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Abstract: Reconstruction of the facial skeleton is challenging for surgeons because of difficulties in
proper shape restoration and maintenance of the proper long-term effect. ZrO2 implant application
can be a solution with many advantages (e.g., osseointegration, stability, and radio-opaqueness) and
lacks the disadvantages of other biomaterials (e.g., metalosis, radiotransparency, and no osseointe-
gration) or autologous bone (e.g., morbidity, resorption, and low accuracy). We aimed to evaluate the
possibility of using ZrO2 implants as a new application of this material for craniofacial bone defect
reconstruction. First, osteoblast (skeleton-related cell) cytotoxicity and genotoxicity were determined
in vitro by comparing ZrO2 implants and alumina particle air-abraded ZrO2 implants to the follow-
ing: 1. a titanium alloy (standard material); 2. ultrahigh-molecular-weight polyethylene (a modern
material used in orbital surgery); 3. a negative control (minimally cytotoxic or genotoxic agent action);
4. a positive control (maximally cytotoxic or genotoxic agent action). Next, 14 custom in vivo clinical
ZrO2 implants were manufactured for post-traumatologic periorbital region reconstruction. The soft
tissue position improvement in photogrammetry was recorded, and clinical follow-up was conducted
at least 6 years postoperatively. All the investigated materials revealed no cytotoxicity. Alumina
particle air-abraded ZrO2 implants showed genotoxicity compared to those without subjection to air
abrasion ZrO2, which were not genotoxic. The 6-month and 6- to 8-year clinical results were aesthetic
and stable. Skeleton reconstructions using osseointegrated, radio-opaque, personalized implants
comprising ZrO2 material are the next option for craniofacial surgery.

Keywords: zirconium dioxide; custom implants; ultrahigh molecular weight polyethylene; titanium alloy;
craniofacial; maxillofacial surgery; cytotoxicity; genotoxicity; bone defect treatment

1. Introduction

The most common consequence (40%) of maxillofacial structure injuries is orbital re-
gion trauma [1]. If there is no complete reconstruction at the time of primary surgical repair,
this may influence the outcomes. Facial skeleton fractures are often associated with the risk
of functional disturbances (double vision and ptosis) as well as aesthetic disturbances (face
asymmetry and enophthalmos) [1,2]. To date, no single ideal material is available to repair
these post-traumatic defects and restore function. However, three options exist as ways to
shape the reconstructive material: 1. manually/arbitrarily; 2. individually on the model
but only for plastic materials possible; 3. design/manufacture of individual implants using
computer-assisted techniques—i.e., a final implant without model or manual shaping.
This third technique is the subject of this study.

Recently, custom-made implants have been prepared by computer-assisted design
(CAD) and manufacturing (CAM) for facial skeleton region reconstructions [3–7]. The goal
of surgical reconstruction is to restore function and facial appearance. It is obtained by
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removing herniated tissues from the fracture gap, supporting the soft tissues and recon-
structing the bone to prevent the return of the hernia. The most important issue in orbital
reconstruction is obtaining the correct shape of the bone surface supporting the eye globe
and skin, because an inaccurately corrected orbital volume causes unpleasant aesthetic
consequences (enophthalmos). However, the type of material used, its properties, the cor-
rectly designed shape of the implant, the appropriate surgical technique and the condition
of the patient are all crucial for success. The material applied should be biocompatible and
allow fixation to host bone by screws, wire, suture or adhesive. It should not potentiate
the growth of microorganisms or promote resorption of the underlying bone or defor-
mation of adjacent tissues. Furthermore, radiopaque materials should be used to allow
radiographic evaluation [8]. Visibility in radiological examination allows confirmation
of correct implantation. In the case of implant malposition detected in the intraoperative
imaging scan, it allows for immediate correction of the position, avoiding a second surgery.
The search continues for the ideal implant and reconstructive material, and particularly
osseointegrated materials, such as titanium. Titanium is currently the standard material in
craniofacial reconstructions; another material is zirconium dioxide.

Zirconium dioxide (zirconia) is a ceramic material with physical properties that have
long been appreciated in the space industry to cover shuttles and manufacture medical
devices. In 1969, zirconium dioxide (ZrO2) material was first studied by orthopedics for
hip head replacement [9]. Since 1985, ZrO2 has been applied to make the artificial head of
the hip [10]. Its unusual break resistance (2000 N), compression resistance (2000 MPa) and
biocompatibility have found their application in implantology to reconstruct missing teeth
as well as hips, knees, shoulders and wrists [9]. Its mechanical properties are very similar
to those of metals. MgO, CaO or Y2O3 interstitials are being added for greater molecular
stability. The most studied combination is yttrium-stabilized zirconia, also known as tetrag-
onal zirconia polycrystals. ZrO2 stabilized with Y2O3 has better mechanical properties
than other combinations [9]. Despite a much more difficult process of sintering, this form
of zirconia is considered for medical applications.

