spełnia z kolei nierówność∥∥∥ 1√
N

ϑN

∥∥∥ 6
∥∥∥ 1√

N
(ρ̂− ρ0)

TW∆(ρ0)
−1Xβ0

∥∥∥
+
∥∥∥ 1√

N
(ρ̂− ρ0)

TW∆(ρ0)
−1ε
∥∥∥.

Z faktu zgodności estymatora ρ̂ wynika zbieżność
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P
(∥∥∥ 1√

N
(ρ̂− ρ0)

TW∆(ρ0)
−1Xβ0

∥∥∥ > ϵ

)
6 P

(
d ·BW sup

N ′∈N

∥∥∥ 1√
N ′

X
∥∥∥ · ‖β0‖ ·Binv · ‖ρ̂− ρ0‖ > ϵ

)
N→∞−−−−→ 0

i podobnie

P
(∥∥∥(ρ̂− ρ0)

TW∆(ρ0)
−1
∥∥∥ > ϵ

)
6 P (d ·BW‖β0‖Binv · ‖ρ̂− ρ0‖ > ϵ)

N→∞−−−−→ 0.

Ta druga pozwala, poprzez lemat IV.9, wnioskować o zbieżności normy∥∥∥ 1√
N

(ρ̂− ρ0)
TW∆(ρ0)

−1ε
∥∥∥ 6

∥∥(ρ̂− ρ0)
TW∆(ρ0)

−1
∥∥ · ∥∥∥ 1√

N
ε
∥∥∥

do zera według prawdopodobieństwa, gdyż
∥∥ 1√

N
ε
∥∥ zbiega do wartości

√
σ20 , na

mocy prawa wielkich liczb.
Ostatecznie, zgodność estymatora σ̂2 otrzymujemy, używając lematu IV.9 do

oszacowania normy kolejnych składników w równości (4.30). Mianowicie mamy
nierówność∣∣∣ϑT

NϑN

N
+

φT
NφN

N
+

2εTϑN

N
+

2εTφN

N
+

2ϑT
NφN

N

∣∣∣
6
∥∥∥ ϑN√

N

∥∥∥2+∥∥∥ φN√
N

∥∥∥2+2
∥∥∥ ε√

N

∥∥∥∥∥∥ ϑN√
N

∥∥∥+2
∥∥∥ ε√

N

∥∥∥∥∥∥ φN√
N

∥∥∥+2
∥∥∥ ϑN√

N

∥∥∥∥∥∥ φN√
N

∥∥∥,
a więc różnica∣∣∣σ̂2 − 1

N
εTε

∣∣∣ = ∣∣∣ϑT
NϑN

N
+

φT
NφN

N
+

2εTϑN

N
+

2εTφN

N
+

2ϑT
NφN

N

∣∣∣
dąży do zera według prawdopodobieństwa.
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Wstęp

Istotnym elementem każdej procedury estymacyjnej jest identyfikacja wyniko-
wego rozkładu prawdopodobieństwa oszacowań. Taka wiedza pozwala na kon-
strukcję przedziałów ufności dla parametrów oraz testów statystycznych dla hi-
potez ich dotyczących. Cechą charakterystyczną metod estymacji opartych na
zasadzie największej wiarogodności jest — poza pewnymi trywialnymi przypad-
kami— duża trudność, bądź wręcz niemożliwość, wyprowadzenia dokładnego
rozkładu tychże oszacowań. W efekcie, wnioskowanie statystyczne musi być opar-
te na asymptotycznym zachowaniu estymatorów. Okazuje się, że pod pewnymi
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warunkami odpowiedni rozkład graniczny istnieje i jest nim rozkład normal-
ny. Odpowiednie twierdzenia o zbieżności rozkładów, choć nie dla procesów
przestrzennych, są znane od dekad (por. Lehmann, Casella, 1998).

W tym rozdziale przedstawimy formalną teorię asymptotycznego rozkładu
prawdopodobieństwa oszacowań, uzyskiwanych metodą quasi-największej wiaro-
godności. Wprawdzie zgodność tych estymatorów została wykazana w poprzed-
nim podrozdziale, jednak jakiekolwiek wnioskowanie statystyczne na podstawie
szacowanego modelu, w tym określenie istotności statystycznej jego składni-
ków, wymaga identyfikacji rozkładu użytych estymatorów. Podobnie wyznacze-
nie przedziałów ufności dla estymowanych parametrów jest możliwe tylko wtedy,
gdy znamy co najmniej przybliżone wartości dystrybuanty, właściwej dla uzyski-
wanych oszacowań.

Poniżej prezentujemy i formalnie udowadniamy autorskie centralne twierdze-
nie graniczne dla form liniowo-kwadratowych. Na tym wyniku opiera się argu-
mentacja omawianych dalej w rozdziale własności estymatorów QNW. Twierdze-
nie to wykorzystaliśmy również w rozdziale III do uzyskania rozkładów asymp-
totycznych statystyk testowych autokorelacji przestrzennej. Podrozdział drugi za-
wiera serię lematów i stwierdzeń pomocniczych, które okażą się przydatne w ko-
lejnych rozumowaniach. W podrozdziale trzecim przedstawiamy i udowadniamy
autorskie, nigdy wcześniej niepublikowane twierdzenie o rozkładzie asymptotycz-
nym estymatora quasi-największej wiarogodności dla modeli wyższych rzędów
z autoskorelowanym składnikiem losowym. Ostatni podrozdział jest poświęcony
autorskiemu opracowaniu analogicznego twierdzenia dla modeli z autoregresją
zmiennej objaśnianej, które zostało pierwotnie opublikowane w pracy Olejnik
i Olejnik (2020).

1. Nowe centralne twierdzenie graniczne dla form
liniowo-kwadratowych

Narzędziem matematycznym używanym w teorii asymptotycznej estymacji para-
metrów modeli ekonometrycznych jest pojęcie zbieżności ciągu zmiennych loso-
wych. Gdy mówimy o zgodności estymatora, rozważamy jego zbieżność według
prawdopodobieństwa do wartości prawdziwej. W przypadku asymptotycznego
rozkładu oszacowań właściwym pojęciem jest zbieżność ciągu zmiennych loso-
wych według dystrybuanty. Intuicyjnie, pojęcie takiej zbieżności można rozumieć
jako właściwość upodabniania się dystrybuanty zmiennej losowej do dystrybu-
anty rozkładu granicznego, wraz ze wzrostem rozmiaru próby. W praktyce ozna-
cza to, że jesteśmy w stanie uniknąć konieczności wyprowadzania dokładnego
rozkładu rozważanych statystyk. Zamiast tego możemy (przy pewnej ostrożno-
ści w przypadku rozkładów nieciągłych) przybliżać wartości prawdopodobieństw



Nowe centralne twierdzenie graniczne dla form liniowo-kwadratowych 131

zdarzeń związanych z elementami ciągu wartościami wyliczonymi z użyciem
dystrybuanty granicznej. Jest to o tyle istotne, że wyprowadzenie rozkładu do-
kładnego może być trudne lub wręcz niemożliwe. W szczególności tak jest wła-
śnie w przypadku estymacji metodą największej wiarogodności, gdy prawdziwy
rozkład prawdopodobieństwa, z którego pochodzą dane nie jest znany (por. Za-
łożenia IV.ESAR i IV.ESEM).

W teorii estymacji parametrów modeli ekonometrycznych najczęściej poja-
wiającym się rozkładem granicznym jest rozkład normalny, a twierdzenia o zbież-
ności według dystrybuanty o gaussowskiej granicy nazywa się zwyczajowo cen-
tralnymi twierdzeniami granicznymi. Do rozwoju teorii ekonometrii nie wystar-
czają jednak standardowe, kursowe twierdzenia. Poza prostymi przypadkami, ta-
kimi jak wyliczanie średniej arytmetycznej z próby o niezależnych obserwacjach,
jest wręcz przeciwnie. Zależności między obserwacjami w próbie wymagają uży-
cia specjalistycznego twierdzenia granicznego, uwzględniającego specyficzną ich
naturę. W szczególności, takiego, które pozwoli uwzględnić reprezentację za-
leżności w formie macierzy wag, użytej w specyfikacji autoregresyjnej procesu
generującego obserwacje.

W przypadku rozważ�ań dotyczących ekonometrii przestrzennej, szczegól-
ną postacią wyrażenia, które decyduje o rozkładzie badanego estymatora (patrz
dowody twierdzeń V.8 oraz V.9) jest forma kwadratowo-liniowa zaburzenia lo-
sowego modelu. Podobnie jest w przypadku statystyk przestrzennych typu I Mo-
rana (patrz rozdział III), których postać jest explicite ilorazem form kwadrato-
wych bądź liniowo-kwadratowych pewnej zmiennej losowej, związanej z obser-
wowanym zjawiskiem. Przyjmijmy, że mamy do czynienia z funkcjami postaci
RN 3 ξ 7→ ξTAξ o niediagonalnej macierzy A = [aij ]16i,j6N , której wartość
obliczono dla wektorowej zmiennej losowej ξ = (ξi)

N
i=1, o elementach niezależ-

nych według prawdopodobieństwa. Wówczas, w sumie
∑N

i=1

∑N
j=1 aijξiξj , poza

wciąż niezależnymi składnikami kwadratowymi ξ2i , gdzie 1 6 i 6 N , pojawiają
się składniki iloczynów krzyżowych ξiξj , dla i 6= j. W sposób oczywisty nie są
one już niezależne, gdyż, dla każdego 1 6 i 6 N , wartość zmiennej losowej ξiξj
będzie związana (poza przypadkami trywialnymi) z wartościami zmiennej ξiξk,
dla 1 6 j, k 6 N .

