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Wprowadzenie

Wspolczesnie, w literaturze $wiatowej, wiele miejsca poswieca si¢ problemom
analizy i modelowania zjawisk o charakterze przestrzennym. Jedno z podstawo-
wych narzedzi analiz regionalnych stanowi modelowanie przestrzenne. Termin
»ekonometria przestrzenna” zaproponowal Paelinck we wczesnych latach sie-
demdziesiatych XX wieku. Mozna przyja¢, ze to wlasnie wowczas powstal nowy
dzial ekonometrii, opisujacy problemy specyfikacji i estymacji modeli ekonome-
trycznych, wynikajace z wystepowania autokorelacji przestrzennej. Ekonometria
przestrzenna umozliwia badanie zaleznosci przestrzennych, a takze uwzglednia-
nie ich w modelach ekonometrycznych. Z punktu widzenia ekonomii, ekonome-
tria przestrzenna otwiera droge do lepszego zrozumienia zwigzkéw i zaleznosci
miedzy regionami, co umozliwia lepsze opisywanie systeméw ekonomicznych.
Dzi$ ekonometria przestrzenna bywa rozumiana szeroko jako zestaw metod i na-
rzedzi statystycznych oraz ekonometrycznych do przestrzennej analizy danych,
uwzgledniajacych wielorakie efekty przestrzenne, obecne zaréwno w danych dys-
kretnych, jak i ciaglych.

Przez wiele lat ekonometria przestrzenna pozostawala w cieniu gléwnych
nurtéw ekonometrii. W 1988 roku Anselin pisal o niej, ze ,jest ignorowana
w wigkszo$ci klasycznych podrecznikéw ekonometrii” (por. Anselin, 1988a: 1,
tlumaczenie wlasne). Dekade p6zniej Anselin i Bera podkredlali, ze ekonometria
przestrzenna nadal ,nie jest obecna w gléwnym nurcie ekonometrii” (por. An-
selin, Bera, 1998: 237-238, ttumaczenie wlasne). W swojej pracy zauwazali, ze
badacze zajmujacy si¢ analizami empirycznymi dostrzegaja potrzebe zmierzenia
sie z problemami zwigzanymi z obecnoscig autokorelacji przestrzennej danych
uzywanych w modelowaniu regionalnym.

Warto zauwazy¢ znaczacy udzial w rozwoju ekonometrii przestrzennej nie
wydawnictw stricte ekonometrycznych, lecz czasopism zwigzanych z naukami
regionalnymi, takich jak: ,Journal of Regional Science”, ,Regional Science and
Urban Economics’, ,,Papers in Regional Science’, ,International Regional Scien-
ce Review”, ,Geographical Analysis’, ,,Journal of Geographical Systems”. Dopiero
w nowym milenium sytuacja ta zaczela sie szybko zmienia¢ i ekonometria prze-
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strzenna trafila do gtéwnego nurtu ekonometrii, znajdujac swoje miejsce w naj-
lepszych wydawnictwach ekonometrycznych, miedzy innymi: ,Econometrica’,
»Econometric Reviews”, ,Econometric Theory”, ,Journal of Applied Econome-
trics”, ,,Journal of Business and Economic Statistics”, ,,Journal of Econometrics”,
»Review of Economics and Statistics”

Lata osiemdziesigte i dziewigédziesigte XX wieku to na arenie miedzynaro-
dowej intensywny rozwdj ekonometrii przestrzennej. Powstaly wowczas prace:
Spatial Processes: Models and Applications Cliffa i Orda (1981), Spatial Econo-
metrics: Methods and Models Anselina (1988a), nazywana ,,biblig” ekonometrii
przestrzennej oraz New Directions in Spatial Econometrics autorstwa Floraxa i An-
selina (1995).

Na rozwoj ekonometrii przestrzennej wplyneto réwniez opracowanie tzw. no-
wej ekonomii geograficznej, NEG (ang. New Economic Geography; por. Krugman,
1991a, b; Fujita et al., 1999a, b). Jej twérca — Paul Krugman — zostal uhonoro-
wany Nagrodg Nobla w roku 2008. Prace Krugmana uzasadnialy na gruncie teorii
ekonomii wykorzystanie analizy przestrzennej w badaniach regionalnych. Dawa-
ty réwniez teoretyczne podstawy modelowania regionalnej konwergencji oraz
koncentracji przestrzennej aktywnosci ekonomicznej. Obecnie, zgodnie z obo-
wigzujacymi trendami, badanie wzrostu gospodarczego w kontekscie teorii NEG
jednoznacznie wymaga zastosowania narzedzi ekonometrii przestrzenne;j.

Najwiecej opracowan ksigzkowych z dziedziny ekonometrii przestrzennej po-
wstalo jednak w pierwszej dekadzie XXI wieku. Mozna tu wymieni¢ Spatial
Autocorrelation and Spatial Filtering. Gaining Understanding Through Theory and
Scientific Visualization Griffitha (2003), Advances in Spatial Econometrics: Metho-
dology, Tools and Applications Floraxa i Anselina (2004), Spatial Econometrics.
Statistical Foundations and Applications to Regional Convergence Arbii (2006),
Spatial Econometrics. Methods and Applications pod redakcja Arbii i Baltagiego
(2009) oraz Introduction to Spatial Econometrics LeSage’a i Pace’a (2009). Na uwa-
ge zasluguje monografia Handbook of Regional Science pod redakcja Nijkampa
i Fischera (2014), ktéra dotyczy regionalistyki, ale zawiera 150 stron po$wie-
conych ekonometrii przestrzennej, a takze ksigzka o charakterze aplikacyjnym,
Modern Spatial Econometrics in Practice: A Guide to GeoDa, GeoDaSpace and
PySAL Anselina i Reya (2014).

Wéréd nowszych opracowan zagranicznych mozna wymieni¢ miedzy innymi
Spatial Econometrics: Qualitative and Limited Dependent Variables pod redakcja
Baltagiego, LeSagea i Pacea (2016) oraz Spatial Econometrics autorstwa Kele-
jiana i Pirasa (2017). Pierwsze jest zbiorem artykuldéw, poswieconych gléwnie
metodom szacowania modeli dla dyskretnych zmiennych zaleznych z zalezno-
$ciami przestrzennymi (przy uzyciu metody najwiekszej wiarogodnosci) oraz dla
binarnych i licznikowych zmiennych zaleznych (przy uzyciu metod bayesow-
skich). Z kolei drugie, dzieki rzetelnemu wprowadzeniu i formalizacji zalozen
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i zasad, stanowi podstawowe opracowanie wspodlczesnych osiggnie¢ ekonometrii
przestrzennej. Obejmuje modele regresji przestrzennej, macierze wag, procedury
szacowania (ze szczegolnym uwzglednieniem uogdlnionej metody momentow,
zaawansowanych procedur przedtestowych i bayesowskiej analizy danych) oraz
omawia komplikacje zwigzane z ich wykorzystaniem.

W Polsce, oprocz przekladow z lat 1982-83 prekursorskich monografii Pa-
elincka i Klassena (1979) oraz Klaassena i innych (1979), ukazaly sie nieliczne
publikacje ksigzkowe z tego zakresu. Jako pierwsza zostala wydana Ekonome-
tria przestrzenna pod redakcja Zeliasia (1991), pdzniej Ekonometria i statystyka
przestrzenna z wykorzystaniem programu R CRAN Kopczewskiej (2007), a takze
Ekonometryczna analiza wielowymiarowych proceséw gospodarczych Szulc (2007),
poswiecona wybranym elementom ekonometrii przestrzennej i tematyce pdl lo-
sowych. Dopiero wieloautorska monografia Ekonometria przestrzenna. Metody
i modele analizy danych przestrzennych pod redakcja Sucheckiego (2010), w tak
szerokim zakresie omawiala nowoczesne metody i modele ekonometrii prze-
strzennej. Wkrétce po niej, w 2012 roku, ukazalo si¢ opracowanie pod tg sama
redakcja pt. Ekonometria przestrzenna II. Modele zaawansowane, zawierajace opis
wspolczesnych zaawansowanych metod i modeli ekonometrycznych (wraz z przy-
ktadami ich zastosowan). W roku 2016 ukazala si¢ kolejna pozycja w tej serii,
Ekonometria przestrzenna III. Modele wielopoziomowe — teoria i zastosowania
autorstwa Laszkiewicz, bedgca omdwieniem zasad modelowania wielopoziomo-
wego z perspektywy analizy danych zlokalizowanych przestrzennie.

W literaturze widoczne jest ciagle poszerzanie zakresu zastosowan modeli
autoregresji przestrzennej. Opracowania opisujace badania empiryczne potwier-
dzajace wage efektéw przestrzennych powstaja miedzy innymi w naukach spo-
tecznych, geografii, biologii, ochronie srodowiska, a takze w ekonomii. Problem
efektow przestrzennych coraz czeéciej uwzglednia si¢ rowniez w badaniach roz-
woju regionalnego. Rozwazane s3, miedzy innymi, przestrzenne aspekty konwer-
gencji regionalnej, infrastruktury regionéw, a nawet demografii.

Ze wzgledu na rosnaca popularno$¢ stosowania metod ekonometrii prze-
strzennej w badaniach empirycznych oraz dynamiczny rozwdj zwigzanej z tym
metodologii, powstaje potrzeba tworzenia spojnych, uzasadnionych matematycz-
nie podstaw wnioskowania ekonometrycznego. Wiele z dostepnych w Polsce i na
$wiecie opracowan nie traktuje tego aspektu ekonometrii z dostateczng uwaga.
Prowadzi to czasem do niescistosci, a w efekcie moze niestety nie pozostawac
bez znaczenia dla wyciaganych wnioskéw. Za posrednictwem naszego opraco-
wania staramy sie wypelni¢ luke istniejacg na rodzimym rynku wydawniczym
i przedstawi¢ polskim czytelnikom publikacje o formalnych podstawach me-
tod ekonometrii przestrzennej. Przedstawione tresci (nieznacznie uzupelnione)
moga stanowi¢ baz¢ wyktadu kursowego z ekonometrii przestrzennej dla studen-
tow matematyKki, statystyki czy ekonometrii. Pozycja ta moze tez by¢ punktem
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wyjécia dla oséb rozwijajacych teorie ekonometrii. W szczegélnosci czytelnikow
zainteresowanych teorig asymptotyczng estymatoréw w kontekscie ekonometrii
przestrzennej.

Tematyka podjeta w monografii

Niniejsza monografia prezentuje najnowsze rezultaty z zakresu teorii asymp-
totycznych dla modeli stochastycznych ekonometrii przestrzennej. Omodwione
w ksiazce wyniki pracy naukowej autoréw poprzedzone sa przegladem wybra-
nych klasycznych zagadnien tej dziedziny ekonometrii, przedstawionych w nowo-
czesnym ujeciu. Przeprowadzone rozumowania osadzone s3 w ramach precyzyj-
nego wywodu matematycznego, a tym samym dajg czytelnikom solidne podstawy
do empirycznych badan ekonomicznych oraz do dalszych rozwazan metodolo-
gicznych. Opracowanie to ma na celu przyblizenie podstawowych i wybranych
zaawansowanych metod stochastycznych ekonometrii przestrzennej, ze szczegdl-
nym uwzglednieniem ich wlasnosci asymptotycznych.

Elementem centralnym prezentowanej teorii jest zagadnienie asymptotyki
przestrzennej macierzy wag. Od lat dziewie¢dziesigtych XX wieku wiadomo, ze
zachowanie macierzy wag — przy rosngcym do nieskonczonos$ci rozmiarze pro-
by — ma decydujace znaczenie dla wlasnosci modeli ekonometrii przestrzennej
(chociazby identyfikowalnosci parametréw czy wlasnosci zwigzanych z nimi esty-
matoréw). W niniejszej publikacji autorzy podjeli temat rozszerzalnosci znanych
teorii ekonometrii przestrzennej na bardziej obszerne klasy schematéw interakcji
przestrzennych. Dzieki konstrukcji tzw. niesumowalnych macierzy wag, w spe-
cyfikacji modelu zjawiska mozna uwzgledni¢ bardziej ztozone zalezno$ci migdzy
badanymi jednostkami.

Problem macierzy niesumowalnych w kontekscie ekonometrii przestrzennej
jako pierwsi dostrzegli Gupta i Robinson (2018). Uzyskali oni wynik o zgod-
noéci pewnych estymatoréw opartych na metodzie najwigkszej wiarogodnosci.
Pytanie o rozklad asymptotyczny oszacowan pozostalo jednak otwarte. Dopiero
w pracy Olejnik i Olejnik (2020) sformufowano teori¢ matematyczng podajaca
kompletng odpowiedz w kontekscie proceséw z autoregresja zmiennej zaleznej.
W niniejszej monografii rozszerzamy te teorie. W szczegélnosci zajmujemy sie¢
specyfikacja modeli ekonometrycznych z autoskorelowanym skladnikiem loso-
wym, w ktérych dopuszczona jest mozliwo$¢ zaleznosci przestrzennych wyzszego
rzgdu z wektorowym wspdtczynnikiem zaleznosci. Przedstawione tutaj wyniki nie
byly wczesniej publikowane. Uzyskane przez nas centralne twierdzenie graniczne
stosujemy réwniez do udowodnienia zbieznosci wedlug dystrybuanty standary-
zowanych statystyk: / Morana, testu mnoznikéw Lagrangea oraz informanty
Rao, przy zastosowaniu niesumowalnych macierzy wag przestrzennych.
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W rozdziale I wprowadzamy podstawowe pojecia i oznaczenia, wykorzy-
stywane w dalszej czeéci pracy. Definiujemy formalnie pojecie przestrzennego
procesu stochastycznego i przedstawiamy ide¢ przestrzennej macierzy wag (wraz
z przyktadami). Przedstawiamy réwniez podstawowe dla ekonometrii przestrzen-
nej pojecie autokorelacji przestrzennej oraz popularne statystyki stosowane do
testowania obecnosci tego zjawiska.

W kolejnym rozdziale dokonujemy przegladu popularnych specyfikacji mo-
deli ekonometrii przestrzennej. Prezentacje zaczynamy od tych najprostszych
(model czystej autoregresji przestrzennej, autoregresji przestrzennej SAR, mo-
del z przestrzennie autoskorelowanym skladnikiem losowym SEM), a konczy-
my na najbardziej zlozonych, rozwazanych czesto tylko teoretycznie, modelach
wyzszych rzedéw klasy SARAR, czy modeli ze srednia ruchoma SARARMA.
W dalszej cze¢$ci omawiamy teorie pozwalajacg na poprawng interpretacje osza-
cowan parametrow modeli autoregresji przestrzennej, opartg na przeksztalceniu
réwnania specyfikacji modelu do postaci jawnej w celu wyliczenia tzw. efek-
tow bezposrednich i posrednich. Znaczna czes¢ tego rozdzialu zostata poswie-
cona podstawom matematycznym wybranych procedur estymacji. W szczegodl-
nosci pokazujemy, ze mimo niezgodnos$ci estymatora najmniejszych kwadratow
w przypadku ogélnym, dla pewnych klas macierzy wag (w przeciwienstwie do
innych metod) moze on oferowa¢ dobrej jakosci oszacowania. Zaprezentowa-
ne metody estymacji obejmujg réwniez metody: zmiennych instrumentalnych,
najwigkszej wiarogodnosci, uogoélniona metoda najmniejszych kwadratéw oraz
uogolniona metode momentow.

W rozdziale III badamy wlasnosci statystyk testowych, a w szczegdlnosci sta-
tystyki Morana. Przeprowadzamy formalne rozumowania prowadzace do uzyska-
nia wlasciwych rozkladéw asymptotycznych, przy zastosowaniu niesumowalnych
macierzy wag przestrzennych. Rozwazamy réwniez problem tzw. niestacjonar-
no$ci oraz — na bazie znanego testu niestacjonarnosci przestrzennej — prezen-
tujemy procedure testowa Kosfelda-Lauridsena-Olejnika.

W rozdziale IV przedstawiamy kompletny wywod formalny, wykazujacy
zgodno$¢ estymatordw quasi-najwiekszej wiarogodnosci (QNW) dla modeli au-
toregresyjnych. Elementem nowatorskim jest ominiecie w sformufowane;j teorii
zalozenia o sumowalnosci przestrzennej macierzy wag, co poszerza stosowalnos¢
przestrzennych modeli ekonometrycznych. W prezentowanych rozumowaniach
stosujemy zlagodzone wymagania, dotyczace rozkladu sktadnika losowego mo-
delu. W szczegolnosci, rozklad ten nie musi by¢ gaussowski, a elementy wektora
zaburzen nie musza by¢ niezalezne. Opuszczamy réwniez zalozenie réwnosci
rozktadéw miedzy elementami. Co wigcej, dopuszczamy funkcje gestosci od-
powiednich rozkladéw o ogonach grubszych niz zaklada standardowa teoria
asymptotyczna.
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W rozdziale V monografii zamieszczamy autorskie centralne twierdzenie gra-
niczne dla form liniowo-kwadratowych. Przy pomocy tego wyniku uzyskujemy
twierdzenia o rozkladzie granicznym oszacowan estymatoréw QNW. W szczegdl-
nosci wykazujemy asymptotyczng normalnos¢ oszacowan pochodzacych z gaus-
sowskiej estymacji QN'W, przy niejednorodnych i niegaussowskich zaburzeniach.
Istotnym elementem jest rozluznienie warunkéw nakladanych na asymptotyczne
zachowanie si¢ macierzy wag uzytych w specyfikacji modelu przestrzennego.
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Regresja liniowa jest jedng z najpopularniejszych technik eksploracji danych, za-
ktada jednak, Ze obserwacje w probie s3 warunkowo niezalezne. To zalozenie
niekoniecznie jest spelnione w przypadku danych przestrzennych, np. danych
geograficznych lub w szczegdélnym przypadku danych pochodzacych z badan zja-
wisk zachodzacych w przestrzeni. Wowczas na przebieg obserwowanego procesu
czesto wplywa relacja sasiedztwa, a ogolniej — uklad odlegtosci miedzy jednost-
kami podlegajacymi badaniu. W takim przypadku mamy do czynienia z tzw.
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autokorelacjg przestrzenna. Ze swojej natury, autokorelacja przestrzenna jest $ci-
$le zwigzana z rozmieszczeniem jednostek oraz interakcjami przestrzennymi, a jej
idea wykorzystuje pierwsze prawo geografii, sformulowane w 1970 roku przez
Waldo Toblera: Everything is related to everything else, but near things are more
related than distant things (Tobler, 1970: 236).

Reguta Toblera méwi o tym, ze sila oddzialywan miedzy obiektami blisko
polozonymi w przestrzeni jest wigksza, niz pomiedzy obiektami znajdujacymi
sie w duzym oddaleniu. W naszym opracowaniu stowo ,przestrzen” bedziemy
rozumie¢ w szerokim sensie. Zauwazmy, ze mozemy mie¢ do czynienia nie tylko
z przestrzenia fizyczng czy geograficzng. Zbior jednostek, z ktorych pochodza da-
ne, moze by¢ wlasciwie dowolnym zbiorem, o ile okreslona jest relacja sgsiedztwa
badz metryka reprezentujaca odleglos¢ miedzy jego elementami. W szczegolno-
$ci, przestrzeniag moze by¢ o§ punktéow czasowych (tak jak w teorii szeregéw
czasowych), wycinek mapy reprezentujacy obszar geograficzny, a takze czaso-
przestrzen powstajaca jako iloczyn kartezjanski dowolnej przestrzeni abstrakcyj-
nej i osi czasowej (tak jak w badaniach panelowych).

Uwzglednienie prawa Toblera w analizach empirycznych wymaga precyzyjne-
go zdefiniowania pojec¢ bliskosci (sagsiedztwa) lub odleglosci. W takim przypad-
ku mozliwym bedzie uwzglednienie w modelu zjawiska zaleznosci, na przyklad
korelacyjnej badz regresyjnej, zmiennych losowych reprezentujacych obserwacje
pochodzace z jednostek bliskich sobie w przestrzeni. Zauwazmy, ze w przypadku
szeregow czasowych kierunek uporzadkowania jest naturalny. Przyklad prostej
autoregresji y; = pyi—1 + €, gdzie t = 1,2,...,T, pokazuje, ze mamy tu do
czynienia z jednokierunkowg zaleznoscig o zwrocie zgodnym z uplywem czasu,
a (niesymetryczna ze wzgledu na przyczynowos¢) relacja blisko$ci ograniczona
jest do sgsiednich okresow. Ogolnie w przestrzeni nie ma jednak takiego intu-
icyjnego uporzadkowania, zalezno$ci moga by¢ wielokierunkowe, a ich zwrot nie
musi by¢ jednoznacznie okreslony. Niemniej jednak, sita zalezno$ci przestrzen-
nych bedzie zalezna od odleglosci pomiedzy obiektami.

W niniejszym rozdziale wprowadzone zostang podstawowe pojecia i oznacze-
nia wykorzystywane w dalszej czesci pracy. W czedci pierwszej przedstawiona
zostanie formalna definicja przestrzennego procesu stochastycznego. W kolej-
nej sekeji zaprezentujemy ideg przestrzennej macierzy wag. Zdefiniowanie tego
pojecia umozliwi wprowadzenie do modeli matematycznych informacji a priori
o zaleznosciach przestrzennych. Ostatnia cze$¢ rozdzialu poswigcona bedzie defi-
nicji autokorelacji przestrzennej. Zaprezentujemy tam réwniez przeglad popular-
nych testow statystycznych, stosowanych do wykrywania obecnosci autokorelacji
przestrzennej w analizowanych danych. W szczegélnosci rozwazamy popularng
statystyke / Morana na poziomie zaréwno globalnym jak i lokalnym. Sciste ma-
tematycznie rozumowanie dotyczace rozkladéw asymptotycznych tej statystyki
zaprezentowane zostanie jednak dopiero w rozdziale III.
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1. Procesy stochastyczne w przestrzeni

1.1. Interakcje przestrzenne

W przypadku analiz proceséw ekonomicznych obserwowanych w przestrzeni
mozna zalozy¢, ze jednostki przestrzenne, np. regiony, nie stanowia niezalez-
nych, odizolowanych gospodarek, ale wzajemnie na siebie oddzialuja. Zgodnie
z prawem Toblera, im blizej potozone sg dwa obiekty w przestrzeni, tym wigksza
jest sita interakcji miedzy nimi. Wystepowanie zalezno$ci przestrzennych wy-
nika najczesciej z charakteru proceséw ekonomicznych, ktére s3 ograniczone
w przestrzeni, a ich intensywnos$¢ stanowi funkcje odleglosci. W efekcie, zalez-
nosci przestrzenne wystepuja wowczas, gdy warto$¢ zmiennej z jednej lokalizacji
jest uzalezniona od jej wartosci w innych lokalizacjach. Oddzialywania te mo-
ga wynika¢ z heterogenicznosci przestrzennej (ang. spatial heterogeneity), czyli
przestrzennego zréznicowania procesu ekonomicznego, badz tez z tzw. efektow
przestrzennych (ang. spatial effects), wérdd ktorych wyrézniamy efekty zewnetrz-
ne (ang. externalities) oraz efekty rozprzestrzeniania sie (ang. spillover effects).
Heterogenicznos$¢ przestrzenna wigze si¢ z problemem niestabilnosci relacji
ekonomicznych w przestrzeni geograficznej, co moze skutkowa¢ niestabilnoscia
parametréw strukturalnych w modelu ekonometrycznym (por. Anselin, 1988a;
Suchecki [red.] 2010). W przypadku wystepowania heterogenicznosci przestrzen-
nej wskazuje si¢ na wystepowanie tzw. rezimow przestrzennych (ang. spatial regi-
mes), czyli obszarow, ktore ze wzgledu na przebieg proceséw ekonomicznych sg
wewnetrznie spojne. Zauwazmy bowiem, ze zjawiska ekonomiczne mogg inaczej
przebiegac np. w regionach centralnych i peryferyjnych, w duzych aglomeracjach
i na obszarach wiejskich czy w krajach tzw. starej i nowej Unii Europejskiej.
Przestrzenne efekty zewnetrzne sg zjawiskiem polegajacym na przeniesieniu
cze$ci korzysci ekonomicznych wynikajacych z dzialalnosci jednego podmiotu na
podmioty sasiednie, bez odpowiedniej rekompensaty. Na wystepowanie efektow
zewnetrznych moga wplywac efekty wystepujace miedzy producentami i konsu-
mentami lub grupami producentéw. Przykltadem — wtasciciel przedsigbiorstwa,
zlokalizowanego w poblizu miasta uniwersyteckiego, ktéry bedzie odnosit korzy-
$ci w postaci mozliwosci zatrudnienia lepiej wyksztalconej kadry pracowniczej,
nie ponoszac kosztoéw na rzecz ich edukacji czy samego uniwersytetu.
Rozprzestrzenianie si¢ jest w pewnym sensie jednym z efektéw zewnetrznych,
cho¢ dotyczy sytuacji, w ktérej badane zjawisko wptywa samo na siebie, powodu-
jac zaleznosci przestrzenne. Na przyklad, przedsigbiorca otwierajacy sklep, klub
lub restauracje moze zdecydowac sie na lokalizacje obok sklepu tej samej bran-
zy. Wowczas tworzy sie pewnego rodzaju klaster podmiotéw, oferujacy szeroki
wybdr towaréw i ustug, przyciagajacy wigksza grupe konsumentéw. Zauwaz-
my, ze zarowno w przypadku wystepowania efektéw zewnetrznych jak i efektow
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rozprzestrzeniania sie obserwujemy kumulowanie si¢ aktywnosci ekonomicznej
w przestrzeni, jednak jego przyczyny sa rozine.

Niezaleznie od proceséw ekonomicznych lezacych u podstaw badanego zja-
wiska, obserwowane efekty przestrzenne, nazywane réwniez efektami zarazania
(ang. contagion effects), moga mie¢ dwojaka nature. Powiemy, ze ma miejsce wla-
$ciwy efekt zarazania (ang. true contagion effect), gdy poziom okreslonego pro-
cesu ekonomicznego na pewnym obszarze ma dodatni wplyw na jego rozwdj na
obszarach sgsiednich (przestrzenne dodatnie sprzezenie zwrotne). O pozornym
efekcie zarazania (ang. spurious contagion effect) méwimy, gdy zamiast rzeczy-
wistego wplywu obserwujemy wystepowanie pewnych wspdlnych, sprzyjajacych
warunkow zewnetrznych. Dla przykladu mozna rozwazy¢ grupowanie si¢ przed-
siebiorstw, wynikajace z faktu istnienia wspolnych korzysci ze wspdtdzielenia
lokalizacji, np. wspotpraca (wlasciwy efekt zarazania) lub korzystania z okreslo-
nej wlasciwoéci samej lokalizacji, np. ulgi podatkowe, dogodna infrastruktura
komunikacyjna (pozorny efekt zarazania).

Rozroéznienie analityczne powyzszych efektow moze mie¢ miejsce w doborze
odpowiedniej postaci algebraicznej przestrzennego modelu ekonometrycznego
(por. przeglad specyfikacji w rozdziale II). Niemniej jednak, podanie prostego
przepisu na reprezentacje zjawiska ekonomicznego poprzez specyfikacje modelu
nie jest mozliwe. Nalezy zauwazy¢, ze w przypadku rzeczywistych proceséw ma-
my najczesciej do czynienia z kombinacjg roznych efektéw, dziatajacych jawnie
lub w sposéb niebezposredni, prowadzacych wspoélnie do autokorelacji prze-
strzennej danych.

Poza opisanymi wczes$niej mechanizmami, na wystepowanie zaleznosci prze-
strzennych moze mie¢ réwniez wplyw pewien aspekt czysto techniczny. Jak wy-
jasnia Olejnik (Suchecki [red.] 2010), na etapie przygotowywania analiz dane
sa grupowane pod wzgledem przynaleznosci do jednostek administracyjnych
(takich jak gminy, powiaty, wojewddztwa), a nie struktury badanego zjawiska.
W konsekwencji, jesli warto$ci analizowanej zmiennej wykraczaja poza ustalone
granice, miedzy sasiadujacymi ze soba obiektami obserwujemy wystepowanie in-
terakcji. Zagadnienie to nazywane jest problemem MAUP (ang. Modifiable Areal
Unit Problem, patrz Arbia, 1989) i jest kategoryzowane jako blad pomiaru, wyni-
kajacy z rozbieznoséci miedzy jednostka administracyjng poddawang pomiarowi
a obszarem, na ktérym zjawisko faktycznie ma miejsce. Problem ten jest czesta
przyczyng obcigzen analiz statystycznych, w ktérych odgoérne nadanie regionom
granic administracyjnych powoduje, ze zaleznosci przestrzenne i heterogenicz-
no$¢ danych przestrzennych moga nawet by¢ generowane sztucznie. Powszechnie
uznaje sig, iz jedli nie ma mozliwosci pozyskania danych nieobarczonych btedem
MAUP, wéwczas pewnym sposobem na eliminacje jego skutkéw jest uwzgled-
nienie autokorelacji przestrzennej w postaci modelu ekonometrycznego.
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1.2. Definicja przestrzennego procesu stochastycznego

Rozwazmy zbiér obiektow w przestrzeni lokalizacji P = 1,...,N. W dalszej
cze$ci opracowania dla uproszczenia bedziemy nazywac je lokalizacjami, jed-
nostkami przestrzennymi badz — dla lepszego zilustrowania omawianego poje-
cia — regionami. Poszczegélne jednostki bedziemy identyfikowac z ich indeksa-
mi:¢=1,..., V.

W praktyce, w ekonometrii przestrzennej, przez przestrzenny proces stocha-
styczny rozumie si¢ (najczgsciej kolumnowy) wektor losowy

T
T2

TN

w ktérym kazda ze wspdtrzednych z;, 1 < ¢ < N, jest zmienng losowg okreslona
na jednej wspolnej przestrzeni probabilistycznej (€2, F,P) reprezentujaca warto$¢
procesu, obserwowang w odpowiednich lokalizacjach i € P. Struktura losowosci,
a tym samym struktura zaleznoéci pomiedzy poszczegdlnymi zmiennymi pro-
cesu, modelowana jest poprzez dystrybuante rozkladu tgcznego. Tak wiec, jesli
X = [Z1,Z2,...,% N]T € RV jest wektorem liczbowym potencjalnych realizacji
procesu X, to dystrybuanta stochastycznego procesu przestrzennego dana jest
przez zaleznos$¢

Fa(F1,22,.,@n) =/ (27) N det V / ¢~ Sav(e—pm) gg
{z <}

gdzie po jest wektorem odpowiednich wartosci oczekiwanych, a RY > z
Qv (x) € R jest formg kwadratows o dodatnio okre$lonej (symetrycznej) macie-
rzy 'V, ktorej macierzowa odwrotnos¢ reprezentuje strukture zaleznosci procesu

przestrzennego.
Zauwazmy, ze jesli rozwazamy ustalony i skonczony zbidr lokalizacji P =
{1,...,N}, to—z punktu widzenia aparatu matematycznego — teoria prze-

strzennych proceséw stochastycznych moze by¢ sprowadzona do teorii wektoréw
losowych ustalonego, skonczonego wymiaru. Aby rozwaza¢ wlasnosci o charak-
terze asymptotycznym, musimy jednak rozszerzy¢ definicje procesu przestrzen-
nego. W praktyce interesujg nas czesto wartosci pewnej liczbowej (losowej) cha-
rakterystyki 6(x) obserwowanego procesu x. Taka charakterystyka moze by¢
pewna statystyka (funkcja obserwacji) procesu lub estymator nieznanego para-
metru. W teorii ekonometrii w naturalny sposéb pojawiajg si¢ wtedy takie pojecia
jak zgodnos¢ czy asymptotyczna normalnos¢, ktére wymagaja (chociazby poten-
cjalnej) mozliwosci nieograniczonego zwigkszania rozmiaru proby. W praktyce
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nie dysponujemy jednak wieloma realizacjami tego samego procesu losowego,
a raczej jedng jego trajektorig. Zatem wnioskowanie opiera si¢ na zalozeniu, ze
to dziedzina przestrzenna procesu potencjalnie ro$nie nieograniczenie. Innymi
stowy, asymptotyka zjawiska przestrzennego obserwowana jest nie przez wie-
lokrotne probkowanie trajektorii procesu, a raczej przez zwickszanie rozmiaru
dziedziny przestrzennej N do nieskonczonosci.

DEeFINIC]A
Niech (€2, F,P) bedzie ustalong przestrzenig probabilistyczng. Przez prze-
strzenny proces stochastyczny bedziemy rozumie¢ funkcje losowg x = x (V)
postaci

I
T2 N
NoN—x= ) e X Lo(2, F,P),
: i=1
TN

W przypadku standardowych modeli statystki i ekonometrii, w ktérych ele-
menty proby sa niezalezne, potencjalny wzrost rozmiaru proby mozna latwo
interpretowac jako np. uzupelnienie/rozszerzenie proby o dodatkowe, niezalezne
obserwacje o analogicznej strukturze losowosci. Mianowicie moglibysmy doko-
na¢ dodatkowego losowego wyboru elementéw populacji lub iteratywnie wyko-
nywa¢ eksperyment i rozszerzaé probe o zarejestrowane wyniki pomiaréw.

Gdy proba ma jednak charakter przestrzenny, a obserwacje pochodza z fi-
zycznych lokalizacji, wowczas zbudowanie podobnej interpretacji moze nastre-
cza¢ pewne trudnosci. Podstawowym problemem jest brak fizycznej mozliwosci
rozszerzenia proby. Jedli, dla przykiadu, badanie dotyczy krajéow cztonkowskich
Unii Europejskiej, wowczas wzrost proby moglby nastapi¢ tylko w przypadku
rozszerzania wspolnoty. Pozostaje zatem pytanie o sposdb rozumienia takie-
go hipotetycznego rozszerzenia, a w efekcie réwniez, o sposob interpretowania
asymptotycznego zachowania sie statystyki N > N +— 6(x), przy rosngcym
N — o0. Ponizej przedstawimy krotko trzy mozliwe interpretacje, oparte na
réznych wzorcach hipotetycznego wzrostu rozmiaru proby.

Najprostsze podejscie polega na przyjeciu asymptotyki trywialnej (ang. simple
asymptotics), polegajacej na zalozeniu, ze jesteSmy w stanie potencjalnie prze-
prowadzi¢ caly eksperyment ponownie i, tym samym, zebra¢ kolejne, niezalezne
probki wartosci calego obserwowanego wektora. Takie podejscie ma oczywiste
ograniczenie. Poniewaz, de facto, nigdy takiego ponownego losowania i pomiaru
nie wykonujemy, w efekcie dokonujemy wnioskowania statystycznego na pod-
stawie tylko jednej realizacji procesu przestrzennego. Co za tym idzie, taka hipo-
tetyczna asymptotyka nie pozostawia miejsca na wzrost ilosci informacji o zalez-
nosciach przestrzennych pomiedzy obserwacjami. W prawdzie mozna sformuto-
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wa¢é twierdzenia o wlasnosciach asymptotycznych statystyk w tym modelu, lecz
w praktyce trudno jest obroni¢ zasadno$¢ uzycia takiego wyniku do wniosko-
wania dla proby skonczonej — efektywnie jednoelementowej! Dodatkowo, hipo-
tetyczna wielko$¢ proby zawsze stanowi wielokrotno$¢ wyjsciowej wartosci V.

Drugim modelem jest tzw. asymptotyka rosnacej dziedziny (ang. increasing
domain asymptotics). Zaklada ona, ze jesteSmy w stanie zwieksza¢ nieograni-
czenie rozmiar proby poprzez rozszerzanie fizycznej dziedziny procesu. Inaczej,
w efekcie zwiekszania $rednicy dziedziny przestrzennej zaliczane s3 do niej coraz
to nowe jednostki. Istotne jest, aby nowo dotaczone obszary charakteryzowaly sie
podobnag strukturg zaleznosci przestrzennych procesu. Ostatecznie, istnieje pew-
na liczba 1 > 0 ograniczajaca od dotu minimalng odlegto$¢ migdzy dowolnymi
jednostkami przestrzennymi.

Podejsciem w pewnym sensie odwrotnym w stosunku do powyzszego jest
koncepcja asymptotyki wypelniania (ang. infill asymptotics), w ktérej zaklada sig
ograniczenie $rednicy dziedziny przestrzennej. W takim przypadku nowe jed-
nostki przestrzenne pojawiaja si¢ w sposob rownomierny, np. pomiedzy istnieja-
cymi lokacjami w prébie. W efekcie, minimalna odleglo$¢ pomiedzy jednostkami
przestrzennymi dazy do zera.

2. Przestrzenna macierz wag

2.1. Definicja i przyklady

Aby opisa¢ i uwzgledni¢ w modelu ekonometrycznym przestrzenna strukture
sasiedztwa, stosuje si¢ tzw. macierz wag przestrzennych (ang. spatial weight ma-
trix), ktorej elementy majg interpretacje mnoznikéw nadajacych wagi skladni-
kom w zaleznosci linowej. Zwykle przyjmowana jest ona a priori i uwaza sig,
ze ma charakter egzogeniczny. Zauwazmy, ze w polskiej terminologii zamiennie
uzywany jest termin przestrzenna macierz wag, patrz Suchecki [red.] (2010).

DEFINICJA
Przyjmijmy, ze zbior liczb naturalnych {1,..., N} indeksuje elementy w N-
-elementowej probie jednostek przestrzennych podlegajacej badaniu. Macierz
kwadratowg W = [wj;]1<; j<n 0 wymiarach N x N, reprezentujaca liczbowo
moc zaleznosci miedzy obiektami, nazywamy macierza wag przestrzennych.
Dla dowolnych 1 < i # j < N, element w;; reprezentuje wplyw, jaki wywiera
jednostka przestrzenna j na jednostke <.

Nalezy tutaj zaznaczy¢, ze w wiekszosci przypadkéw (réwniez w tym rozdzia-
le) przyjmuje si¢, ze macierz wag ma zerowq przekatna, tj. w;; = 0, dla wszyst-
kich 1 <7 < N, a wszystkie elementy macierzy sg nieujemne. W ogdlnosci tak
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jednak by¢ nie musi. W przypadku macierzy wag przestrzennych, rozwazanych
na potrzeby przestrzennych modeli ekonometrycznych, ktérych oryginalna spe-
cyfikacja podlega liniowemu przeksztalceniu (np. usuwaniu efektéw stalych) to
zalozenie nie musi by¢ spelnione (patrz Olejnik, Olejnik, 2020).

Ponizej zamieszczamy przyklady macierzy wag przestrzennych, powszech-
nie stosowanych w badaniach ekonomicznych z geograficzng dziedzing procesu
przestrzennego.

PRZYKEAD

Macierz W = [f(d;;)]1<ij<n — gdzie d;; oznacza odlegloé¢ (najczesciej eu-
klidesowa) miedzy lokalizacjami ¢ oraz j (najcze$ciej centroidami obiektow
przestrzennych), a f: [0,00) — [0,00) jest dowolng funkcjg malejacg —
nazywamy przestrzenng macierza odleglosci. W praktyce najczesciej stosu-
je sie funkcje wykladnicza lub potegowa. W przypadku funkcji wyktadni-
czej przestrzenna macierz odleglosci przyjmuje posta¢é W = [e=2%i]; ¢; i,
gdzie parametr o > 0 przyjmowany jest a priori. Dla funkcji potegowej za$
W = [di; “|i<ij<n, gdzie parametr « jest dodatni.

Nalezy tutaj wspomnie(, ze do uzyskania pozadanych wlasnosci asymptotycz-
nych modeli przestrzennych w przypadku macierzy odleglosci opartej na funkcji
potegowej, moze okaza¢ si¢ konieczne zastosowanie tzw. punktu odciecia. Za-
ktada si¢ wtedy dodatkowo, ze dla jednostek przestrzennych 4, j takich, ze d;;
przekracza okreslony poziom D, wzajemny wplyw jednostek jest znikomy, a wiec
wi; = 0, dla d;; > D. Alternatywnie rozwaza si¢ tez mozliwo$¢ przeskalowania
macierzy W jej najwigksza warto$ciag wlasng (np. Elhorst, 2001; Vega, Elhorst,
2015; Olejnik, Olejnik, 2020; patrz réwniez rozwazenia dotyczace asymptotyki
przestrzennej macierzy wag dalej w tym rozdziale).

PrRZYKEAD
Przestrzenng macierza ustalonego promienia nazywamy macierz W, ktorej
elementy w;; s3 réwne 1, jedli odleglos¢ d;; pomiedzy dwoma lokalizacja-
mi 1 < ¢,j < N nie przekracza pewnej, ustalonej a priori odleglosci d*,
a w przeciwnym wypadku sg réwne zero. Mamy zatem

w~—{ 1, 0<dy<d
v 0, dij > d*
PrRZYKLAD
Macierz, ktdrej elementy okreslaja, czy dwa obiekty przestrzenne majg wspdl-
na granice, czy tez nie, nazywamy przestrzenng macierzg wspolnych granic.
Dokladniej, elementy macierzy W = [w;j]1<i j<n s3 zdefiniowane nastepu-
jaco
i — { 1, jesli obiekty 7 i j maja wspolng granice
Y0, w pozostatych przypadkach
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PrRZYKEAD
Macierz W = [w;j]i<i j<n, ktorej elementy okreslone s3 przynaleznoscia
obiektu j do zbioru k-najblizszych sgsiadéw, NN, zgodnie ze wzorem

Ba! dla j € NN,
%ii = 0, w pozostalych przypadkach -

nazywamy przestrzenng macierz k-najblizszych sasiadow.

W praktyce do najczesciej wykorzystywanych macierzy wag naleza te oparte
na odleglosci oraz sgsiedztwie (por. Anselin, 1988a), cho¢ w przypadku niektd-
rych analiz badacze widzg potrzebe uogoélniania klasycznych definicji, czy wrecz
poszukuja nowych, bardziej elastycznych metod okreslania struktury przestrzen-
nej. W szczego6lnosci rozwazane sg schematy anizotropowe, a nawet, co wiaze si¢
z ryzykiem endogenicznosci macierzy W, oparte na wartosciach zmiennych ob-
serwowanych (por. Deng, 2008; Corrado, Fingleton, 2011; Kelejian, Piras, 2014;
Olejnik i in., 2020).