Clinically, ZrO2 has several advantages over titanium. The inflammatory reaction
to ZrO2 is much lower than that to other restorative materials, even titanium [10,11].
Evaluating soft tissues in contact with titanium and ZrO2 reveals a higher inflammatory
reaction around titanium [12]. Additionally, in the case of titanium implanted during the
treatment of trauma-related effects, changes in antioxidant defense and increased synthesis
of the products of oxidative damage of proteins and lipids indicate the body’s adverse
response to the introduction of titanium material [13]. Furthermore, the level of bacterial
products measured using nitric oxide syntheses is higher on titanium than on zirconium
dioxide [9]. The use of zirconium dioxide in craniofacial reconstruction has not been
described in the literature thus far and appears very promising.

The authors aimed to evaluate the cytotoxicity and genotoxicity of zirconium dioxide
material as well as present a new application of that material for craniofacial bone defect
reconstruction.

2. Materials and Methods

In vitro-tested materials were formed in 2 mm-thick disks with diameters of 10 mm.
Titanium alloy grade 23 powder (ISO 5832-3:1996 for selective laser melting) [14] was
used in an SLM 250 machine (SLM Solutions GmbH, Lübeck, Germany). The thickness
of the added layers in the implant was 30 µm (Z-axis move), and the construction speed
was 25 cm3/h. Next, the disks were subjected to annealing at 700 ◦C for 1 h in an argon
atmosphere, slowly cooled down in a furnace and subjected to the tempering process.
Ten disks produced in this way created a comparison group as a standard material for
craniomaxillofacial surgery.

The next comparison group consisted of 10 disks milled from ultra-high-molecular-
weight polyethylene (UHMW PE; [15–17]) in a computer numerical control (CNC) pro-
cess [3] by Speed Hawk 650 (OPS-Ingersoll Funkenerosion GmbH, Burbach, Germany).
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Zirconium dioxide disks were milled from prefabricated blocks (the substrate block
Prettau Zyrconia of dimensions 125 mm × 70 mm × 20 mm was delivered by Zyrkonzahn
Worldwide, Gais, Italy, https://www.zirkonzahn.com/ (accessed on 10 January 2021)).
Twenty percent enlarged substrate disks were CAD designed, and CNCs were milled using
a 5-axis milling machine [3] by Speed Hawk 650 (OPS-Ingersoll Funkenerosion GmbH, Bur-
bach, Germany). Subsequently, sintering of substrate disks was performed at 1450–1500 ◦C
according to the manufacture of zirconium dioxide substrate. The observed shrinkage was
20% in all directions (the process is described in Section 2.3). Next, the alumina particle
air-abrasion series (ZrO2+ air-abrasion: 10 disks) and no surface-modified series (ZrO2:
10 disks) were collected. Zirconium dioxide disks were air-abraded using 50 µm Al2O3
particles (Cobra, Renfert GmbH, Hilzingen, Germany) with a pressure of 3 bar from a
distance of 10 cm for 10 s.

Experimental disks were placed, in batches of 10, into a solution of a washing and
disinfecting preparation (Aniosyme DD1, Laboratories Anios, Pavé du Moulin, France).
The solution was obtained by taking 5 mL of the preparation and dissolving it in 1 L of
distilled water. The disks were completely submerged below the liquid level. The ultra-
sonic cleaner container (Ultrasonic Cleaner CD-4820, Zhengzhou Smile Industrial Co Ltd.,
Zhengzhou, China) was covered with a lid, and the cleaner was started (washing time:
10 min. disinfection time: 20 min). The disks were then removed from the solution, rinsed
with distilled water and dried. The packing and autoclavation process (at a temperature of
134 ◦C and 2 atm. pressure in a 1-h cycle) preceded in vitro tests [18].

Later, an in vivo experiment was performed only in ZrO2 implants. After sintering,
the implants were not subjected to airborne particle abrasion.

2.1. Cytotoxicity Study

The disks of the materials tested were placed on a 12-well cell culture plate, and then
1 × 105 Saos-2 cells/mL/pit in 2 mL of growth medium were seeded on them. The negative
control was constituted by cells cultured without the tested materials on an unmodified
surface of the plate. The positive control was constituted by cells cultured with medium
containing 1% Triton X-100 (as a maximal toxic environment inducing cell membrane
lysis). After 48 h of incubation, the medium was collected from the culture, conditioned
and centrifuged at 600× g for 5 min, and the supernatant was used to determine lactate
dehydrogenase (LDH) activity with the protocol proposed by the manufacturer (Sigma:
No. TOX7; Merck KGaA, Darmstadt, Germany). LDH activity in the supernatant measured
the cytotoxicity of the tested material to Saos-2 cells.