Warto tu wyjaśnić, że pojawienie się form liniowo-kwadratowych jest natu-
ralnie związane z zastosowaniem metody największej wiarogodności. Wynika to
z zastosowania rozwinięcia w szereg Taylora pochodnej funkcji wiarogodności
do składnika rzędu drugiego, tak jak ma to miejsce w prezentowanych dowodach
twierdzeń V.8 i V.9, patrz również praca Feng i inni (2014).

Literatura przedmiotu oferuje cały wachlarz twierdzeń granicznych dla roz-
kładów form kwadratowych przy różnych założeniach. Temat ten był podejmo-
wany między innymi w pracach Whittle (1964), Beran (1972), Sen (1976), de Jong
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(1987), Giraitis i Taqqu (1998). W kontekście teorii ekonometrii przestrzennej
najczęściej wykorzystuje się twierdzenie z pracy Kelejiana i Pruchy (2001) dla
form liniowo-kwadratowych o macierzach jednostajnie sumowalnych w sensie
modułów wierszy i kolumn. Na szczególną uwagę zasługuje opracowanie Bhan-
sali i inni (2007), w którym sformułowano centralne twierdzenie graniczne dla
form czysto kwadratowych o macierzy z dowolną przekątną, oraz z warunkami
wyrażonymi w języku norm spektralnych. Bazując na rozumowaniu zaczerpnię-
tym z tej pracy, prezentujemy jednak wynik rozszerzony na użytek naszej teo-
rii — twierdzenie centralne o zbieżności rozkładów form liniowo-kwadratowych.
Wynik ten pierwotni został przedstawiony w materiałach dodatkowych do pracy
Olejnik i Olejnik (2020).

Twierdzenie V.1
Niech εN = (εi)

N
i=1 będzie wektorem niezależnych zmiennych losowych (por. za-

łożenie V.C’ na s. 143) o zerowej wartości oczekiwanej i stałej wariancji σ20 > 0.
Ponadto załóżmy, że rodzina ich czwartych potęg, tj. ε4i , dla 1 6 i 6 N , jest
jednostajnie całkowalna ze względu na indeks i oraz rozmiar próby N (patrz de-
finicja na s. 143). Dla dowolnej liczby naturalnej N niech xN = (xi)

N
i=1 ∈ RN .

Dodatkowo, niech AN = (aij)16i,j6N będą macierzami o wymiarach N × N .
Oznaczmy QN := εTNANεN + εTxN oraz załóżmy, że VarQN > 0, dla dosta-
tecznie dużych N . Jeśli spełnione są warunki

lim sup
N→∞

‖xN‖2

VarQN
<∞, (5.1)

lim sup
N→∞

‖xN‖2∞
VarQN

= 0, (5.2)

lim sup
N→∞

‖AN‖2

VarQN
= 0, (5.3)

lim sup
N→∞

‖AN‖2F
VarQN

<∞, (5.4)

gdzie ‖xN‖2∞ = max16i6N |xi|, wówczas forma standaryzowana QN−EQN√
VarQN

zbie-
ga według dystrybuanty do zmiennej o rozkładzie N (0, 1).

Dowód. Bez straty ogólności możemy założyć, że σ20 = 1. Zauważmy, że macierz
A′

N = 1
2AN

+1
2A

T
N jest symetryczna i, użyta w miejscu An, wyznacza identyczną

część kwadratową formy QN . Ze względu na nierówności ‖A′
N‖2 6 ‖AN‖2

oraz ‖A′
N‖2F 6 ‖AN‖2F, warunki (5.3) i (5.4) są spełnione dla macierzy A′

N
(w miejscu AN ) wtedy, gdy są one spełnione dla AN . Zatem, na użytek dowodu
możemy założyć, że rozważana macierz AN jest symetryczna.
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Mając na uwadze zwartość zapisu, wprowadzimy następujące oznaczenia. Dla
dowolnego N ∈ N oraz 1 6 i 6 N przyjmujemy

VN := VarQN ,
ς2i = ς2i (N) := Var ε2i ,
η2i = η2i (N) := E ε3i ,

a następnie

Ui = Ui(N) := aii · (ε2i − 1) + xiεi + 2εi

i−1∑
j=1

aijεj .

Jak łatwo sprawdzić, dla każdego ustalonego N = 1, 2, . . . zachodzi równość
N∑
i=1

Ui = QN − EQN .

Co więcej, można zaobserwować, że każdy skończony ciąg (Ui)
N
i=1 jest martyn-

gałem (patrz Jakubowski, Sztencel, 2001). Istotnie, niech (Ω,F ,P) będzie odpo-
wiednią przestrzenią probabilistyczną oraz niech Fi = Fi(N), dla 1 6 i 6 N ,
będą σ-ciałami generowanymi przez zmienne poprzedzające Ui z Ui włącznie,
tj. Fi := σ(U1, . . . , Ui). Załóżmy też, że σ-ciało F0 = F0(N) ⊂ F jest nieza-
leżne (według prawdopodobieństwa) od wszystkich zmiennych εi, 1 6 i 6 N ,
np. F0 = {∅,Ω}. Wtedy, używając założenia o łącznej niezależności zmiennych
(εi)

N
i=1 mamy

E [Ui | Fi−1] = E
(
aii(ε

2
i − 1) | Fi−1

)
+ E (xiεi | Fi−1)

+ 2E
(
εi

i−1∑
j=1

aijεj | Fi−1

)

= aii E
(
ε2i − 1

)
+ xi E (εi) + 2E (εi)

i−1∑
j=1

aijεj = 0.

Dla dowolnej wartości N = 1, 2, . . . oraz dowolnej liczby δ > 0 dodatkowo
oznaczmy

SN =
1

VN

N∑
i=1

E
[
U2
i | Fi−1

]
,

qN (δ) =
1

VN

N∑
i=1

E
[
U2
i I{U2

i >δ2·VN} | Fi−1

]
.
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Przedstawiane poniżej rozumowanie opiera się na centralnym twierdzeniu
granicznym dla trójkątnej tablicy różnic martyngałowych, które można znaleźć
we wniosku 3.1 w monografii Hall i Hyde (1980). Zgodnie z tym twierdzeniem,
zbieżność według prawdopodobieństwa

lim
N→∞

SN = 1 (5.5)

oraz zbieżność według prawdopodobieństwa dla dowolnego δ > 0

lim
N→∞

qN (δ) = 1 (5.6)

implikują asymptotyczną normalność sumy 1
VN

∑N
i=1 Ui. Ta z kolei sprowadza

się do tezy dowodzonego twierdzenia.
Przy oznaczeniu Ti = 2

∑i−1
j=1 aijεj możemy zapisać

U2
i =

(
aii(ε

2
i − 1) + xiεi + εiTi

)2
= 2aiixiεi(ε

2
i − 1) + 2aiiεi(ε

2
i − 1)Ti + 2xiε

2
iTi

+ ε2iT
2
i + a2ii(ε

2
i − 1)2 + x2i ε

2
i ,

(5.7)

a następnie

SN =
1

VN

N∑
i=1

E
[
U2
i | Fi−1

]
= 2η3i aiixi + 2η3i aiiTi + 2xiTi + T 2

i + ς2i a
2
ii + x2i .

Z własności martyngału dla ciągu zmiennych losowych Ui, 1 6 i 6 N , mamy

VN = E (QN − EQN )2 = E
( N∑

i=1

Ui

)2

=
N∑
i=1

E
(
U2
i + 2

i−1∑
j=1

UiUj

)

=

N∑
i=1

EU2
i + 2

N∑
i=1

E
( i−1∑

j=1

E (UiUj | Fj)

)

=
N∑
i=1

EU2
i + 2

N∑
i=1

E
( i−1∑

j=1

Uj · E (Ui | Fj)

)
=

N∑
i=1

EU2
i + 0.

Zatem, podstawiając tożsamość (5.7) oraz uwzględniając niezależność zmiennych
εi i Ti (gdzie T1 := 0) według prawdopodobieństwa oraz fakt zerowania się
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wartości oczekiwanej ETi, dla każdego 1 6 i 6 N , uzyskujemy równość

VN = 2

N∑
i=1

aiixi E εi
(
ε2i − 1

)
+ 2

N∑
i=1

aii E εi
(
ε2i − 1

)
Ti + 2

N∑
i=1

xi E ε2iTi

+
N∑
i=1

E ε2iT 2
i +

N∑
i=1

a2ii E (ε2i − 1)2 +

N∑
i=1

x2i E ε2i

= 2
N∑
i=1

η3n,ixn,ian,ii +
N∑
i=1

ET 2
i +

N∑
i=1

ς2i a
2
ii +

N∑
i=1

x2i .

Poniżej wykażemy, że zbieżność wyrażona w równaniu (5.6) zachodzi śred-
niokwadratowo w przestrzeni L2(Ω,F ,P), co implikuje żądaną zbieżność według
prawdopodobieństwa. Dla dowolnego N = 1, 2, . . . mamy

(SN − 1)2 =
1

V2
N

(VNSN − VN )2 .

Uwzględniając wyliczone wcześniej formuły na SN i VN otrzymujemy

(SN − 1)2 = V−2
N ·

( N∑
i=1

(
2η3i aiiTi + 2xiTi + (T 2

i − ET 2
i )
))2

6 6

V2
N

( N∑
i=1

η3i aiiTi

)2

+
6

V2
N

( N∑
i=1

xiTi

)2

+
3

V2
N

( N∑
i=1

(
T 2
i − ET 2

i

))2

.