Dyskusja na temat poprawnego okreslenia struktury przestrzennej badanego
procesu poprzez odpowiednig macierz wag trwa od powstania omawianej dys-
cypliny. Poszukujgc drég do jak najwierniejszego oddania zréznicowan struktu-
ry przestrzennej, w literaturze mozna znalez¢ liczne przyklady metod i proce-
dur uwzgledniajacych dodatkowe informacje wzbogacajace specyfikacje modelu.
Przykladem moze by¢ tu praca Daceya (1968), ktéry zbudowal asymetryczng
macierz wag, faczaca binarng macierz sgsiedztwa z wielkos$cia regionu oraz diu-
goscig wspdlnych granic. Cliff i Ord (1981) zaproponowali macierz wag zawie-
rajaca kombinacje miary odlegtosci i diugosci wspoélnych granic. Z kolei Bodson
i Peeters (1975) przedstawili koncepcje macierzy dostepnosci, taczaca odleglos¢
pomiedzy poszczegolnymi regionami z réznymi kanatami komunikacyjnymi. Na
macierz odleglosci natozyli oni wagi, zwigzane z dostgpnoscig $rodkéw trans-
portu, takich jak drogi czy linie kolejowe.

Innym ciekawym przykladem jest przestrzenna macierz wag Besnera (2002),
skonstruowana na podstawie miar podobienstw w zmiennych socjoekonomicz-
nych. W pracy Getis i Aldstadt (2004) zaproponowano model, w ktérym prze-
strzenna macierz wag zostala skonstruowana w oparciu o lokalng statystyke
Getisa-Orda G; (por. Getis, Ord 1992; Ord, Getis 1995).

Z kolei w pracy Panak (2006) zaproponowano uwzglednienie w macierzy
wag zaré6wno aspektow czysto geograficznych, jak i powiazan infrastruktury ko-
munikacyjnej. Zatozono, iz czas podrézy miedzy obiektami przestrzennymi lepiej
reprezentuje przestrzenng strukture badanego procesu niz klasyczna macierz wag
przestrzennych. Badajac liczbe i jakos¢ polaczen kolejowych i lotniczych oraz
klase drég i autostrad wykazano, iz wybrane jednostki, odlegle od siebie geo-
graficznie, s tak dobrze skomunikowane, ze s3 ,blizej” siebie niz wynikaloby
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to z odleglosci euklidesowej i powinny by¢ rozwazane jako obiekty sasiednie.
Podobnie jak w przypadku wczesniej opisanych macierzy wag, konstrukcja wy-
magala ustalenia wielu nieznanych parametréw a priori.

W literaturze spotyka si¢ rowniez proby parametryzacji macierzy wag (np. El-
horst, Halleck, 2013), jednak nalezy zachowal tu szczegdlng ostroznos¢. Jak
zauwaza Anselin (1988a), réwnoczesna estymacja parametréw macierzy wag
z wspdlczynnikami réwnania moze prowadzi¢ do probleméw z efektywnoscia
estymacji, a takze z interpretacjg tak otrzymanych wynikéw. Dodatkowo moze
wskazywac na istnienie zalezno$ci pozornych.

Problem wlasciwej specyfikacji macierzy wag przestrzennych pozostaje otwar-
ty. Trudno jednak o jednoznaczne wytyczne ze wzgledu na zréznicowanie czyn-
nikéw wplywajacych na strukture zaleznosci przestrzennych i ich zalezno$¢ od
przedmiotu badan. Nalezy tez zauwazy¢, ze niektdre analizy empiryczne wymaga-
ja zastosowania niestandardowych koncepcji reprezentacji struktury przestrzen-
nej. Wystarczy tu choc¢by wskaza¢ problem obiektéw brzegowych i odizolowanych
przestrzennie, niepozostajacych w bezposrednim sgsiedztwie z innym obiektem,
a przeciez nie stanowigcych wyalienowanych gospodarek. W niektérych bada-
niach struktura przestrzenna powinna zatem uwzglednia¢ réwniez oddzialywania
komunikacyjne, ekonomiczne i socjoekonomiczne (np. dojazdy do pracy, kon-
takty handlowe, a nawet powigzania etniczne).

Innym zagadnieniem jest problem dopuszczalnej ilo$ci zaleznosci wyrazonej
w macierzy wag, tak aby modelowanie i wnioskowanie ekonometryczne pozo-
stawato mozliwe. Ten problem nakreslamy w nastepnym podrozdziale.

2.2. Asymptotyka macierzy wag

Zdefiniowanie przestrzennej macierzy wag umozliwia sformulowanie pojecia
opdznienia przestrzennego, ktére jest analogiem operatora opdznienia, znane-
go z teorii szeregdw czasowych. Przypomnijmy, ze dla procesu stochastycznego
(z¢) operator opdznienia L jest definiowany poprzez zalezno$¢ L{z:] = ;1.
Okresdlenie opdznienia przestrzennego, ze wzgledu na swoista ,wielokierunko-
wo$¢” procesu, nie jest tak intuicyjne, jak w przypadku szeregéw czasowych.

DEeFINICJA
Niech x = (;))¥, bedzie przestrzennym procesem stochastycznym, i niech
W = [wij]i<ij<n ustalong macierza wag. Opdinieniem przestrzennym

(ang. spatial lag) L[z;] procesu x w lokacji 1 < @ < N nazywamy $rednig
wazong wartosci procesu x w lokacjach sgsiadujacych

N
L[.rl] = Z wl-jxj.
7j=1
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Zatem sgsiedztwo, a takze wagi, okreslone sg przez odpowiednie elementy
przestrzennej macierzy wag. Dokladniej, element w;; mozna liczbowo inter-
pretowa¢ jako sile wplywu jednostki przestrzennej j na jednostke s.

Interpretacje wartoéci elementéw w;; jako wag przestrzennych ufatwia po-
wszechno$¢ stosowania macierzy tzw. standaryzowanych (okreslenie zamien-
ne: normalizowanych) wierszowo, o elementach nieujemnych, tj. Z;Vzl wij =
I,dlal < j < N,oraz w;j > 0,dlal < 4,57 < N. W modelach eko-
nometrycznych rozwazaé bedziemy przestrzenne opdznienie zmiennej zaleznej

Wy = (Lyi)f\il = (Zjvzl wijyj)i]il’ przestrzenne opoznienie zmiennych eg-
zogenicznych WX = (sz)f\i L = (Z;VZI wijx]’)i]L oraz sktadnika losowego

We = (Lz—:i)ij\i L= (Z;V:1 wijej)i\il. Umieszczenie w modelu opdznienia prze-
strzennego pozwala na uwzglednienie w specyfikacji badanego zjawiska samoza-
leznosci o charakterze przestrzennym.

Rozwazajac wlasnoéci asymptotyczne, takie jak zgodnos¢ czy zbiezno$¢ roz-
ktadow, pojecie macierzy wag nalezy uzupetni¢ (podobnie jak w przypadku de-
finicji przestrzennego procesu stochastycznego) o zalezno$¢ od rozmiaru proby.
Zatem przez macierz wag bedziemy rozumie¢ nie pojedyncza macierz okreslo-
nego rozmiaru, ale macierzowg funkcje rozmiaru proby N 3 N — W = Wy
Stosujac sie jednak do terminologii powszechnie przyjetej w literaturze ustalamy
notacje pomijajacg indeks dolny V.

Pozadane wlasnosci statystyk badanego przestrzennego procesu stochastycz-
nego mozna uzyskac tylko, wtedy gdy macierz W, wystepujaca w specyfikacji
modelu statystycznego, spetnia pewne dodatkowe zalozenia. Aby uwzglednienie
aspektu przestrzennego w modelu mialo sens, sila interakcji miedzy jednostka-
mi przestrzennymi zawartych w macierzy wag nie moze by¢ zbyt mala, ani tez
zbyt duza. Nadmiar zalezno$ci przestrzennych miedzy warto$ciami procesu mo-
ze sprawié, ze wzrost rozmiaru proby nie bedzie skutkowal dostatecznie duzym
wzrostem informacji o estymowanych parametrach. Problem niedostatku zalez-
nosci przestrzennych opisanych macierza W wydaje sie mniejszy. Dla modeli
ekonometrycznych z opdznieniem przestrzennym sktadnika losowego, jednostaj-
na zbiezno$¢ elementéw w;j, 1 < 4,5 < N do zera moze pozwoli¢ na estymacje
nieznanych parametréw prostsza metoda estymacji, niz jest to mozliwe w ogol-
nym przypadku (patrz Lee, 2002; Mynbaev, Ullah, 2008; Mynbaev, 2010 oraz
podrozdzial 2.1 w rozdziale II). W ponizszych rozwazaniach skupimy sie za-
tem na problemie ograniczenia facznej sily interakeji przestrzennych, zawartych
W macierzy wag.

Typowym zaloZeniem asymptotycznym uzywanym do ograniczenia zalezno-
$ci przestrzennych w macierzy wag jest wymaganie jednostajnej sumowalnosci
wierszy i kolumn. Przypomnijmy, ze dla dowolnej macierzy A = [a;;] o roz-
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miarach N x N zdefiniowane s3 nastgpujace normy

N
A, = max > |wl,
=1

ISGSN 4

(L.1)

N
1Al = @aggvzglwm.
]:

Wowczas zatozenie o sumowalnosci wierszy i kolumn wymaga jednostajnej ze
wzgledu na rozmiar proby ograniczonosci powyzszych norm macierzy W (por. za-
tozenie I1.C w rozdziale II), tj.

sup  ([[W [l + [[Wiloo) < o0 (12)

=1,4,...

Jak argumentowano w pracy Olejnik i Olejnik (2020), takie zalozenie moze
okaza¢ sie zbyt restrykcyjne w przypadku wielu nawet dos¢ naturalnych kon-
strukcji macierzy wag. Jest ono szczegélnie problematyczne w przypadku asymp-
totyki wypelniania (patrz podrozdzial 1.2), jednak zlagodzenie warunku (1.2)
moze by¢ konieczne réwniez w przypadku asymptotyki rosnacej dziedziny. Na
przyklad, dla macierzy opartej na potedze odwrdconej odleglosci (ang. Inverse
Distance Weighting, IDW), czyli

1
= s

popularny przypadek interakcji newtonowskiej (av = 2) (por. Anselin, 2002),
przy réwnomiernie rozproszonej na plaszczyznie dziedzinie, prowadzi do prze-
strzennej macierzy wag, ktora nie jest sumowalna w sensie (1.2). Ogdlniej, dla
ustalonego 1 < j < N, przez n(j,9) oznaczmy liczbe jednostek przestrzen-
nych i pozostajagcych pod wptywem jednostki j, dla ktérych dist (4, j) ~ 4. Jesli
n(j,8) > const - 671, jak jest najczesciej w a-wymiarowej przestrzeni euklide-
sowej, wowczas kolumny takiej macierz nie s3 sumowalne, gdyz

A
lim n(7,0) -6 “dd = .

A—00 0

Jesli natomiast n(j,d) < const - §2¢~17¢, dla pewnego € > 0, wéwczas kolumny
macierzy wag okazg si¢ sumowalne z kwadratem, z uwagi na zbiezno$¢

A
lim n(j,8) - (67%)

A—00 0

2 40 = 0.
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Istnieje zatem potrzeba rozszerzania standardowej teorii asymptotycznej na przy-
padek macierzy nie koniecznie sumowalnych.

Czytelnicy zaznajomieni z matematyczng teorig ekonometrii czy geostaty-
styki zauwazajg z pewno$cia powszechna obecnos¢ teorii przestrzeni Hilberta
w tych dziedzinach. Mozna by wigc oczekiwa¢, ze w miejscu warunku (1.2) na-
turalnym ograniczeniem bedzie nie bezwzgledna sumowalnos¢, ale sumowalnos¢
z kwadratem. Jak wynika z rozwazan w Olejnik i Olejnik (2020), zwigzek opty-
malnego warunku ograniczonosci przestrzennej macierzy wag — mogacy zastapic
warunek (1.2) — z teoria ciggéw sumowalnych z kwadratem jest nieco bardziej
subtelny. Okazuje sie, Ze zamiast rozwaza¢ wlasnosci wierszy i kolumn macie-
rzy W z osobna, nalezy ograniczy¢ norme operatora opoznienia przestrzennego
wyznaczonego przez W. Innymi slowy, przestrzenna macierz wag traktowana
jest nie jako zbiér wierszy i kolumn, a raczej operator na R”, ktérego norma
spektralna podlega ograniczeniu

sup |[|[W] < 0. (1.3)

=1,2,...

W rozdziale II, gdzie dokonujemy przegladu klasycznych metod estymaciji
ekonometrycznych, odwolujemy sie do standardowej teorii opartej na warunku
(1.2). Z kolei w rozdziatach III, IV i V rozwijamy zapoczatkowang w pracach
Gupta i Robinson (2018) oraz Olejnik i Olejnik (2020) teori¢ wlasnosci asymp-
totycznych, opartych na warunku (1.3).

Nietrudno jest zauwazy¢, ze warunek (1.2) implikuje warunek (1.3), co wy-
nika ze znanej nieréwnosci || A||? < ||Al|1||Al|oo, dla dowolnej macierzy A —
patrz réwnanie (1.1). Latwo réowniez wskazac taki ciag macierzy A,,n =1,2,.. .,
dla ktérego sup,,cn||A| jest skoficzone i jednoczesnie warto$¢ || A1 + || Alloo
moze by¢ dowolnie duza. Nieoczywiste jest jednak wskazanie standaryzowanej
wierszowo przestrzennej macierzy wag W, w ktorej liczba niesumowalnych ko-
lumn ro$nie do nieskonczonosci. Taka konstrukcje wykonujemy ponizej.

PRZYKLAD
Zdefiniujmy zbiory By = {2}, Bs = {3,4}, B3 = {5,6,7}, a dalej By, =
{l + max Bk_l}le dla k = 4,5, ... Oczywiscie, zbiory By, dla k > 1, sa pa-
rami roztaczne oraz | ;- ; By, = N\ {1}. Zatem kazda liczba catkowita i > 2
jednoznacznie wyznacza pare liczb (k(i),[(i)) zdefiniowang przez zaleznosci

Innymi stowy, k(i) jest numerem tego zbioru By, do ktérego nalezy i,
a [(i) jest numerem porzadkowym liczby ¢ w rosngcym ciagu elementéw
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zbioru By,;). Zauwazmy, ze dla dowolnego i > 2 mamy i > [(i). Zdefiniujmy

réwniez nieskonczong macierz W = [w;;] w taki sposob, ze wszystkie

jej elementy s3 réwne zero, poza elementami w; o = 1 oraz w; ;) = ﬁ,
Wiyl =1 — ﬁ, dla wszystkich ¢ > 2.

1<i,j<oo

Pokazemy, ze zadna kolumna W nie jest sumowalna. W tym celu za-
uwazmy, ze jesli 7 > 1 jest numerem kolumny oraz k > j, wowczas istnieje
i € By, takie, ze j = (i) i W;; = 1. Zatem, dla dowolnego i = 1,2, ... mamy

0o < 1
D W= =00
1=1 k=j

Niech ||\A7\7H bedzie indukowang normg spektralng macierzy W — macierzy
rozumianej jako operator na przestrzeni Hilberta Iy ciaggéw nieskonczonych,

sumowalnych z kwadratem. Wéwczas |[W| < 1 + %. Istotnie, przy ozna-
czeniach

WY = [@;Lc ]
Wi = (W31 3]

1<i,j<o0’
1<i,j<00’

gdzie funkcja indykatorowa (i, ) + If;<;} dana jest formuty
Lo — 1, i<y
b= 00, izj

macierz W mozemy rozlozy¢ w nastepujacy sposob: W=WY1+W,. Wy-

starczy wiec pokazaé, ze |[WVY|| < 1 oraz |[WY| < %. Niech Fy, dla

N > 1, bedzie podprzestrzenig Iy zdefiniowang przez Fy = {x = (2;)2, €
lo : z;, = 0dlad > N}. Oczywiscie podprzestrzen F = |JX_; Fn nie-
skonczonych ciggéw o skonczonej liczbie niezerowych elementdw jest gestym
podzbiorem ly. Zauwazmy zatem, ze

N WU 2 WU 2
T2 = up IVl _  [Wal
zel, |l zer |z
WVY(N)x||2 —~
= sup sup IV D g o2
NeNzeFy || NeN
<

sup [WY(N)[|1[WY(N) oo = 1.
NeN
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Nastepnie oznaczmy przez c;, j > 1, kolumny macierzy W . Latwo zauwazy¢,
ze wektory c¢j, j > 1, s3 ortogonalne, gdyz odpowiadajace im zbiory indeksow
elementéw niezerowych [71({j}), 7 > 1, s3 parami rozlaczne. Co wiecej,
mamy ||c;||> = Do 7 < %. Z nier6wnosci Bessela, dla dowolnego x € [y
wnioskujemy, ze

(W) = Zlc x|? < IIwII

czyli w efekcie [|[W|| <

Ostatecznie zdefiniujemy macierz W = W(N) = [wj;], ; ;v W sposéb
nastepujacy. Potézmy w;; = w;;, dla wszystkich 1 < 4,5 < N, z wyjatkiem
Wpp—1 =1— (1 j- Zauwazmy, ze prawdziwe jest ograniczenie

W < [[W][ +1.

Co wigcej, macierz W jest standaryzowana wierszowo, gdyz Z;v:1 wy; =
w2 =1 oraz Z;VZI wij = ﬁ +1-— ﬁ =1, dla wszystkich 2 < i < N.

PRZYKELAD
Z powyzszego przykladu latwo wywnioskowal istnienie niesumowalnej sy-
metrycznej przestrzennej macierzy wag o ograniczonej normie spektralnej.
Istotnie, warunek normalizacji wierszowej tatwo zamieni¢ na warunek syme-
trii stosujac przeksztalcenie

W+ WT

Wsym = 2

3. Autokorelacja przestrzenna

W tym podrozdziale zdefiniujemy i oméwimy pojecie autokorelacji przestrzenne;.
Przyjrzymy sie takze klasycznym sposobom mierzenia i testowania obecnosci tego
zjawiska na poziomie lokalnym jak i globalnym. Zatem przyjmijmy nastepujaca
definicje.

DEerINICIA
Autokorelacja przestrzenna danych pochodzacych z przestrzennego procesu
losowego nazywamy tendencje do przyjmowania zblizonych wartosci w jed-
nostkach sgsiadujacych lub bliskich przestrzennie. Przestrzenny proces sto-
chastyczny, dla ktérego obserwuje sie takie zjawisko, nazywamy procesem
przestrzennie autoskorelowanym.
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Zauwazmy, ze przytoczona definicja nie jest Scista i nie wskazuje stopnia
autokorelacji procesu w sposob kwantytatywny. Formalnie mozna by opisa¢ licz-
bowo autozalezno$¢ procesu przestrzennego x = (z;);cp UZywajac macierzy
korelacji

Corr[xi,xj], i,7 € P.

W praktyce jednak nie stosuje si¢ takiego podejscia. Zamiast macierzy wspot-
czynnikéw przyjmuje si¢ rézne jednoparametrowe liczbowe mierniki autokore-
lacji w zaleznosci uszczegdtowionej definicji autokorelacji. Wszystkie sg jednak
oparte na pewnego rodzaju zaleznosci warto$ci zmiennej x;, 1 <7 < N, od war-
toéci opdznienia przestrzennego L[z;] = Zjvz L wijz; (patrz definicja na s. 24).

Nalezy wyrézni¢ dwa rodzaje autokorelacji przestrzennej: dodatnig i ujemna.
W przypadku autokorelacji dodatniej, warto$ci obserwowanej zmiennej z sa-
siednich jednostek sg do siebie podobne. Mamy woéwczas do czynienia z prze-
strzennym grupowaniem si¢ (w sensie lokalizacji) wysokich badz niskich war-
tosci obserwowanej zmiennej. Z kolei w przypadku ujemnej autokorelacji prze-
strzennej bedziemy obserwowa¢ wysokie warto$ci zmiennej otoczone niskimi
(i odwrotnie), ukladajac si¢ w ten sposoéb we wzoér przypominajacy szachownice.
Badania empiryczne wskazuja, ze wigkszo$¢ zjawisk ekonomicznych obserwo-
wanych w przestrzeni charakteryzuje si¢ dodatnimi oddzialywaniami, co jest
zgodne z prawem Toblera. Autokorelacja ujemna jest obserwowana w praktyce
dos¢ rzadko.

Autokorelacje przestrzenng mozemy bada¢ na poziomie lokalnym lub global-
nym. Istnienie globalnej autokorelacji przestrzennej oznacza wystgpowanie za-
leznosci przestrzennych w obrebie calego badanego obszaru, srednio dla wszyst-
kich lokalizacji. Globalna autokorelacja przestrzenna uwidacznia sie¢ wigc po-
przez ogdlng tendencje do grupowania si¢ podobnych warto$ci w przestrzeni.
Natomiast lokalng autokorelacje przestrzenng definiuje sie jako istnienie zalez-
nosci przestrzennych danego obiektu z jego otoczeniem. Zatem jej identyfikacja
umozliwia wskazanie potozenia lokalnych klastrow wartosci podobnych. Mo-
ze tez prowadzi¢ do wychwycenia tzw. lokalizacji nietypowych (ang. outliers).
W kolejnych podrozdzialach przedstawimy klasyczne metody testowania wyste-
powania zjawisk, zaréwno globalnej, jak i lokalnej autokorelacji przestrzennej
procesu losowego.

3.1. Testowanie globalnej autokorelacji przestrzennej

Istnieje kilka rodzajow wskaznikéw testujacych grupowanie si¢ danych. Wszyst-
kie przedstawione ponizej statystyki mierza stopien wspoétzaleznosci przestrzen-
nych. Do najpowszechniejszych nalezg statystyki: / Morana, Gearyego oraz sta-
tystyka G(d). Jak dotad, najpopularniejsza klasa testow stuzacych wykrywaniu
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autokorelacji przestrzennej s te oparte na pracy Morana (1950). Test / Morana
moze by¢ takze uzyty do weryfikacji trafnosci doboru macierzy wag W, reprezen-
tujacej przestrzenng strukture zaleznosci procesu losowego. Statystyka I Morana
stuzy wiec do oceny stopnia skorelowania przestrzennego pomiedzy sasiadujacy-
mi lokalizacjami. Zmodyfikowana przez Cliffa i Orda (1973) pod katem potrzeb
ekonometrii przestrzennej procedura testowania jest przestrzennym analogiem
testu Durbina-Watsona (Durbin, Watson, 1950; 1951). Statystyka / Morana stuzy
do testowania obecnosci globalnej autokorelacji przestrzennej wedlug schematu
opisanego macierzg wag W.

DEerINICIA
Rozwazmy proces przestrzenny X = (z1,...,2Zy) . Woéwczas warto$¢ glo-
balnej statystyki / Morana dla standaryzowanej wierszowo macierzy wag
W = [wy], <ij<N Wyraza si¢ wzorem

I— Zi\il Z;V:1 wij(z; — X)(x; — X)

S (zi — )

P | N ) , . . .t [ans ot
gdziex = > ;" x; oznacza érednig z realizacji badanego procesu. Ogélniej,
jesli przestrzenna macierz wag W nie jest wierszowo standaryzowana, a co

1. =N N . -
za tym idzie ) ;" > .0, wi; # N, wowczas statystyka I Morana przyjmuje
posta¢ normalizowang

N Do wi (i — %) (2 — %)
Y Z;V:I Wij YL (@ — %)? '

Jezeli macierz W opisuje stan rzeczywisty, tj. duze wagi odpowiadajg rzeczy-
wistym korelacjom, to warto$¢ statystyki / Morana bedzie miala tendencje do
przyjmowania warto$ci duzych, co do wartoséci bezwzglednej. Mozna wiec po-
wiedzie¢, ze statystyka I Morana jest w pewnym sensie wazonym przestrzennie
wspotczynnikiem (auto)korelacji, stuzgcym do wykrywania odchylen w losowym
rozkladzie przestrzennym procesu x.

Aby wykorzysta¢ statystyke I Morana do ustalenia, czy sasiadujace ze sobg
wartoéci sg bardziej do siebie podobne niz to wynika z losowosci badanego
zjawiska, rozpatrzmy nastepujace hipotezy testowe:

(1.4)

Hy: brak autokorelacji przestrzennej, przy hipotezie alternatywnej,
H,: wystepowanie zaleznosci przestrzennych.

Zwyczajowo, w przypadku, gdy statystyka I Morana przyjmuje wartosci bli-
skie Ip = —1 /(N — 1), uwaza sie, ze warto$¢ I nie daje podstaw do odrzucenia



32 Wprowadzenie do modelowania przestrzennego

hipotezy zerowej. W przeciwnym przypadku zas, odrzucajac Hy wnioskujemy
o istnieniu pewnych istotnych statystycznie zaleznosci przestrzennych. Zaklada-
jac brak heterogenicznosci przestrzennej danych, przyjmuje si¢, ze gdy I > Io,
obserwuje si¢ autokorelacje przestrzenng dodatnia, za$ dla I < I autokorelacje
ujemny. Zauwazmy, ze dla dostatecznie duzych N, w przypadku braku autokore-
lacji przestrzennej, statystyka przyjmowac bedzie wartosci bliskie zeru. Chociaz
w praktyce wartos¢ statystyki Morana czesto nie przekracza, co do modutu, war-
tosci jeden, nalezy zaznaczy¢, Ze w odrdznieniu od klasycznego wspodtczynnika
korelacji Pearsona nie jest to regula. W rzeczywistosci, jak sugeruje Kossowski
(2010), za de Jong i inni (1984), mamy nieréwnosci

N - )\min <I< N - )\max
N N = ~ N N >
23501 200 Wi 23 i1 D1 Wi

gdzie Amin i Amax 53 odpowiednio najmniejszg i najwieksza warto$cig wlasng
iloczynu M(W + WT)M, a macierz M jest operatorem rzutu na przestrzen
ortogonalna do podprzestrzeni wektoréow statych. Co wigcej, wskazywana tra-
dycyjnie warto$¢ I = —1(N — 1) nie zawsze jest poprawna, co wyjasniamy
w rozdziale IIL

Powyzej przedstawiono popularng w literaturze posta¢ procedury testowej
Morana. Mozna jednak zwrdci¢ uwage na fakt, Ze w zasadzie poprawna hipoteza
zerowa powinna brzmie¢ nastepujaco:

Hy: brak zaleznosci przestrzennych w procesie x.

Odrzucenie hipotezy zerowej nie informuje nas bowiem, czy przyczyng zalezno-
$ci przestrzennych jest autokorelacja przestrzenna procesu, czy heterogenicznosé
przestrzenna (por. Anselin, 1988a).

Poziom istotnosci testu Morana moze by¢ obliczony za pomoca standaryzo-
wanej statystyki / Morana. Przy pewnych zalozeniach jej rozklad mozna przy-
blizy¢ standardowym rozkladem normalnym (patrz rozdzial III), a doktadniej

I—E(I)

Vor (1) ~ N(0,1).

W praktyce czesto stosuje sie rowniez tzw. test randomizacyjny oparty na warto-
$ci statystyki / Moran obliczanych dla generowanych losowo permutacjach pro-
by przestrzennej. Mianowicie, w ramach tej procedury probkuje sie przestrzen
wszystkich permutacji 7 zbioru {1,..., N}. Dla kazdego wylosowanego w ten
sposoOb 7 oblicza sie warto$¢ statystyki Morana I () dla procesu ™ = xom, gdzie
wartodci procesu ™ = (27, ...,27;) okreslone s3 przez ré6wnos¢ x7 = -1y,
dla wszystkich jednostek przestrzennych 1 < ¢ < N. Woéwczas tzw. pseudowar-
tos¢ p (ang. pseudo p-value) okreslana jest jako iloraz liczby permutacji 7, dla
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ktorych I(m) < I(id), gdzie id, jest permutacjg identyczno$ciows, przez liczbe
wszystkich permutacji w probce.
Podobne zastosowanie ma przestawiona ponizszej statystyka Gearyego.

DEFINICIA
Rozwazmy proces przestrzenny X = (&1,...,2y) oraz macierz wag prze-
strzennych W = [wj;],. . Statystyke okreslong wzorem

N N
N -1 Zi:l D1 wij (@i — x;)?
N _ >
2 Zz 1 Z =1 Wij Do (@i — X)?

gdzie x = N Zi:l Z;, nazywamy globalng statystyka Geary’ego.

W przypadku, gdy warto$¢ tej statystyki spetnia ¢ < 1, mamy do czynienia
z autokorelacja przestrzenng dodatnig, natomiast dla ¢ > 1 wnioskujemy o wy-
stepowaniu autokorelacji ujemnej. Warto$¢ statystyki ¢ ~ 1 $wiadczy o braku
autokorelacji. Podobnie jak w przypadku statystyki / Morana, zakres mozliwych
warto$ci statystyki Gearyego jest pewna funkcja macierzy W (patrz de Jong
i inni, 1984), chociaz w praktyce mieszcza sie w przedzialach: [0, 1) — dla auto-
korelacji dodatniej oraz (1,2] — dla autokorelacji ujemne;j.

Kolejng popularng statystyka przestrzenng jest opracowana przez Getisa i Or-
da (1992) statystyka G(d), mierzaca sile przestrzennego skorelowania pomiedzy
poszczegdlnymi lokalizacjami, bedacymi w obrebie ustalonego otoczenia d. Sta-
tystyka ta jest funkcja promienia d, a wigc pozwala na ustalenie $redniej sily
zaleznosci od przyjetego promienia oddziatywan.

DEFINICJA
Niech x = (21,...,2y)' bedzie procesem przestrzennym oraz niech wij(d)
oznacza elementy niestandaryzowanej przestrzennej macierzy wag dla ustalo-
nego otoczenia d, tj. w;;(d) = 1, gdy jednostki przestrzenne 1 < i # j < N
sa odlegle od siebie o nie wigcej niz d, oraz w;;(d) = 0 w przeciwnym
wypadku. Statystyke postaci

Gd) = Ez 12 _ wij(d )xixj,

Zi:l Zj:l Lilj
nazywamy globalna statystyka G(d).

Podobnie jak w przypadku statystki / Morana, wnioskowanie statystyczne
opiera sie na zalozeniu, ze standaryzowana statystyka G(d) ma w przyblizeniu
standardowy rozklad normalny

G(d) —E(G(d))
Var (G(d))

~ N(0,1).
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Warto$ci dwdch pierwszych momentow statystyki G(d) mogg zostaé wyznaczone
przy dodatkowych zalozeniach dotyczacych wlasnosci stochastycznych procesu
x. Na przyklad, przy pewnych zalozeniach mozna przyja¢, ze warto$¢ pierwszego
momentu statystyki G(d) wyraza si¢ wzorem

Zﬁ\; Zjvzl wij(d)'

E(G) = =1

Dodatnie wartosci statystyki G(d) — E G(d) wskazujg na przestrzenne grupowa-
nie si¢ wysokich (ang. hot spots), ujemne za$ niskich wartosci badanej zmiennej
(ang. cold spots); patrz Suchecki [red.] (2010).

3.2. Testowanie lokalnej autokorelacji przestrzennej

W praktyce badan ekonometrycznych nierzadko okazuje sig, ze zaleznosci prze-
strzenne moga nie mie¢ charakteru globalnego. Moga by¢ one obserwowane lo-
kalnie — w pewnych rejonach dziedziny przestrzennej, natomiast w innych moga
wystepowaé w mniejszym natezeniu lub nie wystepowaé¢ w ogdle. W takim wy-
padku w analizach empirycznych stosuje si¢ testy i statystyki LISA (ang. Local
Indicator of Spatial Autocorrelation). Za ich pomoca bada si¢ lokalng autokore-
lacje przestrzenng, czyli korelacje wartosci zmiennej w wybranej lokalizacji z jej
sasiadami (por. Anselin, 1988a: 284). W tym wypadku najczesciej wykorzystuje
sie lokalng statystyke I; Morana, dla ¢ € {1,..., N}, wyrazajaca sie wzorem

N SN wij (i — ) (5 — >_<)'

N =N N .
D=1 2k=1 Wik > j=(zj — %)

Obliczenie statystyki I; dla wszystkich obserwacji umozliwia wykrycie lokalnych
zgrupowan poréwnywalnych wartosci procesu przestrzennego.
Podobng statystyka jest lokalna statystyka Gearyego o nastepujacej postaci:

P =

N-1 S wij (@ — )

- N N N =
23 g Wik 2o (w5 — X)?

Warto$¢ statystyki przekraczajaca 1 wskazuje na obecno$¢ ujemnej lokalnej auto-
korelacji przestrzennej, w przeciwnym wypadku mamy do czynienia z dodatnia
lokalng autokorelacja.

W praktyce, zaréwno dla celéw analizy globalnej, jak i lokalnej, najpow-
szechniej jednak stosowane sa statystyki Morana. Statystyka globalna oferuje
jedng charakterystyke dla calej proby, bedacg srednig lokalnych statystyk I; Mo-
rana. Nalezy zatem zauwazy¢, ze w przypadku, gdy autokorelacja przestrzenna

G



Autokorelacja przestrzenna 35

nie wystepuje globalnie, statystyka I Morana nie jest z reguly w stanie wykry¢
obecnosci pojedynczych klastréw. Z kolei lokalne statystyki I; Morana liczone sg
dla kazdej lokalizacji osobno, co daje mozliwo$¢ wykrycia lokalnych zgrupowan.

Nalezy rowniez zwrdci¢ uwage na pewien sposob wizualnego okreslenia typu
wystepujacej autokorelacji przestrzennej, czyli tzw. moranowski wykres rozpro-
szenia (ang. Moran scatterplot). Jak zaproponowal Anselin (1996), aby w latwy
sposdb wychwyci¢ obecnos¢ zaleznosci przestrzennych, w planarnym ukladzie
wspolrzednych mozna zaznaczy¢ punkty o wspétrzednych

(xi—x),iwij(xj—x), i=1,...,N.
CEOWITE)

Na tak skonstruowanym wykresie, mozliwy jest jeden z trzech przypadkow. Jesli
obserwujemy przewage punktéw ukladajacych si¢ w ¢wiartkach I i III, wskazu-
je to obecnos¢ autokorelacji dodatniej. Gdy, z kolei, wiekszos¢ punktéow wpada
do ¢wiartek II i IV, mamy so czynienia z autokorelacja ujemng. Brak widocz-
nej przewagi w zadnej z par ¢wiartek uktadu wspétrzednych $wiadczy o braku
autokorelacji przestrzennej.
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Wstep

W wielu badaniach przestrzenny charakter struktury danych oraz ich przestrzen-
ne zaleznosci stanowig samodzielny przedmiot zainteresowan. Jednak w innych
analizach autokorelacja przestrzenna stanowi problem poboczny, analogiczny do
autokorelacji sktadnika losowego, wystepujacej w szeregach czasowych. Zaréwno
w pierwszym, jak i w drugim przypadku nieuwzglednienie autokorelacji prze-
strzennej moze prowadzi¢ do oszacowan pozbawionych pozadanych wilasnosci,
takich jak efektywnos¢, nieobcigzonos¢, a nawet zgodnos¢. Efektem takiego po-
dejscia moze by¢ wnioskowanie statystyczne oparte na niepetnej informacji. Do-
datkowo, dwukierunkowa natura interakcji przestrzennych uniemozliwia prze-
niesienie rozwigzan problemu autokorelacji w teorii szeregéw czasowych na no-
Wy, przestrzenny grunt.

W modelach ekonometrii przestrzennej zjawisko autokorelacji przestrzen-
nej uwzglednia sie poprzez wilaczenie do postaci strukturalnej modelu sklad-
nika, najczgsciej w formie liniowej, odpowiadajacego przestrzennemu opo6znie-
niu wybranych zmiennych (patrz podrozdziat 2.2 w rozdziale I). O autoregresji
przestrzennej mowimy, gdy opo6znienie przestrzenne dotyczy zmiennej zaleznej
lub skladnika losowego. Natomiast, jesli rozwazane jest op6znienie przestrzen-
ne zmiennych egzogenicznych, mamy do czynienia z modelem zawierajacym
przestrzenng regresja krzyzowa.

W tym rozdziale dokonamy przegladu najbardziej popularnych postaci struk-
turalnych modeli przestrzennych, a nastepnie przedstawimy wybrane metody es-
tymacji ich parametréw. Zauwazmy, ze aby zagwarantowa¢ pozadane wiasnosci
wymienionych estymatoréw, koniecznym jest przyjecie szeregu zatozen doty-
czacych: zachowania asymptotycznego macierzy wag przestrzennych, wlasnosci
zmiennych egzogenicznych oraz rozkltadu prawdopodobienstwa zaburzen loso-
wych. W tej czeéci pracy nie bedziemy przedstawia¢ kompletnej matematycznie
teorii dotyczacej prezentowanych metod. Podkreslimy jednak te z zatozen, ktore
odrdzniajg teorie standardowe od autorskiego podejscia, prezentowanego w roz-
dziatach kolejnych. W szczegdlnosci zlagodzone zostang wymagania wyrazone
ponizej w zalozeniach IL.B, II.C i IL.D.

ZArOZENIE IL.A
Macierz W = [w;j]1<i j<n jest standaryzowana wierszowo i ma zerowa prze-

katna, tzn. dla kazdego 1 < ¢ < N mamy Zévzl w;j = 1 oraz wy; = 0.

ZALOZENIE IL.B
Wiersze i kolumny macierzy W sg jednostajnie bezwzglednie sumowalne,
czyli istnieje (niezalezna od N) stala C' > 0, dla ktorej
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N N
1217%(]\] { Z’aik’ + Z\akj]} < C,
k=1 k=1

jednostajnie dla wszystkich mozliwych rozmiaréw préby N € N.

ZArOZENIE I1.C
Warto$ci zmiennych egzogenicznych X sg jednostajnie ograniczone przy N =
1,2,... Co wigcej, istnieje asymptotyczna macierz kowariancji z proby dla
zmiennych egzogenicznych + X "X, przy N — oo, i jest ona nieosobliwa.

ZArOZENIE I1.D
Skladnik zaburzen losowych modelu przestrzennego ma N-wymiarowy roz-
klad normalny A/ (0, o1).

Wprawdzie zalozenie II.A nie jest konieczne dla twierdzen o asymptotycznych
wlasnosciach estymatoréw, niemniej jednak ze wzgledéw aplikacyjno-interpre-
tacyjnych (interpretacja elementéw macierzy jako wag) oraz technicznych (patrz
twierdzenie I1.2) macierze wag stosowane w modelach ekonometrycznych czesto
podlegaja operacji standaryzacji wierszowej (ang. row standardization). Operacja
standaryzacji wierszowej polega na przemnozeniu kazdego elementu macierzy
W = [wij]ij <n W ustalonym wierszu przez odwrotno$¢ sumy elementéw tego
wiersza. Innymi stowy mamy

wij
W= | =y i—|
Zk:l Wik ij<N

Powszechnie uwaza sig, ze standaryzacja macierzy wag umozliwia poréwny-
wanie oszacowan parametréw miedzy modelami. Co prawda istniejg argumenty
uzasadniajace takie stwierdzenie, jednak nie jest ono pozbawione pewnych wad.
Mozna zauwazy¢, ze przemnozenie wierszy macierzy przez rozne liczby automa-
tycznie usuwa z niej informacje o wzgledny sitach interakcji w tych wierszach.
W szczegolnosci wielkosci uzyskane w kazdej kolumnie macierzy standaryzowa-
nej wierszowo nie s3 juz poréwnywalne. Idac dalej, w przypadku macierzy od-
wroconej odleglosci, standaryzacja wierszowa moze wrecz powodowaé problemy
interpretacyjne. Jak twierdzi Anselin (1988a: 23-24, ttumaczenie wlasne): ,,nor-
malizacja wierszowa macierzy wag, w ktorej wagi sa proporcjonalne do [pote-
gi — przyp. aut.] odwrotnosci odleglosci powoduje, Ze interpretacja ekonomiczna
oparta na zaniku oddzialywan wraz z odleglodcig nie jest juz poprawna’; por. tez
Kelejian i Prucha (2010). Spotykana w literaturze, cho¢ malo spopularyzowana
alternatywg dla standaryzacji jest odpowiednie przeskalowywanie calej macierzy
wag (patrz Elhorst, 2001; Vega, Elhorst, 2015; Olejnik, Olejnik, 2020). W takim
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wypadku, co wazne, zachowywana jest wzgledna wielko$¢ wag w calej macie-
rzy, przy jednoczesnym wprowadzeniu ograniczenia na catkowita moc interakeji
przestrzennych. W rozdziatach III, IV i V $wiadomie pomijamy zalozenie stan-
daryzacji wierszowej, aby zachowa¢ ogdlnos¢ rozwazan.

1. Modele autoregresji przestrzennej

1.1. Przeglad specyfikacji

Niech W = [w;;], <ij<n Dedzie ustalong macierzg wag przestrzennych, o wy-
miarach N x N. Przyjmijmy tez, Ze kolumny macierzy X o wymiarach N x k
s3 wektorami obserwacji zmiennych egzogenicznych (z uwzglednieniem wyrazu
wolnego), wnoszacych do modelu dodatkowg zewnetrzng informacje o badanym
procesie. W najprostszym przypadku, przy braku zmiennych objasniajacych, spe-
cyfikacja modelu moze uwzglednia¢ jedynie autozaleznosci przestrzenne procesu
generujacego obserwacje (ang. data generating process). Taki model nazywamy
modelem czystej autoregresji przestrzennej.

DEFINICJA
Modelem czystej autoregresji przestrzennej (pierwszego rzedu) nazywamy
model o specyfikacji opisanej rdownaniem

y = pWy + ¢, (2.1)
w ktérym y = [y1,...,yn]' jest obserwowanym procesem przestrzennym,
ae=|e1,...,en] to skladnik losowy o rozkladzie normalnym z zerowa war-

toscig oczekiwang i stala wariancja %I, gdzie o2 jest nieznanym parametrem.
Parametr p nazywamy wspotczynnikiem autoregresji przestrzennej.