2.2. Genotoxicity Study

To test the genotoxicity, the test materials were placed under sterile conditions in
12-well plates, and then the Saos-2 cells were seeded at a density of 5 × 104/well in
2 mL of growth medium. Saos-2 cells cultured without the tested materials were the
negative control—i.e., control (−). The positive control was performed by cells incubated
for 24 h with mitomycin C at a final concentration of 0.8 µg/mL (as a standard genotoxicity
agent)—i.e., control (+). After 24 h of cell growth, cytochalasin B at a final concentration
of 3 µg/mL was administered to all samples to inhibit cytokinesis. After 48 h of cellular
DNA incubation, Hoechst 33342 (catalog number: H3570; Cell Culture (Core Cell Culture):
Thermo Fisher Scientific Polska; Warsaw, Poland) was added (0.5 µg/mL) for labeling
and imaging using an InCell Analyzer GE Healthcare automated microscope (Global Life
Sciences Solutions Poland Sp. z.o.o., Warsaw, Poland). The resulting images were analyzed
automatically using InCell Analyzer GE Healthcare software (version 7.0, Global Life
Sciences Solutions Poland Sp. z.o.o., Warsaw, Poland).

Next, scanning electron microscopy of the samples was performed: the output samples
were visualized without prior preparation, and the sample after cell culture was fixed (2.5%
glutaraldehyde and 2% paraformaldehyde in 0.1 M phosphate buffer at pH 7.4 for 24 h),
dehydrated and finally dried at room temperature. The samples were visualized using a

https://www.zirkonzahn.com/
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Phenom ProX scanning electron microscope (Life Technologies Polska Sp. z o. o., Warsaw,
Poland) in a back-scattering electron detector. An accelerating electron voltage of 5 kV and
magnifications of 250×, 500×, 1000×, 2000× were used. In material samples after culture
without cells, a 10-kV voltage and 5000× and 10,000× magnifications were also used.

2.3. Clinical Application of the Zirconium Dioxide Implant

The material used to manufacture personalized implants was the same as that used
in the in vitro experiment. Fourteen consecutive and delayed cases were included in
this study after approval by the university ethical board (RNN/141/12/KB). Only post-
traumatic cases were referred several months after the injury (old fractures and delayed
treatment). All of them had previously undergone surgical treatment, including bleeding
halt, wound dressing, neurosurgical or ophthalmological management, and in half of the
orbital wall fractures, partial bone defect reconstructions were performed.

The patient’s face was three-dimensionally scanned using a 3dMDface System (3dMD,
Atlanta, GA, USA) immediately before surgical treatment and 6 months postoperatively
when the soft tissue configuration was stabilized. The duration of face-scanning was
100 ms. As the pre- and postoperative data were collected, they were superimposed on
each other, and a horizontal plane of tragus and tip of the nose was appointed (to capture
changes in the skin surface position in the posterior-anterior direction). The plane was
shifted to cut the reconstructed region (zygomatic, orbital, forehead), and lines marking
the site of cutting skin surface position pre- and postoperative by the horizontal plane
were recorded. A series of measures (5–7 counts) between the pre- and postoperative soft
tissue positions were made after establishing the two lines in place of skin surface sections
of superimposed 3D face scans. Next, the average posterior-anterior soft tissue shift in
millimeters was calculated.

High-resolution, helical computer tomography (CT) was performed in all patients
(64-raw detector; 512 × 512 matrix; 0.6 mm scans). Next, facial skeleton segmentation,
mirrored images of intact sites, superimposition intact on affected sites, and analysis of
symmetry were performed (Geomagic Studio, Geomagic Corp., Morrisville, NY, USA).
Finally, surfaces together with 3D coordinates were exported to CAD software (Solid
Works, Dassault Systèmes SolidWorks Corp., Waltham, MA, USA) to design 20% enlarged
substrate implants and computer numerical controls milled by a 5-axis milling machine [3]
from zirconium dioxide. Before that, the maxillofacial surgeon had the opportunity to
indicate the extension and dimensions of the implant and inspect and, if needed, reshape
the virtual implant. It was extremely important to focus closely on the extension of the
final reconstruction to avoid making the implant too small or too rough. Next, the virtual
implant was ready to be approved by the maxillofacial surgeon. The substrate material
cost was approx. EUR 150, and a set of multiple-use burs was approx. EUR 200. It was
mandatory to design and mill fixing screw holes in the implant. The main part of the
implant was milled by a 4 mm cutter. The milling began from the center and finally reached
the edges of the implant (to avoid cracks). The cutter rotation speed was 6000 rpm, with a
movement of 16.7 mm/s. Safety fracture lines (grooves) were milled by a 2 mm cutter
with a rotation speed of 10,000 rpm in orbital wall implants. The grooves reached a depth
of 300 µm. The maximum thickness of the pre-sintered orbital implant was 0.85 mm,
and the minimum thickness was 0.55 mm. In zygomatic implants, thickness depended
on the need for zygomatic region augmentation (maximal 5–7 mm). When the implant
was reconstructed, the calvaria was 2 mm thick in this area. Next, perforations for the
fixing screws were performed. The final perimeter cut, which released the implant from the
substrate block, was performed by a 2 mm cutter with a high speed of 12,000 rpm. Next,
sintering of the substrate implant was performed at 1450–1500 ◦C. Further correction might
have been performed intraoperatively using diamond burs and sterile water. The observed
shrinkage was 20% in all directions.
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Because of the results of the genotoxicity tests, only zirconia not subjected to air
abrasion was used, and no surface modifications were made. Next, implants were laser-
beam-marked, uncontaminated, sterilized and delivered to the operating theatre.