Zatem, przykładając operator wartości oczekiwanej uzyskujemy oszacowanie

‖SN − 1‖L2 = E (SN − 1)2 6 6

V2
N

ξ
(1)
N +

6

V2
N

ξ2N +
3

V2
N

ξ
(3)
N , (5.8)

gdzie

ξ
(1)
N = E

( N∑
i=1

aiiTi

)2

,

ξ
(2)
N = E

( N∑
i=1

xiTi

)2

,

ξ
(3)
N = E

( N∑
i=1

(
T 2
i − ET 2

i

))2

.
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Dalej wskażemy ograniczenie każdego z powyższych elementów oddzielnie,
zaczynając od wartości ξ(3)N . Uwzględniając tożsamości

T 2
i = 4

i−1∑
k=1

i−1∑
l=1

aikailεjεk,

ET 2
i = 4

i−1∑
k=1

a2ik,

dla 1 6 i 6 N , otrzymujemy oszacowanie

ξ
(3)
N = 16 · E

( N∑
i=1

i−1∑
l=1

i−1∑
k=1

ailaikεlεk −
N∑
i=1

i−1∑
l=1

a2il

)2

= 16 · E

(
N∑
i=1

i−1∑
l=1

i−1∑
k=1
k ̸=l

ailaikεlεk +
N∑
i=1

i−1∑
l=1

a2ilε
2
l −

N∑
i=1

i−1∑
l=1

a2il

)2

6 32 · E

(
N∑
i=1

i−1∑
l=1

i−1∑
k=1
k ̸=l

ailaikεlεk

)2

+ 32 · E
( N∑

i=1

i−1∑
k=1

a2ik(ε
2
k − 1)

)2

.

Rozwijając kwadrat wyrażenia w nawiasie możemy zauważyć, że pierwszy skład-
nik po lewej stronie powyższej nierówności można zapisać jako

E

(
N∑
i=1

i−1∑
l=1

i−1∑
k=1
k ̸=l

ailaikεlεk

)2

=

N∑
i=1

N∑
j=1

i−1∑
l=1

j−1∑
l′=1

i−1∑
k=1
k ̸=l

j−1∑
k′=1
k′ ̸=l′

ailaikai′l′ai′k′ E εlεkεl′εk′ .

Zauważmy, że czynnik E εjεkεj′εk′ jest różny od zera tylko wtedy, gdy l = l′

i k = k′, lub gdy j = k′ i k = j′. Oba te przypadki, uwzględnione w odpowied-
nich sumach, prowadzą do takiego samego wyrażenia. Zatem, badany składnik
jest dalej ograniczony przez

2
N∑
i=1

N∑
j=1

min{i,j}−1∑
l=1

min{i,j}−1∑
k=1
k ̸=l

ailaikajlajk E ε2l ε2k
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6 2

(
sup
i6N

E ε4i
)
·

N∑
i=1

N∑
j=1

min{i,j}−1∑
l=1

min{i,j}−1∑
k=1
k ̸=l

ailaikajlajk.

Drugi składnik sumy szacującej element ξ(3)N spełnia nierówność

E
( N∑

i=1

i−1∑
k=1

a2ik(ε
2
k − 1)

)2

= E
N∑
i=1

N∑
j=1

i−1∑
k=1

j−1∑
l=1

a2ika
2
jl

(
ε2k − 1

)(
ε2l − 1

)
6
(
sup
i6N

ς2i

)
· E

N∑
i=1

N∑
j=1

min {i,j}−1∑
k=1

a2ika
2
jk

=

(
sup
i6N

ς2i

)
· E

N∑
i=1

N∑
j=1

min{i,j}−1∑
k=1

min{i,j}−1∑
l=1
l=k

aikailajkajl.

Łącząc powyższe oszacowania wnioskujemy, że dla pewnej stałej

∞ > C > 32 · sup
i6N

(ς2i + 2E ε4i )

mamy

ξ
(3)
N 6 C ·

N∑
i=1

N∑
j=1

min{i,j}−1∑
l=1

min{i,j}−1∑
k=1

aikailajkajl = C ·BN ,

przy czym BN zdefiniowane jest jako

BN =
N∑
i=1

N∑
j=1

(min {i,j}−1∑
k=1

aikajk

)2

=

N∑
i=1

N∑
j=1

min{i,j}−1∑
l=1

min{i,j}−1∑
k=1

aikailajkajl.

(5.9)

Wartość BN jest z kolei ograniczona przez 2‖AN‖2 · ‖AN‖2F, co wykazujemy
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w następujący sposób:

BN =

N∑
i=1

i−1∑
j=1

(min {i,j}−1∑
k=1

aikajk

)2

+

N∑
i=1

N∑
j=i

(min {i,j}−1∑
k=1

aikajk

)2

=

N∑
i=1

i−1∑
j=1

( j−1∑
k=1

aikajk

)2

+

N∑
i=1

N∑
j=i

( i−1∑
k=1

aikajk

)2

=

N∑
i=1

i−1∑
j=1

( j−1∑
k=1

aikajk

)2

+

N∑
j=1

N∑
i=j

( j−1∑
k=1

aikajk

)2

6 2
N∑
i=1

N∑
j=1

( j−1∑
k=1

aikajk

)2

= 2
∥∥∥AN ·

[
aijI{i<j}

]N
i,j=1

∥∥∥2
F

6 2‖AN‖2 · ‖AN‖2F,

(5.10)

gdzie przechodząc pomiędzy drugą a trzecią linijką zamieniamy rolami symbole i
i j w drugim składniku sumy. Użyty powyżej symbol I{i<j} = I{i<j}(i, j), dla
1 6 i, j 6 N , jest indykatorem relacji w indeksie dolnym— przyjmujemy, że
jest równy jeden, gdy i < j, a zero, gdy i > j.

Aby wskazać ograniczenie dla elementu ξ(2)N , zaobserwujmy równość

ξ
(2)
N = E

( N∑
i=1

xiTi

)2

= 4E
( N∑

i=1

xi

i−1∑
k=1

aikεk

)2

= 4
N∑
i=1

N∑
j=1

xixj

i−1∑
k=1

j−1∑
l=1

aikajk E εkεl = 4
N∑
i=1

N∑
j=1

xixj

min {i,j}−1∑
k=1

aikajk.

Następnie, stosując nierówność Schwartza uzyskujemy

ξ
(2)
N 6 4

√√√√ N∑
i=1

N∑
j=1

xixj

√√√√√ N∑
i=1

N∑
j=1

(min {i,j}−1∑
k=1

aikajk

)2

6 4
N∑
j=1

x2i ·
√
BN 6 4

√
2 · ‖xN‖2 · ‖AN‖ · ‖AN‖F.

(5.11)
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Składnik ξ(1)N = E (
∑N

i=1 aiiTi)
2 szacujemy podobnie. Najpierw zauważamy, że

ξ
(1)
N = E

( N∑
i=1

aiiTi

)2

= 4E
( N∑

i=1

aii

i−1∑
k=1

aikεk

)2

= 4

N∑
i=1

N∑
j=1

aiiajj

i−1∑
k=1

j−1∑
l=1

aikajk E εkεl

= 4
N∑
i=1

N∑
j=1

aiiajj

min {i,j}−1∑
k=1

aikajk,

a następnie nierówność Schwartza implikuje

ξ
(1)
N 6 4

√√√√ N∑
i=1

N∑
j=1

xixj

√√√√√ N∑
i=1

N∑
j=1

(min {i,j}−1∑
k=1

aikajk

)2

6 4
N∑
j=1

x2i ·
√
BN

6 4
√
2 · ‖AN‖ · ‖AN‖3F.

Ostatecznie, sięgając do nierówności (5.8), wnioskujemy, że

‖SN − 1‖L2 6 6

V2
N

ξ
(1)
N +

6

V2
N

ξ
(2)
N +

3

V2
N

ξ
(3)
N

6 C ′

V2
N

(
‖xN‖2‖AN‖‖AN‖F + ‖AN‖‖AN‖3F + ‖AN‖2‖AN‖2F

)
.

Uwzględniając założenia (5.1), (5.3) i (5.4), uzyskujemy zatem zbieżność (5.5).
Aby zakończyć dowód, musimy jeszcze wykazać zależność (5.6). Na mocy

nierówności Czebyszewa, dla dowolnych δ, τ > 0 mamy

P (|qN (δ)− 0| > τ) 6 E |qN (δ)|
τ

.

Ponieważ z definicji qN (δ) > 0, wystarczy wykazać, że E qN (δ) zbiega do zera,
dla każdej wartości δ > 0.

Niech K > 1 będzie dowolnie ustaloną liczbą. Dla N ∈ N oraz 1 6 i 6 N ,
zdefiniujmy

Zi = Zi(N) := εiI{εi<K} − E εiI{εi<K},
Hi = Hi(N) := εi − Zi,

ui = ui(N) := 2Zi

i−1∑
j=1

aijZj + aii(Z
2
i − EZ2

i ) + xiZi,

hi = hi(N) := Ui − ui.

(5.12)
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Zauważmy, że EZi = EHi = 0, dla wszystkich 1 6 i 6 N . Ponadto, elemen-
ty zarówno ciągu Z1, . . . , ZN , jak i ciągu H1, . . . , HN są niezależne, gdyż są
funkcjami zmiennych losowych εi, o odpowiadających indeksach 1 6 i 6 N .

Z definicji wynika, że dla dowolnego 1 6 i 6 N mamy U2
i 6 2u2i + 2h2i

prawie pewnie. Otrzymujemy więc oszacowanie

qn(δ) =
1

VN

N∑
i=1

EU2
i I{U2

i >δ2·VN}

6 2

VN

N∑
i=1

EU2
i I{U2

i >δ2·VN} +
2

VN

N∑
i=1

Eh2i .

Dla dowolnego zdarzenia elementarnego w przestrzeni Ω oraz 1 6 i 6 N
spełniony jest jeden z dwóch warunków: albo |ui| > 1

2 |Ui|, albo |ui| < 1
2 |Ui| <

|hi|. Istotnie, w przypadku, gdy |ui| < 1
2 |Ui| mamy

|Ui| = |ui + hi| 6 |ui|+ |hi| <
1

2
|Ui|+ |hi|,

a więc 1
2 |Ui| < |hi|. Możemy zatem wnioskować, że

I{U2
i >δ2·VN} 6 I{(2ui)2>δ2·VN} + I{hi>ui},

dla dowolnego 1 6 i 6 N , czyli w konsekwencji

2

VN

N∑
i=1

EU2
i I{U2

i >δ2·VN} 6
2

VN

N∑
i=1

Eu2i I{(2ui)2>δ2·VN} +
2

VN

N∑
i=1

Eh2i

6 2

V2
N · δ

N∑
i=1

Eu4i +
2

VN

N∑
i=1

Eh2i .