Zauwazmy, ze Wy = (ZZJ\; 1 wij?/j)jzl jest wektorem $rednich wartosci
procesu w jednostkach sgsiednich, a wiec réwnanie (2.1) mozemy zapisa¢ alter-
natywnie jako

N
Yi = PZ wijYj + .
i=1
Macierz W odzwierciedla zakladane zaleznosci miedzy lokalizacjami prze-
strzennymi (w;; dla lokalizacji i-tej i j-tej), a tym samym pomiedzy poszcze-
golnymi elementami procesu y. Przestrzenny charakter procesu w modelu jest
zatem uwzgledniany poprzez sktadnik pWy.
W praktyce dostepne sa pewne zmienne egzogeniczne, ktére objasniaja ba-
dany proces przestrzenny (w najprostszym przypadku skladnik staty). Model,
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ktorego specyfikacja uwzglednia dodatkowe zmienne X nazywany jest modelem
autoregresji przestrzennej — SAR (ang. Spatial Autoregressive Model), jak réwniez
modelem op6znien przestrzennych (ang. Spatial Lag Model).

DEerFINICIA
Przy przyjetych powyzej oznaczeniach, model oceniajacy zmiane poziomu
procesu przestrzennego y w oparciu o warto$¢ procesu w sasiednich lokali-
zacjach oraz determinanty procesu X, postaci

y=pWy+X3+c¢
€~J\/(0,021),

gdzie p jest wspolczynnikiem autoregresji przestrzennej, a 3 wektorem pa-
rametrow nachylenia (ang. slope), nazywamy modelem autoregresji prze-
strzennej (zmiennej objasnianej) — SAR.

W przypadku, gdy zaleznos$¢ przestrzenna pojawia si¢ wewnatrz procesu za-
kt6cen losowych, czyli bledy modelu dla poszczegdlnych lokalizacji sa skorelo-
wane z bledami w lokalizacjach sgsiednich, méwimy o modelu z przestrzennie
autoskorelowanym skladnikiem losowym — SEM (ang. Spatial Error Model).

DEFINICIA
Przy przyjetych powyzej oznaczeniach, modelem z przestrzennie autosko-
relowanym skladnikiem losowym (SEM) nazywamy model postaci

y=XB+u
u= \Wu+e¢ (2.2)
€~ N(O, 021),

gdzie u = (uq,...,uyn) to N-wymiarowy wektor skorelowanych przestrzen-

nie skladnikéw losowych, zas € to proces generujacy bledy modelu o roz-
kladzie normalnym z zerowa wartoscia oczekiwang i wariancjg réwng o1
Parametr \ jest wspolczynnikiem przestrzennej korelacji skfadnika losowego.

Zakladajac, ze macierz I-A\W jest nieosobliwa, model SEM dany w réwnaniu
(2.2) mozna podda¢ przeksztalceniom

y=XB8+(I- W) ¢
I-AW)y=I—-IW)XB+¢
Yy = AWy + X8 — \WXS +¢,

prowadzacym do specyfikacji rownowaznej, zdefiniowanej ponizej.
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DEFINICJA
Przy przyjetych wczesniej oznaczeniach, model postaci

y =AWy + X8 - \WXg +¢
e ~N(0,0°T),

nazywamy przestrzennym modelem Durbina (SDM, ang. Spatial Durbin
Model).

W literaturze mozna spotka¢ réwniez ogdlny model przestrzenny (SGM,
ang. Spatial General Model), ktéry faczy w sobie dwa powyzsze modele. W tym
wypadku mamy do czynienia zaréwno z autoregresja przestrzenng, jak i z prze-
strzenng autokorelacja sktadnika losowego. Model ten w literaturze nazywany
jest rowniez modelem typu Cliffa-Orda (por. Cliff, Ord, 1973).

DEeFINICIA

Przy przyjetych powyzej oznaczeniach, ogélnym modelem przestrzennym
nazywamy model postaci

y=pWy+XB+u
u=\Mu+e
e ~N(0,05°T),

gdzie W i M s3 potencjalnie r6znymi macierzami wag przestrzennych.

W rozwazaniach teoretycznych pojawia sie¢ réwniez rozszerzenie przedsta-
wionych specyfikacji na przypadek tzw. przestrzennych modeli wyzszych rzedow
(ang. higher-order spatial models). Co wiecej, przez analogie do szeregéw czaso-
wych ARMA, wprowadza si¢ rowniez pojecie przestrzennej sredniej ruchomej
skladnika losowego, uzyskujac specyfikacje SARARMA(p, q,r), dla p,q,r > 1
(ang. Spatial Autoregressive Autocorrelated Moving Average Model).

DEeFINICJA
Niech Wy, ..., W, oraz My, ..., M, beda macierzami wag przestrzennych.
Przy przyjetych wczeéniej oznaczeniach, modelem SARAR(p, ¢) nazywamy
model o specyfikacji

y=pWiy + p2Way + ...+ p,Wpy + X8+ u
u=MMpu+ XMou+...+ A\ Mju+e,

gdzie € ~ N(O, 021), apl,...,Pp Oraz Ai,...,\q S3 przestrzennymi para-
metrami autoregresyjnymi.
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DEFINICJA
Niech Wy,..., W,, My,...,M, oraz Vi,...,V, beda macierzami wag
przestrzennych. Przy przyjetych wczesniej oznaczeniach, modelem typu SA-
RARAR rzedu (p, ¢, ) nazywamy model o specyfikacji

y = piW1y + 2 Way + ...+ pp, W,y + X3 +u
u=MMpu+ XMou+...+ A\ Mju+e
e=t+ Vi + o2 Vo + ... + ¢, Vi

P NN(O,UZI),

gdzie ¢1,..., ¢, sa parametrami $redniej ruchome;j.

Zaznaczmy, ze w modelach wyzszych rzedéw SARAR i SARARMA wprowa-
dzenie zbyt wielu macierzy wag przestrzennych moze okazac si¢ problematyczne.
Trudnos$¢ sprawia np. wlasciwe okreslenie tzw. przestrzeni parametréw (ang. pa-
rameter space) dla przestrzennych wspoélczynnikdéw autoregresyjnych (pewne pro-
by rozwigzania tego problemu byly proponowane w publikacji Elhorst i inni
(2012). Woéwczas, aby zagwarantowa¢ identyfikowalnos$¢ wszystkich parametrow
modelu, konieczne moze okaza¢ si¢ wprowadzanie dodatkowych zalozen. Za-
tem, mimo ze specyfikacje modeli wyzszych rzedéw dostarczaja niewatpliwie
ciekawych mozliwosci aplikacyjnych (por. Olejnik i inni, 2020), w praktyce war-
toéci parametrow rzedu p, ¢ oraz r najczeéciej nie wykraczajg poza 0, 1 badz 2.
W przypadku modeli o wigkszej liczbie macierzy, problem identyfikowalnosci
parametréw mozna zlagodzi¢ ostroznie dobierajac macierze wag. Na przyklad,
Gupta i Robinson rozwazali model o nieskoniczonej (a dokladnie rosngcej wraz
z rozmiarem proby) liczbie macierzy, stosujac dla nich warunek pewnego rodzaju
»ortogonalnoséci” (por. Gupta, Robinson, 2015).

Analogicznie do modeli szeregdéw czasowych z rozkltadami opdznien (ang. di-
stributed lag models), przestrzenne opo6znienie moze dotyczy¢ réwniez zmiennych
egzogenicznych modelu. Méwimy wéwczas o modelach regresji krzyzowej SCM
(ang. Spatial Cross-regressive Models). Jak sie okazuje, uwzglednienie przestrzen-
nie opdznionych wartosci deterministycznych zmiennych objasnianych w postaci
strukturalnej modelu, nie powoduje dodatkowych trudnosci estymacyjnych. Roz-
szerzenie modelu SAR o regresje krzyzowa prowadzi z kolei do specyfikacji SADL
(ang. Spatial Autoregressively Distributed Lag Model).

DEFINICJA
Przy przyjetych wczesniej oznaczeniach, model autoregresji zmiennej obja-
$nianej z regresja krzyzowa (SADL) definiujemy poprzez specyfikacje

y=pWy+ X8+ WXvy+e¢

e ~N(0,0%1), 23
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gdzie ~ jest wspolczynnikiem opdznienia przestrzennego zmiennych obja-
$niajacych.

Zauwazmy, ze nieliniowy warunek ograniczajacy

¥+ pB =0, (2.4)

powoduje, ze model SADL sprowadza si¢ do opisanej wczesniej specyfikacji SDM,
réwnowaznej SEM. Nalezy tutaj zaznaczy¢, iz w literaturze przedmiotu termin
przestrzenny model Durbina bywa réwniez uzywany do okreslenia specyfikacji
(2.3) bez warunku (2.4). Jako przyklad moze tutaj postuzy¢ monografia LeSage
i Pace (2009).

1.2. Interpretacja parametrow modeli autoregresji przestrzennej

W przypadku proceséw, w ktérych wystepuje autokorelacja przestrzenna, nie-
watpliwg zaleta uwzglednienia jej w modelu jest poprawienie wlasnosci staty-
stycznych oszacowan parametréw. Dodatkowo, modele przestrzenne zawierajace
skladnik odpowiadajacy za autoregresje zmiennej objasnianej dostarczaja bada-
czom dodatkowych mozliwosci interpretacyjnych. W tym podrozdziale przed-
stawiamy teori¢ pozwalajacg na poprawng interpretacje oszacowan parametrow
nachylenia. Rozumowanie oparte jest na pomysle zaprezentowanym w pracy Le-
Sage i Pace (2009), polegajacym na przeksztalceniu réwnania specyfikacji modelu
SARAR(1,0) do postaci jawne;.

W naszym uogdlnieniu, przyjmijmy, ze obserwujemy pewien proces prze-
strzenny y = (y1,...,yn) zgodny ze specyfikacja SARAR(p, ¢), uwzgledniajaca
dodatkowo efekt regresji krzyzowej. Bez straty ogdlnosci mozemy jednak zatozy¢,
ze ¢ = 1, a zatem

p
y=> pmWpy+XB+WXy+J5+u

n=1

u=AMu + ¢,

(2.5)

gdzie € ~ N'(0, 5°I) jest wektorem zaburzen losowych modelu, X i J sg macie-
rzami zmiennych objasniajacych, p1,..., pp oraz A\ parametrami autoregresyjny-
mi, 8= (B1,...,8k)>, ¥ = (7,-..,7) 1 6 wektorami parametréw nachylenia.
Przyjmijmy réwniez, Ze kolumny macierzy J zawierajg zmienne niepodlegajace
interpretacji w kategoriach wptywu, np. wyraz wolny czy zmienne indykatorowe
dla efektow stalych. Oczywiscie, jezeli zmienna X;, 1 < [ < k, nie wystepuje
w modelu explicite lub w formie opdznionej przestrzennie, mozna przyja¢ odpo-
wiednio v; = 0 lub 8; = 0. Zaktadajac odwracalno§¢ macierzy I— 52 _, p,W,,
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oraz I — AM, powyzsze réwnanie mozemy rozwigza¢ ze wzgledu na y, uzyskujac
réwnos¢

p
<I—anWn) y=XB+WXy+J§+u

Mamy zatem

k p 1
Ey = Z(I—anwn> (BT +0 W)X

=1 (2.6)
p -1
+ (I - Z ann>
n=1

Zauwazmy, ze w przypadku specyfikacji (2.5) prosta interpretacja warto$ci
elementéw parametru 3 jako krancowych efektéw poszczegolnych zmiennych
na wartoséci zmiennej y moze by¢ niewlasciwa. Istotnie, jakiekolwiek zaburzenie
zmiennej objasniajacej w danej lokalizacji wywiera wplyw na warto$¢ zmiennej
zaleznej w tej samej lokalizacji nie tylko bezposredni, lecz takze posredni, poprzez
lokalizacje sgsiednie. Wnioskowanie na podstawie uzyskanych oszacowan nalezy
zatem oprze¢ na réwnosci (2.6).

Ustalmy dowolng liczbe 1 < I < k. Aby poprawnie oceni¢ marginalny wptyw
zmiennej objasniajacej X; na wartosci procesu y, nalezy obliczy¢ macierz efektow
krancowych jako pochodng wektorowsg wartosci oczekiwanej Ey. W ten sposéb
uzyskujemy macierz

-1
l .
E(W) = [e5j] 1 jen = Xm (I B an n) (B + 0 W),

gdzie e - wyraza efekt krancowy zmiennej [ w lokalizacji j na wartos$¢ y;, ktd-
ry uwzgle;dma zaleznosci przestrzenne. Rozszerzajac terminologie wprowadzong
przez LeSage’a i Pace’a (2009), elementy macierzy E;(W) lezace na gléwnej prze-
katnej nazwiemy efektami bezposrednimi (ang. direct impacts/effects) zmiennej
X, a pozostale elementy — efektami posrednimi (ang. indirect impacts/effects).
Przykltadem zastosowania teorii efektow przestrzennych moze by¢ badanie opi-
sane w pracy Olejnik i Olejnik (2019).

2. [Estymacja modelu przestrzennego rzedu (1,0)

Dla modelu klasy SARAR(1, 0) wyrazonego specyfikacja
y=pWy+XB+¢

e ~N(0,0°T), 27
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estymator MNK jest w ogdlnosci obcigzony, a nawet niezgodny. Ponizej przed-
stawimy dwie alternatywne metody estymacji: metode zmiennych instrumental-
nych (MZI) oraz metode najwiekszej wiarogodnosci (MNW). Wczesniej jednak
sformulujemy pewng istotng uwage dotyczaca dziedziny wartosci parametru au-
toregresyjnego p. W tym celu przytoczymy tu twierdzenie Greszgorina. Wyni-
kajacy z niego wniosek (twierdzenie II.2) jest kluczowy dla standaryzowanych
wierszowo przestrzennych macierzy wag.

TwieRDZENIE II.1 (Greszgorin)
Niech W = [wj;], ;. j<n bedzie dowolng macierzg liczbows, a liczby R;, dla
1 <7 < N, beda zdefiniowane jako sumy moduléw elementéw macierzy W,
poza przekatng, w odpowiednich wierszach, tj.

i—1 N
Ry = Jwil+ > |wyl.
i=1 j=it1

Wowczas dla dowolnej, chocby zespolonej, wartosci wlasnej A istnieje 1 < iy <
N, takie, ze

A — wixix‘ < Ry,
Dowop. Niech z* = (:r:{‘, ..., ) bedzie wektorem wlasnym macierzy W, od-
powiadajagcym dowolnej ustalonej wartosci wlasnej A. Wybierzmy jeden dowolny
indeks 1 < iy < N spelniajacy warunek |z;, | > |z;|, dla wszystkich 1 < < N.
Bezposrednio z definicji warto$ci wlasnej mamy wiec

x—1
)\ A
wwx + ww wlﬂ)\)'xi,\'
J=ix+1
Zatem

zA 1 )\

. J )

‘)‘ - whl)\’ ‘wl] 2\ ’ + ‘wl A ’ < Rl)\'

7=1 7'A J=ix+1 Z)\

O]

Jesli za przestrzen mozliwych wartosci parametru autoregresyjnego p przyj-
miemy otwarty przedzial (—1, 1), wowczas macierz operatora réznicowania prze-
strzennego (ang. spatial difference) A(p) =1 — pW bedzie nieosobliwa, dla do-
wolnej standaryzowanej macierzy W z zerowa przekatna oraz dowolnej wartosci
parametru autoregresyjnego p.
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TWIERDZENIE I1.2
Niech W' bedzie macierza standaryzowana wierszowo o zerowej przekatne;j.
Wowczas dla dowolnego p € (—1,1) mamy

det (I—pW) >0

oraz

(I—pW) ' =T+ pW + p*W2 1 ..

Dowo6p. Najpierw pokazemy nie wprost, ze det (I — pW) # 0, dla kazdego
p € (—1,1). W tym celu zatézmy przeciwnie, ze istnieje pewne —1 < p < 1, dla
ktorego det (I — pW) = 0. Wowczas oczywiscie p # 0 oraz dla A = 1/ 5 mamy
det (A\I — W) = 0. Zatem A\ jest warto$cig wlasng macierzy W. Z twierdzenia
Greszgorina (twierdzenie II1.1) wynika wiec istnienie indeksu ¢y, dla ktérego

|)‘ - wixi)\‘ < RiA'

Poniewaz na mocy zatozonych wlasnosci macierzy W mamy w;,;, =01 R;, =
1, wigc —1 < A < 1. Te nieré6wnosci z kolei pociagaja za sobg alternatywe
warunkéw

p<1 lub 1< p,

z ktorych kazdy prowadzi do sprzecznoéci z zatozeniem, ze p € (—1,1).

Zauwazmy, ze funkcja przypisujaca dowolnej liczbie p wartos¢ wyznaczni-
ka det (I — pW) jest funkcja ciagly. Dodatkowo, w punkcie pg = 0 przyjmu-
je ona warto$¢ dodatnig, tj. det (I — poW) = detI = 1 > 0. Zatem gdyby
det (I — pW) < 0 dla pewnego p € (—1,1), wowczas istniataby pewna licz-
ba p; lezaca pomiedzy p i po, dla ktérej det (I — pyW) = 0, co ponownie
prowadzitloby do sprzecznosci. Wynika z tego, ze prawdziwa jest nieréwnosc
det (I — pW) > 0, dla wszystkich p € (—1,1).

Mozna wykaza¢, ze funkcja, ktéra przypisuje macierzy A = [ai];; oy
warto$¢ || A1 == maxi<<n Z;V:ﬂaij’ jest multiplikatywng normg macierzows
(patrz Horn, Johnson, 2013). Poniewaz ||pW||1 = p < 1, macierz I — pW jest
odwracalna i zachodzi zadane rozwinigecie w szereg macierzowy. O]

2.1. Estymacja metoda najmniejszych kwadratow

Najprostszym sposobem estymacji parametréw modelu ekonometrycznego jest
metoda MNK. W przypadku modelu przestrzennego SAR nie gwarantuje ona
jednak dobrej jakosci oszacowan. Okazuje sie, Ze dla pewnej klasy przestrzen-
nych macierzy wag estymator MNK jest zgodny (por. Lee, 2002). Co wigcej,
inne metody estymacji, np. MNW, moga prowadzi¢ do oszacowan niezgodnych
(Mynbaev, 2011). Fakt ten przyblizamy w obecnym podrozdziale.
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Zauwazmy najpierw, ze zmienna Wy (wystepujaca po prawej stronie row-
nania opisujacego specyfikacje SAR) jest endogeniczna. Istotnie, przeksztalcajac
(2.7) otrzymamy

y=(0-pW) ' XB+(I-pW) e,

a zatem, uwzgledniajac fakt, iz € ~ N(0,0%I), mozemy wyliczy¢

EcTWy =E (eTW((I — pW)IXB + (I - pW)*ls))
=E["W(I-pW)'XB] +E[e' W(I—pW) L]  (28)
=o?trW(I— pW) ™,

przy czym w ogdlnoéci nie jest prawda, ze tr W (I — ,OW)_1 = 0. Przy ozna-
czeniach

Z=[X Wy],
T

s=1[8" o],
estymator MNK SMNK parametru d ma postaé
dunk = (Z'Z) ' ZTy = 6o+ (272) ' 2"

Jak wynika z ostatniej rownosci, wlasciwosci estymatora MNK (takie jak
nieobcigzono$¢ czy zgodnos$¢) zaleza od zachowania asymptotycznego zmiennej
losowej (ZTZ)~'Z"e. Na przyklad, jak pokazuje Lee (2002), przy pewnych na-
turalnych zalozeniach dotyczacych zbieznosci macierzy korelacji dla zmiennych
objasniajacych: %ZTZ, estymator dMNK jest asymptotycznie nieobcigzony, gdy
% E (ZTe) zbiega do zera. Ten warunek bedzie z kolei spetniony, jesli endoge-
niczny komponent Z (czyli zmienna WYy) okaze si¢ asymptotycznie egzogenicz-
ny. Dokladniej, poniewaz % E (XTe) = 0, decydujaca jest nastepujaca zbieznosé

2
lETwy="u (W(I—pwW) 1) 222,
N N
Co wiecej, powyzszy warunek moze réwniez implikowaé zbiezno$¢ bledu esty-
matora 5MNK do zera wedlug prawdopodobienstwa, a w efekcie zgodnos$¢ 5MNK.
Ostatecznie, pozostaje pytanie: dla jakich przestrzennych macierzy wag W =
[wij]; < Mmozna zastosowa¢ metode¢ najmniejszych kwadratéw do estymacji mo-
delu SAR. W oryginalnym rozumowaniu zawartym w pracy Lee (2002) rozwaza-
no macierze, bedace wynikiem standaryzacji macierzy odleglosci (bez punktow
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odcigcia) z zalozeniem asymptotyki rosnacej dziedziny (patrz s. 21). Okazuje sie,
ze gdy wiersze takiej macierzy sa niesumowalne, tj. limy_, Z;V:ﬂwiﬂ = 00,
dla kazdego ¢ > 0, to w wyniku operacji normalizacji wierszowej otrzymamy
nowg macierz W, dla ktorej mozna zastosowaé autorskie twierdzenie II.3.

TwiERDZENIE II.3
Niech W = [wj;]ij<n bedzie macierzg standaryzowang wierszowo o zerowej
przekatnej (zalozenie I1.A), dla ktorej

lim max_ |w;;| =0.
N—o00 1<i,j<N

Wowczas endogenicznos¢ zmiennej Wy zanika asymptotycznie, szybciej niz od-
wrotno$¢ rozmiaru proéby N1, a doktadniej zachodzi
1
lim —Ee' Wy =0.
N—oo N y
Dowép. Uwzgledniajac wyprowadzong wczesniej réwnosé (2.8), wystarczy po-
kaza¢, ze .
lim —tr W(I—-pW

N—oo N ( P )
W tym celu zauwazmy, ze jeSli pewne macierze A = [a;j]i<ij<n 1 B =
[bijl1<i j<N sa standaryzowane wierszowo, wéwczas macierzowy iloczyn A-B =
[cijli<ij<n jest rOwniez standaryzowana wierszowo. Istotnie,

N N
DD 3) SULAED S O ot B

j=1 j=1 k=1 j=1
Wynika stad, ze macierz W oraz jej kolejne potegi macierzowe W2, W3, ... s3
standaryzowane wierszowo. Oznaczmy V = (I — pW) 1, V = [Vijl1<i,j<n oraz

ko— [,k

W = [wij ]1<z‘,j<N’
rozwiniecie V = 372 ) p"WF. Zatem, dla kazdego 1 < j < N wnioskujemy, ze

dla £ > 0. Na podstawie twierdzenia II.2 prawdziwe jest

N N oo

[e%S) N [e'S)
D 3D SIS DD ST SR
k=0 j=1 k=0

j=1 j=1 k=0

Dla G = W- V, przy cZzym G = [gij]léi,jél\h oraz MN = MaXjgi,j<N ‘U)U|
uzyskujemy ostatecznie

N
%U‘W(I - pw)il - ]17; Zzwzkvlﬂ X _N )

Na mocy przyjetych zalozen, prawa strona tej nieréwnosci zbiega do zera wraz
z N — oo. Ul
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2.2. Estymacja metoda zmiennych instrumentalnych

Opisana ponizej procedura estymacji, oparta na metodzie MZI, wykorzystuje
pomyst ze znanej pracy Kelejiana i Pruchy (1998). Polega ona na tym, by bu-
dowe instrumentéw dla zmiennej Wy oprze¢ na wartosci oczekiwanej E Wy.
Korzystajac z twierdzenia I1.2 mamy

EWy = W(I - pW) X8+ W(I - pW) 'Ee
=W(I+pW +p*W?+...)X3
=WXB+ WX pB+W3X-p’B+...

Zatem E Wy jest pewng (nieskoniczong) kombinacja liniowa kolumn macie-
rzy WX, W2X, W3X, itd. Ponadto, optymalnym instrumentem dla macierzy
zmiennych objasniajacych X jest ona sama. Sugeruje to, Ze zbidr instrumentéw
mozna wybra¢ sposérdd liniowo niezaleznych kolumn macierzy

[X WX W2X ...

Przyjmijmy zatem, ze wybrana zostala macierz instrumentéw H. Zalézmy, ze
dla dostatecznie duzego IV jest ona macierzg pelnego rzedu P > K +1, gdzie K
to liczba kolumn w X. Zalézmy, ze H zawiera co najmniej liniowo niezalezne
kolumny macierzy [X WX} Wowczas, przy oznaczeniach Z = [X Wy]

oraz § = [B7 p]T, estymator MZI ma postaé
~ AT AN —14
omz = (272) " 7'y,

gdzie 7 — PuZ = [X \Xf\y}, V/V\y = PgWy oraz Py = H(HTH)%HT-
Przy pewnych dodatkowych zalozeniach powyzszy estymator jest zgodny, a jego
wariancja jest wowczas asymptotycznie rowna

Var byzi = 6%(ZTHHH) 'H'Z) ',
1 AT ¢

gdzie 6% = & (y — Z0) (y — Z0).

2.3. Estymacja metod3a najwickszej wiarogodnosci

Jedna z podstawowych metod estymacji modeli przestrzennych jest metoda naj-
wiekszej wiarogodnosci. Tak jak w przypadku klasycznym (patrz Lehmann, Ca-
sella, 1998), jako warto$¢ estymatora metoda ta wskazuje taka warto$¢ parametru
specyfikacji procesu generujacego obserwacje (ang. data generating process), dla
ktorego prawdopodobienstwo odnotowania faktycznie zgromadzonych wartosci
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proby jest najwigksze. Wykorzystanie metody MNW w ekonometrii przestrzen-
nej sugerowal juz w latach osiemdziesigtych Anselin (1988a) i do dzi$§ pozostaje
ona narzedziem czesto wybieranym przez praktykow. Nalezy tez zwroci¢ uwage
na mnogo$¢ wspolczesnych opracowan teoretycznych, w ktérych rozwijana jest
metoda MNW. W efekcie, uzyskuje si¢ narzedzie estymacyjne stosowalne do
nawet bardzo rozbudowanych specyfikacji przestrzennych.

Metoda MNK bywala krytykowana w literaturze przedmiotu ze wzgledu
na zwigzane z nig trudnosci obliczeniowe i konieczno$¢ zastosowania specja-
listycznych numerycznych metod optymalizacji. Obecnie jednak, ze wzgledu na
gwaltowny rozwoj technologii komputerowych, zwlaszcza obliczenia wspotbiez-
ne, wzrost mocy obliczeniowej komputeréw oraz szeroki wachlarz rozwigzan al-
gorytmicznych (patrz, np. Kossowski, Hauke, 2011; Bivand i inni, 2013), obawy
powtarzane jeszcze w ksiazce Suchecki [red.] (2010) nalezy uzna¢ za niewspol-
czesne.

Poniewaz z zalozenia sktadnik losowy € ma wielowymiarowy rozklad nor-
malny A (0, 0T), réwniez y, bedacy afiniczng transformacjg €, ma rozklad gaus-
sowski. Zatem funkcja gestosci RY > y +— fy(y) rozkladu zmiennej y przyjmuje
postac

1

exp
V (2m)N det Qy

gdzie Ey = (I — pW) ™ 'X 3 oraz Qy = Vary = o*(I-pW) ! (I—pWT)_l.
A zatem, rozwijajac powyzsze mozemy zbudowaé funkcje wiarogodnosci z pa-
rametrami p, 3 i 02 przy obserwacji y zmiennej y

foly) = {3-Evoyw-Ey |

det A(p) o

Ly(p.B,0%) =
’ (2ro2)N

{502 (Blo)y - X0)" () - X5) |

gdzie A(p) = I — pW. Zauwazmy, ze przytozenie do funkcji wiarogodnosci
funkeji $cisle rosnacej nie zmienia argumentu maksymalizujacego. W szczegol-
nosci, w przypadku rozkladéw z rodziny wykladniczej, do ktorej nalezy rozklad
normalny (patrz Lehmann, Casella, 1998), wygodnie jest uzy¢ w tym celu funk-
cji logarytmicznej. A wigc, logarytmujac obustronnie i dokonujgc podstawienia
y =y, otrzymujemy funkcje (zmienng losowa) log-wiarogodnosci postaci

N
In Ly (p, B,0%) = —Eln (2r0?) + Indet A(p)

1

—55(A0) ¥y =XB) (A(p) 'y — XP).
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Oczywiscie, odnalezienie estymatora MN'W wymaga wskazania takich warto-
$ci parametréw p, B i 02, dla ktorych In Ly (p, B, 0%) przyjmuje wartoé¢ mozliwie
najmniejszg, dla kazdego ustalonego zestawu wartosci obserwowanej zmiennej
y z osobna. Nalezy jednak najpierw poczyni¢ nastepujace obserwacje. Po pierw-
sze, funkcja log-wiarogodnosci In Ly (p, B, 02) jest ciagla, ale jej dziedzina, czyli
przestrzen dopuszczalnych wartosci parametréw, nie jest zbiorem zwartym. Co
za tym idzie, nalezy sprawdzi¢, czy zagdane maksimum jest w ogoéle osiggane. Po
drugie, gdyby nie skfadnik In det A (p), maksymalizacja In Ly (p, 3, %) moglaby
odby¢ si¢ zwykla metoda analityczng, podobnie jak ma to miejsce w przypad-
ku modelu nieprzestrzennego. Zatem, argument optymalny, jedli istnieje, jest
odnajdywany metodami numerycznymi. Obliczanie warto$ci wyznacznika ma-
cierzy A(p) dla duzych rozmiaréw préby N okazuje sie ztozone obliczeniowo.
Co wiecej — w ogolnosci — sktadnik Indet A(p), jako funkcja p, nie musi by¢
nawet funkcjg wklesla, a wiec numeryczne metody optymalizacji wypuktej nie
maja tu zastosowania.

ZYozonos¢ tego problemu mozna jednak zredukowa¢ poprzez zastosowanie
pewnej metody prowadzacej do usunigcia zmiennych 3 i 02 z optymalizowanej
funkcji celu. Metoda ta nosi nazwe¢ metody wyrugowywania parametrow przez
koncentracje (ang. concentrating out). Obrazowo mozna powiedzie¢, ze prowa-
dzi ona do zmniejszenia liczby parametréw problemu optymalizacyjnego poprzez
wyciecie z dziedziny funkgcji celu pewnej krzywej (a ogdlnie hiperpowierzchni),
okreslajacej zalezno$¢ miedzy optymalnymi parametrami, a wiec przechodzacej
tym samym przez punkty optymalne. Takg krzywa znajduje sie najczesciej anali-
tycznie, stosujac warunki rézniczkowe pierwszego rzedu. W naszym przypadku
mozemy wyliczy¢ nastepujace pochodne czastkowe funkcji celu

dlnLy(p,B,0%) 1 0
n yégﬁ o*) _ 57 5By - XB)" (A(p)y — XB)

1
= p(XTA(P)y - XTXp),
N

Ol Ly(p,B,0° 1
: };9(526 7) - _ﬁ(A(P)Y—Xﬁ)T(A(p)y_XB) -5

Zauwazmy, Ze uzyskane wyrazenia nie zawieraja problematycznego wyznacz-
nika In det A(p). Przyréwnujac jednoczes$nie do zera powyzsze pochodne, otrzy-
mujemy zadane zaleznosci optymalnych wartoéci 3 i 02 od p, mianowicie

Blp) = (XTX) ' XT(1— pW)y

&*(p) = %(y — pWy — XB(p)) (y — pWy — XB(p)).
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Uwzgledniajac powyzsze zaleznoéci w oryginalnej funkcji celu In Ly (p, 3, 0%)
uzyskujemy funkcje zalezng tylko od jednego parametru p, tj.

In Ly (p, B(p), %(p)) = N (In (27 - 6%(p)) +1) + Indet A(p).  (2.9)

2

Rozwazmy teraz problem istnienia rozwigzania wskazanego problemu opty-
malizacyjnego. Poniewaz funkcja celu p — In Ly (p, B(p), 6%(p)) jest ciagla na
calej przestrzeni dopuszczalnych wartoéci parametru p, wiadomo, Ze osigga ona
swoje ekstremum na kazdym zbiorze (zwartym) postaci przedzialu domknietego
[-1+€,1—¢€] C (—1,1), dla dowolnie malej liczby € > 0. Mozemy zatem zauwa-
zy¢, ze wystarczy zbada¢ asymptotyczne zachowanie funkcji celu w sasiedztwie
punktéw skrajnych —1 i 1.

Przyjmijmy oznaczenie Mx = I—X(XTX)"!XT. Jest oczywiste, ze funkcja

1

prr6%(p) = 5 (T= pW)y — XB(p)" (- pW)y — XB(p))

1
= v (Mx(T- pW)y)" (Mx (I - pW)y)
=a-p*+b-pte

bedaca tréjmianem kwadratowym zmiennej p, przy czym

1

a=—y W MxWy
N
2

b= —y MxW
Ny X WYy
L T

= —y Mxy,
c=yY Mxy
przyjmuje wartosci nieujemne. Co wiecej, warto$¢ zero w punktach p = —1

i p =1 moze ona przyjac¢ tylko wtedy, gdy zachodzi jeden z warunkéw
y = Wy +XB(1),

y = -Wy + X3(-1),

z ktorych kazdy implikuje, w praktyce nierealistyczny, a w teorii mato ciekawy,
warunek idealnego dopasowania danych. Mozemy zatem przyja¢, ze skonczone
$3 nastepujgce granice

li;gs_ulp (—];7 (In (2762(p)) + 1)> < 00
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oraz

lim sup (—N (In (2762(p)) + 1)> < 0.
p—1 2

Przechodzac do drugiego skladnika w formule (2.9), opisujacej skoncentro-
wang log-wiarogodno$¢, zauwazmy, ze wyrazenie In det A(p) jest (ujemnie) ko-
ersywne na krancach przestrzeni dopuszczalnych wartosci dla parametru p w na-
stepujacym sensie

lim (Indet A(p)) = lim (Indet A(p)) = —o0.
p—1 p——1

Zatem, réwniez dla funkgji p — In Ly (p, B(p), 52 (p)) mamy

lim In Ly (0, B(p),6%(p)) = —o0

oraz ~
limInL 52 (p)) = —
lim In Ly (p, B(p), 67(p)) = —oc,

z czego wynika, Ze przyjmuje ona swoje maksimum w otwartym przedziale
(_17 1)

Maksymalizacja skoncentrowanej log-wiarogodnosci In Ly (p, B(p), 6%(p))
prowadzi do estymatora najwigkszej wiarogodnosci parametru autoregresyjne-
go, tj.

pAMNW = arg max In Ly (p7 /é(p)a 5—2(p))
—1<p<1

Pozostaje jednak kwestia jednoznacznosci wartosci tak okreslonego estymatora
stanowigca osobne zagadnienie. Problem identyfikowalno$ci parametru autore-
gresyjnego p formalnie rozwigzemy dopiero w rozdziale III. Tymczasem przyj-
mijmy, ze operacja argmax (-) wybiera warto§¢ argumentu maksymalizujace-
go dowolnie, ale w sposob mierzalny, tzn. tak, ze pynw jest dobrze okreslong
zmienng losowa. Nalezy tu zaznaczy¢, ze w praktyce oszacowanie pynw jest
uzyskiwane metodami numerycznymi, chociaz niektére polskojezyczne opraco-
wania mogg wprowadza¢ w blad, sugerujac procedury oparte na przyréownywaniu
pierwszej pochodnej funkgji p — In Ly (p,B(p),&Q(p)) do zera; por. Suchecki
[red.], 2010. Oszacowania pozostalych parametréw uzyskujemy z wczesniejszych
warunkow rozniczkowych pierwszego rzedu, czyli

Brnw = (XTX)AXT (I - pmnwW)y,

1 N
Frnw = NHY — pMNw Wy — Xﬁ(ﬁMNW)H2

2
>

1
= NH(I —Px) - (I-pmanwW)y
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gdzie Px jest macierzg operatora rzutu ortogonalnego na przestrzen liniowg roz-
pieta przez kolumny macierzy zmiennych objasniajacych X. Mozna zauwazyc,
ze efektywnie metoda MNW maksymalizuje (skoncentrowana) wiarogodnos$¢
w celu znalezienia warto$ci parametru autoregresyjnego, a pozostale parametry
wyliczane s3 najmniejszych kwadratéw.

3. Estymacja modelu przestrzennego rzedu (0, 1)

Pierwszym zagadnieniem ekonometrii przestrzennej, rozwazanym w literaturze
dotyczacej problemdw regionalnych, byta analiza efektow zaleznosci przestrzen-
nych skladnika losowego w liniowym modelu regresji. Poczatki opisu problemu
oraz pierwsze proby jego rozwigzania przypadaja na lata siedemdziesigte XX
wieku (por. Fisher, 1971; Cliff, Ord, 1973; Hordijk, 1974). Opracowania z tam-
tego okresu zaowocowaly wieloma dalszymi ocenami wlasnosci réznorodnych
estymatorow oraz testow statystycznych.
Przypomnijmy, Ze zaleznosci przestrzenne skladnika losowego w liniowym

modelu regresji opisuje specyfikacja SARAR(0, 1)

y=XB8+u

u=\Wu+e¢

e~N (0, O'gI)

Ae(—1,1).
Zaktadajac odpowiednig posta¢ macierzy wag (np. standaryzowanie wierszo-
we, czyli zalozenie II.A) i uwzgledniajac twierdzenie IL.2, otrzymujemy u =
(I- AW)fle, zatem mozemy wnioskowa¢ o normalnosci rozkladu wektora
reszt u, a w szczegdlnosci o jego momentach. Mamy zatem

Eu=(I-AW) 'Ee=0
oraz
Var (u) = Euu' —EuEu"
—E(I- W) lee" (I-AWT)™
—I-AW) L2 (T-aWT) !
— 21— AW) LI - AWT)
Przy oznaczeniu

Qu(N) =02 T - AW) (T 2aWT) 7, (2.10)
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otrzymujemy u ~ N (0, 2y ())), a w efekcie mozemy wnioskowac o normalnosci
rozkladu zmiennej zaleznej y, tj. y ~ N (X3, 2, ().

3.1. Nieadekwatnos¢ uogolnionej metody najmniejszych kwadratow

Ze wzgledu na zaobserwowang w wariancji zmiennej zaleznej nieznang macierz
Qu(A), bedaca funkcjg estymowanego parametru, klasyczny estymator UMNK
nie ma zastosowania w przypadku modelu z autoskorelowanym skladnikiem lo-
sowym. W przypadku tego modelu metoda zmiennych instrumentalnych réwniez
nie gwarantuje pozadanych wlasnosci oszacowan parametréw. Podobny problem
dotyczy wszystkich ogdlniejszych modeli z autoskorelowanym sktadnikiem loso-
wym, czyli réwniez modeli SARAR(1, 1) i modeli wyzszych rzedéw oraz modeli
klasy Durbina.

3.2. Estymacja metoda najwiekszej wiarogodnosci

Jak zauwazyliSmy wczesniej, zmienna zalezna ma rozklad gaussowski, a doklad-
niej y ~ N (X3, 028, ()\)). Zwiazana z nig funkcja gestosci RY > y — fy (y)
przyjmuje postac

e {— W —Ey) ) (y—Ey)} .
foly) = V@Y det 2,00 S

gdzieEy = X3, a Vary = Qy(\) dana jest w (2.10). Rozwijajac (2.11) mozemy
zbudowaé funkcje wiarogodnosci z parametrami 3, \ i o2, przy obserwacji y
zmiennej y

Ly(B.Ao2) = ST {—— !

2
(2m02)™ 20¢

rnMy—nmme}

gdzie I'(\) := I— AW. Podobnie jak w przypadku procedury estymacji najwiek-
szej wiarogodnosci przestrzennego modelu autoregresyjnego SAR, logarytmujac
obustronnie i podstawiajac y = y otrzymujemy funkcje log-wiarogodnosci po-
staci

N
InLy(B,),02) = —Eln (27m§) + Indet T'(\)

1

2
20

(T(\y —T(N)XB) (T(\)y — T(N)XB).

Ponownie, odnalezienie estymatora MNW wymaga znalezienia takich warto$ci
parametréw 3, A i 02, dla ktérych In Ly (8, A, 02) przyjmuje wartoé¢ mozliwie
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najmniejsza, dla kazdego ustalonego zestawu wartosci obserwowanej zmiennej
y z osobna. W celu wyrugowania zmiennych 3 i o2 z optymalizowanej funkcji
celu wyprowadzamy nastepujace pochodne czastkowe

Oln Ly 1 0

(T(\y - T(W)XB)" (T(\)y — T(\)XB)

08 202 0B
= %(XTQU(A)}’ — XTQu()\)XIB)’
oL 1 N
o LTy - TXB) Ty ~ T)XB) — ooy,

Przyréwnujac powyzsze pochodne jednoczesnie do zera, otrzymujemy zadane
zaleznosci optymalnych wartosci 3 i o2 od ), mianowicie

BOY = (XTQNX) X 2Ny,
1

62N = 5 (v = XBW) 2N (v — XB(Y)).

Powyzsze réwnania mozna zapisa¢ za pomocg przestrzennego odpowiednika kla-
sycznej transformacji Cochrana-Orcutta, znanej z analizy szeregéw czasowych.
Mianowicie, ustalajac notacje y = y — AWy oraz X = X — \WX, mozemy
zapisac

BN = (XTX)"XTy,
520 = (5 ~ XA (¥ - XBV).
Uwzgledniajac wskazane zaleznosci w oryginalnej funkgji celu In Ly (8, A, 02),
uzyskujemy funkcje zalezna od jednego tylko parametru, tj.
A—InLy (B(/\), A G2(N) = —g (In (2762(N)) + 1) +Indet T'(\).

Dla modelu SEM, podobnie jak w przypadku modelu SAR, mozna wykazac,
ze powyzsza (zredukowana przez rugowanie) funkcja log-wiarogodnosci osigga
swoje maksimum po zbiorze argumentéw A € (—1,1). Argument maksymalizu-
jacy, to estymator najwiekszej wiarogodnosci parametru autoregresyjnego, czyli

AMNW = argmaxIn Ly (,é()\), A, &2)\).
—1<A<1

Oszacowania pozostalych parametréow uzyskujemy z wczesniejszych warunkéow
rézniczkowych pierwszego rzedu, czyli

Bunw = B(Mw) = (XTQu(S\MNW)X)_IXTQu(S\MNW)y,
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&I%/INW = (3'52: (S\MNW)
1 . T .
=N (y = XB(wmnw)) Qu(Avnw) (y — XB(Amnw)).
Mozna zauwazy¢, ze efektywnie metoda MNW maksymalizuje wiarogodnos¢
w celu znalezienia wartosci parametru autoregresyjnego skladnika losowego,
a pozostale parametry wyliczane sg zgodnie z uogélniong metodg najmniejszych
kwadratow.