The effect of the injury was quantified using the orbital destruction intensity scale
(ODI) in the included patients [18]. This scale simultaneously describes reconstructive
needs. The scale is described as follows: 1. site of destruction—floor, i.e., one wall (1 W);
2. floor + one additional wall medial or lateral, i.e., two walls (2 W); 3. floor + one orbital
margin, i.e., one wall and one orbital margin (1 W + 1 M); 4. floor + one additional wall +
one margin (2 W + 1 M); 5. floor + one additional wall + two margins (2 W + 2 M); 6. floor
+ two additional walls + one margin (3 W + 1 M); 7. floor + one or two additional walls +
two margins (3 W + 2 M); 8. floor + two or three additional walls + more than two orbital
margins (3–4 W + 3–4 M).

All the patients were subjected to surgery using general anesthesia. A transconjunc-
tive [19] approach was performed in orbital wall cases [5,6], a transoral by upper fornix
approach in zygomatic bone deformations and a skin approach either through the eyebrow
scar or coronal [1] as a bone defect or deformity extending to the calvaria. After exposure
to the bone defect or deformed bone surface, the implant was inserted and stabilized in
position. The onlay implants were positioned to reconstruct the injured orbital wall and
screwed to the lower orbital rim by titanium screws (1.5 mm diameter and 4.0 mm length).
The same screws were used for the cranioplasty case. The custom zygomatic and upper
orbital rim implants were positioned in proper places and fixed onto the surface of the bone
using titanium screws (1.5 mm diameter and 12.0 mm length). The final implant position
was easy to find because of patient-specific surfaces in the implant contacting the affected
bone shape. Only one position existed where the implant touched all surrounding bone
surfaces. The patients were then followed up in an outpatient department for a minimum
of 6 years. After 6 months, a repeat photogrammetric study (3dMD) was performed.

Statistical evaluation was performed using Statgraphics Centurion Version 18.1.12
(StarPoint Technologies Inc., Addison, TX, USA), which included summary statistics,
analysis of variance (to check the material cytotoxicity and genotoxicity, influence of the
implant on the region of reconstruction or influence of sex on facial soft tissue shift) and
linear regression analysis (to evaluate the relationship of age or ODI scale to facial soft
tissue shift). Statistical significance was determined as p < 0.05.

3. Results
3.1. Cytotoxicity Results

Cytotoxicity studies using lactate dehydrogenase enzyme proved no statistically
significant difference in cell survival on the surface of the tested materials (Table 1).

Table 1. Cytotoxicity. Cell survival results in the lactate dehydrogenase test.

Material Cell Viability ± SD [%] Note

Control (−) 100 ± 5.6 NS

Titanium alloy 105.3 ± 7.2 NS

UHMW PE 102.9 ± 8.5 NS

ZrO2+ air-abrasion 101.2 ± 6.7 NS

ZrO2 103.6 ± 5.9 NS

Control (+) 12.5 ± 1.1 p < 0.05 vs. other materials
NS—not significant to other materials and Control (−).

3.2. Genotoxicity Results

In the micronucleus test measuring genotoxicity, micronuclei are defined as chromati-
nous structures inside the cytoplasm. These structures are formed because of damage to
the split spindle, leading to the separation of one or more smaller nuclei. Micronuclei
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can be formed from the whole chromosome or because of the separation of an acentric
fragment of the chromosome. The results are presented below in Table 2.

Table 2. Genotoxicity. Number of micronuclei per 100 binuclear cells.

Material Number of Micronuclei ± SD Note

Control (−) 8.09 ± 0.91

Titanium alloy 9.36 ± 3.10 NS

UHMW PE 8.56 ± 1.52 NS

ZrO2+ air-abrasion 12.51 ± 2.12 p < 0.01

ZrO2 11.18 ± 1.92 NS

Control (+) 22.53 ± 2.86 p < 0.001
NS—not significant to Control (−).