(5.13)

Jako pierwszą rozważymy sumę czwartych momentów zmiennych ui, 1 6
i 6 N . Ponieważ zachodzi nierówność

1

27
u4i 6 24Z4

i

( i−1∑
j=1

aijZj

)4

+ a4ii
(
Z2
i − EZ2

i

)4
+ x4iZ

4
i ,

element
∑N

i=1 Eu4i , występujący w (5.13), możemy ograniczyć za pomocą sumy

432

(
sup
i6N

EZ4
i

)
κ
(1)
N + 27K8κ

(2)
N + 27

(
sup
i6N

EZ4
i

)
κ
(3)
N ,
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gdzie

κ
(1)
N = E

N∑
i=1

( i−1∑
j=1

aijZj

)4

,

κ
(2)
N =

N∑
i=1

a4ii,

κ
(3)
N =

N∑
i=1

x4i .

Rozwijając potęgę w wyrażeniu κ(1)N , przy użyciu zaobserwowanej wcześniej nie-
zależności zmiennych Zi, przy 1 6 i 6 N otrzymujemy

κ
(1)
N = E

N∑
i=1

( i−1∑
j=1

aijZj

)4

=

N∑
i=1

E
( i−1∑

j=1

i−1∑
k=1

aijaikZjZk

)2

=

N∑
i=1

i−1∑
j=1

i−1∑
k=1

i−1∑
j′=1

i−1∑
k′=1

aijaikaij′aik′ EZjZkZj′Zk′

=

N∑
i=1

i−1∑
j=1

i−1∑
k=1

i−1∑
j′=1

i−1∑
k′=1

aijaikaij′aik′ EZjZkZj′Zk′

6 C ·
N∑
i=1

i−1∑
j=1

i−1∑
k=1

a2ija
2
ik,

dla pewnej stałej C > 0. To z kolei implikuje

κ
(1)
N

C
+κ

(2)
N 6 2

N∑
i=1

( i−1∑
j=1

a2ij

)2
6 2
∥∥∥AN ·

[
aijI{i6j}

]
ij6N

∥∥∥2
F
6 ‖AN‖2‖AN‖2F.

Ponieważ κ(1)N , κ
(2)
N > 0, na postawie założeń (5.3) i (5.4) otrzymujemy

lim
N→∞

1

V2
N

κ
(1)
N = lim

N→∞

1

V2
N

κ
(2)
N = 0.

Co więcej, założenia (5.1) i (5.2) implikują nierówność

0 6 lim
N→∞

1

V2
N

κ
(3)
N 6 lim

N→∞

1

V2
N

(
max
16i6N

x2i

)
‖xN‖2 = 0.
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Dowód będzie można uznać za ukończony, gdy wykażemy jednostajną wzglę-
dem N ∈ N zbieżność wyrażenia V−1

N

∑N
i=1 E

[
h2i
]
do zera przy K → ∞.

Najpierw zaobserwujmy nierówność

Eh2i 6 E

( i−1∑
j=1

aij(εiεj − ZiZj)

)2

+ 3a2ii E
(
ε2i − Z2

i − (1− EZ2
i )
)2

+ 3x2i E
(
εi − Zi

)2.
Ponieważ ε = (Zi)i6N+(Hi)i6N , z użyciem prostego rachunku można pokazać,
że dla dowolnych indeksów 1 6 j < i 6 N mamy

εiεj − ZiZj = HiHj + ZiHj +HiZj ,
ε2i − Z2

i = 2ZiHi +H2
i .

Zatem, dla pewnej stałej C > 0 prawdziwe jest ograniczenie

V−1
N

N∑
i=1

Eh2i 6 CV−1
N ‖AN‖2F

√
sup

16i,j6N
EH4

i EZ4
j

+ CV−1
N ‖AN‖2F sup

16i6N
EH4

i + CV−1
N ‖xN‖2 sup

16i6N
EH2

i .

Ostatecznie, na mocy założeń (5.1) i (5.4), wyrażenia V−1
N ‖AN‖2F i V−1

N ‖xN‖2
są ograniczone jednostajnie względem N ∈ N. Ponieważ, zgodnie z założeniem,
czwarte potęgi εi, 1 6 i 6 N , są jednostajnie całkowalne mamy

sup
K>0

sup
N∈N

sup
16i6N

EZ4
i <∞

oraz

0 6
√

sup
N∈N

sup
i6N

EH2
i 6 sup

N∈N
sup
i6N

EH4
i 6 16 sup

N∈N
sup
i6N

E ε4i I{εi>K}
K→∞−−−−→ 0,

co wynika z określenia zmiennych Zi i Hi w równaniu (5.12).

2. Twierdzenia o rozkładzie granicznym

2.1. Założenia formalne

Aby uzyskać asymptotyczną normalność rozważanych estymatorów QNW, ko-
nieczne jest przyjęcie dodatkowych założeń oraz wzmocnienie tych wprowadzo-
nych w poprzednim podrozdziale. W szczególności modyfikacja założeń doty-
czących natury stochastycznej składnika losowego wymaga przytoczenia nastę-
pującej definicji.
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Definicja
Powiemy, że rodzina zmiennych losowych {Vz}z∈Z , gdzie Z jest pewnym
zbiorem indeksów, jest jednostajnie całkowalna, jeśli dla dowolnej liczby
ϵ > 0 istnieje liczba Kϵ, taka, że dla dowolnego z ∈ Z mamy

E
(
|Vz| · I{|Vz |>Kϵ}

)
6 ϵ,

gdzie I jest indykatorem zdarzenia opisanego w indeksie dolnym, a więc
zmienną losową postaci

I{|Vz |>Kϵ} =

{
1 gdy |Vz| > Kϵ

0 gdy |Vz| 6 Kϵ
.

Zauważmy, że pojęcie jednostajnej całkowalności opiera się wyłącznie na wła-
snościach (jednowymiarowych) rozkładów poszczególnych zmiennych. Zatem
ignoruje ono potencjalne zależności między zmiennymi. Intuicyjnie, założenie
jednostajnej całkowalności ogranicza „grubość” ogonów rozkładów— jednocze-
śnie dla wszystkich elementów rodziny rodziny. Jak wynika z twierdzenia de
la Vallée Poussina (patrz la Vallée Poussin, 1915, lub Meyer, 1966, twierdzenie
T22, tamże), warunek ten jest nieznacznie mocniejszy niż warunek wspólnej
ograniczoności całek, tj. supz∈Z E |Vz| <∞.

Założenie V.C’
Elementy wektora zaburzeń ε = (εi)

N
i=1 są zmiennymi losowymi o zerowej

wartości oczekiwanej i stałej nieznanej wariancji σ20 > 0. Ponadto, rodzina
ich czwartych potęg, tj. ε4i , dla 1 6 i 6 N , jest jednostajnie całkowalna ze
względu na indeks i oraz rozmiar próby N .

Definicja
Niech x = x(N) będzie wektorem w RN oraz x = (xi)

N
i=1. Elementy wektora

x wykazują równomierny wzrost, jeśli zachodzi zbieżność

lim
N→∞

1

N
‖xN‖2∞ = lim

N→∞
max
16i6N

x2i
N

= 0.

Założenie V.D’SAR
Macierz zmiennych objaśniających X spełnia założenie IV.D. Ponadto, ele-
menty kolumn macierzy X oraz Wr∆(λ0)X, dla 1 6 r 6 d wykazują
równomierny wzrost.

Założenie V.FSAR
Niech P ×Rk × (0,∞) 3 (ρ,β, σ2) 7→ lnLy(ρ,β, σ

2) będzie funkcją para-
metryzowaną wartością y ∈ RN , określoną formułą (4.3) na s. 94. Rozważmy
zmienną losową

G =
(
D lnLy

)
(ρ0,β0, σ

2
0), (5.14)
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gdzie D, zgodnie z notacją Eulera, oznacza operator funkcji pochodnej (po
argumentach ρ, β, σ2, przy ustalonej wartości parametru y), a jej wartość
obliczona jest dla argumentów ρ0, β0, σ20 i wektora zmiennej objaśnianej y
jako parametru, patrz specyfikacja (4.1). Przy analogicznie rozumianej drugiej
pochodnej oznaczmy

J = − 1

N
E
(
D2 lnLy

)
(ρ0,β0, σ

2
0).

Istnieją granice

ΣG := lim
N→∞

1

N
EGTG,

J0 := lim
N→∞

J ,

przy czym J0 jest macierzą nieosobliwą.
Założenie V.GSAR

Prawdziwa wartość ρ0 parametru autoregresyjnego ρ, patrz specyfikacja (4.1),
jest elementem topologicznego wnętrza zbioru P ⊂ Rd.

Założenie V.D’SEM
Macierz zmiennych objaśniających X spełnia założenie IV.D. Co więcej, ele-
menty kolumn macierzy X wykazują równomierny wzrost (patrz definicja na
s. 143).