4. Estymacja modelu przestrzennego rzedu (1, 1)

Przyjmijmy nastepujacg specyfikacje modelu SARAR(1, 1)
y=pWy+X3+u
u=\Mu+e
e ~ N(0,021),
gdzie macierze wag przestrzennych W oraz M moga, cho¢ nie musza, by¢ sobie
réwne, a przestrzenie warto$ci parametrow autoregresyjnych wyznaczone sa przez
nieréwnosci
—1<p<l oraz —-1<A<1.
Na wstepie zauwazmy, ze Eu = (I — AM) " 'Ee = 0, i dalej
Var (u) = Euu' —EuEu'
—E(I— M) lee"(I-2M")""
=I-2M) o2 (I-AM")™
— 2T —AM) LI —-aM")

1

Zatem, przy oznaczeniu

Qu(\) = (T= AMT)(IT - AM)) ",

mamy u ~ N (0, 2y ())). Poniewaz
y=I-pW) ' XB+ (I—pW) (I -2IM) e,

mozemy wnioskowa¢ réwniez o normalnosci rozkladu zmiennej zaleznej oraz
0 jej momentach, ktore sg réwne

Ey =(I1-pW)'Xg,
Var (y) = 02(I— pW) " (I = AM) " (T = AMT) (T - pWT) !
= o2(1— pW) ', (N (I — pWT) .

€
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Ostatecznie wprowadzamy oznaczenie
Qy(p,A) = Var (y) = (I— pW) ', (V) (T— pWT) . (2.12)

Wykazemy, ze w modelu SARAR(1, 1), podobnie jak w przypadku modelu
SEM, zmienna WYy jest endogeniczna. Istotnie, mamy
Ee"Wy =Ee"W(I - pW) ' XB+Ee"W(I - pW) HI - I\M) ‘e
=o2trW(I— pW) HI- M),

przy czym, w ogolnosci, nie jest prawda, ze
trW(I— pW) {I- M)~ =0,

zatem estymator MNK nie musi by¢ zgodny.

4.1. Estymacja z wykorzystaniem uogolnionej metody momentow

Zauwazmy, ze chociaz w przypadku modelu SARAR(1, 1) mozna przeprowadzi¢
rozumowanie dotyczace estymacji metodg zmiennych instrumentalnych, podob-
ne do tego zaprezentowanego dla modelu SARAR(1,0), to jednak estymator
MZI nie uwzglednia skorelowania skladnika losowego. Z tego wilasnie powo-
du Kelejian i Prucha (1998) zaproponowali dwustopniowe rozszerzenie metody
MNK (ang. Generalized Spatial Two-Stage Least Squares, GS2SLS), poprzez zasto-
sowanie uogolnionej metody momentéw (ang. Generalized Method of Moments,
GMM). Ponizej zaprezentujemy w pewnym skrdcie kolejne etapy tej procedury.

Etap 1
Estymujemy model regresyjno-autoregresyjny
y=pWy+Xg8+u, (2.13)

ignorujac chwilowo autoskorelowanie skfadnika losowego. Stosujemy w tym celu
opisana wcze$niej metode zmiennych instrumentalnych. Przyjmijmy, ze uzyta
macierzg instrumentow jest macierz

H=[X WX WZX].

Wowczas, rzut macierzy Z = [X Wy] na macierz instrumentéw H przyjmuje
postac
Z=PyZ =Py (X Wy]=[X PgWy],
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gdzie Py = H(HTH)leT. W rezultacie otrzymujemy estymator
5MZI = (ZTZ)_IZT}’,
5 . 4T
ovz = (Bl vz

>

parametru czastkowego 6 = [,@T p]T.

Etap 2

Za pomocy dyzp z etapu pierwszego mozemy wyznaczy oszacowanie reszt u
modelu regresyjno-autoregresyjnego (2.13), tj.

U=y —Z vz =y — pyzWy — X - Bz

Celem tego etapu jest oszacowanie dodatkowego parametru autoregresji u, czyli
A, z zastosowaniem pewnego estymatora metody momentéw. Dokladniej, roz-
wazmy zaleznos¢

u= AMu +¢,

e~N (O, aﬁI).
Oczywiscie, bezposrednie zastosowanie wartosci oczekiwanej, prowadzi do pu-
stego informacyjnie réwnania 0 = Eu = \AM-Eu+Ee = A - 0+ 0, gdyz

7, tak jak Z i X, zawiera sktadnik staly. Pomyst Kelejiana i Pruchy polega na
wykorzystaniu drugich momentéw ukladu

e=u— A\Mu

Me = Mu — \M?u. (2.14)

Stosujgc wektorowy wzér skroconego mnozenia, z pierwszego rdwnania uzysku-
jemy

ele=u'u—2-\u"Mu+ \u"M"Mu,
z drugiego

eTMT™Me = (Mu) "Mu — 2 - \u"MTM?u + A?(M?u) M?u,

a krzyzowy iloczyn skalarny odpowiadajacych sobie stron réwnan ukladu (2.14)
daje

e’ - Me = u'"Mu — \u"M?u — \u'M"™Mu + \u"M"M?u.
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Z zalozenia o rozkladzie € wynika, ze Ee' Ae = o2tr A, dla dowolnej ma-
cierzy A, por. lemat III.1. Przyktadajac zatem do powyzszych réwnan operator
$redniej wartosci oczekiwanej %E oraz grupujac wyrazenia, otrzymujemy uktad
z niewiadomymi A, A\?, o2. Uklad ten moze by¢ dalej uzyty na potrzeby meto-
dy momentéw, przy czym wartosci zaburzenia u beda aproksymowane resztami
U=y —Z- 8y z etapu pierwszego. Zatem, uwzgledniajac dodatkowo zatoze-
nie o przekatnej macierzy M, tj. tr M = 0, i oznaczajac za Kelejianem i Pruchg
(1998)

2 ~T= 1=T=>
ruu —NuTu 1
~T= =T
G= %u a —%u u tr (MTM)
1~T= l’ZT’: _L’:T;
yu u+juu Fu u 0
oraz Lt
Wu u
_ 1 =T~
g - Nu u >
18Ty
yu u
gdzie 1 := M -U i u := M? - U s3 obrazami przestrzennymi reszt modelu,
pozostaje nam rozwigzanie réwnania
A
2| —
G- |\ =g
2
UE

Poniewaz uklad ten jest nadmiernie identyfikowany, estymatory uogélnionej me-
tody momentow uzyskujemy przyblizajac strony rownania metoda najmniejszych
kwadratéw. Oznacza to, ze

A7 A
[)\UMM (}%MM] = ar§ H;in g—G )\z g—G )\z
»Oe oz (=

Zauwazmy, ze wskazany problem optymalizacyjny jest wypukly, a zatem jego
rozwigzanie nie nastrecza zadnych trudnosci.

Jak wynika z twierdzen Kelejiana i Pruchy (1998), przy pewnych natural-
nych zalozeniach, ktore przytoczymy na koncu podrozdziatu, zaréwno estymator
Aumms jak i jego prostsza wersja, tj. pierwsza wspotrzedna macierzy G lg, sa
zgodne, czyli dla dowolnie matej liczby £ > 0 mamy

A}EHOOP (‘S\UMM — o < 5) =0,

gdzie Ao jest prawdziwa warto$cig parametru autoregresji skladnika losowego u.
Pierwszy z tych estymatoréw okazuje si¢ jednak bardziej efektywny.
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Etap 3

W ostatnim kroku nalezy dokona¢ przestrzennej transformacji Cochrana-Orcutta
modelu (2.13), tj. przyjac

Yy =y — Aumm - Wy,
X* =X — Aumm - WX,
7" =7 — \umm - WZ,

przy czym Z* = [X* Wy*|. Przeksztalcony model przybiera zatem posta¢
y*=7Z"0+e.

Powyzsze rownanie estymujemy ponownie, stosujgc procedure MZI, a uzyska-
ny estymator nazywamy, za Kelejianem i Pruchg, uogélnionym przestrzennym
dwustopniowym estymatorem najmniejszych kwadratéw (GS2SLS). Wynik etapu
trzeciego w postaci zamknietej mozna zapisa¢ jako

Sassis = ((27)(29) (2% v,

gdzie z* jest rzutem Z* na macierz H (patrz etap pierwszy) o nastepujacej
postaci

Z* =PuZ" = [X - dyun - WX PaWy — dyuy - PuW2y].  (2.15)

4.2. Wlasnosci asymptotyczne estymatora GS2SLS

Za Kelejianem i Pruchg (1998) przyjmijmy nastepujace zalozenia.
« Macierze W oraz M maja zerowe przekatne i s3 standaryzowane wierszowo.

« Macierze W, M, jak i (I — pW) ™! oraz (I — AM) " s3 jednostajnie bez-
wzglednie sumowalne, tzn. spelniony jest dla kazdej z nich z osobna waru-
nek opisany w zalozeniu (II.B).

o Macierz zmiennych objasniajacych X jest macierza pelnego rzedu, a jej
elementy s3 co do modulu jednostajnie ograniczone dla wszystkich N € N.

o Kolumny macierzy instrumentéw H to pewien podzbiér lgcznie liniowo
niezaleznych kolumn wybrany spos$rdéd kolumn macierzy

X WX W2X ... MX MWX MW?X .. ].
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« Nastepujace granice istniejg i s3 macierzami pelnego rzedu:
1
= lim —H'H,
Quu = lim
1
Quz = lim NHTZ,

1
Qumz = lim NHTMZ,

N—o0

1 _
®(\) = lim —H'(I-AM)" (I- M) 'H,

N—oo

oraz macierz Quz — AQumz jest pelnego rzedu, dla wszystkich wartosci
Ae(—1,1).

e Przy oznaczeniu

247§ 1§
S L
G, = % Ta —za'a tr(M™M) |,
1lyTa+ td™a —LaTa
yu u+ypuu Fu'u 0

gdzie @ := Mu oraz @1 := M?u, macierz G] G, jest odwracalna i norma
. 1. . - .
macierzy (GIG*) jest jednostajnie ograniczona przy N € N.

Woéweczas, jak dowodzg autorzy owej pracy, prawdziwe jest nastepujace twierdze-
nie o zachowaniu asymptotycznym.

TWIERDZENIE 11.4 _
Przy powyzszych zalozeniach, oba estymatory GMM parametru A\: Aymm oraz
G g sa zgodne. Co wigcej, zgodne s rowniez zwigzane z nimi estymatory para-
metru wariancji o2. Zgodny i y/n-asymptotycznie normalny jest takze estymator
GS2SLS, a doktadniej

Vi (dasasts — do) — N(0, @),

gdzie o jest prawdziwa wartoécie} parametru 9, a macierz ® jest granicg wedlug
prawdopodobienstwa macierzy ol (% (Z*)TZ*)_1 zaréwno dla (Z*)T danego
przez (2.15) z uzyciem Aymm, jak i pierwszej wspolrzednej G~1g. Dla obu
estymatorow wariancja sktadnika losowego z proby uzyskana w etapie trzecim,
4.

1 * * ¢ T/ e\

N(y — Z*bcsasts) (y* — Z*dasasts)

jest zgodnym estymatorem parametru o2,
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4.3. Estymacja metoda najwiekszej wiarogodnosci

Jak zauwazyliSmy wczesniej, zmienna zalezna y ma rozklad gaussowski
y ~ N((I - Aw)ilxﬁv Ugﬂy(/)a )‘))’

zatem zwigzana z nig funkcja gestosci RY > y — £, (y) przyjmuje posta¢

fy(y) = exp {3~ EY)' () (y ~Ey)} (2.16)
y\¥Y)= V 2m)N det Qy (p, \) ’ |

gdzie By = (I — A\W) "X oraz
Qy(p,A) = Var(y) = 02(I— pW) (T = AM) " (T—AMT) (I — pWT) "

A zatem, uwzgledniajac powyzsze w réwnosci (2.16), mozemy zbudowa¢ funkcje
wiarogodnosci dla parametréw p, 3, A i 02, przy obserwacji y zmiennej y

det ©(p, A O(p, Ny —T(V)X3|?
Ly(p,ﬁ,x,az)—wexp{_” 0~ OX }

gdzie dla uproszczenia zapisu
'(A) =1I-2M, A(p) =1-pW,

O(p,A) = T(\)A(p).

Podobnie jak w przypadku estymacji MNW modeli przestrzennych z pojedyn-
cza autoregresja, logarytmujac obustronnie i podstawiajac y = y otrzymujemy
funkcje log-wiarogodnosci postaci

In Ly (p,,@, )\,ag) = —% In (2%0?) + Indet ©(p, \)
(2.17)

o5 1000, )y ~ TVXBI.
UE

Konstrukcja estymatora MNW wymaga identyfikacji, dla kazdego ustalonego
zestawu warto$ci obserwowanej zmiennej y z osobna, takich wartosci parame-
tréw p, 3, A i 02, dla ktérych In Ly (p, B, A, 02) przyjmuje warto$é¢ mozliwie
najmniejszg. Aby wyrugowaé zmienne 3 i 02 z optymalizowanej funkcji celu,
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wyprowadzamy nastepujace pochodne czgstkowe

Oln L 1 0 ~
55 = 57 35 100 V7 - TVXB?
-1 _ _
= — (XT2u() " Alp)y - XT2u(V) ' XB),
8lnLy o 1 2 N
80'2 - _20_21 ”G(pa )‘)y - F()\)X,@H - 20_2'

Przyréwnujac powyzsze formuly jednoczes$nie do zera, otrzymujemy zadane za-
leznoéci optymalnych wartosci 3 i 02 od pi A

Blp.N) = (XTQ,N) X)X ) Ay,
520, ) = 1 1©(p, N7 ~ TVXB*.

Uwzgledniajac te zaleznosci w oryginalnej funkgji celu (2.17), uzyskujemy funkcje
zalezng od dwdch parametréow: p i A.

Dla modelu SARAR(1, 1), podobnie jak w przypadku modelu SAR, mozna
wykaza¢, ze zredukowana funkcja log-wiarogodnosci

(psA) = In Ly (p, B(p, N), A\, 52(p, N))

osiaga swoje maksimum po zbiorze argumentéw (p,\) € (—1,1) x (—1,1)
prawie pewnie, a wspdlrzedne argumentu maksymalizujgcego prowadzg do esty-
matoréw najwiekszej wiarogodnoséci parametrow autoregresyjnych, mianowicie

(Avinw, Avinw ) = argmax In Ly (p, B(p, A), X, 6%(p, N)).
—1<p,A<1

Oszacowania pozostalych parametréow uzyskujemy z wczesniejszych warunkéw
rézniczkowych pierwszego rzedu, czyli

Bunw = B(ﬁMNW, S\MNW),

&I%/INW =57 (ﬁMNW7 5\MNW)-

Powyzsze réwnania mozna przeksztalci¢ za pomoca przestrzennego odpo-
wiednika klasycznej transformacji Cochrana-Orcutta, znanej z analizy szeregéw
czasowych. Ustalajac notacje

y=y-— 5\MNWlVIY )
X =X — iwwMX,
Ay = A(pnw)y — AnwMA (pynw)Y,
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mozemy zapisac
Banw = (XTX) 7' XAy,
. I —~— a4 T A
Oanw = N (Ay — XBwnw) (Ay — XBunw)-
W szczegélnym przypadku, gdy M = W, mamy réwniez
Ay = A(pynw)Y — Aew WA (fyivw)y
=y — ivw Wy — avw Wy + Avivw ovew W2y
=y — nwWy — (onw Wy — pvivw Avivw W2y)
=y — imwWY = A(pvnw) * Ys
a zatem

BMNW = (XT)N()_liTA(ﬁMNW)y,

1 o~ A
= NHA(ﬁMNW)y - X,BMNWH2-
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W tym rozdziale zostang przedstawione wybrane testy statystyczne ekonometrii
przestrzennej. Omoéwimy wlasnoéci statystyki / Morana oraz tzw. testu mnozni-
kow Lagrange’a. W szczegdlnosci zaprezentujemy dokladne formuly okreslajace
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momenty rozkladow tych statystyk dla skonczonej proby. Co wiecej, uzywajac
naszego centralnego twierdzenia granicznego (twierdzenie V.1), wyprowadzimy
ich rozklad asymptotyczny. Co istotne, przeprowadzone rozumowanie bedzie
stanowi¢ $cisty matematycznie dowdd. Wzorujac si¢ na pracy Kelejiana i Pruchy
(2001), uwzglednimy przypadek, w ktérym elementy przestrzennej macierzy wag
zaleza od wielkosci proby. Jednak — w przeciwienstwie do wspomnianej pracy —
unikniemy ograniczajacego zalozenia o sumowalnosci jej wierszy i kolumn. Takie
podejscie umozliwia stosowanie szerszej klasy przestrzennych macierzy wag.

W podrozdziale trzecim omdéwimy test specyfikacji regresji krzyzowej, opar-
ty na rozkladzie F, czyli ilorazie niezaleznych rozkladéw y2. W podrozdziale
czwartym, przedstawiamy procedure testowa tzw. niestacjonarnosci przestrzen-
nej Kosfelda-Lauridsena, w skorygowanej przez nas formie.

1. Testy oparte na asymptotycznym rozkladzie statystyki
Morana

W rozdziale I przytoczyliémy popularnie stosowana w badaniach empirycznych
posta¢ statystyki / Morana, patrz réwnanie (1.4) w definicji na s. 31. Natural-
nie mozna jednak oczekiwaé, ze wlasciwa postac statystyki testowej oceniaja-
cej obecnos¢ autokorelacji przestrzennej bedzie zalezna od rozkladu badanego
procesu przestrzennego y. Podobnie, zalezny od niego bedzie réwniez rozktad
samej statystki /, a w szczegolnosci dwa pierwsze momenty (wartos¢ oczekiwa-
na i wariancja) potrzebne do jej normalizacji. W efekcie, postulowana wcze$niej

zbieznoé¢ rozktadow
I-EI

vVar I

moze mie¢ miejsce tylko wtedy, gdy poczynimy pewne zalozenia dotyczace spe-
cyfikacji modelu dla procesu y, a wiec i nalozymy odpowiednie ograniczenia na
samg macierz wag przestrzennych W.

Powyzsze zagadnienie bylo rozwazane przez wielu teoretykéw ekonometrii.
Jako pierwsi zajeli si¢ nim Cliff i Ord (1972), ktérzy na grunt ekonometrii prze-
strzennej przeniedli rozumowanie Durbina i Watsona (1950, 1951). W swoich
rozwazaniach jako punkt wyjscia przyjeli oni iloraz norm

g g g
Wel2  TWTW
[el? = eTe

~ N(0,1),

i badali rozktad asymptotyczny bardziej ogolnej statystyki postaci ilorazu form
kwadratowych
e"We

Q(€7 W) - cle

>
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przy czym wystepujacy w powyzszych wzorach element € oznaczal wektor reszt
liniowego modelu ekonometrycznego.

Rozklady asymptotyczne statystki / Morana i statystyk pochodnych byly ba-
dane w kolejnych latach réwniez przez Sena (1976), Pinksea (1999), Kelejiana
i Pruche (2001), a ostatnio przez Borna i Breitunga (2011). Niemniej jednak
w niniejszej monografii przedstawiamy teorie wlasnosci asymptotycznych staty-
styki I Morana we wlasnym, oryginalnym ujeciu, ktérego unikatowg cecha jest
zastosowanie nowego centralnego twierdzenia granicznego. W rezultacie pre-
zentowane przez nas wlasnosci sa prawdziwe dla wigkszej klasy macierzy wag
przestrzennych, niz sugeruje literatura przedmiotu. O zasadnosci rozszerzania
teorii asymptotycznych na przypadek macierzy niesumowalnych mozna przeczy-
ta¢ rowniez w rozdziale IV.

Dla zaprezentowanych w tym rozdziale rozwazan kluczowe beda nastepujace
dwa lematy.

Lemart III.1
Zatézmy, ze A jest macierza kwadratowa o rozmiarze N X N i dowolnych
elementach liczbowych a;5, 1 < 4,57 < N. Niech £ = (&1,...,&n) bedzie prze-
strzennym procesem losowym o wielowymiarowym rozkladzie normalnym, z pa-
rametrami

E&=p=(u1,....un)
Var & = 0’1
dla pewnego o2 > 0. Wowczas dla formy kwadratowej
R? Sz Ka(x) =z Az (3.1)

mamy

EKA(E) = Ka(p) + 0% tr A.
Dodatkowo, jedli E& = p = 0, wtedy mamy
Var Ko (€) = ot tr (ATA + A2).

DowoObp. Przy powyzszych oznaczeniach mozemy wyliczy¢

N N
B KA(€) = E(€TAE) = (Zzgzazﬁj):ZZE@iam

i=1 j=1 i=1 j=1
N

= a B + Z aiBE = " aijpip + Y ai(1+ i)

z;éy i#] i=1

—ZzazaﬂmﬂrZau—KA )+ tr A.

1=1 j=1
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Zaloézmy, ze E& = p = 0. Aby wyprowadzi¢ zadane wyrazenie jako wartos¢
wariancji zmiennej K 4 (£), wyliczymy najpierw warto$¢ drugiego momentu. I tak
mamy

Wynik ostatniej réwnoséci mozna uprosci¢. Zauwazmy, ze wartos¢ [E &€& jest
rézna od zera tylko wtedy, gdy warto$¢ zadnego z indekséw i, j, k, [ nie jest roz-
na od wartosci wszystkich pozostalych. Istotnie, gdyby — dla ustalenia uwagi —
warto$¢ indeksu i spetniata ¢ ¢ {j, k, [}, wowczas na mocy zalozen mielibysmy
E&&i&pé = E& - E€65 = 0. Analogicznie mamy j € {i,k, 1}, k € {i,],1}
orazl € {i,j,k}. W ten sposéb w zbiorze wszystkich indekséw 1 < 7,5, k,l < N
mozemy wyrdzni¢ cztery nastepujace przypadki:
a) 1 #J, 1=k, | = j —wodwczas skladniki w powyzszej sumie s3 postaci

aijai; BEE; = o EEEE = afjo’,
b) i # j, 1 =1, k = j — wdéwczas skladniki w powyzszej sumie s3 postaci
a;ja; BEE =BG EE = agajio’,
c) i =j, k=1+# j— wobwczas skladniki w powyzszej sumie sg postaci
A5 Ef?f? = ajia;; BE E{? = ajiajjo’,
d) i = j = k = | — wowczas skladniki w powyzszej sumie sg postaci

auauﬂiﬁZ = a - 302,
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Zatem uzyskujemy
N N N N
EK3(€) = Z Z > aijanE&EGE
N N
=gt Z Z a;ja;; + o Z Z aijaj; +o Z Z ai;ajj + 30" Z Qi

J=1 i=1 j=1 i=1 j=1
J# JFi JF

=oltr ATA + o' tr A2 + ol (tr A)%
O

Lemart IIL.2
Niech A bedzie dowolng macierzg kwadratowg o rozmiarach N x N i niech
& = (&,...,&N) bedzie przestrzennym procesem losowym o wielowymiaro-
wym rozkladzie normalnym N(0, 0%P), gdzie P jest niezerowa macierza rzutu
ortogonalnego. Wowczas dla dowolnej potegi p € R oraz formy kwadratowej
K 4, patrz réwnanie (3.1), mamy

Ka(6)\"  EKY(€)
. ( 1(e) ) T EKI(E)

gdzie K1(€) = £TIE = €7¢€.

Dowép. Oczywiscie iloraz [I((‘;‘((g)) = 5;‘25 jest niezmienniczy ze wzgledu na

przeskalowanie argumentu &, tj. dla dowolnego ¢ # 0 mamy I;‘;‘((cc_f)) = I[%;‘((g.
Mozna wigc zauwazy¢, ze zmienna losowa [;{‘;‘((g jest niezalezna wedlug praw-

dopodobienstwa od dlugosci wektora &, a zatem réwniez od zmiennej Ky(€) =
£T€. W rezultacie mamy

wwio-2((555) a10)-=(568) e

O]

Lemar IIL.3
Niech £ = £(IN) bedzie zmienng losows zbiezng wedtug rozkladu do zmiennej
o rozktadzie normalnym N(0, 1) oraz niech ( = ((N) bedzie zmienng losowa
zbiezng wedlug prawdopodobienstwa do liczby s (stalej), réznej od zera. Wow-
czas iloraz % jest zbiezny wedlug rozkltadu do zmiennej losowej o rozkladzie

normalnym N (0, s™1).
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Dowod powyzszego lematu mozna latwo przeprowadzi¢, opierajac si¢ na
zadaniach 8.1.3 oraz 8.2.6 z ksigzki Jakubowskiego i Sztencla (2001).

W dalszej czgsci rozdzialu wyprowadzimy dokladne formuly, okreslajace mo-
menty rozkladu dla malej préby oraz rozklady asymptotyczne statystyki I Mo-
rana. W tym celu bedziemy rozwaza¢ dwa modele procesu generujacego dane
SAR oraz SEM.

1.1. Rozklad statystyki Morana dla procesu czystej autoregresji

Rozwazmy nastepujgcy proces generujacy obserwacje y = (y1,...,yn), ktdrego
losowo$¢ jest opisana przez model oparty na specyfikacji czystej autoregresji
przestrzennej SAR
y=pWy+e
e ~N(0,0°T).
Zauwazmy, ze przy odpowiednich zalozeniach dotyczacych przestrzeni dopusz-
czalnych wartosci parametru p oraz macierzy wag W, powyzsze rownanie, row-
nowazne jest specyfikacji
y=(O-pW) e
e ~N(0,0°T).
Gdy przemianujemy parametr p na A, ze wzgledu na brak zmiennych objasnia-
jacych, uzyskamy specyfikacje SEM, czyli

y=1u
u=(I-\W) e
e ~N(0, UQI).

Hipoteza zerowa o braku autokorelacji przestrzennej procesu y sprowadza
sie do rownosci
Hy: p=X=0.

W takim przypadku odpowiednia postac statystyki I Morana wyraza si¢ wzorem

N N
[N YWy N D=1 2= WijYiyj
A AN S DAND DARET Y1 v

gdzie, dla zwartosci zapisu, przyjmujemy oznaczenie

W = Z Z Wij. (3.2)
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Zauwazmy, ze Hj jest hipoteza prosta, ktéra jednoznacznie wyznacza rozklad
prawdopodobienstwa wartosci procesu przestrzennego y. Korzystajac z lema-
tu II1.2, a nastepnie lematu IIL.1, przy zalozeniu prawdziwosci hipotezy zerowej,
mozemy wyliczy¢ warto$¢ oczekiwang i wariancje statystyki / Morana. Zatem

W yly

E[_F N y "Wy N EyTWy_E o2tr W
05 "W Ey'ly W N-o2’
a wiec, przy zalozeniu o zerowej przekatnej macierzy W, mamy EI = 0. Po-

dobnie mozemy wyliczy¢

N yT 2 N2 BT 2
VaTO(I)ZE012=E<-yWy>— E(y"Wy)*

WooyTy ) W2 E(yTy)?
N? o%tr (WTW + W?) N 1 . )
W2 (2N +N?) o2 “ Nz et (WWE WD,

Aby ustali¢ rozklad graniczny statystyki / Morana, musimy poczyni¢ pew-
ne dodatkowe zalozenia dotyczace zachowania asymptotycznego macierzy wag
przestrzennych W. Mianowicie zalézmy, ze zachodzi zbieznos¢

tim AVvamll_
N0 [|Wogm||¢
gdzie || Wgym|| jest wartoscig normy operatorowej (spektralnej) macierzy Wy, =
W+TWT, czyli najwigksza wartoscig osobliwg. Liczba |[Wgyml||F to tzw. norma
Frobeniusa, czyli $rednia kwadratowa wszystkich warto$ci wtasnych Wy, zna-
na réwniez jako norma Hilberta-Schimdta. Zauwazmy, ze powyzszy warunek jest
dos$¢ naturalny. Istotnie, w klasycznych centralnych twierdzeniach granicznych
zaklada sie, ze zaden ze skfadnikéw rozwazanej sumy zmiennych losowych nie
jest elementem dominujacym. W naszym warunku wymagamy, aby zadna z war-
tosci osobliwych macierzy Wy nie dominowata w sumie kwadratéw wszystkich
tych wartosci.

Wryliczone przez nas warto$ci momentow statystyki I Morana przy prawdzi-
wosci hipotezy zerowej sa dokladne, jednakze nie daja nam pelnej informacji
o ksztalcie jej rozkladu dla matlej proby. Znajomos$¢ takiego rozktadu jest oczy-
wiscie potrzebna do wyznaczenia pozioméw krytycznych dla wartosci statystki
testowej, ktore odpowiadajg réznym poziomom istotnosci testu statystycznego.
Zatem w praktyce do ich wyznaczenia wykorzystuje si¢ aproksymacje rozkladu
znormalizowanej statystyki I Morana, tj. statystyki Inorm = —=22L, rozktadem

v Varg I’
normalnym N (0, 1). Fakt takiej zbieznoéci dystrybuant musi by¢ jednak formal-

nie wykazany.
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Zauwazmy, ze twierdzenie V.1 implikuje nastepujaca zbieznos¢ (wedtug roz-

kfadu, oznaczang dalej symbolem 2>) przy rozmiarze proby N rosnagcym do
nieskonczonosci

Ty Wy

=
Vbt (WTW + W2)

LEN N(0,02).

Jednoczesnie klasyczne twierdzenia wielkich liczb implikuja, ze ( = ﬁyTy
zbiega wedtug prawdopodobienistwa do o2, Zatem — korzystajac z lematu I11.3 —
wnioskujemy, ze

1 B N +2 y Wy
VVargI  \/tr ( WTW + W2) y'y

I norm —

_¢op
=3 N(0,1).

1.2. Rozklad statystyki Morana dla procesu autoregresji ze skladowa
stalg

Rozwazmy teraz model mechanizmu generujacego obserwacje procesu prze-
strzennego y, oparty na specyfikacji SAR ze skladnikiem stalym

y=pWy+c-1+¢
ENN(O,O'QI),

gdzie 1 jest N-elementowym wektorem jedynek, a parametr ¢ € R parame-
trem okreslajgcym wyraz wolny modelu. Hipoteza zerowa o braku autokorelacji
przestrzennej procesu y wyraza si¢ rownos$cia

H(): pZO

Ponownie Hj jest hipoteza prosta.

W przypadku obecnej specyfikacji modelu dla procesu y odpowiednia posta¢
statystyki / Morana powinna réwniez uwzgledni¢ obecno$¢ sktadnika stalego.
Poniewaz przy zalozeniu prawdziwosci hipotezy zerowej mamy Ey = ¢, mozemy
szacowaé warto$¢ ¢ przez § = ZZ]\LI yi. Zatem wlasciwg w tym wypadku
postac statystyki I Morana mozemy zapisa¢ wzorem

N -9)Wy-y)

W y-9Ty-9)

gdzie y = y -1, a W dane jest przez (3.2). Zauwazmy, ze powyzsza formula
zgodna jest z definicjg (1.4).
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Aby wyliczy¢ parametry rozkladu, wprowadzimy dodatkowe oznaczenia. Za-
uwazmy, ze macierz D = %1 - 1T wyznacza operator $redniej, czyli w szcze-
gélnoéci y = Dy. Zatem y —y = (I — D)y. Analogicznie jak w przypadku
poprzedniego modelu, korzystajac z lematow II1.2 i II1.1, mozemy wyliczy¢ war-
to$¢ oczekiwang i wariancje statystyki / Morana przy zalozeniu prawdziwosci
hipotezy zerowej. I tak, poniewaz (I — D)y = (I — D)e, uwzgledniajac (3.2)
mamy

e m(N -9"Wly-y)) N ET(I-D)'W{I-D)
W v-9)Tv-y) /W EET@-D)TI-Dje
N o?tr (I-D)"W(I - D)
W 2tr(I-D)TI-D) °
Nietrudno zaobserwowaé, ze macierz D jest symetryczna (DT = D) i idempo-

tentna, gdyz D2z = = = Dz, dla dowolnego = € RY, a wigc D? = D.
Przy zalozeniu o zerowej przekatnej macierzy W, mamy

N
tr(I-D)'W(I-D)=tr(W—-WD)=—trD = — Z%*—

Podobnie uzyskujemy warto$¢ z mianownika

tr(I—D)'(I-D)=tr i(l-) N —1,

=1

co daje
N 1

N-1 W
a w przypadku, gdy macierz W jest standaryzowana wierszowo (co implikuje
réwno$¢ W = N) mamy (por. rozdzial I)

Eol =—

1
Eol =——7—.
0 N -1
Ponownie lematy III1.2 i III.1 pozwalaja wyliczy¢ zadang wariancje. Uwzgled-
niajac symetryczno$¢ i idempotentnos¢ macierzy D mozemy zapisaé
N y-9)"Wy-y)\"
E,I?—E ( y-y) XV(y Y))
W y-y)'y-y)
N? E(y'I-D)"W(I-D)y)
W? E(yT(I-D)T(I-D)y)"
N? tr (I-D)W'R+ (I-D)R?) +1

W2 2.4r(I-D)+ (tr(I- D))’

2
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gdzie R = W(I — D), a zatem

Varg I = EoI? — (Eo I)?
_ N? [tr(WT(I-D)R+R?) N 2N
W2 N2 —1 (N+1)(N-1)2)"

Gdy macierz W jest standaryzowana wierszowo, czyli W -1 =1 oraz W = N,
wowczas

1 1
WD=W.—-1-1"T=—-(W-1)-1"T=—-1-1" =D.
N ) N

1
A
W takim wypadku wyrazenie okre$lajace wariancje statystyki I/ Morana mozna
dalej uprosci¢ do postaci
tr (WT — W'D + W)W N 1

N2 -1 (N —1)%

Varo I=

Na koniec zauwazmy, ze przy zalozeniach
sup |[W]| < o0
NeN

oraz
lim W m =0
N1—>oo H 5 HF ’

korzystajac z ogolniejszego twierdzenia II1.4, sformulowanego w nastepnym pod-
rozdziale, mozemy wnioskowac o zbieznosci statystyki normalizowanej

I'—-Fol Nooo

Tnorm = N(0,1).

v/ Varg I
Warto tez zaobserwowa¢, ze warunek rozbieznoéci normy |[Weym||F do nie-
skonczonosci, jest rownowazny takiej rozbieznosci dla samej macierzy W =
[wijli<i j<n jesli elementy w;; sa nieujemne.

1.3. Rozklad statystyki Morana dla procesow autoregresji w obecnosci
zmiennych objasniajacych
Rozwazania z poprzedniego podrozdzialu uogélnimy teraz na przypadek specy-
fikacji procesu generujacego obserwacje, opartej na modelu SAR ze zmiennymi
objasniajacymi, tj.
y=pWy+XB8+¢

e ~ N(0,0%T), (3:3)
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gdzie X jest macierza o rozmiarze N X k obserwacji zmiennych objasniajacych,
a 3 wektorem odpowiadajacych im parametréw. Jak poprzednio, hipoteza zerowa
o braku autokorelacji przestrzennej procesu y jest hipoteza prosta postaci

H0: P = 0.
Przyjmijmy nastepujace konwencjonalne oznaczenia
P=XX"X)"'X", M=I-P.

Macierze P i M reprezentujg rzuty ortogonalne, a wigc w szczegdlnosci sg sy-
metryczne i idempotentne. Ponadto przyjmijmy, ze B jest oszacowaniem MNK
parametru 3 przy prawdziwosci hipotezy zerowej, tj. 3 = (X7 X)X y. Wow-
czas odpowiednia w przypadku powyzszej specyfikacji posta¢ statystyki I Mora-
na, uwzgledniajaca obecnos¢ zmiennych objasniajacych, to

N (y-XB)'W(y-X8) N y'M'WMy

Wy oxeTy-xp) W yTMMy
_ N _ ZiNzl Z;-V:l wij(yi — Xi/é)(yj - XiB)
Zﬁ\; Z;V:I Wij ZZJL(% - x;3)? ,

gdzie x;, 1 < ¢ < N, to wiersze macierzy X, a liczba W zdefiniowana jest
réwnaniem (3.2).

Analogicznie jak w przypadku poprzedniego modelu, korzystajac z lema-
tow II1.2 i III.1, mozemy wyliczy¢ warto$¢ oczekiwang i wariancje statysty-
ki I Morana przy zalozeniu prawdziwosci hipotezy zerowej. I tak, poniewaz
My = Me, mamy

(y - XB)"W(y — Xﬁ)) N Ey'M'"WMy
(y —XB)T(y — XB) W Ey'™y
N JZteMWM 1 N

2 MW,
W otuM Nk w MW

MIzE(

Lematy II1.2 i III.1 pozwalajg rowniez wyliczy¢ zadang wariancje statystyki
I Morana. Najpierw uzyskujemy jej drugi moment:

E 12 —E ((y - XB)"W(y - XB)>2 _ N E(y'M"WMy)?
(y —XB)T(y — XB) W E(y"My)?
N? tr ( MWTMW + (MW)?) + (tr MW)?
w2 2-tr M + (tr M)? ’
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a zatem

Varg I = EgI? — (Eo I)?
B N2 [tr (MWTMW + (MW)z) + (tr MW)? (tr MW)?
_WQ( (N—k)(N —k+2) + (N—k:)2>

Do wyznaczenia przedzialu krytycznego dla procedury testowej wykorzystu-
je sie aproksymacje rozktadu znormalizowanej statystyki I Morana, tj. statystyki

TInorm = \I/\% rozktadem normalnym N(0, 1). Jak zaznaczyliémy juz w pod-

rozdziale 1.3, fakt takiej zbieznosci musi by¢ jednak formalnie wykazany. Ponizej
prezentujemy autorskie twierdzenie o takiej zbieznosci.

TwIERDZENIE II1.4
Niech W bedzie macierza wag przestrzennych spelniajacg warunki

sup [|[W]| < oo, lim |[[Weyml|[F = oo,
NeN N—yoo

W+W

gdzie Wy, = oraz niech y bedzie procesem przestrzennym zgodnym ze
specyfikacja SAR w réwnaniu (3.3). Wowczas normalizowana statystyka Morana

Thorm = \I/\%, gdzie warto$ci momentéw zostaly wyznaczone powyzej, zbiega

wedltug rozktadu do N(0,1).

DowOb. Z uwagi na oszacowanie
[Weym (I = P)[[f = [|Weym [ — 2 tr (PW i WeymP) + | Wy P [?
= stymHF - ”WsymPHF
> [Weml[ — W - [[P7
= [Weml[t — & - [|W]]%,

réwno$¢ My = Me oraz lemat III.1 mamy rozbieznos¢
Vo == Varg —y"MTWMy = = - [Wapm|le 27
0= Varo 777y Y= [Wsyml|[Fp —— o0

Oznaczmy ) )
WyTMWMy — NyTMy -Eo I
Vo '

Mamy wowczas

¢ B MWMy Frtr MW | (o — xlpy™™y)
Vo V%o
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przy czym drugi skltadnik w powyzszej sumie zbiega do zera wedlug prawdo-
podobienstwa. Istotnie, zgodnie z przyjetymi zalozeniami mianownik rozbiezny
jest do nieskonczonosci, a z teorii estymacji MNK wynika, Ze zmienna
= —(y—XB8)"(y - X0
C= 570 =XB) (v - XP)
zbiega wedlug prawdopodobiefistwa do 3. Zatem, korzystajac z lematu 1113
wnioskujemy, ze
IT—Eol § Nooo 1
& N(o, 7)_
VvV ¢ o?

Powyzsza zbiezno$¢ implikuje w szczegdlnosci, ze

I Varg 1 lim Vi (I—Eg I> 1
1m = 1m arl _— | = —,
N—oo \/Vb N—o0 0 \/‘/0 0'2
a zatem
I—EgI vVo IT—FEgl
o 0oL 0 0 N—oo ‘N(O,l).

Inorm - - :
VvV Varo I Varo Il \/ ‘/0
]

Rozwazmy teraz model mechanizmu generujacego obserwacje procesu prze-
strzennego y, oparty na specyfikacji SEM ze zmiennymi obja$niajacymi

y=XB8+u
u=\Wu-+e¢
e ~ N(0,0%T),

gdzie X jest macierza o rozmiarze N X k obserwacji zmiennych objasniajacych,
a 3 wektorem odpowiadajacych im parametréw. Hipoteza zerowsa jest stwier-
dzenie o braku autokorelacji przestrzennej procesu y wyrazone przez réwnosé

HM:. X =o0.

Tak jak w poprzednim podrozdziale, specyfikacja modelu dla procesu y w przy-
padku prawdziwosci HSEM jest tozsama w przypadku hipotezy Hy dla oméwionej
juz specyfikacji SAR. Wynika stad, iz posta¢ statystyki / Morana oraz procedura
testowa sg takie same w obu przypadkach. Naturalnie jednak, z uwagi na rézne
hipotezy alternatywne, mozna spodziewa¢ sie réznych funkeji mocy testu.
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1.4. Uwagi praktyczne dotyczace statystyki / Morana

Analizujac powyzsze rozumowania, fatwo zauwazy¢, ze czynnik %, patrz (3.2),
wystepujacy w tradycyjnej definicji statystyki / Morana nie spelnia roli nor-
malizujacej. Mozna nawet powiedzie¢, ze w pewnym sensie ,,przeszkadza” przy
przeksztalcaniu wzoréw. Istotnie, nalezaloby sie spodziewaé, ze czynnikiem nor-
malizujacym bedzie raczej wyrazenie zwigzane z wariancja (a doktadniej od-
chyleniem standardowym) formy kwadratowej, wystepujacej w liczniku formu-
ly opisujacej wasciwg statystyke, tj. y' Wy, gdzie W jest macierza w pewien
sposdb zwiazang z macierza wag przestrzennych W i zalezng od specyfikacji
procesu przestrzennego. Taka wariancja jest proporcjonalna do wartosci sladu
tr (WT +W)W, ktéra z kolei w ogélnosci nie jest rowna i nie jest propor-
cjonalna do sumy SN Z;Vﬂ w;; (por. Kelejian, Prucha, 2001; Olejnik, 2013).
Co ciekawe, w pierwszych pracach dotyczacych statystyki / Morana rozwazano
symetryczne macierze zero-jedynkowe, dla ktérych mamy réwnos¢

N N

1 1

S (W W)W = J[ W2 =3 wf = W
i=1 j=1

Jest jednak faktem, ze w badaniach empirycznych powszechnie stosuje sie
posta¢ statystyki / Morana z czynnikiem ,normalizujagcym” % To w zasadzie
nie jest bledem metodologicznym, jesli statystyka testowa jest posta¢ juz znor-
malizowana pierwiastkiem odpowiedniej wariancji. Chcieliby$Smy jednak w tym
miejscu z pelna moca podkresli¢, ze nalezy zachowaé ostrozno$¢ przy poréwny-
waniu wartosci nieznormalizowanych odchyleniem standardowym wartosci sta-
tystki  Morana, dla réznych macierzy wag, w szczegélnosci o innym rozmiarze
proby N. Tak uzyskane wartosci moga nie by¢ poréwnywalne. W takim wypad-
ku procedurg gwarantujaca metodologiczng poprawnos¢ jest poréwnywanie albo
znormalizowanych wartosci statystyki tj. Inorm, albo tez explicite wyznaczanych
przez nie warto$ci p (ang. p-values).