The alumina particle air-abraded ZrO2 samples showed genotoxicity characteristics
(p < 0.01; one-way analysis of variance (ANOVA)). In the microscopic image, the cells
growing on the examined surfaces changed morphology. The number of micronuclei per
100 binuclear cells was the largest of the materials used in the study (Figure 1).

Figure 1. Cell viability (higher values are better—i.e., less cytotoxicity) and number of micronuclei (lower values are
better—i.e., less genotoxicity). Control (+) is extremely cyto- and genotoxic (the asterisk indicates a significant difference
from Control (−)), while Control (−) is the most neutral. The tested materials are not cytotoxic. Alumina particle air-abraded
ZrO2 implants (the asterisk indicates a significant difference from Control(−)) is significantly more genotoxic than the other
test materials, including intact ZrO2.

3.3. Clinical Treatment with a Zirconium Implant in Patients

Fracture of a pre-sintered implant was present in one case during milling caused by a
bur that was not sufficiently sharp. The next copy of the implant was manufactured using
a new bur set and a substrate block based on the same milling program.

All the surgical operations (Table 3) were performed using custom zirconium dioxide
implants. During one implantation, the margin of the implant border cracked in the
orbital rim area (case #12) and was not palpable through the skin because the lost part



Materials 2021, 14, 840 7 of 20

was much thinner than 0.5 mm. The medial rectus muscle wrapped the implant border
during medial orbital wall reconstruction, affecting eye globe motility in one case (case #2).
A second surgery was required to reposition the muscle on the following day; the position
for the implant was not changed. In the other 13 of 14 patients, the postoperative course
was without complications. The duration of one drainage case was two days (case #13).
Problems in zygomatic implant positioning were noted twice (intraoperatively), likely
caused by insufficient bone exposure in the area of the zygomatic arch and frontal process
of the zygomatic bone; these issues were resolved after more spacious subperiosteal
preparation. No drainage was used except in the coronal approach case. The hospital
stay was 3–7 days, and the wounds were mostly healed. The stitches were removed
from the eyelid on the fifth day and from the mucosa on the seventh day. The skin
was excluded from the coronal approach, in which the stitches were removed on the
tenth day. After the transconjunctival approach, absorbable 7/0 sutures were left for
resorption. The postoperative outcomes returned facial symmetry. The patients regained a
normal appearance and showed improved vision function. The control CTs were acquired
one month postoperatively using the same protocol as preoperative CT and showed the
location of the implants because zirconia is visible under X-ray examination (radio-opaque).
The implant position was determined according to the plan and was stable in all cases
for at least 6 years of follow-up (annual follow-up examinations). No long-term clinical
complications were observed.

Examples of each reconstructive application (orbital wall, zygomatic deformation
and upper orbital rim with forehead) and preparations of zirconium dioxide individual
implants are presented in Figures 2–9.

Figure 2. Patient 10 days after assault. Injury of the lower wall in the left orbit. Upgaze is limited in the left eye.
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Table 3. Patient treated by zirconium dioxide custom-made implants.

Case Sex Age ODI Area of Reconstruction Approach Fixing
Screws

Follow-Up
[Months]

Soft Tissue
Shift [mm]