Założenie V.FSEM
Niech Rk × L × (0,∞) 3 (β,λ, σ2) 7→ lnLy(λ,β, σ

2) będzie funkcją pa-
rametryzowaną wartością y ∈ R, określoną formułą (4.6) na s. 89. Przy
oznaczeniach, por. założenie V.FSAR,

S =
(
D lnLy

)
(β0,λ0, σ

2
0) (5.15)

oraz
I = − 1

N
E
(
D2 lnLy

)
(β0,λ0, σ

2
0),

gdzie y jest zmienną zależną w specyfikacji (4.2), istnieją granice

ΣS := lim
N→∞

1

N
ESTS ,

I0 := lim
N→∞

I ,

przy czym I0 jest macierzą nieosobliwą.
Założenie V.GSEM

Prawdziwa wartość λ0 parametru autoregresyjnego λ (patrz specyfikacja
(4.2)) jest elementem topologicznego wnętrza zbioru L ⊂ Rd.
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Uwagi dotyczące wzmocnionych założeń

Łatwo zauważyć, że założenie V.C’ jest wzmocnieniem założenia IV.C wpro-
wadzonego na użytek dowodu zgodności gaussowskich estymatorów quasi-naj-
większej wiarogodności. Jak się okazuje, por. Pruss (1998), warunki wyrażone
w założeniu IV.C nie są wystarczające do wyprowadzenia ich asymptotycznego
rozkładu. W naszym opracowaniu przyjmujemy zatem standardowy postulat eko-
nometryczny o niezależności według prawdopodobieństwa elementów wektora
zaburzeń losowych w ramach jednej próby. Zaznaczmy, że wciąż nie wymagamy
równości dystrybuant tychże elementów, a więc, w szczególności, ich rozkłady
nie muszą być gaussowskie. Co istotne, założenie jednorodności rozkładu, przy
utrzymanym żądaniu homoskedastyczności, zastępujemy założeniem jednostaj-
nej całkowalności rodziny czwartych momentów elementów zaburzenia losowego
(patrz definicja na s. 143).

Założenia V.FSAR i V.FSEM uwzględniają warunki konieczne istnienia granicz-
nej wariancji rozkładu oszacowań. W szczególności, z każdego z nich wynika,
że macierz (dokładniej ciąg macierzy) 1

NXTX ma nieosobliwą granicę. Moż-
na się spodziewać, że ta granica odegra kluczową rolę w ustaleniu wariancji
estymatorów parametrów nachylenia β̂, choć—w przeciwieństwie do klasycz-
nego modelu liniowego estymowanego metodą najmniejszych kwadratów— rolę
nie wyłączną. Dodatkowo, założenia V.FSAR, V.FSEM kontrolują warunki istnienia
granicznej wariancji estymatorów parametrów autoregresyjnych, poprzez nietry-
wialność wariancji formy kwadratowej składnika losowego modelu o macierzy
Wr∆(λ0)

−1. Dodatkowo, założenie V.FSAR implikuje istnienie granicznej wa-
riancji estymatora parametru autoregresyjnego ρ̂, także poprzez ograniczenie
korelacji między jawnymi (kolumny w X) a niejawnymi (Wr∆(λ0)

−1Xβ0, dla
1 6 r 6 d) zmiennymi objaśniającymi modelu autoregresji zmiennej zależnej.

Warto tutaj przypomnieć, że funkcje lnLy, zarówno w założeniu V.FSAR,
jak i w V.FSEM, nie są prawdziwymi funkcjami log-wiarogodności, gdyż praw-
dziwy rozkład składnika losowego modelu jest nieznany. Zatem nie możemy
się spodziewać równości pomiędzy drugim momentem informanty a informacją
Fishera, znanej z klasycznej metody największej wiarogodności. W kontekście
przedstawionych założeń, taka równość implikowałaby tożsamość ΣG = J dla
modelu autoregresji przestrzennej zmiennej objaśnianej i odpowiednio ΣS = I
dla modelu autoregresji przestrzennej składnika losowego.

2.2. Stwierdzenia pomocnicze

W tym podrozdziale wprowadzamy serię lematów wykorzystywanych w dowo-
dach twierdzeń o rozkładach asymptotycznych estymatorów (twierdzenia V.8
i V.9). Prezentowane wyniki dotyczą regularności funkcji pseudowiarogodności
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dla odpowiedniego modelu i są konsekwencją założeń przyjętych w poprzednim
podrozdziale.

Lemat V.2
Niech UL ⊂ Rd będzie otwartym, ograniczonym zbiorem danym w lemacie IV.3.
Każdy element eN = eN (β,λ, σ2) którejkolwiek z macierzy reprezentujących
pierwszą, drugą lub trzecią pochodną funkcji pseudowiarogodności logLy (patrz
równanie (4.6), s. 95), jest zmienną losową postaci

eN = εTANε+ xT
Nε+ zN ,

gdzie ε jest składnikiem losowym modelu (patrz specyfikacja (4.2)), a AN =
AN (β,λ, σ2), xN = xN (β,λ, σ2) i zN = zN (β,λ, σ2) są ciągłymi nielosowy-
mi funkcjami parametrów modelu. Co więcej, przy założeniach IV.A i IV.BSEM
istnieje uniwersalna ciągła funkcja

Rk × (0,∞) 3 (β, σ2) 7→ K(β, σ2),

niezależna od rozmiaru próby N , dla której

‖AN (β,λ, σ2)‖2 6 K(β, σ2),
‖xN (β,λ, σ2)‖2 6 N ·K(β, σ2),
‖zN (β,λ, σ2)‖2 6 N ·K(β, σ2),

dla wszystkich β ∈ Rk, λ ∈ UL, σ2 > 0.

Fakt wyrażony w tezie lematu V.2 można sprawdzić, analizując bezpośrednio
formuły opisujące pochodne przedstawione w lemacie IV.5.

Lemat V.3
Niech UL ⊂ Rd będzie otwartym, ograniczonym zbiorem, danym w lemacie IV.3
oraz niech Uβ ⊂ Rk i Uσ2 ⊂ (ς,∞), dla pewnego ς > 0, będą zbiorami otwar-
tymi i ograniczonymi w swoich przestrzeniach. Niech logLy będzie funkcją
pseudowiarogodności, daną w równaniu (4.6) na s. 95. Przy założeniach IV.A,
IV.BSEM i IV.D, wielkość

M(Uβ, Uσ2) := sup
β∈Uβ

sup
λ∈Uλ

sup
σ2∈Uσ2

∥∥∥ 1

N

(
D3 lnLy

)
(β,λ, σ2)

∥∥∥ (5.16)

jest, przy zmiennym N = 1, 2, . . ., stochastycznie ograniczoną zmienną losową.
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Dowód. Zauważmy najpierw, że mierzalność M(Uβ, Uσ2) wynika z ciągłości
normy w wyrażeniu (5.16), względem parametrów modelu. Istotnie, mamy rów-
ność

M(Uβ, Uσ2) = sup
β∈Uβ∩Qk

sup
λ∈Uλ∩Qd

sup
σ2∈Uσ2∩Q

∥∥∥ 1

N

(
D3 lnLy

)
(β,λ, σ2)

∥∥∥,
gdzie symbol Q oznacza zbiór liczb wymiernych.

Niech eN = eN (β,λ, σ2) będzie dowolnym elementem reprezentującym
macierz D3 logLy. Z lematu V.2 wnioskujemy, że

sup
β∈Uβ

sup
λ∈Uλ

sup
σ2∈Uσ2

|eN |

6 1

N
E sup

β∈Uβ

sup
λ∈Uλ

sup
σ2∈Uσ2

(
‖AN‖‖ε‖2 + ‖xN‖‖ε‖+ ‖zN‖

)
6 3(σ20 + 1) max

β∈Uβ

max
σ2∈Uσ2

√
K(β, σ2) <∞,

gdzie Uβ oraz Uσ2 są domknięciami topologicznymi odpowiednich zbiorów.

Lemat V.4
Niech lnLy będzie funkcją pseudowiarogodności daną w równaniu (4.6) w roz-
dziale IV. Przy założeniach IV.A, IV.BSEM, V.C’, IV.D i V.FSEM, zmienna losowa

I∗ = − 1

N

(
D3 lnLy

)
(β0,λ0, σ

2
0)

zbiega według prawdopodobieństwa do macierzy I0 zdefiniowanej w założe-
niu V.FSEM.

Dowód. Niech eN = eN (β,λ, σ2) będzie dowolnym elementem macierzy I∗.
Na mocy lematu V.2 mamy oszacowanie

Var eN 6 2

N2
Var (εTANε) +

2

N2
Var (xT

Nε).

Następnie, używając lematu IV.6, wnioskujemy, że

Var eN 6 6

N
K(β0, σ

2
0) · sup

N ′∈N
sup

i6N̄(N ′)

E ε̄4i +
2σ20
N

K(β0, σ
2
0),

przy czym powyższe ograniczenie dąży do zera wraz z N zbiegającym do nie-
skończoności. Zatem, na mocy nierówności Jensena

E ‖I∗ − I‖ 6
√∑

eN

E (eN − E eN )2
N→∞−−−−→ 0,
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gdzie sumowanie następuje po wszystkich (k+ d+1)2 elementach eN macierzy
I∗. Na mocy założenia V.FSEM normy różnic ‖I−I0‖ również zbiegają do zera,
więc

E ‖I∗ − I0‖ 6 E ‖I∗ − I‖+ ‖I − I0‖
N→∞−−−−→ 0.

Ostatecznie, tezę lematu uzyskujemy na mocy nierówności Czebyszewa.