Kolejng istotng kwestig aplikacyjna, na ktorg nalezy zwrécic¢ szczegélng uwage
jest stosowalno$¢ poszczegdlnych form statystyki / Morana w przypadku rdz-
nych specyfikacji de facto stosowanych do modelowania procesu przestrzennego.
Niestety, czesto spotyka si¢ w badaniach empirycznych stosowanie niewlasciwej
postaci statystyki / Morana. Na przyklad stosuje sie wzor

N Sl wi (v - 9) (4 — )
Y Zjvzl Wij S (wi—9)°

gdzie y = % Zf\il yi> czyli posta¢ statystyki wlasciwg do badania autokore-
lacji procesu jedynie ze skladnikiem stalym, w przypadku, gdy proces y =

>
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(y1,...,yn) jest explicite procesem regresyjno-autoregresyjnym z nietrywialng
macierza zmiennych objasniajacych. Nierzadko tez mozna przeczyta¢ w publika-
cjach roznych autoréw nieprawdziwe stwierdzenie, ze E 1 = —ﬁ, niezaleznie
od zalozen dotyczacych postaci losowosci procesu przestrzennego (por. Suchecki
[red.], 2010). Innym, czgsto powtarzanym bledem jest formutowanie stwierdzen
dotyczacych asymptotyki statystyki testowej I Morana bez jakichkolwiek zalozen
odnosnie asymptotycznego zachowania macierzy wag przestrzennych W.

2. Testy oparte na mnoznikach Lagrange’a

W tym podrozdziale opiszemy metode testowania obecnosci autokorelacji prze-
strzennej w obserwowanym przestrzennym procesie stochastycznym, opartg na
tzw. mnoznikach Lagrangea (ang. LM, Lagrange/Lagrangian Multipliers, patrz
Anselin, 1988b). Jest to podejscie alternatywne dla testow opartych na statystyce
I Morana, ale — jak si¢ czgsto okazuje — asymptotycznie z nim zgodne. Przed-
stawiong tu procedure, w dos¢ ogodlnej, cho¢ nieprzestrzennej formie, po raz
pierwszy zaprezentowano w pracy Silveya (1959). Nieco wczes$niej Rao (1948)
opisal wlasciwie réwnowazng procedure testows, oparta na zachowaniu infor-
manty (pochodnej logarytmu funkcji wiarogodnosci) dla parametru wyznacza-
jacego hipoteze zerowq. Stad testy omawiane w tym podrozdziale sa réwniez
nazywane testami informanty Rao (ang. Rao’s Score Tests, patrz Anselin, 2001).

2.1. Test mnoznikéw Lagrange’a dla procesu czystej autoregresji

Rozwazmy nastepujaca specyfikacje procesu czystej autoregresji przestrzennej
SAR/SEM:

y=pWy+e
e ~ N(0,5°T),
gdzie y jest modelowanym procesem przestrzennym. Rozwazmy takze procedure

estymacyjng najwiekszej wiarogodnosci parametru o2, stosowang przy ograni-
czeniu wynikajacym z hipotezy zerowej o braku autokorelacji przestrzennej, tj.

Hy: p=0.
W wyniku otrzymujemy program optymalizacyjny, ktéry mozemy rozwigzywac

metodg mnoznikéw Lagrange’a. Zatem, najpierw poszukujemy punktéw zerowa-
nia si¢ pochodnej funkcji

L(p,0”, @) =InLy(p,0%) — - g(p),
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gdzie

1

N
Ly(p,0*) = == n(210%) + Indet A(p) — 5

(Alp) - ¥) (A(p) ),
jest funkcja wiarogodno$ci parametréw procesu, A(p) = I—pW, a g(p) = p jest
funkcja naktadanego ograniczenia (tj. g(p) = 0). Wedlug Silveya (1959), staty-
styke testowa dla Hy mozna zbudowac w oparciu o wartos¢ kwadratu mnoznika
a = a(y) rozwiazujacego rownanie

oL

dp.oZa) 0

a doktadniej rozwazajac jego wartosci normalizowang wariancja, czyli

a2

LM

Vara'

Takie podejscie jest zgodne z konwencjonalng interpretacja mnoznikéw Lagran-
ge’a, jako efektu kranicowego ograniczenia (tutaj p = 0) nalozonego na warto$¢
optymalng funkcji celu (w naszym przypadku funkcji log-wiarogodnosci).

Metoda poszukiwania ekstremum warunkowego Lagrange’a prowadzi do na-
stepujacego ukladu réwnan

OlnLy

— Y WA+ —-2.yW'A =
op rWA(p)™ + 552y (p)y = a
dlnLy, N 1 T B
902~ 252 + ;(A(P) y) (Alp) - y) =
dap) _ _
da p=0
z ktorego wyliczamy formutle
N
y'y

Wartosci statystyki « bliskie zeru bedziemy uwaza¢ za wspierajace hipoteze ze-
rowy, a odlegle od zera za wskazujace na jej odrzucenie.

Ostatecznie mozemy zauwazy¢, ze statystyka LM rowna jest normalizowanej
statystyce Morana Iporm, a wiec (jak wynika z rozwazan w poprzednim podroz-
dziale dotyczacych asymptotycznych wilasnosci statystyki I) jej wartos¢ zbiega
wedlug dystrybuanty do rozktadu x? z jednym stopniem swobody, t.

LM 2% 0 2(1).
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Innym podejsciem do uzyskania statystyki testowej jest normalizacja infor-
manty za pomocg funkcji informacji Fishera. Istotnie, niech

OlnL
S(p,0%) = 8py

bedzie funkcjg informanty (ang. score) oraz niech

1
=trWA(p) ™ + 5y WTA(p)y

InL
I(p,0%) = —E (8(82)2y | p, 02> =trWA(p) 'WA(p) 1+ tr WW.

bedzie funkcjg informacji Fishera dla parametru autoregresyjnego. Wowczas, jak
wiadomo (patrz Lehmann, Casella, 1998), dla prawdziwych wartosci parametrow
mamy ES(p,0?) = 0 oraz Var S(p,0?) = Z(p, 0?). Zatem test informanty Rao
przyjmuje postac
2
(S(p.0*)” _ (S(p.0*)’

RS = VarS(p,0?)  I(p,o?)

co przy zalozeniu prawdziwosci hipotezy zerowej daje

(S(0,0%)?  (LHy "Wy +tr W)
Z(0,02) tr(WTW + W2)

2

RS =

2

Co ciekawe, wykonujac naturalne podstawienie 0° = 6 == %yTy oraz uwzgled-

niajac rownos¢ tr W = 0, uzyskujemy

(y'Wy)?

LM = ;
(%yTy) tr (WTW + W2)

= RS.

2.2. Testy mnoznikow Lagrange’a dla procesow o specyfikacjach
regresjno-autoregresyjnych SAR oraz SEM

Rozwazmy nastgpujaca specyfikacje procesu regresji z autoregresja skladnika lo-
sowego SEM

y=X8+u
u=\Wu-+e¢
ENN(0,0'2I),

gdzie y jest modelowanym procesem przestrzennym, X jest macierzg wartosci
zmiennej objasniajacej, a B wektorem odpowiadajacych tym zmiennym parame-
trow nachylenia. Rozwazmy tez problem optymalizacyjny wynikajacy z proce-
dury MNW dla parametréw 3 i 02, przy ograniczeniu wynikajacym z hipotezy
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zerowej o braku autokorelacji przestrzennej
Hy: A=0.

Analogicznie jak w przypadku czystego modelu SEM, poszukujemy zatem punk-
tow zerowania si¢ pochodnej funkcji Lagrangea

L(B, N, 0% a) =InLy(B,\,0%) — a- g(a),

gdzie
2 N 2 1 2
Ly(B, ), 0%) = == In(210%) + Indet T(\) — 55T\ (y — XB)|*,

jest funkcjg wiarogodnosci parametréw procesu, I'(\) = I — pW, a funkcja
A+ g(A), poprzez réwnanie g(\) = 0, definiuje naktadane ograniczenie.

Metoda Lagrange’a poszukiwania ekstremum warunkowego prowadzi do na-
stepujacego ukladu réwnan

MLy e Wr() g 2+ [y~ XBTWITO)(y ~ XB) =
315;? _ _% n %yyr(x)(y - XB)[*> =0

31; BLy _ %XTI‘()\)TI‘(A)(y ~XB) =0

8%‘?) —A=0,

z czego uzyskujemy

1 _
a(y) = (NYTMY) lyTMWMy,

gdzie M = I - XT(XTX)~"!XT. Przeprowadzajac odpowiednie wyliczenia moz-
na wykazaé, iz Var o jest asymptotycznie réwnowazna wartosci Vary' MW My.
Stad, przyjmuje sie¢ nastepujaca definicje statystyki testowej

(y"TMWMy)?
(Hy™™y)? - tr (WTMWM + (WM)2)

LMgsgm =

Jak wynika z rozwazan dotyczacych asymptotycznych wlasnosci statystyki I Mo-
rana (patrz twierdzenie II1.4), statystyka testu mnoznikéw Lagrangea zbiega we-
dlug dystrybuanty do rozkladu y?(1).



Test F' dla modelu z krzyzowymi zalezno$ciami przestrzennymi zmiennych objasniajacych 85

Podobnie rozwaza¢ mozna specyfikacje SAR dla procesu y, patrz specyfikacja
(3.5). W takim przypadku analogiczne rozumowanie prowadzi do statystyki

(Ly™™My)~* - (y"WMy)?

LM = ,
T i (WTMWM + (WM)?) + [MW (I — M)y|?

zbieznej wedlug dystrybuanty do rozkladu x?(1).

3. Test [' dla modelu z krzyzowymi zalezno$ciami
przestrzennymi zmiennych objasniajacych
Najprostsza forma zalezno$ci przestrzennych w modelu ekonometrycznym sa
przestrzenne zalezno$ci krzyzowe zmiennych objasniajacych. Taki model ma
wowczas postaé (patrz réwniez specyfikacja SADL w réwnaniu (2.3))
y=XB8+WX~vy+e
e ~ N(0,5°T).
Wystepujacy powyzszej element WX stanowi przestrzenna, $rednig, wazona
wartosci poszczegdlnych zmiennych objasniajacych w sasiednich lokalizacjach,
a v to wektor odpowiadajacych im parametréw. Ponadto przyjmijmy, ze k jest

liczba kolumn w macierzy X. Hipoteza zerowa o braku przestrzennych zaleznosci
krzyzowych zmiennych objasniajacych to hipoteza prosta

H(): Y= 0,
przy zlozonej hipotezie alternatywnej
H 1:7 7é 0.

Okazuje sig, ze obecnos¢ takiej formy zaleznosci moze by¢ testowana, ana-
logicznie jak dla modeli klasycznych, za pomoca testu F. Istotnie, przyjmijmy
statystyke testowa postaci

AT -~ AT 2
N =2k €p,€Hy — €, EH,

F =
T &
k €H1€H1

>

gdzie £p, jest wektorem reszt uzyskanym z estymacji modelu metoda MNK bez
skltadnika WXy, a £p, jest wektorem reszt z estymacji tego modelu uwzgled-
niajacego skladnik WX+. Gdy hipoteza zerowa jest prawdziwa, wartos¢ é}h Em,

nie powinna by¢ znacznie mniejsza niz é}}oéHO, relatywnie do wartoéci o2.
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Przy oznaczeniu Mx =TI — X(XTX)AXT oraz Mz = I — Z(ZTZ)AZT’
Z = [X WX] mamy

N -2k y"™Mxy —y'Mzy _ e’ (Mx — Mz)e ;||(Mx — Mz)e|?

F =
k y Mzy € Mze o [ Mze |12

przy czym Mx — Mgz jest macierza rzutu ortogonalnego, gdyz zachodzi ma-
cierzowa nieréwno$é¢ Mz < Mx, a wiec MzMx = MxMgyz = Mz. Licznik
i mianownik majg rozklady chi-kwadrat z, odpowiednio, k i N — 2k stopniami
swobody. Ponadto mamy

E (Mze)" (Mx — Mz)e = tr Mz(Mx — Mz) = 0,

zatem licznik i mianownik s3 niezalezne. Ostatecznie, statystyka F ma rozktad
Fishera-Snedecora z (k,2N — k) stopniami swobody.

4. Testowanie niestacjonarnosci przestrzennej

Problem niestacjonarnosci w przypadku proceséw przestrzennych jako pierwszy
rozwazal Fingleton (1999). W swojej pracy zauwazyl, ze niestacjonarno$¢ prze-
strzenna, analogicznie jak w przypadku szeregdw czasowych, moze prowadzi¢ do
wystgpienia regresji pozornej (por. Olejnik, 2008, 2013). W literaturze propono-
wane byly rézne procedury testowe, umozliwiajagce wykluczenie wystepowania
problemu niestacjonarnosci przestrzennej. Podejscia te z reguly stanowity analo-
gi do testow znanych z ekonometrii klasycznej (tj. nieprzestrzennej). Na przyklad
Lauridsen (1999) zaproponowal procedure analogiczng do testu Dickey-Fullera,
a pozniejsza praca Kosfelda i Lauridsena (2004) jest poswiecona podejsciu opar-
temu na tescie Walda. My jednak przyjrzymy sie w tym podrozdziale procedurze
zaczerpnigtej z pracy Kosfelda i Lauridsena (2006). Na jej przyktadzie pokazemy,
na czym polega problem poprawnej specyfikacji przestrzennej niestacjonarnosci.
Ostatecznie prezentujemy tutaj oryginalng, poprawiong przez nas wersje owej
procedury.
Jako punkt wyjscia przyjmijmy model SEM postaci

y=X8+u
u=\Wu+e (3.4)
e ~ N(0,0°1),

gdzie p, B i 0% s3 nieznanymi parametrami. Jak wynika z rozwazan w poprzed-
nim rozdziale, przy zalozeniu zerowej przekatnej i standaryzacji wierszowej ma-
cierzy wag przestrzennych W, naturalng przestrzenia dopuszczalnych wartosci



Testowanie niestacjonarnosci przestrzennej 87

parametru autoregresji sktadnika losowego p jest przedziat (—1,1). Niestety, gdy
warto$¢ parametru p jest bliska jednos$ci, woéwczas oszacowania parametréw mo-
delu przestajg by¢ stabilne. Przypadek graniczny, gdy p = 1, jest nazywany prze-
strzennym pierwiastkiem jednostkowym. Ponadto, przez analogi¢ do szeregéw
czasowych, proces autoregresji, dla ktdrego parametr autoregresyjny implikuje
osobliwos¢ macierzy I — pW jest nazywany — zgodnie z powszechnie przyjeta
w literaturze konwencja — procesem niestacjonarnym. Podobnie mozna zdefi-
niowac niestacjonarnos¢ przestrzenng dla modelu o specyfikacji z autoregresja
zmiennej objasnianej SAR, inaczej — SARAR(1,0).

Zauwazmy, ze tak zdefiniowana niestacjonarnos$¢ przestrzenna nie jest row-
nowazna brakowi stacjonarnosci (rozumianej standardowo jako niezmienniczo$¢
charakterystyk rozkladow skonczenie wymiarowych ze wzgledu na przesuniecia)
procesu przestrzennego, ani stabej, ani mocnej. Nalezy zauwazy¢, ze niestacjo-
narno$¢ przestrzenna jest zjawiskiem okreslonym w kontekscie specyficznego
modelu dla obserwowanego procesu przestrzennego.

Zaproponowana przez Kosfelda i Lauridsena (2006) dwustopniowa procedura
testowa jest oparta na te$cie mnoznikéw Lagrangea, ktdry jest stosowany na
obu jej etapach. Najpierw testuje si¢ hipotez¢ o braku korelacji przestrzennej,
tj. hipoteze

Hy: p=0.

Gdy zostanie ona odrzucona, a wiec zostanie stwierdzona obecnos¢ autokorelacji
przestrzennej, wowczas Kosfeld i Lauridsen proponuja ponowne wykonanie testu
mnoznikéw Lagrange’a dla modelu przeksztalconego operatorem A =1 - W,
a wiec

Ay = AX8+ Au=AX3 +e.

Autorzy zdajg sie jednak nie zauwaza¢, ze w przypadku granicznym specyfikacja
(3.4) jest w zasadzie wewnetrznie sprzeczna. Istotnie, gdy p = 1, zmienna € =
Au = (I — W)u nie moze mie¢ rozkladu normalnego & ~ N(0,c%I) przy
osobliwej macierzy A.

Alternatywnie, w drugim etapie, mozemy zastosowa¢ podejscie Kosfelda—
Lauridsena-Olejnika, w ktérym hipoteza zerowa

Hy: p=1.
prowadzi do zmodyfikowanej specyfikacji

y=XB+u
u=\Wu+e¢ (3.5)
e ~N(0,0°P),
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gdzie P jest macierzg rzutu ortogonalnego na przestrzen bedacg zbiorem wartosci
operatora liniowego A, czyli

P=AATA)TAT=A . A"

Przez A™, dla dowolnej macierzy A, oznaczamy jej pseudoodwrotnosé Moore’a-
Penrose’a. Jesli dalej w konstrukeji testu Lagrange’a uwzgledni si¢ fakt, Ze macierz
wariacji sktadnika losowego € nie jest pelnego rzedu, otrzymuje si¢ wlasciwy test
fazy drugie;j.

Analogiczna procedura moze zosta¢ zastosowana w celu badania przestrzen-
nej niestacjonarnosci kazdej ze stochastycznych zmiennych rozwazanego modelu.
Wtedy nalezy wykonac regresje danej zmiennej na czynnik staly (patrz Olejnik,
2013; Kosfeld, Lauridsen, 2006). Praca Olejnik (2008) podaje przyklad bada-
nia empirycznego, w ktérym rozwazana jest przestrzenna stacjonarno$¢ procesu
konwergencji w Unii Europejskiej.
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Wstep

Procedury estymacji modeli przestrzennych, oparte na metodzie najwigkszej wia-
rogodnosci, byly opisywane i stosowane w praktyce juz od poczatkéw ekonome-
trii przestrzennej (patrz Anselin, 1988a). Jednak, jak zauwaza Anselin w rozdzia-
le 5.2 cytowanej publikacji, elementy proby przestrzennej z samej definicji nie sg
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niezalezne, a wigc nie mogg by¢ w takim wypadku stosowane klasyczne twierdze-
nia i teorie dotyczace zachowania asymptotycznego estymatoréw MNW. Wynika
stad potrzeba odrgbnego formalnego dowodu twierdzen opisujacych wilasciwo-
$ci takich estymatoréw dla parametréw modeli przestrzennych. Rozumowania te
pojawily sie dopiero ponad dekade pdzniej, niemniej jednak, odpowiednia teo-
ria byla oczekiwana przez specjalistow, co czg$ciowo i nieformalnie uzasadniato
stosowanie tej metodologii przez praktykow.

Przelomem okazal si¢ artykut Lee (2004), w ktérym przedstawiono spdjna
matematycznie teori¢ wlasciwosci asymptotycznych oszacowan quasi-najwiekszej
wiarogodnosci (QNW) dla parametréw autoregresyjnego modelu przestrzennego.
Wyprowadzone tam rozumowanie opiera si¢ na wczesniejszych pracach Kelejiana
i Pruchy, gdzie sformulowano centralne twierdzenie graniczne dla form kwadra-
towych pojawiajacych sie w wyrazeniach opisujacych asymptotyczne zachowanie
odpowiednich estymatorow.

Praca Lee (2004) zapoczatkowala dynamiczny rozwdj teorii estymatoréw
opartych na metodzie najwigkszej wiarogodnosci, siegajacy nawet dalece rozbu-
dowanych specyfikacji modeli autoregresji przestrzennej. Na przyklad Lee i Yu
(2010) proponuja estymator najwiekszej wiarogodnosci dla przestrzennego mo-
delu z indywidualnymi i czasowymi efektami statymi (ang. individual and time
fixed effects) dla danych panelowych. Dodatkowo, w swojej pracy sformulowali
oni poprawke usuwajacg obcigzenie dla estymatora wariancji. Z kolei w artykule
Lee i inni (2010) rozwazano dalsze rozszerzenie tych teorii na panele niezba-
lansowane oraz ich zastosowanie do modelowania sieci spotecznych (ang. social
networking models). Rozumowania Lee (2004) byly réwniez wykorzystywane do
analizy specyfikacji modeli z dynamiczng (ze wzgledu na opdznienie czasowe)
zaleznoscig zmiennej objasnianej (patrz Yu i inni, 2008). Shi i Lee (2017) opi-
sywali podejscie najwiekszej wiarogodnosci do estymacji dynamicznego modelu
panelowego z efektami interaktywnymi. Z kolei Qu i Lee (2017) rozwazali modele
dynamiczne, w ktérych dopuszcza si¢ macierz wag zmienne w czasie.

W ostatnich latach obserwuje si¢ wzrost popularnosci aplikacji modeli au-
toregresyjnych wyzszych rzedéw, a w szczegdlnosci specyfikacji SARAR rzedu
(r,0), dla r > 1. W efekcie, zyskuja one rowniez zainteresowanie teoretykdow.
Dla przykladu, Gupta i Robinson (2015) rozwazaja estymator oparty na metodzie
najwiekszej wiarogodnosci dla modelu o specyfikacji z rosnaca do nieskonczo-
nosci (wraz ze wzrostem rozmiaru proby) liczbg parametréw autoregresyjnych
r = r(N). Innymi stowy, badajg asymptotyke oszacowan modelu SARAR(r, 0),
gdzie limy_,oo 7(N) = 00. Z kolei praca Li (2017) przedstawia analize impulsu-
odpowiedzi (inaczej charakterystyke impulsowa) dynamicznego modelu pane-
lowego z autoregresja wyzszego rzedu i efektami stalymi. Badane s3 réwniez
alternatywne metody estymacji. Na uwage zastuguje réwniez praca Han i inni
(2017), gdzie do estymacji stosowane jest podejscie bayesowskie, oraz opraco-
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wanie Badingera i Eggera (2013), w ktérym zaproponowano ulepszony wariant
estymatora uogdlnionej metody momentow.

Istotng cechg teorii opracowanej przez Lee (2004), ktorg nazywac tu bedzie-
my standardowg teorig asymptotyczng, jest zalozenie nakladane na zachowanie
asymptotyczne macierzy wag przestrzennych, wymagajace tzw. sumowalnosci
macierzy. Dokladniej, powiemy, ze macierz wag przestrzennych W = Wy =
[WN,ij); j< v Jest sumowalna, jesli

N N
{Z|w1\[7i]” + Z‘w]\uj‘ :1<14,5 < N} < 00,
k=1 k=1

czyli gdy zostaje spelniony warunek wyrazony w zalozeniu I1.B w rozdziale II. Jak
zauwazono (patrz Olejnik, Olejnik (2020), wymaganie to w sposdb zauwazalny
ogranicza stosowalno$¢ metod estymacji. Po pierwsze, nie pozwala na mode-
lowanie ekonometryczne zaleznosci przestrzennych o wiekszym niz sumowal-
ny (w sensie macierzy wag) stopniu interakcji miedzy jednostkami. Po dru-
gie, w przypadkach, gdy oryginalna specyfikacja modelu jest dodatkowo prze-
ksztalcana poprzez pewna transformacje¢ liniows, przeprowadzenie rozumowa-
nia z uzyciem standardowej analizy asymptotycznej wymaga pewnosci, Ze uzyta
transformacja zachowuje sumowalno$¢ macierzy wag. Niestety, taka konieczno$¢
dodatkowo komplikuje ewentualne rozwazania teoretyczne. Dla ilustracji zaloz-
my przez chwile, ze rozwazamy pewna specyfikacje modelu przestrzennego typu
SAR

sup
NeN

y=pWy+ X3 +e.

Nastepnie przeksztalcamy wyjsciowa specyfikacje, stosujac pewna transforma-
cje liniowg T (np. zamiang¢ wspolrzednych lub filtr), o ktérej dla uproszczenia
zalézmy, ze jest odwracalna. Wowczas, otrzymujemy specyfikacje przeksztalcong

¥ = pWYy + X8 + Te,

gdziey = Ty, X = TX oraz W = TWT"!. Jedli nawet oryginalna macierz W
jest sumowalna, to nowa macierz W nie musi by¢ sumowalna nawet w prostym
przypadku, gdy T jest izometrig. Jednoczesnie, dla normy spektralnej problem
nie wystepuje, gdyz zwyczajnie zachodzi rowno$¢ |W|| = [|[W].

W tym rozdziale prezentujemy spdjna i matematycznie kompletng teorig
estymacji quasi-najwigkszej wiarogodnosci dla modeli przestrzennej autoregresji
wyzszych rzedéw, w ramach ktdrej uzyskujemy rozszerzenie zakresu jej stosowal-
nosci poprzez zastgpienie warunku sumowalnosci macierzy przez ograniczenie
jej normy spektralnej. Twierdzenia dotyczace specyfikacji autoregresji zmien-
nej zaleznej zostaly pierwotnie opublikowane w pracy Olejnik, Olejnik (2020).
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Elementem nowatorskim w obecnej monografii jest przeniesienie tej teorii na
przypadek specyfikacji z przestrzenng zaleznoscia autoregresyjng sktadnika loso-
wego. Szczego6lng uwage bedziemy przyktada¢ do zupetnosdci rozwazan matema-
tycznych, prowadzacych do kluczowych wynikow.

1. Podstawowe definicje

Niech d > 1 bedzie dowolng liczbg catkowita. Bedziemy rozwazaé przestrzen-
ne modele autoregresyjne ustalonego rzedu d, mianowicie model SARAR(d, 0)
oraz SARAR(0, d). Dla uproszczenia notacji zwigzanej z mnogoscig macierzy wag
wystepujaca w wyprowadzanych formutach, zastosujemy nastepujace oznaczenia.
Niech A;,..., Ay beda macierzami kwadratowymi tego samego wymiaru oraz
A = (Ay,...,Ay)T bedzie (kolumnowym) wektorem zlozonym z tychze ma-
cierzy. Niech p € R%, p = (p1,...,pa)", bedzie wektorem liczbowym. Wéwczas
definiujemy macierz

d
pTA = ZpTAT.
r=1

Mozna zauwazy¢, ze dla zdefiniowanego w ten sposob iloczynu zachodzi naste-
pujacy ciag nieréwnosci

d
lo"Al = Y oA,
r=1

<d. .
<d- o] - max | A,

d
< Mol - 1A < Il -
r=1

gdzie symbol ||-|| oznacza tradycyjnie norme [y dla wektoréw i operatorows
norme spektralng dla macierzy, tj. norma spektralng macierzy.

1.1. Specyfikacje niegaussowskie modeli autoregresji przestrzennej

Przyjmijmy teraz, ze W1, ..., Wy sa ustalonymi macierzami. Chociaz beda one
wystepowac w roli przestrzennych macierzy wag, celowo, dla zachowania istotnej
w dalszej czesci rozdzialu ogdlnosci, nie zakladamy zerowania sie ich przekat-
nych ani standaryzacji wierszowej. Oznaczmy przez W wektor zlozony z tych
macierzy, tj. W = (W1,..., Wy)T. Rozwazmy model ekonometryczny o specy-
fikacji typu SARAR(d,0), z niekoniecznie gaussowskim skladnikiem losowym.
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Stosujac taka notacje mozemy model zapisa¢ w postaci

y=p Wy+XB+¢
Ee =0 (4.1)
Var (g) = 021,

gdzie X jest macierza k zmiennych objasniajacych, a p € P C RY, B € RF
i 02 > 0 s3 nieznanymi parametrami. Nieznany jest réwniez rozktad wektora
zaburzen modelu €, ktory jednak nie podlega estymacji, a traktowany jest raczej
jako nieliczbowy parametr poboczny (ang. non-numerical nuisance parameter).
Podobnie niegaussowski model typu SARAR(O, d) przyjmie postac

y=XB+u
u=A"Wu+e
(4.2)
Ee=0
Vare = o1,

gdzie A € £ C R? jest wektorem parametréw autoregresji, a elementy €, X, 3
i 02 rozumiane sg analogicznie.

1.2. Gaussowskie estymatory quasi-najwiekszej wiarogodnosci

W przypadku modeli o specyfikacji (4.1) oraz (4.2), gdy nieznany jest rozklad
prawdopodobienstwa skfadnika losowego, nie jest rowniez dostepna posta¢ funk-
cji gestosci rozkladu obserwowanej zmiennej zaleznej. Zatem, w odréznieniu od
teorii prezentowanej w rozdziale II, nie mozemy bezposrednio zastosowac pro-
cedury estymacji najwigkszej wiarogodnosci. Jak si¢ jednak okazuje, przy pew-
nych technicznych zalozeniach dotyczacych miedzy innymi przestrzennej ma-
cierzy wag i momentéw rozkladu zaburzenia modelu, nieznana funkcja log-
wiarogodnosci asymptotycznie upodabnia si¢ do funkeji log-wiarogodnosci dla
zaburzenia gaussowskiego. Ostatecznie, jak dowiedziemy w nastepnych podroz-
dzialach, ten fakt pozwala na stosowanie estymatora najwigkszej wiarogodnosci,
wyznaczonego dla przypadku gaussowskiego skladnika losowego, nawet w przy-
padku duzych odstepstw od normalnosci rozktadéw. Wynikajacy stad estymator
nazwiemy gaussowskim estymatorem quasi-najwiekszej wiarogodnosci (QNW,
ang. Quasi-Maxmium Likelihood, QML).
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1.2.A. Estymator QNW dla specyfikacji SAR z zaburzeniem niegaussowskim
Analogicznie jak w rozdziale II, dla specyfikacji z réwnania (4.1), przy zalozeniu
o gaussowskim bledzie, mozna wyprowadzi¢ posta¢ gestosci zmiennej zaleznej
1 { ~ T 2
= ex —p Wy —X3 },
fy(y) T dore, O ly—p |

a nastepnie uzyska¢ funkcje log-wiarogodnosci

N
In Ly (p,B,0%) = -5 In (270?) 4 In |det A(p)|

L
202

gdzie A(p) = I—p" W. W przeciwienstwie do poprzednich rozwazan, nie zakla-
damy dodatnio$ci wyznacznika przeksztatcenia A(p). Nalezy zauwazy¢, ze gdyby
przestrzen dla parametru p byla niespdjna lub nie zawierala zera, dopuszczalna
bylaby sytuacja, w ktérej wyznacznik przeksztalcenia A(p) uzyskiwalby wartosci
ujemne. Natomiast — podobnie jak w przypadku estymacji modelu pierwszego
rzedu — z rézniczkowych warunkéw koniecznych optymalizacji In Ly (p, 3, 0%)
uzyskujemy

(4.3)
(A(p) -y —XB) (A(p) -y — XP),

A~

Blp)= (XX) X" (I-p"W)y,
5(p) = i lly ~ "Wy ~ XB(p)|*.

Ostatecznie, warto$¢ estymatora psar_qonw uzyskujemy, znajdujac argument mak-
symalizujacy funkcje skoncentrowanej log-wiarogodnosci

P>po+—1InLy (Q,B(g),&Q(Q)) = —% (In (27 - 6’2(9)) +1)+1In ‘ det A(p)

(4.5)
gdzie P jest przestrzenia dopuszczalnych wartosci wektorowego parametru p.
W obecnym opracowaniu nie bedziemy rozwaza¢ mozliwych metod okreslania
zbioru P, jednak temat ten jest szeroko dyskutowany w literaturze (np. Elhorst
i inni (2012); Olejnik i inni, 2020). Definicje estymatora QN'W dopelniajg row-

(4.4)

>

nosci Bsar_qnw = B(Psar_qNw) Oraz 63, gnw = 0 (PsAR_QNW)-

1.2.B. Estymator QNW dla specyfikacji SEM z zaburzeniem niegaussowskim

Analogicznie, do specyfikacji z réwnania (4.2), mozna wyprowadzi¢ postac gesto-
$ci zmiennej zaleznej przy zalozeniu o normalnosci rozkladu bledu losowego ¢, tj.
= exp - |ly — AWy — X3B+ X WXg||.
fy(¥) LRI P3|y y—Xg ell
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W dalszej kolejnosci mozemy uzyska¢ funkcje log-wiarogodnosci

InLy (B, A, 0%) = —% In(270?) 4 In |det T(N)]
5 (T -y~ XB) (P - (y - X8)),

gdzie T'(\) = I-ATW. Podobnie jak w przypadku estymacji modelu SAR, z ko-
niecznych warunkéw rézniczkowych optymalizacji In Ly (3, X, 02) otrzymujemy

(4.6)

B(A) = (XTT(N)'TX) ' X'T(A) TNy,

52(N) = 1 (y ~ XBO)) TTOTA) (v - X)),

(4.7)

Ostatecznie, warto$¢ estymatora S\SEM_QNW uzyskujemy, odnajdujac argument
maksymalizujacy funkcje skoncentrowanej log-wiarogodnosci

L3 A InLy (BN %N)) =
N 2 (4.8)
Y (In (27 - 6%(A)) + 1) + In|det T(A)],
gdzie L jest przestrzenig dopuszczalnych wartosci wektorowego parametréw A.
Kwesti¢ okreslenia zbioru £ mozna rozstrzyga¢ w taki sam sposob, jak pro-
blem identyfikacji przestrzeni P. Definicje¢ estymatora QN'W dopelniajg réwnosci

Bsem_anw = B(AseM_QNw) 013z 63y onw = 02 (AsEM_qnw)-

2. Zgodnos¢ estymatorow QNW

Ponizej przedstawiamy $ciste dowody zgodnosci estymatoréw quasi-najwigkszej
wiarogodnosci zdefiniowanych w poprzednim podrozdziale. Nasze rozumowanie
wykorzystuje elementy dos¢ ogolnej teorii asymptotycznej, opisanej w monografii
Potschera i Pruchy (1997). Argumentacje rozpoczynamy od przytoczenia zalozen
formalnych koniecznych dla $cistosci wywodu.

2.1. Zalozenia formalne

Aby przeprowadzi¢ argumentacje dowodu formalnego, musimy poczyni¢ naste-
pujace zalozenia.

ZAROZENIE IV.A
Normy spektralne przestrzennych macierzy wag modelu sg ograniczone, tj.

sup max | W, || < oc.
NeN r<d
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ZAELOZENIE IV.Bgar
Zbi6r P jest zwartym podzbiorem RY i dla kazdego p € P macierz A(p) =
I — p"W jest nieosobliwa. Ponadto, dla kazdego p € P zachodzi

sup H(I - pTW)_lH < 0.
NeN

ZArOZENIE IV.C
Dla dowolnego N € N istnieje liczba N > N i semi-ortogonalna macierz E,
tj. taka, z¢ EET = I, oraz istnieje N-elementowy wektor losowy &, o wia-
snosciach

a) E€ =0 oraz Var (¢) = 021,

b) elementy wektora € sg czwodrkami niezalezne, a ich czwarte momenty sa
wspolnie ograniczone,

dla ktorego wektor zaburzen modelu € spelnia zaleznos¢ e = E - €.
ZALOZENIE IV.D

Macierz X jest deterministyczng macierza obserwacji k£ zmiennych objasnia-

jacych. Ponadto, dla X% := %XTX, mamy

a) Suppyen HX?\,H < 00,

b) dla kazdego N € N macierz X3, jest nieosobliwa,

¢) supyen ||(XF) 7| < oo

ZALOZENIE IV.Egar
Dla dowolnych dwdch réznych dopuszczalnych wartosci 91,02 € P parame-
tru p, co najmniej jeden z ponizszych warunkéw jest spelniony:

L||1- @TW)(I - o] W)~
g N AWIA- W)l (4.9)
N2 V| det (1— o] W)(1— o] W)

lub
lim inf H—MX —oTW)(I - Q-Q'_W)_lXBH >0, (4.10)

N—oo

dla kazdego 3 € R*.



Zgodnos¢ estymatoréw QNW 97

Zalozenia IV.A i IV.Bgar dotycza kluczowych warunkéw ograniczonosci, na-
kfadanych na macierz (macierze — w przypadku modeli wyzszych rzedow) wag
oraz na implikowang przez nig funkcje operatora op6znienia przestrzennego

Poo—Alg)=1—0'W.

Wymaganie jednostajnej ograniczonosci norm macierzy Wy gwarantuje, ze ilos¢
interakeji przestrzennych, a tym samym stopien autozalezno$ci procesu generuja-
cego probe, pozwala na zmniejszanie bledu estymatora wraz ze wzrostem N. Jak
argumentujg Olejnik i Olejnik (2020), uzycie w tym celu normy spektralnej ma-
cierzy jest w pewnym sensie optymalne. Dokladniej, gdyby norma ktérejkolwiek
z macierzy W,, 1 < r < d, nie byla ograniczona, czyli

lim sup ||[W, || = oo,
N—o00

wowczas zbior mozliwych wartoéci parametru autoregresyjnego p,, ktéry odpo-
wiada tej macierzy, moglyby by¢ ograniczony do zbioru jednoelementowego {0},
formalnie wykluczajac autoregresje przestrzenna.

Zauwazmy, ze wymaganie odwracalnoséci operatora opodznienia przestrzen-
nego A(p), p € P jest w istocie do$¢ naturalne. W przeciwnym wypadku, nie
mozna by bylo uzyska¢ jednoznacznej postaci jawnej modelu, czyli rozwiazu-
jacej jego rownanie ze wzgledu na zmienng zalezng. Warunek ograniczonosci
norm macierzy A(p)~!, p € P gwarantuje takg odwracalno$¢ réwniez w sen-
sie asymptotycznym. Z kolei postulat zwartosci przestrzeni parametréw P ma
charakter czysto techniczny.

Warto zauwazy¢, ze zalozenie IV.C dotyczace rozkladu skladnika losowego
€ nie wymaga, aby jego elementy byly gaussowskie, niezalezne lub posiadaly ten
sam rozklad. Zamiast tego postulowana jest posta¢ zaburzenia losowego jako re-
zultat pewnego ortogonalnego przeksztalcenia zmiennych losowych, niezaleznych
jedynie czwérkami. Zauwazmy, ze w efekcie zakladamy jedynie nieskorelowanie
elementow wektora e, gdyz mamy

Ee=E(E&)=E-E& =0,

Vare = E(Eée'E") = o?EE" = ¢71, (.11
zgodnie ze specyfikacja (4.1). Odrdéznienie warunku niezaleznosci od braku ko-
relacji zmiennych ¢;, gdzie 1 <@ < N, jest istotne ze wzgledu na brak zalozenia
normalnosci ich rozkladu Iacznego. Nalezy réwniez rozgraniczy¢ brak zalozenia
réwnosci rozkltadéw dla elementéw sktadnika losowego od ich heteroskedastycz-
no$ci. Warto zauwazy¢, ze w naszej teorii nie zakladamy tozsamosci rozkladéow,
niemniej jednak utrzymujemy zaloZenie réwnosci odpowiednich wariancji, co
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wynika z réwnania (4.11). Prostym sposobem poradzenia sobie z heteroske-
dastycznoscig zaburzenia losowego € mogloby by¢ zastosowanie przeksztalcania
normalizujgcego wariancje, czyli sprowadzajacego model do postaci z losowoscia
homoskedastyczng. Jednak, zeby uprosci¢ rozumowanie, nie stosujemy takiego
podejscia. Alternatywne podejscie do problemu heteroskedastycznosci zapropo-
nowali Liu i Yang (2015). Ich unikalny pomyst pozwala na uwzglednienie w pro-
cedurze MNW heteroskedastycznosci sktadnika losowego o nieznanym profilu
wariancji.

Zalozenie IV.D przyjmuje strukture wartosci obserwacji zmiennych objasnia-
jacych, ktora zapewnia identyfikowalno$¢ parametru 3 w kontekscie wybranej
metody estymacji. Warunek jednostajnej ograniczonoéci norm macierzy X%, =
%XTX jednoczesnie kontroluje wielko$¢ wszystkich obserwacji w macierzy X,
w taki sposdb, aby Zadna z nich nie wywierala dominujacego wptywu na osza-
cowanie parametru nachylenia. Zalozenie o odwracalno$ci macierzy X3 jest zu-
pelnie naturalne, ze wzgledu na konieczno$¢ zapewnienia braku wspoétliniowosci
miedzy zmiennymi objasniajacymi. Jak zauwazono w publikacji Olejnik i Olejnik
(2020), warunek ,,odwracalnosci asymptotyczney’, tj. supyenl||(X%) 7| < oo,
nie jest w istocie rézny od klasycznego lim sup yey|(XTX) 7| = 0, koniecz-
nego nawet w przypadku zwyklej nieprzestrzennej metody najmniejszych kwa-
dratéow. Z kolei warunek ograniczono$ci norm macierzy X3, zabezpiecza nas
przed sytuacja, w ktdrej niektdre obserwacje maja dominujacy wplyw na wartosci
oszacowan parametréw nachylenia, co mogloby wyklucza¢ gaussowski rozktad
asymptotyczny. Zauwazmy tez, ze klasyczna analiza asymptotyczna, oparta na
warunku sumowalnosci macierzy W, wymaga wprost ograniczonosci elemen-
tow macierzy X, a wigc jest w tym wzgledzie bardziej restrykcyjna.