1 M 19 1 Orbital wall defect Tc 2 99 2.01

2 F 22 3 Orbital wall defect Tc 2 98 2.58

3 M 23 1 Orbital wall defect Tc 2 96 1.98

4 M 32 1 Orbital wall defect Tc 2 94 2.13

5 F 20 3 Orbital wall defect Tc 2 90 2.96

6 M 21 1 Orbital wall defect Tc 2 89 1.27

7 M 24 5 Orbital wall defect Tc 1 73 4.00

8 M 27 2 Zygomatic
deformation Tm 1 91 1.78

9 M 31 2 Zygomatic
deformation Tm 1 89 6.63

10 F 29 2 Zygomatic
deformation Tm 1 88 5.42

11 M 46 2 Zygomatic
deformation Tm 1 86 5.21

12 M 37 2 Zygomatic
deformation Tm 1 82 5.32

13 M 28 7 Orbital rim and
forehead Se 2 82 3.89

14 M 24 7 Orbital rim and
forehead Sc 4 81 7.84

Abbreviations: F—female, M—male, ODI—orbital destruction intensity [15], Tc—transconjuctival, Tm—transmucosal, Se—skin eyebrow,
Sc—skin coronal.
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Figure 3. Segmented lower and medial orbital wall as shown by computed tomography. (A)—Creation of an intact orbit
(IF—infraorbital foramen; IOF—inferior orbital fissure; LOR—lower orbital rim; NLD—naso-lacrimal duct). (B)—computer-
assisted design (CAD). Design of custom implant-planning of the milling strategy for the zirconium oxide block. A 20%
higher volume of implant is introduced.
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Figure 4. Computer-assisted manufacturing (CAM). (A), Substrate zirconium dioxide block. (B), Im-
plant during milling. (C), Implant after sintering before cleaning and sterilization. The crisscross
grooves in the surface of the implant facilitate control fracture of the implant in a potential future
facial injury incident.
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Figure 5. Intraoperative view. (A) The transconjunctival approach exposes the operating field in
the left orbit (LOW—lower orbital wall; BD—bone defect; HT—herniated tissue). (B) Zirconium
dioxide implant before insertion into the orbit. (C)—The patient-specific implant reconstructs the
lower orbital wall.
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Figure 6. Postoperational computed tomography. Patient-specific implant reconstruction of the left orbital floor. Note: the
artifacts around the implant (the real implant thickness varied from 0.46 to 0.71 mm, with a pseudo-thickness up to approx.
4 mm) caused by hardening of the X-ray beam due to the high molecular weight of the material.

Figure 7. The patient utilized a patient-specific zirconium dioxide implant six months after surgery. Upgaze motility in the
left eye globe was restored.
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Figure 8. Application of the malar patient-specific implant. (A), Exposed surface of the left body of the zygomatic bone; this
area is depressed because of an untreated zygomatic complex fracture. (B), Sterile zirconium dioxide implant ready to use.
(C)—The implant covers the bone and reconstructs the symmetric convexity of the zygomatic body. (D), The implant is
stabilized by one titanium microscrew.

Figure 9. Cont.
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Figure 9. Results of the application of the patient-specific zirconium dioxide zygomatic implant.
(A), In the left side zygomatic region, depression/flattening due to an untreated zygomatic complex
fracture. (B), Immediate postoperative results: reconstructed zygomatic eminence on the left side.
(C), One-year result showing stability.

The augmentation by the custom ZrO2 implant was stable at the follow-up in all
cases. The average soft tissue shift in the augmented region was 3.79 ± 2.02 mm (range:
1.27–7.84 mm). The soft tissue improvement was at a level slightly below statistical sig-
nificance (p = 0.0564) related to patient age (correlation coefficient = −0.52; R2 = 27%)
but was significantly more visible (p < 0.05, F = 5.92) in the cases of the reconstruction of
zygomatic deformation (4.87 ± 1.82 mm) and forehead (5.87 ± 2.79 mm) than in orbital
wall defect treatment (2.42 ± 0.87 mm). The same soft tissue shift was observed in both
sexes (p = 0.9032). The correlation coefficient equaled 0.68, indicating a moderately strong
relationship between the soft tissue shift and ODI scale (p < 0.01; R2 = 49%); in more
extended damage, a higher improvement in soft tissue was noted (Figure 10).
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Figure 10. Photogrammetry. Evaluation of the treatment results. Right site, lower orbital wall reconstruction. Upper
Row: Unedited, pre- (A) and postoperative (B) 3D face scans. Lower row: Superimposition of pre-post operational digital
meshed constructed based on 3D face scans (C). Horizontal plane (D) utilized for calculating the improvement in face
symmetry. Top view (E) of superimposed 3D face scans with red surface marking line of cutting skin surface position pre-
and postoperatively by the horizontal plane.

4. Discussion

Titanium alloys are currently the standard in craniomaxillofacial surgery. Alloys grade
5 or 23 are mainly used, but they are not ideal implantation materials for humans [20].
Titanium alloy is implanted into the bone; after some time, it passes into the surrounding
soft tissues and reaches high concentrations there. The number of micronuclei in the cells
of patients with titanium implants is higher than that in patients without titanium implants.
However, this assessment of cytogenetic activity [21] is not statistically significant (as in
this study). An elevated titanium ion content in tissues inhibits cell proliferation by inhibit-
ing enzymatic activity [22], oxidative stress [13] and nitrosative stress [23]. At the same
time, zirconium oxide ceramics cause less inflammation after implantation than titanium
alloy [24]. Surprisingly, in this study, test implants made of alumina particle air-abraded
ZrO2 showed toxicity. Perhaps the air-abrasion of the ZrO2 implant by aluminum oxide
leaves abrasive nanoparticles embedded in the surface [25], and these grains increase geno-
toxicity, highlighting the disadvantage of using ceramics [26] and making the biological
effect similar to the adverse effects of using metal alloys. Higher concentrations of Al2O3
affect the cells they contact [27]. On the one hand, the search for new materials resulted
in the introduction of implants sintered from metal powders (such as the titanium alloy
group in this experiment) 10 years ago. Thus, such plates entered maxillofacial surgery;
however, the technology of their manufacture makes them have a rough surface. Such a
surface is exposed to bacterial invasion by creating a biofilm [28]. On the other hand, fused
ceramic surfaces can be smoother. Hence, interest in ceramics for zirconium oxides has
increased. After the in vitro tests, these ceramic implants should not be subjected to air
abrasion by Al2O3. Thus, personalized ZrO2 implants with an unmodified surface are safe.
Perhaps in the future, other useful methods of surface modification than simple alumina
particle air-abrasion will be developed. Alternatively, other types of zirconia will be used,
as well as other stabilizers, other grains, and pressure pre-processing of powder.