Lemat V.5
Niech UP ⊂ Rd będzie zbiorem otwartym, ograniczonym, danym w lemacie IV.4.
Każdy element eN = eN (ρ,β, σ2) którejkolwiek z macierzy, reprezentującej
pierwszą, drugą lub trzecią pochodną funkcji pseudowiarogodności logLy, patrz
równanie (4.3) rozdziału IV, jest zmienną losową postaci

eN = εTANε+ xT
Nε+ zN ,

gdzie ε jest składnikiem losowym modelu (patrz specyfikacja (4.1) w rozdzia-
le IV), a AN = AN (ρ,β, σ2), xN = xN (ρ,β, σ2) i zN = zN (ρ,β, σ2) są
ciągłymi nielosowymi funkcjami parametrów modelu. Co więcej, przy założe-
niach IV.A i IV.BSAR istnieje uniwersalna ciągła funkcja

Rk × (0,∞) 3 (β, σ2) 7→ K(β, σ2),

niezależna od rozmiaru próby N , dla której

‖AN (ρ,β, σ2)‖2 6 K(β, σ2),
‖xN (ρ,β, σ2)‖2 6 N ·K(β, σ2),
‖zN (ρ,β, σ2)‖2 6 N ·K(β, σ2),

dla wszystkich β ∈ Rk, ρ ∈ UP , σ2 > 0.

Fakt wyrażony w tezie lematu V.5 można sprawdzić, analizując bezpośrednio
formuły opisujące pochodne przedstawione w lemacie IV.8.

Lemat V.6
Niech UP ⊂ Rd będzie zbiorem otwartym, ograniczonym, danym w lemacie IV.4
oraz niech Uβ ⊂ Rk i Uσ2 ⊂ (ς,∞), dla pewnego ς > 0, będą zbiorami otwar-
tymi i ograniczonymi w swoich przestrzeniach. Niech logLy będzie funkcją
pseudowiarogodności, daną w równaniu (4.3) rozdziału IV. Wówczas, przy za-
łożeniach IV.A, IV.BSAR i IV.D, wielkość

M(Uβ, Uσ2) := sup
ρ∈Uρ

sup
β∈Uβ

sup
σ2∈Uσ2

∥∥∥ 1

N

(
D3 lnLy

)
(ρ,β, σ2)

∥∥∥ (5.17)

jest, przy zmiennym N = 1, 2, . . ., stochastycznie ograniczoną zmienną losową.
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Dowód lematu V.6 jest analogiczny do dowody lematu V.3. Należy zamienić
parametr λ, parametrem ρ oraz skorzystać z nierówności opisanych w lema-
cie V.5.

Lemat V.7
Niech lnLy będzie funkcją pseudowiarogodności daną w równaniu (4.3) w roz-
dziale IV. Przy założeniach IV.A, IV.BSAR, V.C’, IV.D i V.FSAR, zmienna losowa

J∗ = − 1

N

(
D3 lnLy

)
(ρ,β, σ2)

zbiega według prawdopodobieństwa do macierzy J0 zdefiniowanej w założe-
niu V.FSAR.

Dowód powyższego lematu przebiega w sposób analogiczny do rozumowania
argumentującego tezę lematu V.4, zamieniając parametr λ na ρ oraz zastępując
symbole I , I0, I∗ przez odpowiednio J , J0, J∗.

2.3. Asymptotyczna normalność estymatora dla modelu SEM

W tym podrozdziale prezentujemy autorskie twierdzenie dotyczące zachowa-
nia asymptotycznego estymatora quasi-największej wiarogodności dla modelu
z przestrzennie skorelowanym składnikiem losowym. Przedstawiane rozumowa-
nie wykorzystuje centralne twierdzenie graniczne (twierdznie V.1) sformułowane
w podrozdziale pierwszym, s. 132.

Twierdzenie V.8
Gdy spełnione są założenia IV.A, IV.BSEM i IV.ESEM oraz założenia V.C’, V.D’SEM,
V.FSEM i V.GSEM, wówczas łączny rozkład estymatorów λ̂SEM_QNW, β̂SEM_QNW
oraz σ̂2SEM_QNW jest

√
N -asymptotycznie normalny, a dokładniej, zmienna losowa

√
N ·

β̂SEM_QNW
λ̂SEM_QNW
σ̂2SEM_QNW

−

β0

λ0

σ20


zbiega według dystrybuanty do rozkładu normalnego N (0,I−1

0 ΣSI−1
0 ).

Dowód. Dla uproszczenia zapisu oznaczmy

β̂ := β̂SEM_QNW, λ̂ := λ̂SEM_QNW, σ̂2 := σ̂2SEM_QNW.

Niech S będzie pseudoinformantą dla parametrów modelu, zdefiniowaną rów-
naniem (5.15). Używając lematu IV.5, łatwo obliczyć kolejne elementy wektora
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losowego 1√
N
S . Wówczas mamy

1√
N

∂ logLy

∂β
(β0,λ0, σ

2
0) =

1√
Nσ20

εTΓ(λ0)X,

1√
N

∂ logLy

∂λ
(β0,λ0, σ

2
0) =

1√
Nσ20

[
εTWrΓ(λ0)

−1ε
]
r6d

− 1√
Nσ20

[
σ20 tr (WrΓ(λ0)

−1)
]
r6d

,

1√
N

∂ logLy

∂σ2
(β0,λ0, σ

2
0) =

1

2
√
Nσ40

[
εTε−Nσ20

]
r6d

.

Pokażemy, że wektor losowy 1√
N
ST zbiega według rozkładu do N (0,ΣS). Przy-

pomnijmy, że w ogólności, suma dwóch ciągów, z których każdy jest zbieżny do
rozkładu normalnego, sama nie musi być asymptotycznie gaussowska. Zatem,
dla uzyskania tezy nie wystarczy wykazać asymptotyczną normalność elementów
wektora 1√

N
ST, jak to zostało zrobione w kontekście specyfikacji SAR w pracy

Lee (2004). W naszym rozumowaniu użyjemy argumentu opartego na twierdze-
niu Craméra–Wolda (patrz Billingsley, 2009).

Na początek zauważmy, że mamy ES = 0, chociaż S nie jest prawdziwą
informantą, a więc równość ta nie jest wnioskiem z klasycznego kursu teorii
estymacji. Niech a ∈ Rk, b ∈ Rd i c ∈ R będą dowolne. Jeśli

V(a, b, c) :=
[
aT bT c

]
·ΣS ·

ab
c

 = 0, (5.18)

wówczas, korzystając z założenia V.FSEM, mamy

lim
N→∞

Var

([
aT bT c

]
√
N

ST

)
=
[
aT bT c

]
· lim
N→∞

Var

(
1√
N

ST

)
·

ab
c


=
[
aT bT c

]
· 1

N

(
ESTS − 0

)
·

ab
c

 =
[
aT bT c

]
·ΣS ·

ab
c

 = 0,

a zatem
[
aT bT c

]
√
N

ST zbiega według prawdopodobieństwa do zera— inaczej
do rozkładu N (0, 0 · I)—w Rk+d+1. Założenie braku równości w (5.18) impli-
kuje ciekawszy przypadek, w którym V(a, b, c) > 0, jako, że ΣS , będąca granicą
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macierzy nieujemnie określonych (patrz założenie V.FSEM) jest nieujemnie okre-

ślona. Zauważmy, że wyrażenie
[
aT bT c

]
√
N

ST ma postać[
aT bT c

]
√
N

ST = QN − EQN ,

gdzie QN = εTNANεN + εTNxN jest formą liniowo-kwadratową o macierzy

AN =
1√
Nσ20

(
bTW∆(λ0)

−1 +
1

2σ20
cI
)

oraz z wektorem współczynników części liniowej

xN =
1√
Nσ20

X · a.

Pokażemy, że dla formy liniowo-kwadratowejQN możemy skorzystać z twier-
dzenia V.1. Skoro V(a, b, c) > 0, zbieżność wariancji pseudoinformanty, wy-
rażona w założeniu V.FSEM, implikuje, że dla wszystkich dostatecznie dużych
rozmiarów próby N zachodzi

VarQN = Var

([
aT bT c

]
√
N

ST

)
>

[
aT bT c

]
2

ΣS

ab
c

 =
V(a, b, c)

2
> 0.

Następnie, z założenia V.D’SEM, a dokładniej z zawartego w nim założenia IV.D,
mamy

lim sup
N→∞

‖xN‖2

VarQN
6 2‖a‖2

V(a, b, c) · σ40
· lim sup

N→∞

∥∥∥ 1

N
XTX

∥∥∥ <∞.

Ponadto, zachodzi

lim
N→∞

‖xN‖2∞
VarQN

6 2

V(a, b, c) · σ40
· lim
N→∞

1

N
‖X · a‖2∞ <∞,

gdyż kombinacja liniowa wektorów, których elementy wykazują równomierny
wzrost (por. definicja na s. 143) też jest takim wektorem. Z kolei założenia IV.A
i IV.BSEM pozwalają stwierdzić, że

B := max
r6d

sup
N∈N

‖WrΓ(λ0)
−1‖2 <∞,
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a więc

0 6 ‖AN‖2

VarQN
<

2

V(a, b, c) · σ40
· 1

N

∥∥∥bTWΓ(λ0) +
1

2σ20
cI
∥∥∥2

6 4d‖b‖2 ·B
V(a, b, c) · σ40 ·N

+
|c|2

V(a, b, c) · σ80 ·N
N→∞−−−−→ 0.

Podobnie, mamy

‖AN‖2F
VarQN

<
2

V(a, b, c) · σ40
· 1

N

∥∥∥bTWΓ(λ0) +
1

2σ20
cI
∥∥∥2
F

6 4d‖b‖2 ·B
V(a, b, c) · σ40

+
|c|2

V(a, b, c) · σ40
<∞,

czyli lim supN→∞
∥AN∥2F
VarQN

<∞. Zatem, uwzględniając założenie V.C’ dla wektora
zaburzeń modelu z twierdzenia V.1, wnioskujemy, że zachodzi zbieżność według
rozkładu [

aT bT c
]

√
N

ST = QN − EQN
N→∞−−−−→ N (0,V(a, b, c)) .

Ostatecznie z dowolności a, b i c, na podstawie twierdzenia Craméra–Wolda,
otrzymujemy zbieżność

1√
N

ST N→∞−−−−−→ N (0,ΣS).