W naszych rozumowaniach zakladamy, ze obserwacje w macierzy X maja
charakter niedeterministyczny (zalozenie IV.D), niemniej jednak mozliwe sg roz-
szerzenia tej teorii, w ktorych X ma charakter losowy. Na przyklad, mozna by
przyjaé, ze zalozenia dotyczace X s3 spelnione na pewnym zbiorze A = A(N)
o malejgcym do zera prawdopodobienstwie, tj. takim, ze limy_,oo P (2 \ A) = 0.
Co wiecej, gdy zalozenia dotyczace skladnika losowego modelu € s3 spelnione
warunkowo wzgledem stochastycznego procesu wektorowego X, woéwczas teo-
ria przedstawiona w tym rozdziale prowadzi do zgodnosci estymatoréw quasi-
najwigkszej wiarogodnosci. Istotnie, dla dowolnego z omawianych tu estymato-
réw (oznaczmy go ) i odpowiadajacej mu wartosci prawdziwej 6o, twierdze-
nia IV.10 lub IV.11 implikuja

Nligloop(||é— fo|| | X) =0

prawie pewnie, dla dowolnej liczby 6 > 0. Zatem z twierdzenia o zbieznosci
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zmajoryzowanej Lebesguea mamy
dim P (|6 — o]l > 9) = lim E [IP’ (116 = 6ol > 6 | X)} =0,

czyli estymator 0 jest zgodny. Zauwazmy, ze warunkowanie zatozen wzgledem X
pociaga za sobg, m.in. E [e | X| = 0 oraz E [ee' | X] = 031. Zmienna X nie
musi by¢ niezalezna (wedlug prawdopodobienstwa) od reszt € (por. zalozenie E2
w pracy Shi, Lee, 2017). Nalezy jednak pamieta¢, ze w przypadku takiej teorii wy-
prowadzenie rozkladu asymptotycznego oszacowan moze by¢ mozliwe w pelnej
ogolnosci jedynie warunkowo ze wzgledu na warto$ci zmiennych w macierzy X.

Zalozenie IV.Egar ma charakter techniczny. Zapewnia ono taka strukture za-
leznosci w macierzy wag przestrzennych, ktéra pozwala na asymptotyczng iden-
tyfikacje prawdziwej wartosci parametru p. Dokladniej, gwarantuje ono, ze do-
wolne dwie wartosci g1, @2 € P parametru p implikuja wystarczajaco rozbiezne
ciggi wartosci gaussowskiej funkcji wiarogodnosci. Wtedy, obserwowane dane
dostarczajg wystarczajacy ilo$¢ informacji, aby zidentyfikowaé parametr autore-
gresyjny. Te informacje moga pochodzi¢ z samej struktury zalezno$ci przestrzen-
nych, przy spetnionym warunku (4.9) albo z zalezno$ci zmiennej y od wartosci
opdznien przestrzennych zmiennych X, gdy dzialajgcym warunkiem w zaloze-
niu IV.Egsar jest warunek (4.10). Dokladniej, jesli zgodnie ze specyfikacja (4.1)
zachodzi

y ~ p' Wy + X8,

wowczas

y~XB+p"WA(p)'Xp,

a wiec, mozna by powiedzie¢, ze WA(py) ' X stanowi niejawna zmienna ob-
jasniajaca.

Do rozwazan dotyczacych specyfikacji modelu z autoregresja skfadnika loso-
wego, zawierajagcego niesumowalna macierz wag, wprowadzamy réwniez zaloze-
nia IV.Bggy oraz IV.Eggy, ktore sg odpowiednikami zatozeni IV.Bgar oraz IV.Egag.
Warto zwrdci¢ uwage na fakt, iz identyfikowalno$¢ problemu estymacji w przy-
padku modelu SEM jest niezalezna od wlasciwosci wystepujacych w specyfikacji
zmiennych egzogenicznych.

ZAELOZENIE IV.Bspm
Zbior L jest zwartym podzbiorem RY i dla kazdego A € £ macierz A(X) =
I-\TW jest nieosobliwa. Ponadto, dla kazdego A € L zachodzi

sup ||(I - )\TW)AH < 00.
NeN
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ZALOZENIE IV.Esgpm
Dla dowolnych dwdch réznych dopuszczalnych wartosci Ay, Ay € £ parame-
tru A mamy

L@ =ATW) I - AJW) !
lim inf el MW= XL W) | > 1. (4.12)
N—oo f{/\det (T— ATW)(I— ATW)1|

2.2. Stwierdzenia pomocnicze

Ponizsza definicja i nastgpujacy po niej lemat zostaty zaadaptowane z opracowa-
nia Potschera i Pruchy (1997).

DEeFINICJA
Niech @ = Q(N) bedzie funkcjg rzeczywistg, okre$long na pewnym zbiorze
© C R%iniech ) € O bedzie ustalonym elementem tej przestrzeni. Powiemy,
ze 0 jest identyfikowalnie jedynym (ang. identifiably unique) argumentem
maksymalizujagcym funkcje @), jedli, dla kazdego o > 0 mamy

lim inf inf
N—oo \ 0€O: ||6—00||>6

Q0) — czw)) >0 (413)

Lemat IV.1 — —
Niech R = R(N, ), dla A € £, bedzie zmienng losowg, a R = R(N) funkcja
okreslong na przestrzeni L, taka, ze

sup |[R(A) — R(A)| — 0
AEL

wedtug prawdopodobienstwa, przy N — oo. Jesli A jest identyfikowalnie jedy-
nym argumentem maksymalizujacym funkcje R (patrz definicja powyzej) oraz
zmienna losowa A = A(N), o wartosciach w zbiorze £, maksymalizuje R,
tzn. spelnia réwnosé

R(X) = sup R(X) (4.14)

el

prawie pewnie, wowczas A jest zgodnym estymatorem Ao, czyli || Ao — ;\\\ zbiega
do zera wedlug prawdopodobienstwa.

Dow6p. Oznaczmy £ = £(8) = {X € L: Ao — Al > §}. Dla dowolnego
podciagu ciggu wszystkich liczb naturalnych mozemy znalez¢ dalszy podciag
(Np)nen, dla ktorego

lim sup |R(Ny, A) — R(Np,A)| =0

n—oo el
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prawie pewnie. Uzywajac warunku (4.13) dla Q = R mamy

liminf  inf (R(Np, Ao) — R(Nyp, A ,
im in <irés(R( , Ao) — R( ))>>n>0

dla pewnej liczby 1 > 0. Zatem wnioskujemy, ze

lim inf [inf (R(Nn, Xo) — R(Nn,A))} >

n—00 AEE

lim inf (R(Ny, Ao) — R(Ny Ao)) + lim in [inf (R(No, M) — RN, A))]

n—00 n—oo | Aef

+ lim inf [inf (R(Np, A) — R(Nn, Ao))]

n—oo | AeE

>1n —2-liminf [inf (R(Nn, A) — R(Nn,}\))} =n>0

n—oo | AeE

prawie pewnie, a wiec

inf Ny, Ao) — R(Np, A)) 2>
}1\25(3( 0) — R( )

>0,

N3

dla wystarczajaco duzych n € N. Skoro, wedtug zatozenia (4.14), R(N,, Ao) nie
przekracza R(N,, A(N,,)), wynika stad, ze | A(N,) — Ao < 8. Z dowolnosci
wybranego pierwotnie podciggu liczb naturalnych uzyskujemy ostatecznie Zagdana
zbiezno$¢ wedlug prawdopodobienstwa: A = Ao, przy N — oo. O

LEmAT IV.2 S
Niech R = R(N, p), dla p € R, bedzie zmienna losowg, a R = R(N) funkcja
okreslong na przestrzeni R, taka, ze

sup [R(p) — R(p)| — 0
PER

wedlug prawdopodobienstwa, przy N — oc. Jesli pg jest identyfikowalnie jedy-
nym argumentem maksymalizujagcym funkcje R (patrz definicja powyzej lema-
tu IV.1) oraz zmienna losowa p = p(IN), o wartosciach w zbiorze R, maksy-
malizuje R, tzn. spelnia réwno$c¢

R(p) = sup R(p) (4.15)
pPER

prawie pewnie, wowczas p jest zgodnym estymatorem po, czyli ||po — p|| zbiega
do zera wedlug prawdopodobienstwa.
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Do tezy lematu IV.2 prowadzi rozumowanie analogiczne do dowodu lema-
tu IV.1 z p w miejscu A i z R w miejscu L.

LEmaAT IV.3
Przy zlozeniu IV.Bsgy istnieje otwarty ograniczony nadzbiér U, C R? przestrze-
ni parametréw £, niezalezny od N € N, taki, ze operator I'(A) = T — ATW jest
odwracalny dla kazdego A € U,. Ponadto mamy

sup sup||I — ATW|| < 0o
AeU,z NeN

oraz

sup sup ||(I—ATW)7}|| < oc.
AeUz NeN

Dowép. Uzyjemy rozumowania przedstawionego oryginalnie w pracy Olejnik
i Olejnik (2020). Dla dowolnej macierzy (ciggu macierzy) A definiujemy wiel-
kos¢ ||Alla = supyenl|A. Rozwazmy zbior A = {A: ||[A||l4 < oo}. Jak
mozna wykaza¢, stosujgc klasyczng argumentacje, funkcja A — || Al 4 jest (nie-
ujemnie) jednorodna i podaddytywna, za$ zbiéor A w nig wyposazony stanowi
algebre Banacha z jednoscig. Istotnie, mnozeniem w tej algebrze jest mnozenie
odpowiadajacych sobie wyrazéw ciggu macierzowego, a jego element neutralny
stanowi macierz (cigg macierzy) I. Korzystajac ze stwierdzenia 1.7 w monografii
Takesakiego (1979), zbior

G(A) = {A: istnieje B € A takie, ze AB =1}

jest otwarty w .A. Odwzorowanie I" przeksztalcajace R? w A jest ciagle, a zatem
przeciwobraz V wzgledem I zbioru G(A) jest réwniez otwarty w R,

Mozna zauwazy¢, ze funkcja v: V' — R okre$lona wzorem y(A) = |[(I —
ATW)~1|| 4 jest ciagta. Istotnie, z wniosku 1.8 (Takesaki, 1979) wynika, ze funk-
cja przypisujaca elementowi algebry jego element odwrotny G(A) > A +— A~!
jest ciagla wzgledem normy w G(A). Z samej definicji réwniez norma ||-|| 4 jest
funkcja ciagla na A, a w rezultacie ciggta jest funkcja v, bedac ich zlozeniem.
Ostatecznie, zbior

U

{)\ eV :iy(A) <2sup y(XN) < oo}
XeLl

jest otwarty w V, a tym samym otwarty w RY. Korzystajac z zalozenia IV.Bsgy
mamy £ C V, gdyz I'(L) C G(A). Co wiecej, dla kazdego A € L zachodzi

Y(A) < sup y(A') < 2- sup y(X),
NeLl NeLl
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a wiec £ C U z samego okreslenia zbioru U. Dodatkowo, uwzgledniajac zwar-
to$¢ przestrzeni £, zbiér U, mozna réwniez wybra¢ jako ograniczony i wcigz
zawierajacy L. Wystarczy przyjac

Us=Un {)\ eR?: A < maxuxu}.
ANeL

W ten sposéb uzyskujemy oczywistg nieréwnosé

sup sup||I—ATW| <2+ max- sup maXHW | < oo.
AeU, NeN €L NeN r<d

O]

LemaT IV4
Przy ztozeniu IV.Bgar istnieje otwarty ograniczony nadzbiér Uz C RY przestrze-
ni parametréow R, niezalezny od N € N, taki, ze operator A(p) =1 — p'W
jest odwracalny dla kazdego p € Up oraz mamy

sup sup||I — p" W/ < oo,
peUp NeN

sup sup||(I—p' W)™ 1| < .
peUp NeN

Rozumowanie przebiega analogicznie do dowodu lematu IV.3, z zastgpieniem
symboli A i £ przez p oraz P.

LEmAT IV.5
Rozwazmy funkcje log Ly dang wzorem (4.6), okreslong na dziedzinie R* x
U x (0,00), gdzie zbiér U C R? dany jest w lemacie IV.3, parametryzowang
wartosécig y € R. Dla uproszczenia zapisu przyjmijmy nastepujace oznaczenia

uB)=y—-XB, e B)=TA)u),

WA=W, TA) =W, - I-ATW)"!, dlal<r<d

Pierwsze pochodne czgstkowe funkeji log L s3 dane wzorami

Olog L n 1 1
g8y B (A, B)Te(A B),

do2 202 204
Olog L 1 T
Wy = —e(A,B8) T(NX,

Hlog L — 1
& — —trW7),‘—|— fE()\,,B)Twru(B) .
oA o2 1<r<d
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Pochodne czastkowe drugiego rzedu to

8281)(\%)\[/y - :_ " W%Wg N ‘jQu(ﬁ)TW:lWTQU(IB)] L<rira<d
8231;2? _ :—0_12u(,8)T(W,,T T(A) - F(A)TWT)X] o
82;2? = —%XTI‘(A)TI‘(A)X,

8;:;%? = —i4 (A, B8)T(AVX,

0? log Ly n 1 1

=55 T (A B) e B).

002002 20

Z kolei pochodne czgstkowe trzeciego rzedu sa dane wzorami:

d3log Ly
OAOA
d3log Ly
OT2ONON
93 log Ly
OXOBIc?
d3log Ly
0B9BIs2
d3log Ly
00200203
&3 log Ly
002002002
93log Ly
0BOBOA
d3log Ly
OBONOA
93 log Ly
0B0BIA3

= |—tr (WRWAW ) —tr (W WA W ,
L ( 1<ry,re,m3<d
1
= U4u<ﬁ>TW,Tleu<ﬂ>] ,

L 1<ry,ro<d
1
= u(B)T(WII‘(A)—I‘()\)TWr)X} ,

4
LO 1<r<d

1
= —X'T(N\)'TX,

g

= 2B TTVX,

= EE
=+ —e(X,B8)Te(N, B),

— [ 1 XT(WT(N) +r(>\)TWT)X} ,

2
o 1<r<d

1
— [_UQu(ﬂ)T (W] W,, + WLWTI)X] ,

1<ry,re<d

=0.
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Powyzsze formuly uzyskuje si¢ przez bezposrednie wyliczenie pochodnych,
zgodnie z zasadami macierzowego rachunku rézniczkowego. Dla wygody czytel-
nika podajemy najwazniejsze wlasnosci pozwalajace na samodzielne wyprowa-
dzenie kolejnych pochodnych.

Jesli ¢ jest parametrem skalarnym, a o parametrem wektorowym, wdéwczas
dla dowolnej macierzy A oraz funkcji macierzowych B(t), Ci(x), Ca(x), przy
odpowiednich zalozeniach rézniczkowalnodci i wykonywalnosci dziatan, praw-
dziwe s3 nastepujace stwierdzenia. Po pierwsze, wlasnosci liniowosci pociagaja
za sobg wzory:

d(Az) = Adx, dA =0dz, d(Ci(z)") = (dCi(z))T,

%trB(t) —tr (%B(t)).

Ponadto, z formuly Jacobiego dla macierzy nieosobliwych, tj.

d B B(t) \ ' d
&det B(t) =tr ((detB@) : dtB(t))’

mozna wyprowadzi¢ réwnosé

%log (det B(t)) = tr <B(t)1§tB(t)>.

Nastepujacy przepis na rozniczke iloczynu:
d(C1(z)Ca(x)) = d(C1(z)) - Co(z) + Ci(x) - dCy(x)

jest analogiem wzoru znanego z analizy funkcji rzeczywistych. Ostatecznie, za
sprawa tozsamosci B(t) ' B(t) = I, z powyiszego wynika wzor opisujacy po-
chodng macierzy odwrotnej

G (B0 =B (3B0) BO

LEmAT IV.6
Niech e bedzie skladnikiem losowym modelu, spelniajgcym zalozenie IV.C dla
pewnej semi-ortogonalnej macierzy E o wymiarach N x N oraz dla pewnego
N -elementowego wektora zaburzen losowych €. Wowczas, dla dowolnej macie-
rzy A mamy

E(eTATAe) = 02 - ||A||}
oraz

Var (e" ATAe) <3N - ||A|I*- sup sup K&,
N'eNKN(NY)

gdzie zmienne losowe &;, 1 < ¢ < N s3 elementami wektora €.
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Dow6p. Wyliczajac wartoéé oczekiwang formy kwadratowej €' AT A€, otrzy-
mujemy

Ee'ATAe =Ee'ETATAEE =trETATAE =tr ATA = | A|),
gdyz z zalozenia IV.C wynika, ze |E|| = 1. Aby dowie$¢ zapowiedzianej nier6w-

nosci dla wariancji, oznaczmy 2 = ETAT AE oraz przyjmijmy, ze liczby wj,
1 <4,7 < N beda elementami macierzy 2. Wtedy uzyskujemy réwnos¢

N
Ee'ATAe =trETATAE = o2 - Zwii,
=1
a zatem

N N N
(E ETATA€)2 = 02 . E Wii * 0'2 . E Wjj = 0'4 : E WiiWsj.
=1

Jj= ,j=1

—_

Dalej wyliczamy drugi moment formy kwadratowej e" AT Ae = €T Qé& w na-
stepujacy sposob

Ostatecznie, uwzgledniajac fakt, ze ||| = |[ETATAE|| < 12 - || A||?, mamy
Var (eT ATAe) =E (" AT Ae)? — (EcT AT Ae)?
N
=20" - |QIE+ > (E&! —30%) - w},
i=1
<3N -||Q|?- sup sup E&}

N'eENi<N(N')

<3N -|JA|I*- sup sup EEL
N'ENIKN(N)
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LemaT IV.7
Niech U C R? bedzie zbiorem otwartym i L C U jego zwartym podzbiorem.
Jesli Q: U — R™ jest funkcja rézniczkowalng oraz dla pewnej statej M < oo
zachodzi

sup||Q |+SupH H <M,

wowczas Q ma wlasnos$¢ Lipschitza na zbiorze L z pewng staly K = Kp(M).

Dowép. Zauwazmy, ze istotnie, @, jako funkcja rézniczkowalna, jest ograni-
czona na zbiorze zwartym. Niech ¢ bedzie odlegloscig zbioru L od dopelnienia
zbioru U, czyli

§=inf{|lx —&|:xzc LAECRI\U}.

Ze zwartosci zbioru L mozemy wnioskowac, ze ta odleglo$¢ jest rézna od zera.
Istotnie, zdefiniujmy funkcje

Loz 6y =inf{||lz—€||: £ R\ U},

ktora jest polciggla z gory jako infimum funkcji ciggtych (a wiec tez potciaglych
z gory). Zgodnie z twierdzeniem Bolzano-Weierstrassa, L > x +— 0, osiaga
swoje maksimum, a wiec maxger, 0 = J. Zatem, gdyby & bylo réwne zero,
mielibysmy element «* w £, dla ktérego d,+ = 0, i w konsekwengji istnialby
ciag (&,) elementéw spoza U zbiezny do «* € L C U. Ostatni wniosek jest
jednak sprzeczny z zalozeniem, ze U jest zbiorem otwartym.

Niech « i y bedg dowolnymi elementami zbioru L. Jeéli ||z — y|| < 0,
wowczas odcinek

T,y ={ax+Pfy:a,f20Na+ =1}

zawiera si¢ w calosci w U, jak wynika z okreslenia liczby . Wtedy, przy ozna-
czeniu Q(t) = Q(x +1t- (y — x)), dla t € [0, 1], réwniez mamy

1Q () ||—H/ >dtH
_H/ — )T (m+t(—w))dtH<M~Hy—mH.

Jesli przeciwnie, ||y — x| > J, wéwczas

1Q(z) — R < Q@) + QW) < TM [l —yl.
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LemaT IV.8
Rozwazmy funkcje log Ly dang wzorem (4.3), okreslong na dziedzinie Up X
R* x (0, 00), gdzie zbiér Up C R dany jest w lemacie IV.4 parametryzowana
warto$cig y € R. Aby uprosci¢ zapis, przyjmijmy nastepujace oznaczenia

We=W, A(p) ' =W, - (I-p'W) ",

dlal <r <d, oraz
e(p,B)=y—p' Wy — XB.

Pierwsze pochodne czastkowe funkcji log Ly, dane s3 wzorami

Olog Ly n 1 1

- YV - - T
dlogLy 1 T
86 - ﬁE(p,/@) X’
Olog L —~ 1
o [— tr W2 + Qs<p,ﬁ>TWry]
op o 1<r<d

Pochodne czastkowe drugiego rzedu to

5 _
a{«)l;)gﬁy = |—tr Wﬁ1W52 - gyTWLWTQy} ,
i g 1<ry,ro<d
2log L 1
O logLy _ 2yTwrx] :
0pds o l<r<d
82 log Ly [ 1 T
Pty (1w
Opdo? | ot l<r<d
9% log Ly 1 71
— = - _-X'X,
0B08 o2
9%log Ly

1 T
o0p oo

9% log Ly n 1

__rt 1 T
Hotagr = o1t 55e(P.B) e(p. B).

Z kolei pochodne czgstkowe trzeciego rzedu dane sa wzorami

03 log Ly ) T o A7P RTP AT

87P - [_ tr (Wﬁl W;”OQW?% + Wﬁl Wﬁ?’wg)} 1<r1,m2,m3<d ’
63 log Ly |: 1 Txx7T :|

9020pdp  [o* VU
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>

93 log Ly 1 T
—— ==y W, X
dp0Bo? [04*" LW
PlogLy 1 1
0802 A X
0%log L 2 T
802(90'28}:6 = EE(p,IB) X,
23 log L n 3 T
802802822 = _E + ge(pvﬁ) s(paﬁ)’
93 log Ly B
0B0Bop
d3log Ly B
0B0pdp
93 log Ly B

0B0BIB
Formuly wymienione w powyzszym lemacie uzyskuje sie¢ przez bezposrednie

wyliczenie pochodnych zgodnie z zasadami macierzowego rachunku rézniczko-
wego (por. komentarz po lemacie IV.5).

LemaT IV.9
Niech Yy bedzie zmienng losowa i niech X = Xy, Y = Yy beda ciggami

zmiennych losowych, takimi, ze Y’ Moo, Yy wedlug rozktadu oraz X Ao,
wedlug prawdopodobienstwa. Wowczas ciag zmiennych losowych o elementach
bedacych iloczynem X - Y dazy wedlug prawdopodobienstwa do zera.

Dowo6p. Niech § > 0 bedzie dowolne. Mozemy wybra¢ liczbe K € R, dla
ktorej P (|Yp| > K) < d. Dodatkowo mozna zatozy¢, ze P (|Yp| = K) = 0, gdyz
dystrybuanta zmiennej Yy moze mie¢ co najwyzej przeliczalng liczbe skokow.
Dla dowolnego ¢ > 0 mamy oszacowanie

P(IX-Y|>e)=P(X|-[Y]>¢)
<P(Y]|>K)+P(X|- K >e) 222 P(|vg| > K) < 6.

Z dowolnosci 6 > 0 mamy zadang zbieznos¢. O

2.3. Twierdzenia o zgodnosci, dowdd dla modelu SEM

Zagadnienie zgodnosci gaussowskich estymatoréw quasi-najwiekszej wiarogod-
nosci dla modeli autoregresyjnych typu SAR zostalo rozstrzygniete w pracy
Olejnik i Olejnik (2020), gdzie zaprezentowano formalny dowdd ponizszego
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twierdzenia IV.10. W tym podrozdziale skupiamy si¢ jednak na sformutowa-
niu i dowodzie nowego wyniku, dotyczacego modeli autoregresyjnych typu SEM
(twierdzenie IV.11).

TwIERDZENIE IV.10
Przy zalozeniach IV.A, IV.Bsag, IV.C, IV.D i IV.Egar estymatory pPsar QNw,

BSAR _QNW oOraz Us AR_QNW parametréw specyfikacji (4.1) sa zgodne, tj. dla do-
wolnej liczby 6 > 0 mamy

hm IP’(HPSAR Quw — pol| = 6) =
hm IP’(H,BSAR anw — Boll = 6)

5):

WV

1 P -
Ngnoo (||0-SAR7QNW Uo”

gdzie po, Bo, 07 sa prawdziwymi wartoéciami odpowiednich parametréw, a roz-
ktad zaburzenia modelu € jest dowolny.

TwiIiERDZENIE IV.11
Przy zalozeniach IV.A, IV.Bggpy, IV.C, IV.D i IV.Esgym estymatory )\SEM _QNW>

Bsem_onw oraz 62em qnw Pparametrow specyfikacji (4.2) s3 zgodne, tj. dla do-
wolnej liczby 6 > 0 mamy

lim P (]| — Aol =
Jim (I Aser_qnw — Aol = 6)
lim P (||Bsem_qnw — Boll = 6) =0,
N—o0

lim P (|62 — o2 >=46) =0,
JNare (HUSEM_QNW UOH/)

0,

gdzie Ao, Bo, 0} s3 prawdziwymi warto$ciami odpowiednich parametréw, a roz-
kfad zaburzenia modelu € jest dowolny.

Dowop. Dla uproszczenia zapisu, pominiemy indeks dolny w nazwach esty-
matorow, ustalajac N )\SEM _QNW> ﬁ = ﬁSEM _QNw oraz 62 = O'SEM QNW-
Przypomnijmy réwniez popularne oznaczenie P4 dla operatora projekcji na
podprzestrzen rozpigta przez kolumny dowolnie wybranej macierzy A, tj. P4 =
A - (ATA)"'AT. Dla dopelnienia przyjmujemy réwniez My =1 — Py4.

Korzystajac bezposrednio z okreélenia estymatora A wnioskujemy, ze jego
warto$¢ maksymalizuje na zbiorze £ funkcje skoncentrowanej wiarogodnosci
L3A—1n Ly(B(A), X, 6%(A)) dang w réwnaniu (4.8). Zatem, maksymalizuje
ona rowniez funkcje losowg A — R(), okreslong wzorem

R(\) = i1nLy(B(>\)7>\,<?2(>\)) f o (2m) + 5
N1 : 2 (4.16)
=5 62(N) + + 1 [det T(A)],
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przy czym 62 () zdefiniowane jest w réwnaniu (4.7). Niech U bedzie otwartym
nadzbiorem przestrzeni £ danym w lemacie IV.3. Latwo zauwazy¢, ze funkcja R
jest poprawnie okres$lona na réwniez na zbiorze U.

Zdefiniujmy funkcje deterministyczng

_ 1 1. /od _
Ue3 A R(A) = - Infdet T(A)| - 5 In (FOHI‘(/\)I‘(AO) 1HF).

Stosujgc standardowe zasady rézniczkowania funkcji macierzowych mozna po-
kaza¢, ze pochodne czastkowe funkeji R sg okreslone w calym zbiorze U, na-
stepujacym wzorem

OR(A)  trW,L(A)"!  tr (T(Ao) T(W,T(A) + T(A)W,)T(Ag) ™)
A 2 [TNE(Ao) 112 ’

dla A € Ug oraz 1 < r < d. Z kolei, na podstawie lematu IV.3 stwierdzamy, ze
nastepujace wartosci sg skonczone:

Bw = sup max||W,/||,

NeN r'<d
B = sup [ X, (4.17)
Biny = sup sup ||(I - A/TW)_IH'

ANeL NeN

Mozna zatem wnioskowa¢, ze pochodna funkcji R(\) jest ograniczona na zbiorze
U,. Istotnie, dla pierwszego skladnika mamy nieréwnos¢
1 -1 1 -1
S WL () ‘ <o feeR:det(W,D(N) ™ —e 1) =0}

< W, DA < Bw - Biny < 0.
Podobnie mozemy otrzymac ograniczenie wyrazenia w liczniku drugiego skiad-
nika:

1 -T
|+t (TO) T(W,T(A) + D) WP (Ao) )|
<[IT(A0)™T(WrL(A) + T(A)W,)T(Ao)
< 2Bw - ( +d-Bg- gBW) %?nv
Z kolei ograniczenie (z dotu) wyrazenia w mianowniku wynika z nieréwnosci
N =T = [T (Xo) ™" - T(Ao)T(N) [
< ITIT (o) ~H[E - ITX0) D)



112 Zgodno$¢ oszacowan estymatoréw QNW dla modeli przestrzennych

ktéra prowadzi do oszacowania
1
IT(A0)T(A)~

Aby wykaza¢ zgodnos¢ estymatora A, wykorzystamy udowodniony wczeéniej
lemat IV.1. Pokazemy, ze réznica miedzy warto$ciami funkcji R i R, tj.

72(A)
BT () [2]

maleje do zera wedlug prawdopodobienstwa wraz ze wzrostem rozmiaru proby,
jednostajnie wzgledem A € £. Uwzgledniajac réwnos¢

y =XB+T(X) "

oraz wykorzystujac réwnosci (4.7), dla dowolnego A € L, uzyskujemy

1 _
SITOIT () 1

nv'*

i > (L+dBBw) Bl (418)

IR(A) — R(A)| = |1

52(N) = 3 (v ~ XBO))TTO)T) (v - XBOV)
1
= v IMraxT V|
= %HMrwa(A)Xﬁo +MpopyxPAT(A) lel|  (4.19)
= %HMP(,\)XF(A)F(AU)AEH
2
= ZTOIT(0) 7~ &) + &2(A),
gdzie wyrazy resztowe &1() oraz £2(\) okreslone sg wzorami
&) = 3 [ProxTIT () e
(4.20)

o8 112

&(A) = *HF T (o) el = PO O0) I

Istotnie, ostatnig rowno$¢ w (4.19) uzyskujemy z twierdzenia Pitagorasa, przez
wzajemna ortogonalno$¢ operatorow My i Py, dla A = T'(A)X, gdyz

2 12 12

[T (o) e||” = |MpayxT(A)T(Ao) 'e||” + || Proayx T AT (Ao) e

Zauwazmy teraz, ze reszta £1(\) dazy wedtug prawdopodobienistwa do zera,
jednostajnie wzgledem A, z uwagi na oszacowania, wynikajace z lematu IV.6
i z wlasnosci ||Ppyx|| < 1 oraz

IProyxllF = rank T(A)X = rank X = k.
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Po pierwsze, dla dowolnego A € £ mamy
1 —1_p2
E& )] = 1 E [ProyxDAT (o) e
1 —1(2
= NHPI‘(A)XF(A)I‘(AO) e

_ 1
<P - IT)I* - S IPryxIF
L
N b
zgodnie z lematem IV.6, patrz réwniez (4.17). Co za tym idzie, zachodzi zbiezno$¢
limy 00 EEL(A) =0, jednostajnie wzgledem X € L. Po drugie,

<BL, (1+d-Be-Bw)

Var §1(A) = — Var (HPF yxT(A)T(Ag)~ 5“)
C
-1
gNHPF()\)XI‘(A) (o) H Jsf}lepl\lz<?\/u(113\7/)E6 N’

dla pewnej statej 0 < C' < 00, a to z kolei, z uwagi na zalozenie IV.C, implikuje
zbiezno$¢ limy_,oc Var &y (A) = 0, jednostajnie wzgledem A € L.

Wykazemy tez, ze reszta £2(\) dazy wedlug prawdopodobienstwa do zera,
jednostajnie wzgledem A € L. Zgodnie z lematem IV.6 mamy

1 0 —1n2
E (FITT(0) ™ el?) = FTT () ™7
a wiec E £3(A) = 0. Wariancje £, szacujemy podobnie jak w przypadku sktadnika

&1, mianowicie

2

Var &2(A) = 2VarHI‘ I'(Xo) e

N

< N||F()‘)F()‘0)_1H4' sup sup Eg}
N’eEN KN (N)

4 14+d-Br- 4
3%“”( +d-Be-Bw) sup sup E&1,
N N'eNGKN(N)
a w konsekwencji Var () zbiega jednostajnie do zera na zbiorze Uy.
2

Z powyzszych obserwacji oraz z faktu, ze wartosci UWOHI‘()\)I‘(/\O)*IH% $3
jednostajnie odsuniete od zera, patrz (4.18), mozemy wywnioskowac jednostajng
zbiezno$¢ wedtug prawdopodobienstwa

SN +86A)  Now

ag —1)2 0
ML )T (Xo)[|F
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a w konsekwencji réwniez stwierdzi¢, ze wyrazenie

2(R(A) — R(A)) =In &)

o2 1 =1In (1 + o2 51 (A) - 52({)1 >
ML (Xo) I} FITIT (X0) I
dazy do zera wedlug prawdopodobienstwa, jednostajnie wzgledem A € L. Za-
tem pokazali$émy zbieznos$¢ supye, |R(A) — R(A)| — 0 i aby skorzystaé z le-
matu IV.1 wykazemy, ze Ao jest identyfikowalnie jedynym argumentem maksy-
malizujagcym funkcje R. Rozumowanie przeprowadzimy nie wprost.

Zauwazmy najpierw, ze R(X\g) = R(A) dla kazdego A € L. Istotnie, ponie-
waz zachodzi réwnos¢

_ 1 1
R(X\o) = v [ndet T'(Xo) — 5 (02),

z elementarnej nieréwnosci pomiedzy $rednig arytmetyczng a $rednig geome-
tryczng mamy

2 (R(ho) — R(N)) = %m (det T(Ao)| — In (02) — %m et T(A)|

0.2
i (R ITOUROn) R )

LT D) 2
det T(NT (o) 2V

= >

gdzie licznik ulamka pod logarytmem mozna interpretowa¢ jako $rednig arytme-
tyczng kwadratéw wartosci whasnych macierzy T'(A)T'(Xg) ', a mianownik —
jako $rednig geometryczng kwadratéw tych wartosci. Co wigcej, na podstawie
zalozenia IV.Eggy mozemy stwierdzié, ze

l}\rfn inf (R(Ao) — R(N)) > 0, AeL. (4.21)
—00

Zalézmy, ze Ag nie jest identyfikowalnie jedynym argumentem maksymali-
zujacym funkcje R, jak okreslono w nieréwnosci (4.13), czyli

0 < liminf inf
N—oo \ AEL: [|[A=Xo||>6

(R(h) — R(A))) <0,

Istnieje wiec liczba ¢ > 0 oraz Scisle rosnacy ciag liczb naturalnych (N, )nen,

dla ktérych wskaza¢ mozna cigg (A, )nen elementéw przestrzeni £ spelniajacy

{S\n}neN CEG)={NeL: A= Ao] =8
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oraz

0< lim (R(Xg) — R(An)) 0.

N, —o0
Zbidr £(9) jest zwarty, jako domkniety podzbior zwartej przestrzeni £. Mozemy
wiec wybra¢ dalszy podciag (An,, )nen ciagu (An)nen, zbiezny w L. Oznaczajac
A = limy,_,00 App,,, Na podstawie wlasnosci (4.21) wnioskujemy, ze

€= 1}\1}2{{1; (R(Xo) — R(S\)) > 0.

Z zaobserwowanej wczesniej ograniczonosci pochodnej funkcji R oraz le-
matu IV.7 wynika, ze R ma wlasno$¢ Lipschitza na przestrzeni £ z pewna
stala Kr, niezalezng od rozmiaru proby. Dla dostatecznie duzych wartosci in-
deksu n, tzn. dla warto$ci n przekraczajacych pewien poziom ng € N, mamy
[Am, — Al < 37c; - Ostatecznie, pozadana sprzeczno$¢ wynika z nieréwnosci
trojkata poprzez nastgpujgce oszacowanie

€= 1}\1}335 (R(Xo) — R(X)) < ]%un inf (R(Xo) — R(N))

My, —>00

< liminf (|R(Ao) = R(Am,)| + [R(Am,) — R(N)|)

N —+00
< liminf |[R(Xg) — R(Am,)| + liminf [R(A,,) — R(N)]
N —+00 My, —00
_ — o~ € €
< s B ‘ _€
\Jggggo!R(Ao) R(Am,)| + K¢ 3K = 3

Wynika stad, iz Ag jest identyfikowalnie jedynym argumentem maksymalizuja-
cym funkcje R. Poniewaz estymator A jest — wprost ze swojej definicji — argu-
mentem maksymalizujagcym funkcje R, okreslong formulg (4.16), udowodniony
fakt zbieznosci jednostajnej wedtug prawdopodobienstwa

N—oo

sup|R(A) — RO\ 222 0
AEL

pozwala uzy¢ lematu IV.1 do ustalenia zgodnosci estymatora .
Pozostalo nam zatem uzasadni¢ zgodnoé¢ estymatoréw A oraz 62, Uwzgled-
niajgc rownania (4.7) oraz pamietajac o zaleznosci 3 = B(\), otrzymujemy

B= Pr(?\)xr(j\)y = PI‘(X)XF(S‘)(XBO +T(Xo) ') =1-Bo + (w,

gdzie (ny = PF(X)XF(S\)I‘(AO)_IE. Pokazemy teraz, ze zaburzenie (y zbiega
do zera wedlug prawdopodobienstwa. Najpierw zauwazmy, iz na mocy zaloze-
nia IV.D mamy

1 1 1
XTI < ——IXTlf € ——/k - IXTX| < CVE, 4.22
\/NH | \/N” IF N | | (4.22)
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dla pewnej stalej 0 < C' < oo. Ponadto, dla dowolnego A € £, prawdziwa jest

nierdwnosé

T K TTT)

il

X 6min(:)(—r)() * €min (I‘()‘)TF()‘))
1 1

<

NESSHEEESEEY

>

-1

wigc w konsekwencji otrzymujemy

[XTEATTA)X) | < [KTX) [T .

Z powyzszych obserwacji wynikaja oszacowania spelnione prawie pewnie:
e (xx)
C/

L

n

32

< e |(5xx)7 <
N e I\ N

|(XTTN)TTNX) | <

oraz

[XTT)TTAT o)™ | < IXTI - [T - 1T (o)~

C-VEN-(1+dB,:Bw)* By < C'VEN,

NN

dla pewnej statej C’ < oc.
Z uwagi na zalezno$¢

T(A)=T(X)+ (Ao —A)W

TT(X) + G Xo)T (Ao — A)TW
X)X = A)TWT + (A= A)TWT (N = A)TW.

=
\>:>
-
=
E:>
Il
Q
x

+T
Zatem zaburzenie (y mozemy dalej rozlozy¢ na sume zaburzen sktadowych
(N =X~ +(y + Cx + (R gdzie
v = (XTTA)TA)X) ' XTT(A)Te,
(v = (XTTATTN)X) I XTTA)T (A — A)TWT(Ag) e,



Zgodno$¢ estymatorow QNW 117

— (XTTA)TTA)X) ' XTT(AN) (Ao — N)TWTT(Ag) e,
W= (XTTA)TTAVX) ' XT(Ag = NTWT (A9 — )TWT(Ag) !

Teraz wykazemy zbiezno$¢ (n do zera wedlug prawdopodobienstwa, wska-
zujac ograniczenia i zbieznosci kolejnych skladnikow. Mamy, patrz (4.22),

Ellxn|? = E (XD TTR)X) " [XTT(N)e|?)

AT 2 . (Y 2
<(§) ot monxiz< (5) -k Imoox)
/. 2
< (C]fk) (1+dB,:Bw)?,

czyli xn zbiega do zera w R¥, a z uwagi na nieréwnos¢ Czebyszewa zbiega
réwniez wedlug prawdopodobienstwa. Kolejny skfadnik rozwazymy, ograniczajac
jego pierwszy moment. Mianowicie, oznaczajac U = X T'(A)TT'(A)X, mamy
" 1 5\
<C" —=E (Ao = Al - [lell),

Eleul <& (U )
\/N

dla odpowiednio dobranej statej C” < co. Z nieréwnoséci Schwarza wnioskujemy,
ze

XTImO 130 = 31 W) e

1 < -
—E (X0 = Al - |lell) < /o2 -El|Xo — A%
B %0 = Al el) < /a3 -E[12 -

Dla dowolnej liczby 6 > 0 zachodzi

E (o~ AI2) <5+ sup A= N|-P (|2 - Al > 6) 225,
AN EL

zatem A zbiega do Ao rowniez w Lo, co daje zbieznosé¢ E||Ci|| do zera we-
dlug prawdopodobienstwa. Dla skladnikéw (4, oraz i/ moina przeprowadzi¢
analogiczne rozwazania.

Aby wykazaé zgodnos¢ estymatora 62, przypomnijmy, ze 62 = & (5\) Zgod-
nie z reprezentacjg opisang przez réwnosci (4.19) i (4.20) mamy

2
9, O <
7*(A) = ZITAT o) HE = &(A) + &(N).
Ponadto, ze wzgledu na wykazang, jednostajng wzgledem A zbieznos¢ elementéw
€1(A) i &(A) do zera, mozemy wywnioskowac, ze

N—oo

< | = &) + &AN)| < supl&(A)] + sup|& ()] —% 0
AeL AeL
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wedtug prawdopodobienstwa. Pozostaje zatem wykaza¢, iz

lim NHI‘(;\) Ao)_lHi:Ug

N—o00
wedlug prawdopodobienstwa. Zauwazmy, ze funkcja
Uz 3 A 0(A) = [[T(AT(Xo) 77
jest rozniczkowalna, a jej pochodne czastkowe, dla 1 < r < d,

Ur gi (A) = (]fvgtr (T(x0) ™ (W] + W,)L(X0) ™)

)Y

s3 — ze wzgledu na argument A i rozmiar proby N — jednostajnie ograniczone
przez pewna warto$¢, wynikajaca z zalozen IV.A i IV.Bggy. Istotnie, mamy

r’'=1

\"0 tr (T(Ao) T (W + W) T(h) )| < 208Bw B3,
oraz

9 d
g _
NO Z )\r”‘WT’F()‘U) 1H|2: < daﬁ%ﬁ%w%mv

r'=1

Na mocy lematu IV.7 wnioskujemy zatem, Ze na przestrzeni £ funkcja 6 spelnia
warunek Lipschitza, z pewng stalg Kz. Otrzymujemy ostatecznie

N—oo

ITIT (o) = 8| = 103) = 03| < K - A = Kol 2= 0

wedtug prawdopodobienstwa. O

2.4. Dowdd twierdzenia o zgodnosci dla modelu SAR

W tym podrozdziale przedstawiamy dowdd twierdzenia IV.10 o zgodnosci es-
tymatora QNW dla dla modelu, ktérego specyfikacja (patrz réwnanie (4.1))
uwzglednia przestrzenng autokorelacje zmiennej zaleznej. Schemat rozumowa-
nia argumentujacego teze twierdzenia prowadzona jest w sposob analogiczny
do dowodu twierdzenia IV.11. Mianowicie wykorzystywane jest pojecie identy-
fikowalnie jedynego argumentu maksymalizujacego, zbieznos$¢ jednostajna ciagu
funkcji wiarogodnosci oraz, prowadzacy do zgodnosci, lemat IV.2. Niemniej
jednak, rézne specyfikacje modelu procesu generujacego obserwacje wymagaja
szczegolnego w obu przypadkach szacowania elementéw resztowych i zaburzen
losowych estymatorow.
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Dowo6p. Ponownie, dla uproszczenia zapisu w nazwach estymatoréw pomi-

niemy indeks dolny ustalajac: p = pPsar qnw> B = Bsar QNw oOraz 62 =
&gAR_QNW' Przyjmujemy tez popularne oznaczenie macierzy rzutowych Px =
X(XTX)~!XT oraz Mx =1 — Px.