Ceramic implants made of zirconium oxide have been used to treat people for over
50 years [29,30]. One of their disadvantages is that they break in places of the skeleton where
they are mechanically loaded [31]. This disadvantage is not present in the application pro-
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posed in this study for craniofacial surgery. Neither the orbital walls nor their surrounding
areas nor the calvaria carry loads comparable to knee or hip joint reconstructions.

Reconstruction of the facial skeleton is a challenge for surgeons due to difficulties
with the maintenance of long-term aesthetic and functional effects. The use of different
techniques and materials has changed the way surgeons proceed with patients who have
post-traumatic complaints [32]. In 1967, Converse et al. [33] reported their 10-year ex-
perience with late correction of orbital fractures. They emphasized the problems with
secondary correction of established diplopia and enophthalmos. In this study, all 14 pa-
tients fell into this challenging category described by Converse. Many other authors [34–37]
have pointed out that restitution of hard and soft tissues might be very difficult to obtain
in delayed treatment. The use of different materials arises from the mentioned problem.
Autologous grafts are the most natural way of reconstructing damaged skeletal structures,
but an intimate correlation has been confirmed between resorption and increasing the
level of clinical enophthalmos [38]. The use of alloplastic materials has many advantages,
such as stability of volume and lack of perioperative morbidity, as well as drawbacks,
such as high costs and lack of sufficient endurance to static and dynamic stresses [39,40].
Finally, the shape of the reconstruction material is important. Converse had no CAD/CAM
support so it could only model the material manually. This approach began to change
25 years ago. In 1998, Hoffmann et al. proposed the application of dental prosthodontic
procedures to develop an individual facial skeletal implant made of metal oxide ceramic [1].
At that time, the advanced engineering methods applied today were not available [5,6,41].
Since then, computer programs and computer technology have developed new tools that
are much more powerful. However, Hoffmann’s team proposed and clinically utilized
the analog coping method of an implant model into ceramic material. Stereolithographic
models were used to design the implant. This method was also used in Lieger et al.’s [4]
surveys. After copy-milling a resin template with a commercially available dental unit,
the prefabricated implants were inserted to reconstruct the lamina papyracea, zygomatic
complex, orbital lower wall and infraorbital rim. The clinical results were very satisfying.
This is the first attempt to use individual ceramic implants in maxillofacial surgery.

Currently, only two large medical companies, DePuy Synthes and KLS Martin, and a
few smaller manufacturers, produce custom implants for doctor demand. Polyetherether-
ketone or titanium are the available materials (http://www.oblparis.com/porousiti?lang=
en (accessed on 10 January 2021), http://www.chm.eu (accessed on 10 January 2021)).
These patient-contoured implants are mainly offered for neurosurgical reconstruction,
probably due to simple segmentation of the thick bones of the cranial vault (orbital wall
segmentation is labor-intensive because of paper-thin bone). The price level of that service
and product is significant—i.e., more than EUR 2500 per case. Unfortunately, zirconium
dioxide ceramics (ZrO2) have only recently been developed for dental applications [42],
and insufficient clinical evidence exists to support any other skull application—i.e., fa-
cial skeleton augmentation. Various ceramic implant systems made of yttria-stabilized
tetragonal zirconia polycrystals have become commercially available in recent years [43].
ZrO2 dental implant studies presented a success rate ranging from 84% after 21 months
to 98% after 1 year [44]. The material used here was partially stabilized zirconia with
Y2O3 in amounts of 4.95–5.36 wt%. The grain size is relatively high (0.35–0.79 µm) [45,46],
which may increase the pore size. The roughness of the material after the sintering process
is Ra = 0.11 ± 0.01 [45]. Therefore, it seems that the material for the ceramic individual
implants in this study was chosen correctly.

Presently, a full digital/virtual method of implant production is possible [5–7,41].
This method improves the accuracy of the procedure, simplifies and accelerates the man-
ufacturing process and reduces costs. It is possible to use implants as thin as 0.55 mm
or thoroughly modulated thick implants [3]. The proper repositioning of the eye globe
is the main purpose of the surgical procedure in enophthalmia and diplopia treatment,
which requires a proper orbital wall implant. With current advancements in cosmetic
surgery and maxillofacial surgery, reconstruction of missing bone structures has important

http://www.oblparis.com/porousiti?lang=en
http://www.oblparis.com/porousiti?lang=en
http://www.chm.eu
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functional and aesthetic aspects. Thus, custom ZrO2 implants are a helpful invention
that may improve the reconstruction of post-traumatic injuries of the cranio-maxillo-facial
skeleton, leading to the restoration of lost facial symmetry.