Zgodnie z tezą lematu V.4, zmienna losowa

I∗ = − 1

N

(
D2 lnLy

)
(β0,λ0, σ

2
0)

zbiega według prawdopodobieństwa do I0, przy N → ∞. Z ciągłości wyznacz-
nika jako funkcji macierzy ustalonego wymiaru wnioskujemy, że

lim
N→∞

P
(
{detI∗ = 0}

)
= 0.

Przyjmijmy zatem ‖I−1
∗ ‖ := 1, tam, gdzie detI∗ = 0. W efekcie, tak rozumiany

ciąg norm ‖I−1
∗ ‖ zbiega do ‖I−1

0 ‖ według prawdopodobieństwa.
Niech (Ω,F ,P) będzie przestrzenią probabilistyczną, na której zdefiniowany

jest proces stochastyczny ε = ε(N), N = 1, 2, . . . Niech Oβ ⊂ Rk, Oλ ⊂ Rd,
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Oσ2 ⊂ (ς,∞), dla pewnego ς > 0, będą zbiorami otwartymi, ograniczonymi
i wypukłymi, spełniającymi warunki

β0 ∈ Oβ , λ0 ∈ Oλ, σ20 ∈ Oσ2 ,

a ponadto, Oλ ⊂ L (patrz założenie V.GSEM). Zdefiniujmy

dN =

 β̂

λ̂
σ̂2

−

β0

λ0

σ20

 .

Pamiętając o zgodności estymatorów β̂, λ̂ i σ̂2 (patrz twierdzenie IV.11), możemy
stwierdzić, że dla ciągu zdarzeń postaci

ΩN = Ω1
N ∩ Ω2

N ∩ Ω3
N ,

gdzie

Ω1
N := {detI∗ 6= 0},

Ω2
N := {β̂ ∈ Oβ} ∩ {λ̂ ∈ Oλ} ∩ {σ̂2 ∈ Oσ2},

Ω3
N :=

{
‖I−1

∗ ‖ · ‖dN‖ ·M(Oβ, Oσ2)
}
,

a M dane jest w wyrażeniu (5.16), w lemacie V.3, mamy

lim
N→∞

P (Ω \ ΩN ) = 0.

Niech ω ∈ ΩN . Dla funkcji

Oβ ×Oλ ×Oσ2 3

β
λ
σ2

 7→ fω(β,λ, σ
2) =

1√
N

(
D lnLy(ω)

)
(ρ,β, σ2)

możemy zastosować wielowymiarowe rozwinięcie Taylora w punkcie odpowia-
dającym wartościom parametrów β0, λ0, σ20 (patrz np. twierdzenie 107 w mono-
grafii Hájek, Johanis, 2014). Zatem, dla pewnej funkcji resztowej R, spełniającej
nierówność

‖R(β,λ, σ2)‖ 6 1

2
sup

Oβ×Oλ×Oσ2

‖D fω‖ · ‖dN‖2 ,

mamy
fω(ρ,β, σ

2) =
1√
N

S −
√
N · dTN · I∗ +R(β,λ, σ2).
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Dokonując w tym równaniu podstawień β = β̂(ω), λ = λ̂(ω) oraz σ2 = σ̂2(ω),
otrzymujemy

√
N · dTN · I∗ =

1√
N

S +R(β̂, λ̂, σ̂2), (5.19)

gdyż z samej definicji estymatorów, poprzez różniczkowy warunek optymalności,
wynika, że fω(ρ̂, β̂, σ̂2) = 0.

Zauważmy, że gdyby na zbiorach ΩN prawdziwa była nierówność∥∥√NdTNI∗
∥∥ > 2

∥∥∥ 1

N
S
∥∥∥, (5.20)

wówczas, uwzględniając (5.19), mielibyśmy ciąg oszacowań

∥∥√NdTNI∗
∥∥ < 2

∥∥∥√NdTNI∗ −
1

N
S
∥∥∥ = 2

∥∥R(β̂, λ̂, σ̂2)
∥∥

6
∥∥√NdTNI∗

∥∥ · ∥∥I−1
∗
∥∥ · ‖dN‖ ·M(Oβ, Oσ2).

Stąd otrzymujemy zaprzeczenie nierówności (5.20). Ostatecznie uzyskujemy∥∥∥√NdTNI∗ −
1

N
S
∥∥∥ =

∥∥R(β̂, λ̂, σ̂2)
∥∥ 6 1

2
M(Oβ, Oσ2) · ‖dN‖2

6 1

2

∥∥√NdTNI∗
∥∥ · ∥∥I−1

∗
∥∥ · ‖dN‖ ·M(Oβ, Oσ2)

6
∥∥∥ 1

N
S
∥∥∥ · ∥∥I−1

∗
∥∥ ·M(Oβ, Oσ2) · ‖dN‖.

Prawa strona powyższej nierówności zbiega według prawdopodobieństwa do zera,
jako, że stanowi iloczyn zmiennych stochastycznie ograniczonych i zbieżnego do
zera czynnika ‖dN‖. Wynika stąd, że

√
NI∗dN , tak jak 1

NST, zbiega według
dystrybuanty do N (0,ΣS). Mamy

√
NdN = I−1

0 · I0I−1
∗ ·

√
NI∗dN ,

przy czym I0I∗ zbiega według prawdopodobieństwa do macierzy jednostkowej,
ustalonego wymiaru k+d+1. Ostatecznie, otrzymujemy tezę o zbieżności według
rozkładu

√
N ·

β̂SEM_QNW
λ̂SEM_QNW
σ̂2SEM_QNW

−

β0

λ0

σ20

 N→∞−−−−→ N (0,I−1
0 ΣSI−1

0 ).
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2.4. Asymptotyczna normalność estymatora dla modelu SAR

W tym podrozdziale prezentujemy twierdzenie dotyczące zachowania asympto-
tycznego estymatora quasi-największej wiarogodności dla modelu z przestrzen-
nie skorelowanym składnikiem losowym. Wynik został pierwotnie opublikowany
w pracy Olejnik i Olejnik (2020). Schemat rozumowania argumentującego tezę
twierdzenia prowadzona jest w sposób analogiczny do dowodu twierdzenia V.8.
Mianowicie, za pomocą naszego centralnego twierdzenia granicznego V.1 (patrz
s. 132) wykazywana jest asymptotyczna normalność wektora pseudoinformanty,
po czym na tej podstawie, poprzez rozwinięcie jej pochodnej w szereg Taylora,
uzyskiwany jest rozkład graniczny estymatorów QNW. Niemniej jednak, róż-
ne specyfikacje modelu procesu generującego obserwacje prowadzą do różnych
postaci formy liniowo-kwadratowej i w obu przypadkach wymagają odrębnego
szacowania.

Twierdzenie V.9
Gdy spełnione są założenia IV.A, IV.BSAR i IV.ESAR oraz założenia V.C’, V.D’SAR,
V.FSAR i V.GSAR, wówczas łączny rozkład estymatorów ρ̂SAR_QNW, β̂SAR_QNW oraz
σ̂2SAR_QNW jest

√
N -asymptotycznie normalny, a dokładniej, zmienna losowa

√
N ·

ρ̂SAR_QNW
β̂SAR_QNW
σ̂2SAR_QNW

−

ρ0

β0

σ20


zbiega według dystrybuanty do rozkładu normalnego N (0,J −1

0 ΣGJ −1
0 ).

Dowód. Dla uproszczenia zapisu oznaczmy

ρ̂ := ρ̂SAR_QNW, β̂ := β̂SAR_QNW, σ̂2 := σ̂2SAR_QNW.

Niech G będzie pseudoinformantą dla parametrów modelu, zdefiniowaną równa-
niem (5.14). Stosując lematy IV.8 i IV.5, łatwo obliczyć kolejne elementy wektora
losowego 1√

N
G. Wówczas mamy

1√
N

∂ logLy

∂ρ
(ρ0,β0, σ

2
0) =

1√
Nσ20

[
εTWr∆(ρ0)

−1ε
]
r6d

− 1√
Nσ20

[
σ20 tr (Wr∆(ρ0)

−1)
]
r6d

+
1√
Nσ20

[
εTWr∆(ρ0)

−1Xβ0

]
r6d

,

1√
N

∂ logLy

∂β
(ρ0,β0, σ

2
0) =

1√
Nσ20

εTX,
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1√
N

∂ logLy

∂σ2
(ρ0,β0, σ

2
0) =

1

2
√
Nσ40

[
εTε−Nσ20

]
r6d

.

Pokażemy, że 1√
N
GT zbiega według rozkładu do N (0,ΣG).

Aby skorzystać z twierdzenia Craméra-Wolda (patrz Cramér, Wold, 1936),
ustalmy dowolny wektor

α =
[
aT bT c

]T ∈ Rd × Rk × R.

Przyjmując oznaczenie V(α) = αTΣGα, możemy zauważyć, że V(α) > 0,
gdyż ΣG jest macierzą dodatnio określoną. Rozważymy zatem dwa przypadki.
Jeśli V(α) = 0, wówczas, korzystając z założenia V.FSAR, zachodzi zbieżność

lim
N→∞

Var

(
α · 1√

N
GT

)
= α · lim

N→∞
Var

1√
N

GT ·α

= α · 1

N

(
EGGT − EG EGT

)
·α

= αΣGα = 0,

gdyż, jak łatwo obliczyć, korzystając z wyprowadzonych pochodnych funkcji
pseudowiarogodności, mamy EG = 0. Wynika stąd, ze zmienna losowa 1√

N
αGT

zbiega prawdopodobieństwa do zera, co jest tożsame ze zbieżnością według roz-
kładu do rozkładu normalnego o wariancji αΣGα = 0.