Przypomnijmy, ze warto$¢ estymatora p zostala okreslona jako ta maksy-
malizujaca z prawdopodobienstwem 1 funkcje skoncentrowanej wiarogodnosci
P>pr— InLy (p,,f:}(p),62(p)> dang w réwnaniu (4.5). Co za tym idzie,
maksymalizuje ona réwniez na zbiorze P funkcje losowa

1 . . 1 1
= InLy (,B(p),6%(p)) + 510 (27) + 5

1

= —5n(&%(p) + %ln\det Alp)l;

Up 3 p+— R(p) 3)

gdzie zbiér Up jest otwartym nadzbiorem przestrzeni P danym w lemacie IV.4,
natomiast 6%(p), dla p € Up, dane jest w réwnaniu (4.4). Dodatkowo zdefiniuj-
my funkcje deterministyczng Up > p — R(p) okreslong formulg

0.2
R(p) =~ 50 (1A (P)Ap0) I + [MxA(p) Alpo) ' X0]1?)

. (4.24)
+ N In |det A(p)].

Jak mozna wyliczy¢, stosujac standardowe zasady rézniczkowania funkcji
macierzowych, pochodne czastkowe funkcji R okreslone s3 w calym zbiorze Up
i sg réwne

0.2
OR(p) _ i1 (P) + sy xa(p)
S
Or FIAP)A(P)E + 5 [MxA(p)A(po) 1 X2

- %tr (W, A(p)™ 1),

dla p € Up, 1 <17 < d, gdzie

_ AP A(p)

x1(p) .
— tr <A(po)—T(WrA(p) + A(p)wr)A(pO)_l)’
a(p) = 9| Mx A(p)A(py) XG0l 2

Apr
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= X A()T Alpo) TMXW, A (po) XSy
+BoX" A(po)” W MxA(p)A(po) ' XBo.

Na podstawie lematu IV.4 mozna wnioskowa¢, ze pochodne te s3 ograniczone
na calym zbiorze Up. Istotnie, przy oznaczeniach
Bw = sup max||W | < oo,
NeN r<d
Bp = suplp] < o,
pEP
(4.25)
Ba = sup sup||I — p" W|| < oo,
pEP NeN
Biny = sup sup ||(I - pTW)ilu < 00,
pEP NeN

ostatni skladnik wzoru opisujacego pochodne czastkowe R spelnia nieréwnos¢
1 -1
’—trWA ’ NZ{eER:det(WTA(p) —e-I) =0}
<IWrA(p) ™ < Bw - Biny < 00,
dla p € Up. Podobnie szacujemy warto$¢ elementu %Xli

p)| < [ Alp0) (W, A(p) + A(p)W)A(p0) ™|

< 2Bw - Ba - B, < oo

mv

‘NXI(

Ograniczenie wartoéci elementu Y2 mozemy z kolei skonstruowaé odwolujac
sie do submultiplikatywnosci normy i tozsamosci || X||? = ||XTX]|, przez co
otrzymujemy

1
)] <2180 sip | XX BwBand, <

2
Zauwazmy tez, ze wartosci wyrazenia 2||A(p)A(po)~'||# sa odciete od zera

jednostajnie wzgledem p € Up (warto$¢ pg traktujemy jako ustalong). Wniosek
ten wyplywa z nastepujacego oszacowania

N = [T = [A(p)A(p) - Alpo)Ale) 7
<||atp)Apo)Ig - [[Aleo) o) |7
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ktére prowadzi do

1
(po) A (p)~HI?

Aby wykaza¢ zgodnos$¢ estymatora p, wykorzystamy lemat IV.2. Pokazemy,
ze bezwzgledna réznica miedzy wartosciami powyzszych dwoch funkcji, a wiec

|R(p) — R(p)| maleje do zera wedlug prawdopodobienstwa wraz ze wzrostem
wielkosci proby, jednostajnie wzgledem p € P. Bioragc pod uwage réwnosé

Y = A(po) ' XBo + A(po) e
oraz (4.4), dla dowolnego p € R, uzyskujemy

52(p) = % IMx A (p)yl®

- %HMXA(p)A(pO)_IXﬁO +MxA(p)A(po) el

2
g, _ —

(4.26)
2
= M A (P)A (o) X80 > + T2 Ap)A (o)}
+x(p) = &i(p) + &2(p),
gdzie wyrazy resztowe &1(p), £2(p) oraz x(p) sa okreslone wzorami
X(p) = = B1XT A(p)Alpo) "MxA(p)A(po) e,
&(p) = %HPXA(p)A(po)_lsl ?, (4.27)
1 2
&(p) = [ A(p)A(p) e|* = LI A(P) Apo) -

Istotnie, powyzsze réwnosci wynikajg ze wzoru skroconego mnozenia dla kwa-
dratu sumy oraz z twierdzenia Pitagorasa mamy poprzez wzajemng ortogonal-
no$¢ operatorow Mx i Px.

Zauwazmy teraz, ze warto$¢ oczekiwana skladnika x(p) wynosi zero, dla
wszystkich p € Up oraz jego wariancja jest jednostajnie ograniczona, tj.

4 _ 1112
E (x(p))* = 531180 X" A(p)T Alpo) "TMxA(p) A(po) '
4 2 1 T 4 4
<= ' XH : .
10l sup || XTX|BABL, < oo

Wykazemy tez, ze reszta &1 (p) dazy wedtug prawdopodobienstwa do 0, jednostaj-
nie wzgledem p, z uwagi na nastepujace oszacowania, wynikajace z lematu IV.6
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oraz z wlasnoéci: |Px|| i ||Px||r = rank(X) = k. Po pierwsze, dla dowolnego
p € P mamy

E1(p) = 1 E[[PxAR)Ap) e]” = [ PxA(0)Ap0) !}

_ 1 k2
< A(p0) - IAP)? - - IPx? < -

czyli limpy oo E&1(p) = 0, jednostajnie wzgledem p € L. Po drugie,

B B2

nv?

1
Var 61 (p) == W Var HPxA(p)A(pO)_lgug

3
:NHPXA(P)A(po)‘lH4 sup sup E&]
N’eNiKN(N)

3 ., _C
N% %mv\ N

dla pewnej statej C' < 0o, co implikuje zbiezno$¢ Var &1 (p) do zera, jednostajnie
wzgledem p € £, z uwagi na zalozenia IV.A, IV.Bgar i IV.C, patrz (4.25).

Podobnie, reszta £2(p) dazy wedlug prawdopodobienstwa do zera, jednostaj-
nie wzgledem p € P. Istotnie, zgodnie z lematem IV.6 otrzymujemy

B (L A@)AG0) ) = )| A(p) Al

a wiec E&,(p) = 0. Nastepnie uzyskujemy oszacowanie

1
Var&y(p) = <5 Var | A(p)Alpo) e
2 A AR sup sup Bt < Smhwl, <
N N/GNZ<N(N/) N N

dla pewnej statej C' < oo, co implikuje zbieznos¢ limy o, Var &2(p) = 0.
2
Z przedstawionych obserwacji oraz z faktu, ze wartosci 32| A(p) A(po) |7
s3 jednostajnie odsunigte od zera, mozemy wywnioskowa¢ jednostajng zbiezno$¢

wedtug prawdopodobienstwa

x(p) —&1(p) + &2(p) Nevoo

0
O'2 >
VAP Alpo) HE + 5 IMxA(p) A(po) ' XBo|?

a w konsekwencji réwniez zbiezno$¢ réznicy R(p) — R(p) do zera jednostajnie
wzgledem p € P, z uwagi na oszacowanie

(R(p) — R(p))” < 12 <1+>§gp)—£1(p)+£z(p)>_
VAP A(po) IR
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Zatem, aby skorzysta¢ z lematu IV.2 pozostaje wykazaé, ze po jest identyfi-
kowalnie jedynym argumentem maksymalizujagcym funkcje R. Rozumowanie
przeprowadzimy nie wprost.

Zauwazmy najpierw, ze R(po) > R(p) dla kazdego p € P. Istotnie, przy-
pominajac (4.24) mozemy wyliczy¢, ze

1 1
R(po) = ~; In|det A(p)| — 5 In(a3).

Zatem, na podstawie elementarnej nieréwnosci miedzy $rednig arytmetyczng
a $rednig geometryczng mamy

R(po) — R(p) = + In %”A(P)A(po)’lHé
|det A(p)A(po)~L|¥

2 0,

gdzie licznik utamka pod logarytmem mozna interpretowa¢ jako $rednig arytme-
tyczng kwadratow wartoéci wlasnych macierzy A (p)A(pg) !, a mianownik jako
ich $rednig geometryczng. Co wiecej, na podstawie zalozenia IV.Egar mozemy
stwierdzié, ze
liminf (R(po) — R(p)) >0, p€P. (4.28)
N—o0

Zalézmy teraz przeciwnie, ze po nie jest identyfikowalnie jedynym argumen-
tem maksymalizujagcym funkcje R, jak okreslono w nieréwnosci (4.13), czyli

0<hminf( inf  R(py)— R )go.
inf{ p, ol s TlP0) = B(p)

Istnieje wiec liczba § > 0 oraz écisle rosnacy ciag liczb naturalnych (Vy,),,cnp»
tj. podcigg ciggu rozmiaréw préb (IV)ycy» dla ktérych mozna wskazac ciag
(Pn)pen elementéw przestrzeni P spelniajacy

{Pntnen CEW@) ={peP:p—poll =6}

oraz

0 < liminf (R(po) — R(p)) < 0.

Np—o00

Zbior £(0) jest domkniety w zwartej przestrzeni P, a zatem jest sam zwarty. Mo-
zemy wiec wybra¢ podciag (Pm,, ),en €idgu (Pn),cn zbiezny w P. Oznaczajac
p = lim,, o0 Pp,,» Na podstawie wlasnosci (4.28), wnioskujemy, ze liczba

¢ :=liminf (R(po) — R(p))

jest dodatnia.
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Z zaobserwowanej wcze$niej ograniczonosci pochodnej funkcji R oraz le-
matu IV.7 wynika, Ze R ma wlasno$¢ Lipschitza na przestrzeni £ z pewna
stala K'p, niezalezng od wielkosci préby. Dla dostatecznie duzych wartosci in-
deksu n, tzn. dla wartosci n przekraczajacych pewien poziom ng € N, mamy
1Pm, — Pl < 3 K . Ostatecznie, oczekiwana sprzeczno$¢ wynika z nieréwnosci
trojkata poprzez nastgpu)qce oszacowanie

€ =lim inf (R(po) - R(ﬁ)) hm inf (R(po) - R(p))

N— Ny, —00
< Jminf £ Rlpn) = (o) + limint [R(m) — R(5)
Nmn N, —+00
— — € €
< T . . ~ . —
< lmind |R(po) — Rl )| + Kp- = &

Zatem, py jest identyfikowalnie jedynym argumentem maksymalizujacym funk-
cje R. Poniewaz estymator p jest — wprost ze swojej definicji — argumentem
maksymalizujacym funkcje R, okreslong formulg (4.23), udowodniony fakt zbiez-
nosci jednostajnej wedlug prawdopodobienstwa

= N
sup |R(p) — R(p)| =——> 0
pEP
pozwala uzy¢ lematu IV.1 do ustalenia zgodnosci estymatora f)
Pozostato zatem uzasadni¢ zgodno$¢ estymatoréw B oraz 2. Uwzgledniajac
(4.4) oraz pamietajac, ze 3 = B(p), mozemy uzyskaé

B=(XTX)"'XTA(p)y = (X"X) "' XTA(B)A(po) ! (XBo + )
— (XTX)IXT (1= ph W) + (5 — po) W) Alpo) " (X o + )
=1 8o+ ¢y + ¢
gdzie

¢v = (XTX) X (p— po) "'WA(po) X By,
Chv = (XTX)'XTA(P)WA(po) e

Pokazemy, ze oba te skladniki zaburzenia losowego estymatora 3 zbiegaja do zera
wedlug prawdopodobienstwa. Najpierw zauwazmy, iZ na mocy zalozenia IV.D
mamy

1 1 1
— X" < —— X"l < ——=+/k- |IXTX|| < CVE, 4.29
\/NH | \/N” lF Wici | | (4.29)
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dla pewnej stalej C' < co. Otrzymujemy zatem nierdwnos¢

Bl = E[|(§X7X) " X7 (0 - p0) WA ()X
< C¢ - kd - ||Boll Ellp — poll,
gdzie
oo > Ce > c? sup H XTXH‘BW%HW
NenlI N’

Korzystajagc z nieréwnosci Czebyszewa, dla dowolnej liczby ¢ > 0 i n € N
otrzymujemy nieréwnos¢

1 Cekd|Boll

< kBl g (15

Ellp — poll

— p0llTyp o1+ 16 = POl 1)
Cekd||Bo ) 1\ Cekd||Bo

ne

Wyliczajac odpowiednie granice otrzymujemy zatem

0< lim [hm P (||| >e>] < 1im ekl
— 00

n—oo | N n—oo ne

=0,

a poniewaz warto$¢ w nawiasie kwadratowym nie zalezy od n, mamy zbiezno$¢
limy 00 P (][N ]| = €) = 0. Podobnie, uzywajac submultiplikatywnosci normy
macierzowej, wnioskujemy o zbiezno$ci

HVar EZET” CC' . kdg N—00
[VarCy|| < Cor b —F— = = 0,
gdzie stata C¢/ spelnia
00 > C¢r = C? sup H XTXH B2 BA.
Nen TN

Oznacza to, ze réwniez kazda z wariancji k wspotrzednych (., 1 < m < k
wektora ( zbiega wraz ze wzrostem rozmiaru proby do zera, a co za tym idzie,
dla kazdego m < k oraz € > 0, mamy

k Var(Nm

k
P(lenl >0 < 3 Plowml > < Y 2
m=1

m=1

k N
zHVar CNmH —=0.
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Aby wykaza¢ zgodnoéé estymatora 62 = 62(p), rozwijamy réwnanie (4.4)
otrzymujac
Y 1 . YN
7*(p) = 5y — "Wy - XB(p)]|
1
= (€= —en) (e = In —on) (4.30)
o7

€ 4 19]TV19N . <p]T\,cpN N 2eT 9N . 2eT oy 4 219]TV<pN
N N N N N N

gdzie
In = (p— po) Wy,
on =X (B~ B).

Zauwaimy, ie w konsekwencji stabego prawa wielkich liczb mamy zbiezno$¢
LeTe do 02 wedtug prawdopodobienistwa. Istotnie, na mocy zalozenia IV.C

(4.31)

N
zachodzi ) . )
NsTs = N(Eé)TEé = NéTs Ao, 52 ot
gdyz dla dowolnego € > 0, uwzgledniajac lemat IV.6 mamy
1 v+ 5 Var(eTe)  3supnrensup,<yvy E 5 Nooo
IED(NE 6—00‘>E)< N26 = Ne 0.

Wskazemy teraz ograniczenie dla pozostatych skladnikéw w réwnaniu (4.30).
Latwo tez zauwazy¢, ze H\/—lﬁgo NH dazy wedlug prawdopodobienstwa do zera.

Wynika to z obserwacji, iz przy dowolnym e > 0 zgodnoé¢ estymatora 3 impli-
kuje ograniczenie

P (| o] =) <P (| x| 18- gl > ) =00

Element 9 spelnia z kolei nieréwnos¢

< H\F p— po) WA(po)‘lXﬁoH

+ H\/lﬁ(ﬁ - PO)TWA(PO)AEH-

Z faktu zgodnosci estymatora p wynika zbieznos¢
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P (|- oo W) X8 > )

A N
P (@ Bw s X[ 1Bol- B 16 - gl ) 20
‘e

1
\/ﬁ
i podobnie

P (H(ﬁ - po)TWA(pO)—IH > 6)

<P (d- Bw|Bol|Bim - 16 — poll =€) T2 0.

Ta druga pozwala, poprzez lemat IV.9, wnioskowac o zbieznosci normy

L T -1 ~1
e i e <l i - e
| 750~ P "WA) 16— po) W A(po) !
do zera wedlug prawdopodobienstwa, gdyz H ﬁe“ zbiega do wartosci \/03, na
mocy prawa wielkich liczb.
Ostatecznie, zgodnos¢ estymatora 62 otrzymujemy, uzywajac lematu IV.9 do

oszacowania normy kolejnych skladnikéw w réwnosci (4.30). Mianowicie mamy
nierownos¢

‘ﬁLﬁN Lenen | 26TIn  2Ton | 2197V¢N‘

N N N N
< IR+ 2 S ] S Sl
bl v i
a wiec réznica
(3'2 1 ETE‘ _ ‘19}’[9]\7 4 QD-]I;[QON i 2€T19N n 2€T(pN n 219-}—\/(,0]\[‘
N N N N

dazy do zera wedlug prawdopodobienstwa. O
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Istotnym elementem kazdej procedury estymacyjnej jest identyfikacja wyniko-
wego rozkladu prawdopodobienstwa oszacowan. Taka wiedza pozwala na kon-
strukcje przedzialéw ufnosci dla parametréw oraz testow statystycznych dla hi-
potez ich dotyczacych. Cechg charakterystyczng metod estymacji opartych na
zasadzie najwigkszej wiarogodnosci jest — poza pewnymi trywialnymi przypad-
kami — duza trudnos¢, badz wrecz niemozliwoéé, wyprowadzenia dokladnego
rozkladu tychze oszacowan. W efekcie, wnioskowanie statystyczne musi by¢ opar-
te na asymptotycznym zachowaniu estymatoréw. Okazuje si¢, Ze pod pewnymi
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warunkami odpowiedni rozklad graniczny istnieje i jest nim rozklad normal-
ny. Odpowiednie twierdzenia o zbieznosci rozkladéw, cho¢ nie dla proceséw
przestrzennych, sa znane od dekad (por. Lehmann, Casella, 1998).

W tym rozdziale przedstawimy formalng teori¢ asymptotycznego rozkladu
prawdopodobienstwa oszacowan, uzyskiwanych metoda quasi-najwiekszej wiaro-
godnosci. Wprawdzie zgodno$¢ tych estymatoréw zostala wykazana w poprzed-
nim podrozdziale, jednak jakiekolwiek wnioskowanie statystyczne na podstawie
szacowanego modelu, w tym okreslenie istotnosci statystycznej jego skladni-
kéw, wymaga identyfikacji rozkladu uzytych estymatoréw. Podobnie wyznacze-
nie przedzialéw ufnosci dla estymowanych parametréw jest mozliwe tylko wtedy,
gdy znamy co najmniej przyblizone wartosci dystrybuanty, wtasciwej dla uzyski-
wanych oszacowan.

Ponizej prezentujemy i formalnie udowadniamy autorskie centralne twierdze-
nie graniczne dla form liniowo-kwadratowych. Na tym wyniku opiera si¢ argu-
mentacja omawianych dalej w rozdziale wlasnosci estymatoréw QNW. Twierdze-
nie to wykorzystalismy réwniez w rozdziale III do uzyskania rozkladéw asymp-
totycznych statystyk testowych autokorelacji przestrzennej. Podrozdzial drugi za-
wiera serie lematow i stwierdzenn pomocniczych, ktére okaza sie przydatne w ko-
lejnych rozumowaniach. W podrozdziale trzecim przedstawiamy i udowadniamy
autorskie, nigdy wcze$niej niepublikowane twierdzenie o rozkladzie asymptotycz-
nym estymatora quasi-najwickszej wiarogodnosci dla modeli wyzszych rzedow
z autoskorelowanym sktadnikiem losowym. Ostatni podrozdzial jest poswigcony
autorskiemu opracowaniu analogicznego twierdzenia dla modeli z autoregresja
zmiennej objasnianej, ktére zostalo pierwotnie opublikowane w pracy Olejnik
i Olejnik (2020).

1. Nowe centralne twierdzenie graniczne dla form
liniowo-kwadratowych

Narzedziem matematycznym uzywanym w teorii asymptotycznej estymacji para-
metréw modeli ekonometrycznych jest pojecie zbieznosci ciggu zmiennych loso-
wych. Gdy méwimy o zgodnosci estymatora, rozwazamy jego zbiezno$¢ wedtug
prawdopodobienstwa do wartosci prawdziwej. W przypadku asymptotycznego
rozkladu oszacowan wlasciwym pojeciem jest zbieznos¢ ciaggu zmiennych loso-
wych wedtug dystrybuanty. Intuicyjnie, pojecie takiej zbiezno$ci mozna rozumie¢
jako wlasciwos¢ upodabniania si¢ dystrybuanty zmiennej losowej do dystrybu-
anty rozkladu granicznego, wraz ze wzrostem rozmiaru préby. W praktyce ozna-
cza to, ze jesteSmy w stanie unikng¢ konieczno$ci wyprowadzania doktadnego
rozkladu rozwazanych statystyk. Zamiast tego mozemy (przy pewnej ostrozno-
$ci w przypadku rozkltadéw nieciagtych) przybliza¢ wartosci prawdopodobienstw
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zdarzen zwigzanych z elementami ciggu warto$ciami wyliczonymi z uzyciem
dystrybuanty granicznej. Jest to o tyle istotne, Zze wyprowadzenie rozkladu do-
ktadnego moze by¢ trudne lub wrecz niemozliwe. W szczegolnosci tak jest wila-
$nie w przypadku estymacji metoda najwigkszej wiarogodnosci, gdy prawdziwy
rozklad prawdopodobienstwa, z ktérego pochodza dane nie jest znany (por. Za-
tozenia IV.ESAR i IVESEM)

W teorii estymacji parametrow modeli ekonometrycznych najczesciej poja-
wiajacym sie rozkladem granicznym jest rozktad normalny, a twierdzenia o zbiez-
nosci wedtug dystrybuanty o gaussowskiej granicy nazywa si¢ zwyczajowo cen-
tralnymi twierdzeniami granicznymi. Do rozwoju teorii ekonometrii nie wystar-
czaja jednak standardowe, kursowe twierdzenia. Poza prostymi przypadkami, ta-
kimi jak wyliczanie $redniej arytmetycznej z proby o niezaleznych obserwacjach,
jest wrecz przeciwnie. Zaleznosci migedzy obserwacjami w probie wymagaja uzy-
cia specjalistycznego twierdzenia granicznego, uwzgledniajacego specyficzna ich
nature. W szczegdlnosci, takiego, ktore pozwoli uwzgledni¢ reprezentacje za-
leznosci w formie macierzy wag, uzytej w specyfikacji autoregresyjnej procesu
generujacego obserwacje.

W przypadku rozwazan dotyczacych ekonometrii przestrzennej, szczegdl-
ng postacig wyrazenia, ktére decyduje o rozkladzie badanego estymatora (patrz
dowody twierdzen V.8 oraz V.9) jest forma kwadratowo-liniowa zaburzenia lo-
sowego modelu. Podobnie jest w przypadku statystyk przestrzennych typu I Mo-
rana (patrz rozdzial III), ktorych postaé jest explicite ilorazem form kwadrato-
wych badz liniowo-kwadratowych pewnej zmiennej losowej, zwigzanej z obser-
wowanym zjawiskiem. Przyjmijmy, Zze mamy do czynienia z funkcjami postaci
RY 3 ¢ — ¢TAC o niediagonalnej macierzy A = [a;j], <ij<N» ktorej wartos¢
obliczono dla wektorowej zmiennej losowej & = (&;)2Y, o elementach niezalez-
nych wedlug prawdopodobienstwa. Wowczas, w sumie Zf\; 1 Zjvzl a;;&:&;, poza
wcigz niezaleznymi skladnikami kwadratowymi &2, gdzie 1 < i < N, pojawiaja
sie skladniki iloczynéw krzyzowych ;&;, dla i # j. W sposéb oczywisty nie s3
one juz niezalezne, gdyz, dla kazdego 1 < 7 < IV, warto$¢ zmiennej losowej &;§;
bedzie zwigzana (poza przypadkami trywialnymi) z wartoéciami zmiennej &;&y,
dlal<j,k<N.

Warto tu wyjasni¢, ze pojawienie sie form liniowo-kwadratowych jest natu-
ralnie zwigzane z zastosowaniem metody najwiekszej wiarogodnosci. Wynika to
z zastosowania rozwiniecia w szereg Taylora pochodnej funkcji wiarogodnosci
do skladnika rzedu drugiego, tak jak ma to miejsce w prezentowanych dowodach
twierdzen V.8 i V.9, patrz réwniez praca Feng i inni (2014).

Literatura przedmiotu oferuje caly wachlarz twierdzen granicznych dla roz-
ktadow form kwadratowych przy réznych zalozeniach. Temat ten byl podejmo-
wany miedzy innymi w pracach Whittle (1964), Beran (1972), Sen (1976), de Jong
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(1987), Giraitis i Taqqu (1998). W kontekscie teorii ekonometrii przestrzennej
najczesciej wykorzystuje si¢ twierdzenie z pracy Kelejiana i Pruchy (2001) dla
form liniowo-kwadratowych o macierzach jednostajnie sumowalnych w sensie
moduléw wierszy i kolumn. Na szczegdlng uwage zastuguje opracowanie Bhan-
sali i inni (2007), w ktérym sformufowano centralne twierdzenie graniczne dla
form czysto kwadratowych o macierzy z dowolng przekatng, oraz z warunkami
wyrazonymi w jezyku norm spektralnych. Bazujac na rozumowaniu zaczerpnie-
tym z tej pracy, prezentujemy jednak wynik rozszerzony na uzytek naszej teo-
rii — twierdzenie centralne o zbieznosci rozkladéw form liniowo-kwadratowych.
Wynik ten pierwotni zostal przedstawiony w materiatach dodatkowych do pracy
Olejnik i Olejnik (2020).

TWIERDZENIE V.1
Niech ey = (&) fi | bedzie wektorem niezaleznych zmiennych losowych (por. za-
lozenie V.C’ na s. 143) o zerowej wartosci oczekiwanej i statej wariancji o2 > 0.
Ponadto zalézmy, ze rodzina ich czwartych poteg, tj. £, dla 1 < i < N, jest
jednostajnie calkowalna ze wzgledu na indeks ¢ oraz rozmiar proby /N (patrz de-
finicja na s. 143). Dla dowolnej liczby naturalnej N niech zy = (z;)Y, € R,
Dodatkowo, niech Ay = (a;j), <ij<n Deda macierzami o wymiarach N x N.
Oznaczmy Qn = e}-VA NEN + e'x N oraz zatézmy, ze Var Qn > 0, dla dosta-
tecznie duzych N. Jesli spetnione sg warunki

lim sup M < 00, (5.1)
N—oo VarQ@n

lim sup M =0, (5.2)
Nooo VarQn
: AN

limsup ——— =0, (5.3)
Nooo VarQu
A 2

lim sup w < 00, (5.4)

Nooo VarQn

; 2 _ ) ) . QN—EQN ,1:
gdzie || xn||5, = max;<;<n|zi|, wowczas forma standaryzowana SATIores zbie-

ga wedlug dystrybuanty do zmiennej o rozktadzie N (0, 1).

Dowop. Bez straty ogélnosci mozemy zalozy¢, ze 0 = 1. Zauwazmy, ze macierz
Ay = %A N+%A]TV jest symetryczna i, uzyta w miejscu A,,, wyznacza identyczna
cze$¢ kwadratowa formy Q. Ze wzgledu na nieréwnosci || Aly||? < [[An]?
oraz ||Aly||2 < ||An||3, warunki (5.3) i (5.4) sa spelnione dla macierzy Ay
(w miejscu A ) wtedy, gdy sa one spetnione dla A . Zatem, na uzytek dowodu

mozemy zalozyé, ze rozwazana macierz Ay jest symetryczna.
N
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Majac na uwadze zwarto$¢ zapisu, wprowadzimy nastgpujace oznaczenia. Dla
dowolnego N € N oraz 1 < i < N przyjmujemy

Vn = VarQn,
¢Z = Z(N) == Vare?,
m; =i (N) = Eef,

a nastepnie

i—1
UZ' = UZ(N) = Qi (€Z2 — 1) + x;6; + 22’52' Zaijej.
j=1
Jak fatwo sprawdzi¢, dla kazdego ustalonego N = 1,2, ... zachodzi réwnos¢

N
> Ui=Qn—-EQu.
=1

Co wiecej, mozna zaobserwowal, ze kazdy skoniczony ciag (U;)Y, jest martyn-
gatem (patrz Jakubowski, Sztencel, 2001). Istotnie, niech (€2, F,P) bedzie odpo-
wiednig przestrzenig probabilistyczng oraz niech F; = F;(N), dla 1 <i < N,
beda o-cialami generowanymi przez zmienne poprzedzajace U; z U; wiacznie,
tji. Fi = o(Uy,...,U;). Zalézmy tez, ze o-cialo Fy = Fo(N) C F jest nieza-
lezne (wedlug prawdopodobienstwa) od wszystkich zmiennych €;, 1 < i < N,
np. Fo = {0, Q}. Wtedy, uzywajac zalozenia o lacznej niezaleznosci zmiennych
(52')?;1 mamy

E [Uz ‘ .7:1'_1] =K (a“(s? — 1) ‘ f'_l) —i—E(xisZ- ‘ f‘_1)

i—1
+2FE <5i Zaijsj ‘ fi_1>
j=1
i—1
=a; E (612 — 1) + LU,E(EZ) + 2E(€Z‘) Zaijfj =0.
j=1

Dla dowolnej wartosci N = 1,2,... oraz dowolnej liczby 6 > 0 dodatkowo
oznaczmy

1N
S:* EU2 -F’i—;
LS

N
v (0) = 5, SB[V ey | Fi]
=1
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Przedstawiane ponizej rozumowanie opiera si¢ na centralnym twierdzeniu
granicznym dla tréjkatnej tablicy réznic martyngatowych, ktére mozna znalez¢
we wniosku 3.1 w monografii Hall i Hyde (1980). Zgodnie z tym twierdzeniem,
zbiezno$¢ wedtug prawdopodobienstwa

li =1 5.5
im, S 9)

oraz zbiezno$¢ wedtug prawdopodobienstwa dla dowolnego 6 > 0

lim gn(5) =1 (5.6)

N—o0

implikujg asymptotyczng normalno$¢ sumy - ZZ 1 Ui. Ta z kolei sprowadza
sie do tezy dowodzonego twierdzenia.

Przy oznaczeniu T; = 2 23;11 a;j€; mozemy zapisac
2
U? = (aii(e} — 1) + zig; + /7T3)

= 2aywi6i(e7 — 1) + 2a4e:(e? — )T} 4 22,27 (5.7)

+elT7 + ag(ef — 1)% + ajel,

a nastepnie
Sy = ZE U2 | Fiz 1] = 2172 Qi + 2172 au Ty + 22;T; + T2 + gfa?i + ;UZQ
=1

Z wlasnosci martyngalu dla ciggu zmiennych losowych U;, 1 < i < N, mamy
N i—1
Vn =E(Qn—EQn)* = (ZU) => E (U} +2ZUZ-UJ->
i=1 j=1
N i—1
=Y EU? +2ZE (ZE(Uin | ﬂ-))
i=1 i=1 j=1
N N i1 N
=Y EU?+2) E (ZU]- “E(U; | fj)> =Y EU? +0.
i=1 i=1 j=1 i=1

Zatem, podstawiajac tozsamos¢ (5.7) oraz uwzgledniajac niezalezno$¢ zmiennych
g; 1 T; (gdzie Th := 0) wedlug prawdopodobienstwa oraz fakt zerowania si¢
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warto$ci oczekiwanej [E T}, dla kazdego 1 < @ < N, uzyskujemy réwnos¢

N N N
VN = 22(1”1'1-1}36@' (612 - 1) +22aiiE5i (512 - 1) Ti+2zxiE€?Ti
=1 i=1 =1

N N N
+) BT+ Za?iIE(sf 1+ ajEe]
=1 i =1
N N
=2 Z Uz,ﬁn,ian,ii + ZECF’? + Z Si au + Z i
i=1 =1 =

Ponizej wykazemy, ze zbiezno$¢ wyrazona w réwnaniu (5.6) zachodzi $red-
niokwadratowo w przestrzeni L?(), F,P), co implikuje zadang zbieznos¢ wedtug
prawdopodobienstwa. Dla dowolnego N = 1,2, ... mamy

1
N

Uwzgledniajac wyliczone wczesniej formuly na Sy i Vi otrzymujemy

N 2
(Sy — 1) = V2 (Z (2n3auT; + 22,T; + (T? — ET?)) )
i=1
6 N ) 2 6 N 2 3 N 2
<VQ(Z77?G¢¢T1‘) —l—W(szﬂ) +VQ<Z(T1'2—ET1'2)) :
N Ni=1 N N=1 N Ni=1

Zatem, przykladajac operator wartosci oczekiwanej uzyskujemy oszacowanie

_ ) 2 3 .3
ISy — 1|2 = E (SN—l) sz szva—i-%gN, (5.8)

gdzie
N 2
f](\}) =E (Z%zﬂ) ,
=1
N 2
51(\?) =K (Z%rfz) ,
i—1
N 2
e B (> (-1}
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Dalej wskazemy ograniczenie kazdego z powyzszych elementéw oddzielnie,

3)

zaczynajac od wartosci &y, .

Uwzgledniajac tozsamosci
i—1
ik AG1EGEE>

1—1
TP=4)
k=11=1
i—1
Ti2 =4 Z azzk’
k=1

dla 1 <7 < N, otrzymujemy oszacowanie

N i—1i-1 N izl
(3)_16 (ZZZ(LZMWEZ&;—ZZ zl>

i=1 =1 k=1 i=1 [=1
N i—1i—1 N i—1 N i—1 2
S 10 9) D) SITIERES 3 SEEED B B
i=1 I=1 k=1 i=1 =1 i=1 =1
k£l
N i—1i-1 2 N -1 2
2 /.2
<32.E( 3 anancier +32-IE(Z aik(gk_m) .
i=1 I=1 k=1 i=1 k=1
k+#l

Rozwijajac kwadrat wyrazenia w nawiasie mozemy zauwazy¢, ze pierwszy sklad-
nik po lewej stronie powyzszej nierdéwno$ci mozna zapisa¢ jako

i—1 i—1 2

N
E E Qi Qi EIEE

=1 =1 k=1
k£l

i—1 j—14i—1 j—1

N N
= Z Z Z Z ayaigayyaqg Eeggepey.
=1

i=1 j=11=11U=1k=1k'=
WAL KAl
Zauwazmy, ze czynnik E e jepe e jest rézny od zera tylko wtedy, gdy | = I/
ik=Fk,6lubgdy j =k ik =j'. Oba te przypadki, uwzglednione w odpowied-
nich sumach, prowadza do takiego samego wyrazenia. Zatem, badany skladnik
jest dalej ograniczony przez

N N min{i,j}—1min{i,j}—1
2.2
S5 IS D D TERS

i=1 j=1 =
k;él
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2.2 2 ) camanse

> N N min{i,j}—1min{éi,j}—1
=1 j=1 =

< 2<supIEl€§L
i<

k;«él

Drugi sktadnik sumy szacujacej element 55\3’) spelnia nier6wno$¢

N -1 N N i-1j-1
E (Z a.(e3 — 1) > = EZZ afkaﬂ —1)(ef - 1)
=1 k=1 i=1 j=1 k=1 I=1
N N min{ij}—1
(o) BR% 3

mln{z,j} 1 min{s,j}—-1

N N
— (sup gf) EZZ Z Z ik Qi1 Ak
SN i=1 j=1

lfk
Laczac powyzsze oszacowania wnioskujemy, ze dla pewnej stalej

00> C =32 -sup(¢f +2Ee})
i<N

mamy

min{é,7}—1 min{s,5}—1

N N
'<c. ZZ ZZ kz aigaiajraj = C - By,
-1 —1

i=1 j=1

przy czym By zdefiniowane jest jako

N N min {¢,j}—1 2
By = Z Z ( Z aikajk>
== h=l (5.9)
min{i,j}—1 min{s,j} —1 )

N N
=22 2 ) amautma
=1 =1 I=1 k=1

Wartoé¢ By jest z kolei ograniczona przez 2||Ay||? - || An||2, co wykazujemy
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w nastepujacy sposob:

N i—1 ,min{ij}—1 2 N N min {7,j}—1 2
BN:ZZ< > az‘kajk) +ZZ< > aik%‘kz)

i=1 j=1 k=1 i=1 j=i k=1
N i1 ,j-1 9 N N ,i-1 2
=3 (Sanan) + 3% (Canan)
=1 j=1 “k=1 =1 j=i “k=1
N i-1 ,j-1 2 N Jj—1 2 (5.10)
-y (z) +zz( )
=1 j=1 “k=1 Jj=111=j “k=1
N N
QZZ <Zazkayk> = QHAN al]]I{z<J}L] 1 H
=1 j5=1

<2 ANl - | AN

gdzie przechodzac pomiedzy drugg a trzecig linijkg zamieniamy rolami symbole ¢
i j w drugim skfadniku sumy. Uzyty powyzej symbol Iy = I;1(7, 5), dla
1 < 4,7 < N, jest indykatorem relacji w indeksie dolnym — przyjmujemy, ze
jest rowny jeden, gdy ¢ < j, a zero, gdy ¢ > j

Aby wskaza¢ ograniczenie dla elementu §](V), zaobserwujmy réwnosé

N 2
51(3) =E <ZmlT,> =4FE <Z%Zazkek>

=1
i—1j-1 min {i,5}—1
T) 9 I 3) BTIEREIN 3 pEP SR
i=1 j=1 k=11=1 i=1 j=1 k=1

Nastepnie, stosujac nieréwnos¢ Schwartza uzyskujemy

N N N N min {¢,j}—1 2
SEEND D) N 35 1 (D DTy
i=1 j=1 i=1 j=1 k=1

(5.11)

N
<4y @} V/By <4v2-fan|?- AN - || AvllF
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Sktadnik 51(\}) =E(XN, aiiTi)z szacujemy podobnie. Najpierw zauwazamy, ze

N 2 N i1 2
1
£y =E (Zazsz) =4E (Z%Z%k%)
i=1 =1 k=1
i—1 j—1

N N
=42 aiaj; ) ) aunapEere
i=1 j=1 k=1 =1
min {7,j}—1

N N
245 E i E il Cjks

i=1 j=1 k=1

a nastepnie nieréwnos$¢ Schwartza implikuje

N N N N ,min{ij}-1 2 N
€ <4 [N iy ZZ( > ,”k> <43 42 \/By

i=1 j=1 i=1 j=1 k=1

<4V2-[|An| - AN

Ostatecznie, siegajac do nieréwnosci (5.8), wnioskujemy, ze

6 .y, 6 .2 3.3
Sy — 1,0 < — — -
|| N HL2 ngva +V]2V£N +V]2V N

Cl
< 3z (zxlPlAnlllAnlle + AN [IIANIE + [ Av [Pl AN]IE) -
N
Uwzgledniajac zalozenia (5.1), (5.3) i (5.4), uzyskujemy zatem zbieznos¢ (5.5).
Aby zakonczy¢ dowodd, musimy jeszcze wykazaé zaleznos¢ (5.6). Na mocy
nieréwnosci Czebyszewa, dla dowolnych d,7 > 0 mamy

E J
P (lax(3) — 0] > 7) < )
Poniewaz z definicji gn(6) > 0, wystarczy wykazaé, ze E gy (0) zbiega do zera,
dla kazdej wartosci 6 > 0.
Niech K > 1 bedzie dowolnie ustalong liczbg. Dla N € N oraz 1 < i < N,
zdefiniujmy
Z; = Zi(N) = eilie,cxy — Eeilye, <k}
Hz‘ = Hl(N) =&; — Zl
i1
U; = ul(N) = 27; Zaiij + aii(ZZ-Q — EZ?) + x;Z;,
j=1
hi = hl(N) = UZ' — Uj.

(5.12)
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Zauwazmy, ze E Z; = EH; = 0, dla wszystkich 1 < ¢ < N. Ponadto, elemen-
ty zaréwno ciagu Zi,...,Zn, jak i ciagu Hy,..., Hy s3 niezalezne, gdyz sa
funkcjami zmiennych losowych ¢;, o odpowiadajacych indeksach 1 < i < N.