Custom ZrO2 implant applications seem to be solutions that have many advantages
and lack the disadvantages of other materials. Compared with auto- and allografts, it does
not resorb and accidentally deforms during and after surgical operation [47,48]. In contrast
to polymer implants (silicon, polyethylene and simple polyether ether ketone, zirconium
dioxide has excellent visibility on X-ray examination and the ability to osseointegrate, a
function that is most desired in bone reconstructions [44]. The additional merit of this
material is the price, which is EUR 150 for one block (sufficient to make two orbital implants
or one cranioplastic implant) and the possibility of repairing post-sintered implants with
porcelain. This material also has some disadvantages, such as stiffness and fragility,
which cause technical difficulties and the danger of uncontrolled fracture in the case of
a secondary injury of the head (therefore, it was proposed as a modification structure).
After sintering, its stiffness is much higher than that of cortical bone. In the cases of floor
orbit reconstruction, the authors designed crisscross grooves on the surface of the implant
to facilitate controlled fracture of the implant in the next potential facial injury incident
(Figures 4 and 5). Otherwise, the thin and rigid implant might have behaved like a blade
that jeopardizes the fragile content of the orbit and cranial fossa.

The advantages of zirconium dioxide implants may become more widespread with the
already available additive technique (Lithoz GmbH, Wien, Austria), which facilitates many
technical issues in the manufacture of individual craniofacial implants. Ceramic 3D printing
enables printing with two materials simultaneously, and the LED-driven machine (Cer-
aFab Multi 2M30) allows the production of implants containing combinations of ceramics
(zirconia, alumina, tricalcium phosphate and silicon nitride), metals or polymers. The dual
approach is presented at www.lithoz.com/en/3D-printing/medical-dental, in which a
cage made of high-strength ZrO2 provides support during the healing phase and where the
inner volume of the implant comprises, for example, bioresorbable beta-tricalcium phos-
phate. Creating implants with adjustable/designed porosity is an interesting possibility
and would be a significant advance in the development of ceramic individual implants
for maxillofacial surgery. Additionally, no scientific publications are available using this
technique for craniofacial reconstructions; it has only been used on scaffolds in animals [49].

Despite these benefits, after accurate skeletal reconstruction, soft tissue should be
inspected. In posttraumatic cases, some asymmetry caused by scars, skin thinning, fat loss
or other deformations might exist. In those cases, adjuvant treatment is necessary. Currently,
the best opportunity is structural fat grafting [50–52].

The advantages of the proposed individual implants are as follows:

1. Anatomical symmetry
2. No donor site morbidity
3. Easy positioning—i.e., no need for long-lasting maneuvers inside the operating field
4. No resorbable implant—i.e., long-time stale shape
5. Stiff reconstructions
6. Not only surface, but volume-restoring implant
7. Osseointegration
8. Better thermal conductivity than titanium
9. Visible in roentgenological imaging
10. Not affect magnetic resonance imaging (excluding titanium screw artifacts)

Disadvantages:

1. Time needed for design and manufacture
2. Surgeon involvement in design
3. Limited subsequent implant modification during surgery
4. CT artifacts because the implant is thick on follow-up examination
5. Limited volume of the substrate material block for cranioplasty.

www.lithoz.com/en/3D-printing/medical-dental
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Practical issues should be indicated in these new types of patient-specific implants.
Thin and long parts of the implant face cracks before and after sintering. One case of
fracture of a thin margin (<0.5 mm) of one implant was observed. Complex shapes and
screw holes may require the application of 5-axis milling machines, which are less available
than 3-axis devices. Finding the final implant position during surgery is difficult because
the approach that is performed is too narrow. It is also against the will of surgeons
who want to perform esthetic and invisible approaches. Finally, implant drilling cannot
be performed during surgery. Therefore, active participation of the surgeon during the
implant design is necessary.

Second, delayed maxillofacial reconstructions are still very challenging. This study
shows that custom ZrO2 implants can be used successfully in the late repair of extensive
fractures in the orbital region.

5. Conclusions

Accurate shape corrections and bone reconstruction after craniofacial trauma can be
achieved by modeling a titanium mesh on an individual anatomical model, subtractive
methods (implants milled UHMW PE or PEEKs (Polyether ether ketone)) or additive
methods (implants manufactured from metal powders). We propose the next accurate
reconstructive option: skeleton reconstructions using osseointegrated, radio-opaque, per-
sonalized ceramic implants for craniofacial surgery. The treatment results are stable, and the
therapy is safe.
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