Rozważmy teraz drugi przypadek, w którym V(α) > 0 Zauważmy, że wy-
rażenie 1√

N
GT ma postać centrowanej formy liniowo-kwadratowej zaburzenia

losowego ε, tj.
1√
N

αGT = QN − EQN ,

gdzie QN = εTNANεN + εTNxN oraz

AN =
1√
Nσ20

(
aTW∆(ρ0)

−1 +
1

2σ20
cI
)
,

xN =
1√
Nσ20

(
X · a+ bTW∆(ρ0)

−1Xβ0

)
.

Pokażemy, że dla formy liniowo-kwadratowej QN możemy skorzystać z twierdze-
nia V.1. Zbieżność wariancji pseudoinformanty, wyrażona w założeniu V.FSAR
implikuje, że dla wszystkich dostatecznie dużych rozmiarów próby N zachodzi

VarQN = Var
1√
N

αGT >
1

2
αΣGα =

V(α)

2
> 0.
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Następnie, uwzględniając założenia IV.A, IV.BSAR, IV.D, przy oznaczeniach

B∆ := max
r6d

sup
N∈N

‖Wr∆(ρ0)
−1‖2 <∞,

BX := sup
N∈N

∥∥∥ 1

N
XTX

∥∥∥ <∞,

mamy

lim sup
N→∞

‖xN‖2

VarQN
6 4‖b‖2

V(a, b, c) · σ40
·BX +

4d‖a‖2‖β0‖2

V(a, b, c) · σ40
·B∆BX <∞.

Ponadto, własność równomiernego wzrostu, o której mowa w założeniu V.D’SAR
implikuje oszacowanie

lim sup
N→∞

‖xN‖2∞
VarQN

6 4

V(a, b, c)σ40
· lim
N→∞

1

N
‖X · a‖2∞

+
4

V(a, b, c)σ40
· lim
N→∞

1

N

∥∥aTW∆(ρ0)
−1β0

∥∥2
∞ = 0.

Spełnione są zatem warunki (5.1) i (5.2). Z kolei (5.3) i (5.4) wnioskujemy
z oszacowań

0 6 ‖AN‖2

VarQN
<

4d‖a‖2 ·B∆

V(a, b, c) · σ40 ·N
+

|c|2

V(a, b, c) · σ80 ·N
N→∞−−−−→ 0

oraz

‖AN‖2F
VarQN

<
2

V(a, b, c) · σ40
· 1

N

∥∥∥aTW∆(ρ0) +
1

2σ20
cI
∥∥∥2
F

6 4d‖a‖2 ·B
V(a, b, c) · σ40

+
|c|2

V(a, b, c) · σ40
<∞.

Zatem, uwzględniając założenie V.C’ dla wektora zaburzeń modelu, z twierdze-
nia V.1 wnioskujemy, że zachodzi zbieżność według rozkładu

V(α)√
N

GT = QN − EQN
N→∞−−−−→ N (0,V(α)),

a więc z dowolności wektora α wynika zbieżność

1√
N

GT N→∞−−−−→ N (0,ΣG).
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Ze względu na zgodności estymatorów ρ̂, β̂ i σ̂2 (patrz twierdzenie IV.10),
mamy P (ΩN ) → 1, dla N → ∞, gdzie

ΩN = Ω1
N ∩ Ω2

N ∩ Ω3
N ,

dla

Ω1
N := {detJ∗ 6= 0},

Ω2
N := {ρ̂ ∈ Oρ} ∩ {β̂ ∈ Oβ} ∩ {σ̂2 ∈ Oσ2},

Ω3
N :=

{
‖J −1

∗ ‖ · ‖dN‖ ·M(Oβ, Oσ2)
}
,

przy czym

dN =

 ρ̂

β̂
σ̂2

−

ρ0

β0

σ20

 ,

a M dane jest w wyrażeniu (5.17), w lemacie V.6.
Niech (Ω,F ,P) będzie przestrzenią probabilistyczną, na której zdefiniowany

jest proces stochastyczny ε = ε(N), N = 1, 2, . . . Niech Oρ ⊂ P ⊂ Rd, Oβ ⊂
Rk, Oσ2 ⊂ (ς,∞), dla pewnego ς > 0, będą zbiorami otwartymi, ograniczonymi
i wypukłymi, spełniającymi warunki

ρ0 ∈ Oρ, β0 ∈ Oβ , σ20 ∈ Oσ2 ,

patrz założenie V.GSEM.
Zgodnie z lematem V.4, dla zmiennej losowej J∗ mamy zbieżność według

prawdopodobieństwa do J0, przy N → ∞. Wynika stąd, że macierz J∗ jest od-
wracalna na zbiorze ΩN ⊂ Ω. W efekcie, norma macierzy J −1

∗ zbiega do ‖J −1
0 ‖

według prawdopodobieństwa, a co za tym idzie jest stochastycznie ograniczona.
Niech ω ∈ ΩN . Dla funkcji

Oρ ×Oβ ×Oσ2 3

β
ρ
σ2

 7→ fω(ρ,β, σ
2) =

1√
N

[(
D lnLy

)
(ρ,β, σ2)

]
y=y(ω)

możemy zastosować wielowymiarowe rozwinięcie Taylora w punkcie odpowia-
dającym wartościom parametrów β0, ρ0, σ20 (patrz np. twierdzenie 107 w mono-
grafii Hájek, Johanis, 2014). Zatem, dla pewnej funkcji resztowej R, spełniającej

‖R(ρ,β, σ2)‖ 6 1

2
sup

Oρ×Oβ×Oσ2

‖D fω‖ · ‖dN‖2 ,
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mamy
fω(ρ,β, σ

2) =
1√
N

G −
√
N · dTNJ∗ +R(ρ,β, σ2).

Dokonując podstawień ρ = ρ̂(ω), β = β̂(ω) oraz σ2 = σ̂2(ω), otrzymujemy

√
N · dTN ·J∗ =

1√
N

G +R(ρ̂, β̂, σ̂2), (5.21)

gdyż z samej definicji estymatorów wynika, poprzez różniczkowy warunek opty-
malności, że fω(ρ̂, β̂, σ̂2) = 0.

Zauważmy, że gdyby na zbiorach ΩN prawdziwa była nierówność∥∥√NdTNJ∗
∥∥ > 2

∥∥∥ 1

N
G
∥∥∥, (5.22)

wówczas, uwzględniając (5.21), mielibyśmy ciąg oszacowań∥∥√NdTNJ∗
∥∥ < 2

∥∥∥√NdTNJ∗ −
1

N
G
∥∥∥ = 2

∥∥R(ρ̂, β̂, σ̂2)
∥∥

6
∥∥√NdTNJ∗

∥∥ · ∥∥J −1
∗
∥∥ · ‖dN‖ ·M(Oβ, Oσ2).

Zatem, w rzeczywistości zachodzi zaprzeczenie nierówności (5.22). Ostatecznie
uzyskujemy∥∥∥√NdTNJ∗ −

1

N
G
∥∥∥ =

∥∥R(ρ̂, β̂, σ̂2)
∥∥ 6 1

2
M(Oβ, Oσ2) · ‖dN‖2

6 1

2

∥∥√NdTNJ∗
∥∥ · ∥∥J −1

∗
∥∥ · ‖dN‖ ·M(Oβ, Oσ2)

6
∥∥∥ 1

N
G
∥∥∥ · ∥∥J −1

∗
∥∥ ·M(Oβ, Oσ2) · ‖dN‖,

przy czym prawa strona nierówności zbiega według prawdopodobieństwa do
zera, jako że stanowi iloczyn zmiennych stochastycznie ograniczonych i czyn-
nika ‖dN‖. Ostatecznie,

√
NJ∗dN również zbiega według dystrybuanty do

N (0,ΣS), a więc

√
N ·

ρ̂SEM_QNW
β̂SEM_QNW
σ̂2SEM_QNW

−

ρ0

β0

σ20

 N→∞−−−−→ N (0,J −1
0 ΣGJ −1

0 ).





Zakończenie

W niniejszej monografii przybliżyliśmy wybrane zagadnienia z zakresu ekono-
metrii przestrzennej. Prezentując matematyczne podstawy metod stochastycz-
nych stosowanych w tej dziedzinie, szczególny nacisk położyliśmy na formal-
ną argumentację stwierdzeń o własnościach asymptotycznych. W szczególno-
ści, elementem nowatorskim było użycie szerokiej klasy przestrzennych macie-
rzy wag. Poprzez dopuszczenie w naszych rozważaniach macierzy niekoniecznie
sumowalnych, opracowane w pracy narzędzia pozwalają w znacznym stopniu
rozszerzyć wachlarz zastosowań modeli, dając tym samym badaczom większe
możliwości konstrukcji specyfikacji z zależnościami przestrzennymi. Dodatko-
wo, dowodząc rezultatu o rozkładzie asymptotycznym gaussowskiego estymato-
ra quasi-największej wiarogodności dla modeli autoregresji składnika losowego
wyższych rzędów, rozszerzyliśmy istotną dla rozwoju dziedziny teorię zapocząt-
kowaną w pracach Gupta i Robinson (2018) oraz Olejnik i Olejnik (2020).

Istotnym elementem opracowania jest uzyskane przez nas centralne twierdze-
nie graniczne dla form liniowo-kwadratowych, które wykorzystywaliśmy w pracy
do argumentacji własności asymptotycznych rozważanych statystyk i estymato-
rów. Twierdzenie to celowo sformułowaliśmy w sposób możliwie najbardziej
ogólny. Kierowaliśmy się przekonaniem, że wynik ten znajdzie zastosowanie
w opracowaniu nowych twierdzeń dotyczących również innych metod ekonome-
trii przestrzennej, a tym samym przyczyni się do rozwoju dziedziny. Wierzymy,
iż dociekliwi czytelnicy, w swoich własnych badaniach poświęconych podsta-
wom formalnym ekonometrii, niekoniecznie przestrzennej, mogą napotkać pro-
blemy, w których rozwiązaniu pomoże teoria asymptotyczna, zapoczątkowana
w tej książce.
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