Z definicji wynika, ze dla dowolnego 1 < ¢ < N mamy Ui2 < QU? + Zh?
prawie pewnie. Otrzymujemy wigc oszacowanie

N
1 2
qn(6) = Y ;E Uiliyzzs2.vy3

9 & 9
<— )Y EU’I =N Er
e ; iluzsszvyy t Y ; ;

Dla dowolnego zdarzenia elementarnego w przestrzeni () oraz 1 < i < N
spelniony jest jeden z dwéch warunkéw: albo |u;| > (U, albo |u;| < 3|U;| <
|hi|. Istotnie, w przypadku, gdy |u;| < 2|U;| mamy
1
Uil = Jui + hil < il + ] < S|Us| + [hal,
a wiec 3|U;| < |h;|. Mozemy zatem wnioskowa, ze
H{UE>62~VN} < Lupzzeevnt + Lnsup

dla dowolnego 1 < i < N, czyli w konsekwencji
ZEU L5y S ZEU I (2us)2 62 VN}+—ZEh2

=1
52Eu + 5o ZEhQ

Jako pierwsza rozwazymy sume czwartych momentdw zmiennych wu;, 1 <
1 < N. Poniewaz zachodzi nieréwnos¢

(5.13)

i1 4
gt <27 (L) ob(7 B2 a2
=1
element Ef\i L Eu}, wystepujacy w (5.13), mozemy ograniczy¢ za pomoca sumy

432 ( sup E Zf‘) kW + 27K3RD + 27 ( supE Z;*) K,

<N 1<N
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gdzie

ﬁ%)—EZ<Za” ),
=1 =1
/iN —Zau,
mg\?;)—Zx?.
=1

Rozwijajac potege w wyrazeniu /1( ) , przy uzyciu zaobserwowanej wczesniej nie-
zaleznosci zmiennych Z;, przy 1 < i < N otrzymujemy

N i—1 4 i—1 i—1 2
ﬁg\lf) =K (Za” > ZE (Z aijaiijZk)
i=1 " gj=1 j=1k=1
N i—14—1 i—1 i—1
— Z Z Q5 Ak Q57 Q| ]EZjZij/Zk/
i=1 j=1k=1j'=1k'=1
N i—14i-1 -1 i-1
- Z Z Q5 Qife Qi At E ZjZij/Zk/
1=1 j=1k=1j'=1k'=1
N i—1 -1
<C- Z a?g sz’
i=1 j=1 k=1

dla pewnej stalej C' > 0. To z kolei implikuje

(1) 2
HiJrn 22 (Z 2> < ZHAN- lailii<iy] e n Hi < AN AN R

=1 j=1
Poniewaz Iﬁg\]), 2 > > 0, na postawie zalozen (5.3) i (5.4) otrzymujemy
. 1) _ (2) _
i ) = Jim Sl =0

N

Co wigcej, zalozenia (5.1) i (5.2) implikujg nieréwnos¢

: L ) 1 2
< — < —
0< Jm V2 oy S m V2 1I<nza<)1(v$ lznl” =
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Dowdd bedzie mozna uzna¢ za ukonczony, gdy wykazemy jednostajng wzgle-
dem N € N zbiezno$¢ wyrazenia Vy' ZfilE [h?] do zera przy K — oo.
Najpierw zaobserwujmy nier6wnos¢é

i—1 2
Eh? < E(Zazj(siq — Z,Zj)> +3a5E (ef — 27 — (1 - EZE))2
j=1

+ 302 (s — Zi)".

Poniewaz € = (Z;)i<n+ (H;)i<n z uzyciem prostego rachunku mozna pokazac,
ze dla dowolnych indekséw 1 < j <@ < N mamy

€i€5 — ZZ‘Z]‘ = HiHj + ZZ'HJ‘ + H;Z;,
e — 7?2 =2Z;H; + H?.

Zatem, dla pewnej stalej C' > 0 prawdziwe jest ograniczenie

1<i,j<N

N
lethfgchlnANH%\/ sup EHIEZ!
i=1

+ CVN AN|E sup EH! + OV |en|? sup EHZ.
1<i<N 1<i<N
Ostatecznie, na mocy zalozen (5.1) i (5.4), wyrazenia Vi || An||2 i Vi ||lz x|
s3 ograniczone jednostajnie wzgledem N € N. Poniewaz, zgodnie z zalozeniem,
czwarte potegi €;, 1 <4 < NV, s3 jednostajnie calkowalne mamy

sup sup sup EZ? < 00
K>0NeN1<i<N

oraz
0<  [sup s.upIEHi2 < sup supEHfl < 16 sup Sup]EE;L]I{Ei}K} Koo, 0,
NeNi<KN NENiKN NeNi<KN
co wynika z okredlenia zmiennych Z; i H; w réwnaniu (5.12). O

2. Twierdzenia o rozkladzie granicznym

2.1. Zalozenia formalne

Aby uzyska¢ asymptotyczng normalno$¢ rozwazanych estymatoréw QNW, ko-
nieczne jest przyjecie dodatkowych zalozen oraz wzmocnienie tych wprowadzo-
nych w poprzednim podrozdziale. W szczegdlnosci modyfikacja zatozen doty-
czacych natury stochastycznej skladnika losowego wymaga przytoczenia naste-
pujacej definicji.
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DEFINICJA
Powiemy, ze rodzina zmiennych losowych {V,}.cz, gdzie Z jest pewnym
zbiorem indeksow, jest jednostajnie calkowalna, jesli dla dowolnej liczby
€ > 0 istnieje liczba K, taka, ze dla dowolnego z € Z mamy

E(|Va] - Tgu,sky) <6

gdzie I jest indykatorem zdarzenia opisanego w indeksie dolnym, a wiec
zmienng losowg postaci

: [ ey V> K
IVEEG 7 00 gdy [Va| < Ko

Zauwazmy, ze pojecie jednostajnej calkowalnosci opiera si¢ wylacznie na wta-
snosciach (jednowymiarowych) rozkltadéw poszczegélnych zmiennych. Zatem
ignoruje ono potencjalne zaleznoéci miedzy zmiennymi. Intuicyjnie, zalozenie
jednostajnej catkowalnosci ogranicza ,,grubo$¢” ogonéw rozkladéw — jednocze-
$nie dla wszystkich elementéw rodziny rodziny. Jak wynika z twierdzenia de
la Vallée Poussina (patrz la Vallée Poussin, 1915, lub Meyer, 1966, twierdzenie
T22, tamze), warunek ten jest nieznacznie mocniejszy niz warunek wspolnej
ograniczonosci calek, tj. sup,c E |V, | < oo.

ZArOZENIE V.C’
Elementy wektora zaburzen € = (51)5\; 1 S3 zmiennymi losowymi o zerowej
wartosci oczekiwanej i stalej nieznanej wariancji 08 > 0. Ponadto, rodzina
ich czwartych poteg, tj. €}, dla 1 < i < N, jest jednostajnie catkowalna ze
wzgledu na indeks i oraz rozmiar proby N.

DEFINICJA
Niech = x(N) bedzie wektorem w RY oraz = = (;) fil. Elementy wektora
x wykazuja rownomierny wzrost, jesli zachodzi zbieznos¢

1 x?
lim — 2 — Zi—,
NS NH:ENHOo N oo 1GEN N

ZALOZENIE V.D5aR
Macierz zmiennych objasniajacych X spelnia zalozenie IV.D. Ponadto, ele-
menty kolumn macierzy X oraz W, A(Ag)X, dla 1 < r < d wykazuja
réwnomierny wzrost.

ZALOZENIE V.Fgar
Niech P x R* x (0,00) > (p, 3,0%) + In Ly(p, B, 0%) bedzie funkcja para-
metryzowang wartoscia y € RY, okreslong formuta (4.3) na s. 94. Rozwazmy
zmienng losowa

G = (DIn Ly)(po, Bo, 73), (5.14)
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gdzie D, zgodnie z notacjg Eulera, oznacza operator funkcji pochodnej (po
argumentach p, 3, o, przy ustalonej wartosci parametru ¥), a jej warto$é
obliczona jest dla argumentéw pg, Bo, o i wektora zmiennej objasnianej y
jako parametru, patrz specyfikacja (4.1). Przy analogicznie rozumianej drugiej
pochodnej oznaczmy

1
T = —~E(D*In Ly) (po, Bo, 7f).
Istniejg granice

1
= i — T
Yo = jm yEGG

Jo:= lim J,

N—o0
przy czym J jest macierzg nieosobliwa.

ZAELOZENIE V.Ggar
Prawdziwa warto$¢ py parametru autoregresyjnego p, patrz specyfikacja (4.1),
jest elementem topologicznego wnetrza zbioru P C RY,

ZALOZENIE V.Dspm
Macierz zmiennych objasniajacych X spelnia zalozenie IV.D. Co wigcej, ele-
menty kolumn macierzy X wykazuja rownomierny wzrost (patrz definicja na
s. 143).

ZAELOZENIE V.Fspm
Niech RF x £ x (0,00) > (8,A,02) = In Ly(X, 3,0?) bedzie funkcja pa-
rametryzowang wartoscia y € R, okreSlong formulg (4.6) na s. 89. Przy
oznaczeniach, por. zalozenie V.Fgag,

S = (DInLy)(Bo, Ao, 07) (5.15)

oraz 1
T =~ E(D*In Ly) (Bo. Mo, o),

gdzie y jest zmienng zalezng w specyfikacji (4.2), istniejg granice
1
Ys:= lim —ES'S,
S Ngnoo N

Zy:= lim Z,

N—oo
przy czym Z jest macierza nieosobliwg.
ZALOZENIE V.Gggym

Prawdziwa warto$§¢ Ag parametru autoregresyjnego X (patrz specyfikacja
(4.2)) jest elementem topologicznego wnetrza zbioru £ C R,
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Uwagi dotyczace wzmocnionych zalozen

Latwo zauwazy¢, ze zalozenie V.C’ jest wzmocnieniem zalozenia IV.C wpro-
wadzonego na uzytek dowodu zgodnosci gaussowskich estymatoréw quasi-naj-
wiekszej wiarogodnosci. Jak si¢ okazuje, por. Pruss (1998), warunki wyrazone
w zalozeniu IV.C nie s3 wystarczajace do wyprowadzenia ich asymptotycznego
rozktadu. W naszym opracowaniu przyjmujemy zatem standardowy postulat eko-
nometryczny o niezaleznosci wedlug prawdopodobienstwa elementéw wektora
zaburzen losowych w ramach jednej proby. Zaznaczmy, ze wcigz nie wymagamy
réownosci dystrybuant tychze elementow, a wigc, w szczegolnosci, ich rozklady
nie muszg by¢ gaussowskie. Co istotne, zalozenie jednorodnosci rozkladu, przy
utrzymanym zgdaniu homoskedastycznosci, zastepujemy zalozeniem jednostaj-
nej calkowalnosci rodziny czwartych momentéw elementéw zaburzenia losowego
(patrz definicja na s. 143).

Zalozenia V.Fsar i V.Fspm uwzgledniaja warunki konieczne istnienia granicz-
nej wariancji rozkltadu oszacowan. W szczegélnosci, z kazdego z nich wynika,
ze macierz (dokladniej ciag macierzy) %XTX ma nieosobliwg granice. Moz-
na si¢ spodziewaé, ze ta granica odegra kluczowa role w ustaleniu wariancji
estymatoréw parametréw nachylenia 3, choé —w przeciwienstwie do klasycz-
nego modelu liniowego estymowanego metoda najmniejszych kwadratow — role
nie wylaczna. Dodatkowo, zalozenia V.Fsar, V.Fsgm kontrolujg warunki istnienia
granicznej wariancji estymatoréw parametréw autoregresyjnych, poprzez nietry-
wialno$¢ wariancji formy kwadratowej skladnika losowego modelu o macierzy
W, A(Xg) L. Dodatkowo, zalozenie V.Fsag implikuje istnienie granicznej wa-
riancji estymatora parametru autoregresyjnego p, takze poprzez ograniczenie
korelacji miedzy jawnymi (kolumny w X) a niejawnymi (W, A (Xg) " *X 3o, dla
1 < r < d) zmiennymi objasniajagcymi modelu autoregresji zmiennej zalezne;.

Warto tutaj przypomnieé, ze funkcje In Ly, zaréwno w zalozeniu V.Fsag,
jak i w V.Fsgym, nie sg prawdziwymi funkcjami log-wiarogodnosci, gdyz praw-
dziwy rozklad skladnika losowego modelu jest nieznany. Zatem nie mozemy
sie spodziewaé réwnosci pomiedzy drugim momentem informanty a informacja
Fishera, znanej z klasycznej metody najwigkszej wiarogodnosci. W kontekscie
przedstawionych zalozen, taka réwnos$¢ implikowataby tozsamo$¢ Xg = J dla
modelu autoregresji przestrzennej zmiennej objasnianej i odpowiednio ¥ g =7
dla modelu autoregresji przestrzennej skladnika losowego.

2.2. Stwierdzenia pomocnicze

W tym podrozdziale wprowadzamy seri¢ lematéw wykorzystywanych w dowo-
dach twierdzen o rozkladach asymptotycznych estymatoréow (twierdzenia V.8
i V.9). Prezentowane wyniki dotycza regularnosci funkcji pseudowiarogodnosci
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dla odpowiedniego modelu i s3 konsekwencja zalozen przyjetych w poprzednim
podrozdziale.

LEMAT V.2
Niech U, C R? bedzie otwartym, ograniczonym zbiorem danym w lemacie IV.3.
Kazdy element ey = en(3, A, 0?) ktérejkolwiek z macierzy reprezentujacych
pierwsza, druga lub trzecig pochodng funkcji pseudowiarogodnosci log Ly, (patrz
réwnanie (4.6), s. 95), jest zmienng losowa postaci

ey =e' Aye +xhe + zn,
gdzie e jest skladnikiem losowym modelu (patrz specyfikacja (4.2)), a Ay =
AN(B, X\, 02), zn = xn(B, X, 02) i zy = 2n(B, A, 02) sa ciaglymi nielosowy-

mi funkcjami parametréw modelu. Co wiecej, przy zatozeniach IV.A i IV.Bspm
istnieje uniwersalna ciagta funkcja

R¥ x (0,00) 3 (8,02%) = K(8,05%),

niezalezna od rozmiaru proby N, dla ktorej

lAN(B, X, o?)|* < K (8,07,
||wN(Ba)‘70— )H2 <N (167 )’
lzn (8, A, 0%)|? < N - K(8,07),

dla wszystkich 3 € R*, X\ € U, o2 > 0.

Fakt wyrazony w tezie lematu V.2 mozna sprawdzi¢, analizujac bezposrednio
formuly opisujace pochodne przedstawione w lemacie IV.5.

LEMAT V.3
Niech U, C R? bedzie otwartym, ograniczonym zbiorem, danym w lemacie IV.3
oraz niech Ug C R* i U,> C (5, 0), dla pewnego s > 0, beda zbiorami otwar-
tymi i ograniczonymi w swoich przestrzeniach. Niech log Ly bedzie funkcja
pseudowiarogodnosci, dang w réwnaniu (4.6) na s. 95. Przy zalozeniach IV.A,
IVBSEM iIV.D, wielko$¢

l(Dg InLy)(8, A,Uz)H (5.16)

M(Ug,U,2) = sup sup sup
BeUg AcUx U2€U02

jest, przy zmiennym N = 1,2, ..., stochastycznie ograniczong zmienng losows.
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Dowop. Zauwazmy najpierw, ze mierzalno$¢ M (Ug, U,2) wynika z cigglosci
normy w wyrazeniu (5.16), wzgledem parametréw modelu. Istotnie, mamy row-
nos¢

1
M(Ug,U,2) = sup sup sup H—(D3 In Ly)(,B,)\,cr2) ,
BeUgNQF AeUANQ4 02U, 2NQ

gdzie symbol Q oznacza zbiér liczb wymiernych.
Niech ey = en(8, A, 0?) bedzie dowolnym elementem reprezentujacym
macierz D?log Ly. Z lematu V.2 wnioskujemy, ze

sup sup sup |ey]
ﬂEUg AeUy O'QGUUQ

1
< <Esup sup sup ([Anllllel®+ [znlllell + [zx])
BeUg AeUx O’QEUUQ

< 3(0f 4+ 1) max max /K (B,02) < oo,
BGUQ 0’2€U 2

gdzie Ug oraz U,> s3 domknieciami topologicznymi odpowiednich zbioréw. [

LEMAT V.4
Niech In Ly bedzie funkcja pseudowiarogodnosci dang w réwnaniu (4.6) w roz-
dziale IV. Przy zalozeniach IV.A, IV.Bsgy, V.C’, IV.D i V.Fsgym, zmienna losowa

1
T = =~ (D*In Ly) (Bo, X, 5)
zbiega wedlug prawdopodobienstwa do macierzy Zy zdefiniowanej w zaloze-
niu V-FSEM-
Dowop. Niech ey = en(83, A, 0?) bedzie dowolnym elementem macierzy Z,.

Na mocy lematu V.2 mamy oszacowanie

Varey < N— Var (eT Aye) + W Var (z\€).
Nastepnie, uzywajac lematu IV.6, wnioskujemy, ze
6 2 4, 203 2
Vareny < —K(Bo,05) - sup sup E&; + —K(Bo,03),
N N’'eN lSN(N/) N

przy czym powyzsze ograniczenie dazy do zera wraz z N zbiegajacym do nie-
skonczonosci. Zatem, na mocy nieréwnosci Jensena

E|Z. - I| < ZE en —Een)? 2220,
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gdzie sumowanie nastepuje po wszystkich (k +d + 1)? elementach ey macierzy
T.. Na mocy zalozenia V.Fggy normy roznic | Z —Zy|| rowniez zbiegajg do zera,
wiec

N—o0

ENZ. - Zol| < E[Z = Z|| + | — Zol| —— 0.

Ostatecznie, teze lematu uzyskujemy na mocy nieréwnosci Czebyszewa. Ul

LEMAT V.5
Niech Up C RY bedzie zbiorem otwartym, ograniczonym, danym w lemacie IV.4.
Kazdy element ey = en(p,3,02) ktérejkolwiek z macierzy, reprezentujacej
pierwsza, druga lub trzecig pochodna funkeji pseudowiarogodnosci log Ly, patrz
réwnanie (4.3) rozdzialu IV, jest zmienng losowg postaci

ey =& Aye + xye + zn,

gdzie € jest skladnikiem losowym modelu (patrz specyfikacja (4.1) w rozdzia-

le IV), a AN = AN(p’IBaO2)> TN = mN(pv/B’OJ) izy = zN(p’IBaU2) 53
ciggtymi nielosowymi funkcjami parametréw modelu. Co wiecej, przy zaloze-
niach IV.A i IV.Bgar istnieje uniwersalna ciggla funkcja

R¥ x (0,00) 3 (8,0%) = K(83,02),

niezalezna od rozmiaru préby N, dla ktdrej

”AN(p,,B, )H2 X K(,B70'2)’
ln (o, 8,0%) > < N - K(8,0%),

||ZN(p7 y O )||2 SN (Bvoj)’
dla wszystkich 3 € R¥, p € Up, 02 > 0.

Fakt wyrazony w tezie lematu V.5 mozna sprawdzi¢, analizujac bezposrednio
formuly opisujace pochodne przedstawione w lemacie IV.8.

LEMAT V.6
Niech Up C R bedzie zbiorem otwartym, ograniczonym, danym w lemacie V.4
oraz niech Ug C R* i U,> C (5, 0), dla pewnego ¢ > 0, beda zbiorami otwar-
tymi i ograniczonymi w swoich przestrzeniach. Niech log Ly bedzie funkcja
pseudowiarogodnosci, dang w réwnaniu (4.3) rozdziatu IV. Wéwczas, przy za-
tozeniach IV.A, IV.Bgar i IV.D, wielko$¢

l(D3 lnLy)(Pﬁ,o2)H (5.17)

M(Ug,U,2) = sup sup sup
peU, BelUg 0'2EU0,2

jest, przy zmiennym N = 1,2, ..., stochastycznie ograniczong zmienng losows.
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Dowoéd lematu V.6 jest analogiczny do dowody lematu V.3. Nalezy zamieni¢
parametr A, parametrem p oraz skorzysta¢ z nieréwnos$ci opisanych w lema-
cie V.5.

LEMAT V.7
Niech In Ly bedzie funkcja pseudowiarogodnosci dang w réwnaniu (4.3) w roz-
dziale IV. Przy zalozeniach IV.A, IV.Bsag, V.C’, IV.D i V.Fspg, zmienna losowa

1
T, = (D' InLy) (p.B.0%)

zbiega wedlug prawdopodobienstwa do macierzy Jy zdefiniowanej w zaloze-
niu V.Fgar.

Dowod powyzszego lematu przebiega w sposob analogiczny do rozumowania
argumentujgcego teze lematu V.4, zamieniajagc parametr A na p oraz zastepujac
symbole Z, Ly, Z, przez odpowiednio J, Jo, J«.

2.3. Asymptotyczna normalnos¢ estymatora dla modelu SEM

W tym podrozdziale prezentujemy autorskie twierdzenie dotyczace zachowa-
nia asymptotycznego estymatora quasi-najwigkszej wiarogodnosci dla modelu
z przestrzennie skorelowanym sktadnikiem losowym. Przedstawiane rozumowa-
nie wykorzystuje centralne twierdzenie graniczne (twierdznie V.1) sformulowane
w podrozdziale pierwszym, s. 132.

TWIERDZENIE V.8
Gdy spelnione sg zalozenia IV.A, IV.Bsgym i IV.Eggy oraz zalozenia V.C’, V.D’sgy,

V.Fsgm i V.Gspm, wowczas taczny rozklad estymatordw Asgm qnws BSEM_QNw
oraz 62 Qnw jest VN -asymptotycznie normalny, a doktadniej, zmienna losowa

@SEM?QNW Bo
VN - | [Asem onw | — | Ao
<2 52
OSEM_QNW 0

zbiega wedtug dystrybuanty do rozktadu normalnego N'(0,Z,'EsZ;").

Dowop. Dla uproszczenia zapisu oznaczmy

3. A 3 A2 A2
B = Bsem_qQNw> A == ASEM_QNW> 07 = O§EM_QNw-

Niech & bedzie pseudoinformantg dla parametréw modelu, zdefiniowang réw-
naniem (5.15). Uzywajac lematu IV.5, tatwo obliczy¢ kolejne elementy wektora
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1 1
losowego WS. Woéwczas mamy

1 Olog Ly 9 1
— Ao, 03) = e'T(Mo)X,

VN g P20 = gae T

1 Olog Ly oy 1 T 1
75 on " Bodedh) = s STWIO0) ]

[0'(2) tr (WTF(AO)_l)] r<d’

1
~ VNo?
1 Olog Ly

N (8o, Ao, 05) =

vl iR
——— |e'e— No
2V Na ol

Pokazemy, ze wektor losowy ﬁST zbiega wedtug rozktadu do N (0, Xs). Przy-

<d

S

pomnijmy, ze w ogdlnosci, suma dwoch ciagoéw, z ktérych kazdy jest zbiezny do
rozkltadu normalnego, sama nie musi by¢ asymptotycznie gaussowska. Zatem,
dla uzyskania tezy nie wystarczy wykaza¢ asymptotyczng normalno$¢ elementéw
wektora ﬁST, jak to zostalo zrobione w kontekscie specyfikacji SAR w pracy
Lee (2004). W naszym rozumowaniu uzyjemy argumentu opartego na twierdze-
niu Craméra-Wolda (patrz Billingsley, 2009).

Na poczatek zauwazmy, ze mamy ES = 0, chociaz S nie jest prawdziwa
informantg, a wiec rownos¢ ta nie jest wnioskiem z klasycznego kursu teorii
estymacji. Niech @ € R¥, b € R? i ¢ € R beda dowolne. Jesli

V(a,b,c)=[a" b ] -Zs- =0, (5.18)

o o

wowczas, korzystajac z zalozenia V.Fggy, mamy

i var (L8 LSt JaT 5T gt var (ST b
i Vor (S 8T) a7 o] i e (5

a a
1
=[a" b (] -N(ESTS—O)- bl =[a” b ] -Bs-|b| =0,
c c
@™ b ¢ 1 .. . . .
a zatem TS’ zbiega wedlug prawdopodobienstwa do zera — inaczej

do rozktadu N(0,0 - T) — w R¥+4+1, Zalozenie braku réwnosci w (5.18) impli-
kuje ciekawszy przypadek, w ktorym V(a, b, ¢) > 0, jako, ze X5, bedaca granica
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macierzy nieujemnie okreslonych (patrz zalozenie V.Fsgym) jest nieujemnie okre-

[aT BT
p . . . . |a Cl oT .
slona. Zauwazmy, ze wyrazenie TS ma postac

[T b7 ]
VN

dzie Qn = e, Ayen + el ay jest forma liniowo-kwadratowa o macierz
g N NTN ) 9 3 Y

=Qn —EQn,

Ay =

1 1
B"WA (N ' + —cI
\/Nag( (Ro)™" + 2030 )

oraz z wektorem wspdlczynnikéw czedci liniowe;j

1
ry = ——X-a
N \/NO'%

Pokazemy, ze dla formy liniowo-kwadratowej () y mozemy skorzystac z twier-
dzenia V.1. Skoro V(a,b,c) > 0, zbieznos¢ wariancji pseudoinformanty, wy-
razona w zalozeniu V.Fspy, implikuje, ze dla wszystkich dostatecznie duzych
rozmiaréw proby N zachodzi

T 3T T 3T a
[a™ BT (] [a™ BT (] V(a,b,c)
— 8T = 3s|b| =—2"2>0.
Var Qn = Var < N ) > 5 s ° 5
Nastepnie, z zalozenia V.D'sgy, a dokladniej z zawartego w nim zalozenia IV.D,
mamy

lim sup [E29 s < 2| af’ 1 -limsupHiXTXH < 0o0.
N—o0 VarQN V(a7 b, C) 0y N—oo

Ponadto, zachodzi

[E2N[ES 2
< - lim — [ X allL, < oo,
N—oo VarQny  V(a,b,c) o} Noeo N H s < o0

gdyz kombinacja liniowa wektoréw, ktérych elementy wykazuja réwnomierny
wzrost (por. definicja na s. 143) tez jest takim wektorem. Z kolei zalozenia IV.A
i IV.Bsgm pozwalajg stwierdzié, ze

B = max sup [W,T'(Xo) % < o0,
r<d Ne
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a wiec

A2 2
SVarQy - V(a,bc) o N
4d|b|* - B |ef? N—soo
~ V(a,b,c) 04N  V(a,b,c) 05 N

HbTWI‘ Xo) + —CIH

0.

Podobnie, mamy

|An|} 2
VarQy ~ V(a,b,c)-of N
o] B o
~ V(a,b,c) -0}  V(a,b,c)-of ’

1 2
HbTWI‘ Xo) + 55|
O'O F

2
czyli lim sup y_, oo %]8‘]5 < o0. Zatem, uwzgledniajac zalozenie V.C’ dla wektora

zaburzen modelu z twierdzenia V.1, wnioskujemy, ze zachodzi zbiezno$¢ wedlug
rozkladu

[aT b" c]
\/N

Ostatecznie z dowolnosci a, b i ¢, na podstawie twierdzenia Craméra-Wolda,
otrzymujemy zbieznos¢

— Qn —EQn 222 N (0,V(a, b, ¢)).

1 0
\/NST N ‘N(O,Es).

Zgodnie z tezg lematu V.4, zmienna losowa

1
T, = =~ (D*In Ly) (Bo, X, 5)
zbiega wedlug prawdopodobienstwa do Z, przy N — oco. Z ciaglo$ci wyznacz-
nika jako funkcji macierzy ustalonego wymiaru wnioskujemy, ze

A}i_r}rlOOIP’ ({detZ, =0}) =0.

Przyjmijmy zatem || Z; || := 1, tam, gdzie det Z, = 0. W efekcie, tak rozumiany
ciag norm || Z, !|| zbiega do ||Z, || wedtug prawdopodobiefistwa.

Niech (2, F,P) bedzie przestrzenia probabilistyczng, na ktdrej zdefiniowany
jest proces stochastyczny e = ¢(N), N = 1,2,... Niech Og C R¥, O5 C R,
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O,2 C (5,00), dla pewnego ¢ > 0, bedg zbiorami otwartymi, ograniczonymi
i wypuklymi, spelniajacymi warunki

Bo € OB’ Ag € Oy, O'g S 002,

a ponadto, Oy C L (patrz zalozenie V.Gsgym). Zdefiniujmy

[3' Bo
dv=|X|—|Xo
52 o8

Pamietajac o zgodnosci estymatorow 3, A i 62 (patrz twierdzenie IV.11), mozemy
stwierdzi¢, ze dla ciggu zdarzen postaci

Qn = QN QA N O3,
gdzie

QY = {detZ, # 0},
0% ={Be 0} N{Aec O\ N{5°€0,},
O = {IZ. '] - lldnl - M(Op, O52) },

a M dane jest w wyrazeniu (5.16), w lemacie V.3, mamy

lim P(Q\ Q) = 0.

N—o0

Niech w € Q. Dla funkcji

B

1
Oz x O XOU9 A = Jw ,)\,2:7D1Lw ) 52
p X Onx 023 | A | = LulP 2,0 = S5 (Dl Lyt (0.8,

mozemy zastosowaé wielowymiarowe rozwini¢cie Taylora w punkcie odpowia-
dajacym wartosciom parametréw 3y, Ao, o3 (patrz np. twierdzenie 107 w mono-
grafii Hajek, Johanis, 2014). Zatem, dla pewnej funkgji resztowej R, spelniajacej
nieréwnos¢

1
\\R(B,A,02)II<§ sup [|D fol - ldwf*,

OﬁXO)\XOGQ

mamy
1

fw<p75702)_ \/NS—\/ﬁd—]rvI*—i-R(,B,A,UQ)
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Dokonujac w tym réwnaniu podstawien 3 = B(w), A = A(w) oraz 02 = 62(w),
otrzymujemy

VN -dY T, = Jlﬁs +R(B, A, 62), (5.19)

gdyz z samej definicji estymatoréw, poprzez rézniczkowy warunek optymalnosci,

wynika, ze f,(p,8,62) = 0.
Zauwazmy, ze gdyby na zbiorach 2y prawdziwa byla nieréwnos¢

1
.
|VNALZ.| > 2| s

’, (5.20)

wowczas, uwzgledniajac (5.19), mielibySmy ciag oszacowan

|VNALZ.|| < 2|[VNaRZ. - %SH = 2| R(B, A, 62|
<|VNARZ| - |22 - lldwll - M(Op, Oy2).

Stad otrzymujemy zaprzeczenie nieréwnosci (5.20). Ostatecznie uzyskujemy

1 -
|VNaLT. - 8] = IR(B, A, 8%)]| < 5M (05,02 -
1
< GIIVNARVZL| - |71 - lldn |l - M(Op, Os2)

<[ 8] 1= 3(05.0,2)
Prawa strona powyzszej nieréwnosci zbiega wedlug prawdopodobienstwa do zera,
jako, ze stanowi iloczyn zmiennych stochastycznie ograniczonych i zbieznego do
zera czynnika ||dy||. Wynika stad, ze vV NZ.dy, tak jak +S7, zbiega wedlug
dystrybuanty do N (0, Xg). Mamy

VNdy =Z;'  ZoZ;' - VNZ.dy,

przy czym ZyZ, zbiega wedlug prawdopodobienstwa do macierzy jednostkowej,
ustalonego wymiaru k+d-1. Ostatecznie, otrzymujemy teze o zbieznosci wedlug
rozktadu

@SEM_QNW Bo N

VN | [Xsemanw | — [Xo| | —= N(0,Z,'E=sZ ).
. 2
UgEM_QNW 90
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2.4. Asymptotyczna normalno$¢ estymatora dla modelu SAR

W tym podrozdziale prezentujemy twierdzenie dotyczace zachowania asympto-
tycznego estymatora quasi-najwigkszej wiarogodnosci dla modelu z przestrzen-
nie skorelowanym sktadnikiem losowym. Wynik zostal pierwotnie opublikowany
w pracy Olejnik i Olejnik (2020). Schemat rozumowania argumentujacego teze
twierdzenia prowadzona jest w sposob analogiczny do dowodu twierdzenia V.8.
Mianowicie, za pomoca naszego centralnego twierdzenia granicznego V.1 (patrz
s. 132) wykazywana jest asymptotyczna normalno$¢ wektora pseudoinformanty,
po czym na tej podstawie, poprzez rozwiniecie jej pochodnej w szereg Taylora,
uzyskiwany jest rozklad graniczny estymatorow QNW. Niemniej jednak, roz-
ne specyfikacje modelu procesu generujacego obserwacje prowadza do réznych
postaci formy liniowo-kwadratowej i w obu przypadkach wymagaja odrebnego
szacowania.

TWIERDZENIE V.9
Gdy spelnione s3 zalozenia IV.A, IV.Bgar i IV.Egar oraz zalozenia V.C’, V.D’sar,
V.Fsar i V.Gsar, wowczas faczny rozklad estymatordw psar_qnw. Bs AR_QNW Oraz
&gAR_QNW jest v/N-asymptotycznie normalny, a doktadniej, zmienna losowa

P:SAR_QNW Po
VN - | | Bsar qnw | — | Bo
~2 2
OSAR_QNW 99

zbiega wedlug dystrybuanty do rozktadu normalnego N (0, 7, ' SgJ; ).

Dow6p. Dla uproszczenia zapisu oznaczmy

P — A 22 . 42
P = psar_.Qnws B = Bsar.anws, 07 = G5aR_QNw-

Niech G bedzie pseudoinformantg dla parametréw modelu, zdefiniowang réwna-
niem (5.14). Stosujac lematy IV.8 i IV.5, tatwo obliczy¢ kolejne elementy wektora

1 ,
losowego ﬁg. Woéwczas mamy

1 OlogLy 9 1 T 1
[ — A , ,00) = EWTA S
~ oy (0B o) m[ (p0) '] _

(o5 tr (W, A(po) )]

r<d

1
~ VNo?

+ [ETWTA(pO)_lXBOL ,

1
\/NO'(Q) <d
1 OlogLy 9
————=>(P0,P0,05) =

VN o8 PPt = IR
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1 OlogLy 9 1
v ) y00) = — 7= 4
\/N Ho2 (pO BO O) 2\/NO’61

[ETE — Nag}
r<d

Pokazemy, ze ﬁgT zbiega wedlug rozkladu do NV (0, Xg).
Aby skorzysta¢ z twierdzenia Craméra-Wolda (patrz Cramér, Wold, 1936),
ustalmy dowolny wektor

a=1[a" b ¢ eR!xRFxR

Przyjmujac oznaczenie V(a) = a' Xga, mozemy zauwazyé, ze V(a) = 0,
gdyz g jest macierza dodatnio okreslona. Rozwazymy zatem dwa przypadki.
Jesli V(o) = 0, wowczas, korzystajac z zalozenia V.Fsar, zachodzi zbiezno$é

1 1
li G =a- 1 —gT.
Nl_IgOVal" <a \/NQ ) o Nl_rgo\/ar \/Ng o

:a-%(EggT—EQEgT) a
=adga =0,

gdyz, jak fatwo obliczy¢, korzystajac z wyprowadzonych pochodnych funkeji

pseudowiarogodnosci, mamy E G = 0. Wynika stad, ze zmienna losowa ﬁagT

zbiega prawdopodobienstwa do zera, co jest tozsame ze zbiezno$cia wedlug roz-
kfadu do rozkladu normalnego o wariancji a¥ga = 0.

Rozwazmy teraz drugi przypadek, w ktérym V(a) > 0 Zauwazmy, ze wy-
razenie ﬁgT ma posta¢ centrowanej formy liniowo-kwadratowej zaburzenia
losowego &, tj.

—ag" = Qv ~EQw,

gdzie QN = EJTVANEN + EJTVQUN oraz

Ay =

1 T 1, L
a"WA + 55,
\/NO‘S ( (pO) 20_8
1 T -1
Pokazemy, ze dla formy liniowo-kwadratowej () ;y mozemy skorzysta¢ z twierdze-
nia V.1. Zbieznos$¢ wariancji pseudoinformanty, wyrazona w zalozeniu V.Fsar
implikuje, ze dla wszystkich dostatecznie duzych rozmiaréw préby N zachodzi
1 1 vV
Var Qn = Var —ag' > —adga = (2a) > 0.

N 2
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Nastepnie, uwzgledniajac zalozenia IV.A, IV.Bgar, IV.D, przy oznaczeniach

B A = max sup [|[W,A(py) '||* < oo,
r<d NN
1
Bx = sup H*XTXH < 00,
Nen | N
mamy
2 2 2 §
4||b 4d
P N lall 715l o5, 5 < .

Nowoo VarQy ~ V(a,bc)-of " V(a.bc) o

Ponadto, wlasno$¢ réwnomiernego wzrostu, o ktérej mowa w zalozeniu V.Dsar
implikuje oszacowanie

lim sup (]S < 1 - lim 1 IX - al?
Nooo VarQ@Qn V(a,b,c)aé N—oo N 0

4

* V(a,b,c)od

. 1 T -1 2
'A}EPOONHG WA (po)~" B, = 0.
Spelnione s3 zatem warunki (5.1) i (5.2). Z kolei (5.3) i (5.4) wnioskujemy

Z 0szacowan

AN dd|al* - Ba |ef? N—o00
S VarQn  V(a,b,c) 04N V(a,b,c) o5 N

0

oraz

Az _ 2 1
VarQy ~ V(a,b,c) 05 N

HaTWA( )+ 1H2
Po 2086 F

Ad|a|® - B e?
“V(a,b,c)-0f  V(a,b,c)- o}

< 0Q.

Zatem, uwzgledniajac zalozenie V.C’ dla wektora zaburzen modelu, z twierdze-
nia V.1 wnioskujemy, ze zachodzi zbiezno$¢ wedtug rozkladu

V()

ZO6T = Qx ~EQ 25 N (0. V().

a wigc z dowolnosci wektora o wynika zbieznos¢

\}NgT A% N (0, 2g).



158 Rozklad asymptotyczny estymatoréw QNW dla modeli przestrzennych

Ze wzgledu na zgodnosci estymatorow p, B i 62 (patrz twierdzenie IV.10),
mamy P (Qy) — 1, dla N — oo, gdzie

Qn = QN3 N O,

dla
Q= {det 7, # 0},
0% ={pec0,}n{Bec0sn{5’c0,}
0% = {IT - lldnll - M(Og, 0,2) } »
przy czym
P: Po
dyv=|B|— |Bol|,
&2 03

a M dane jest w wyrazeniu (5.17), w lemacie V.6.

Niech (2, F,P) bedzie przestrzenig probabilistyczng, na ktdrej zdefiniowany
jest proces stochastyczny € = ¢(N), N = 1,2,... Niech O, C P C R%, Og C
R, Oy2 C (s,00), dla pewnego ¢ > 0, beda zbiorami otwartymi, ograniczonymi
i wypuktymi, spetniajacymi warunki

pPo € Op, Bo € OB’ 0’(2) € 0,2,

patrz zalozenie V.Gggm.

Zgodnie z lematem V.4, dla zmiennej losowej J, mamy zbiezno$¢ wedlug
prawdopodobienstwa do Jo, przy N — oo. Wynika stad, ze macierz J, jest od-
wracalna na zbiorze Q C Q. W efekcie, norma macierzy J, ! zbiega do || T
wedlug prawdopodobienstwa, a co za tym idzie jest stochastycznie ograniczona.

Niech w € Q. Dla funkeji

B

Op x Og x O,z 3 ;; = fuol(p, B, 0%) = \/% [(DInLy)(p,B,07%)]

y=y(w)

mozemy zastosowa¢ wielowymiarowe rozwiniecie Taylora w punkcie odpowia-
dajacym wartoéciom parametréw By, po, o (patrz np. twierdzenie 107 w mono-
grafii Hajek, Johanis, 2014). Zatem, dla pewnej funkcji resztowej R, spelniajacej

sup D full - ldnl*,

Opx0gx0_2

IR(p, B,0°)I| <

N =
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mamy

nm&ﬁw}%g«fdx+nm@ o?).
2

Dokonujac podstawien p = p(w), B = B(w) oraz 02 = 6%(w), otrzymujemy

VN -d\ - T, = \/%Q +R(p, B, 52), (5.21)

gdyz z samej definicji estymatoréw wynika, poprzez rézniczkowy warunek opty-
malnoéci, ze f,,(p,3,62) = 0.
Zauwazmy, ze gdyby na zbiorach Q2 prawdziwa byta nieréwnos¢

|VNdL J*H>2HN (5.22)

wowczas, uwzgledniajac (5.21), mielibysmy ciag oszacowan

VNS .| < 2| VNaLT. 6] = 2|R(p. 8.6%)]
< ||VNAR T - || T - lldall - M(Og, Oye).

Zatem, w rzeczywistosci zachodzi zaprzeczenie nieréwnosci (5.22). Ostatecznie
uzyskujemy

1 .
H\/NdfTVj*_NgH:HR p.B.6N)|| < EM(05,0,2) -
fHWd T HJ - lldnl - M (O, O,2)

<[ x8] 11 05,00

przy czym prawa strona nieréwnosci zbiega wedlug prawdopodobienstwa do
zera, jako ze stanowi iloczyn zmiennych stochastycznie ograniczonych i czyn-
nika ||dy||. Ostatecznie, VN J.dy réwniez zbiega wedlug dystrybuanty do

N(0,3Xg), a wiec
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Zakonczenie

W niniejszej monografii przyblizyliémy wybrane zagadnienia z zakresu ekono-
metrii przestrzennej. Prezentujac matematyczne podstawy metod stochastycz-
nych stosowanych w tej dziedzinie, szczego6lny nacisk potozylismy na formal-
ng argumentacje stwierdzen o wlasnosciach asymptotycznych. W szczegélno-
$ci, elementem nowatorskim bylo uzycie szerokiej klasy przestrzennych macie-
rzy wag. Poprzez dopuszczenie w naszych rozwazaniach macierzy niekoniecznie
sumowalnych, opracowane w pracy narzedzia pozwalajga w znacznym stopniu
rozszerzy¢ wachlarz zastosowan modeli, dajagc tym samym badaczom wigksze
mozliwosci konstrukeji specyfikacji z zaleznosciami przestrzennymi. Dodatko-
wo, dowodzac rezultatu o rozkladzie asymptotycznym gaussowskiego estymato-
ra quasi-najwiekszej wiarogodnosci dla modeli autoregresji sktadnika losowego
wyzszych rzedéw, rozszerzyliSmy istotng dla rozwoju dziedziny teorie zapoczat-
kowang w pracach Gupta i Robinson (2018) oraz Olejnik i Olejnik (2020).

Istotnym elementem opracowania jest uzyskane przez nas centralne twierdze-
nie graniczne dla form liniowo-kwadratowych, ktére wykorzystywalismy w pracy
do argumentacji wlasnosci asymptotycznych rozwazanych statystyk i estymato-
réw. Twierdzenie to celowo sformufowaliSmy w sposéb mozliwie najbardziej
ogolny. KierowaliSmy si¢ przekonaniem, ze wynik ten znajdzie zastosowanie
w opracowaniu nowych twierdzen dotyczacych réwniez innych metod ekonome-
trii przestrzennej, a tym samym przyczyni si¢ do rozwoju dziedziny. Wierzymy,
iz dociekliwi czytelnicy, w swoich wlasnych badaniach poswigconych podsta-
wom formalnym ekonometrii, niekoniecznie przestrzennej, moga napotka¢ pro-
blemy, w ktérych rozwigzaniu pomoze teoria asymptotyczna, zapoczatkowana
w tej ksigzce.
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