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Abstract

The categorical dualities presented are: (first) for the category of bi-algebraic

lattices that belong to the variety generated by the smallest non-modular lattice

with complete (0,1)-lattice homomorphisms as morphisms, and (second) for the

category of non-trivial (0,1)-lattices belonging to the same variety with (0,1)-

lattice homomorphisms as morphisms. Although the two categories coincide on

their finite objects, the presented dualities essentially differ mostly but not only

by the fact that the duality for the second category uses topology. Using the

presented dualities and some known in the literature results we prove that the

Q-lattice of any non-trivial variety of (0,1)-lattices is either a 2-element chain or

is uncountable and non-distributive.
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1. Definitions and two key lemmas

Obtaining categorical duality results for certain categories of structures has
a long history. The classical examples are the Stone and Priestley dualities
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for bounded distributive lattices and their many extensions for categories
of algebras associated with non-classical logics the algebraic parts of which
contain distributive lattices. In this note, we present two results of this
nature. Each of them goes one step beyond distributivity. The variety of
bounded lattices generated by the smallest non-modular lattice is one of
the two minimal varieties that extended the variety of bounded distributive
latices.

A bi-algebraic lattice is a non-trivial lattice that is algebraic and the
lattice dual (by reversing the lattice order) is also algebraic. A (0,1)-lattice
is a lattice in which 0 and 1 are the smallest and greatest elements in the
lattice and they are included as constants to the signature of the lattice.
Lattices of this type are called bounded lattices.

A Q-lattice is the lattice whose elements are the quasivarieties con-
tained in a quasivariety. The lattice order of a Q-lattice is the inclusion.
A quasivariety is a class of structures that is closed under the operators
S of forming isomorphic substructures, Cartesian products P, and ultra-
products. A variety is a quasivariety that additionally is closed under the
operator of forming homomorphic images.

The lattices N5 and M3 each of which has 5 elements are the smallest
non-modular and modular but non-distributive lattices, respectively. They
are regarded as (0, 1)-lattices. It is known that the variety of bounded
lattices generated by N5 coincides with SP(N5).

For a partially ordered set ⟨X,≤⟩ and subsets Y,Z of X, we write
Y ≪ Z to mean that for every y ∈ Y there exists z ∈ Z such that y ≤ z.

For a lattice L, an element a ∈ L, and a finite subset X of L with a
being below the lattice join in L of the elements of X, it is said that X is
a join cover of a. If a is not below any element of X, it is said that X is a
non-trivial join cover of X. A non-trivial join cover X of a in L is said to
be minimal if, for every non-trivial join cover Y of a in L with Y ≪ X, it
follows that X ⊆ Y .

For a fuller account of concepts used in our note we refer to [9] and [11].
The four equations displayed below are valid in N5 and so they are valid

in every lattice belonging to SP(N5). They contain the key information
for what we need for the functors establishing the presented dualities to be
well defined on the objects of the considered categories. What we need is
stated in Lemmas 1.1 and 1.2.

The lattice equation D2 is a particular case of the family of lattice equa-
tions Dn, n ⩾ 2, which was introduced in [12]. Lattices which satisfy Dn
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are called n-distributive. In the presence of D2 the equation C is equiva-
lent to the equation τ ′21. The equation τ ′21 belongs to the family of lattice
equations τ ′nk constructed in [14].

C: x ∧ (y0 ∨ y1) ∧ (z0 ∨ z1) =
∨
i<2

[
x ∧ yi ∧ (z0 ∨ z1)

]
∨

∨
∨
i<2

[
x ∧ zi ∧ (y0 ∨ y1)

]
∨ ∨

∨
i<2

[
x ∧

(
(y0 ∧ zi) ∨ (y1 ∧ z1−i)

)]
;

D2 : x ∧ (y0 ∨ y1 ∨ y2) =
∨
i⩽2

[
x ∧

∨
j ̸=i

yj
]
;

N0
5 : x ∧ (y0 ∨ y1) =

∨
i<2

[
x ∧

(
(yi ∧ x) ∨ y1−i

)]
;

N1
5 : x ∧

[(
y0 ∧ (z0 ∨ z1)

)
∨ y1

]
=

[
x ∧ y0 ∧ (z0 ∨ z1)

]
∨
[
x ∧ y1

]
∨

∨
∨
i<2

[
x ∧

(
(y0 ∧ zi) ∨ y1

)]
.

Lemma 1.1. For a dually algebraic lattice L, the following conditions are
equivalent.

i) L ∈ SP(N5).

ii) For every join-irreducible element x of L that is not join-prime, there
is a unique minimal non-trivial join cover {a, b} of x such that both a
and b are join-irreducible and join-prime and, moreover, they satisfy
either a < x and {x, b} is an antichain or b < x and {x, a} is an
antichain.

Proof (Sketch): i) implies ii) : The equations C and D2 or, equivalently,
τ ′21 and D2, by Theorems 3.2 and 3.4 of [14], together imply that every join-
irreducible x of L has a unique minimal non-trivial join cover {a, b}. By
minimality of {a, b}, a and b are join-irreducible. The equations N0

5 and N1
5

justify that the unique pair has the remaining properties as stated in ii).
ii) implies i): This implication is an easy consequence of the main result

of [3]. It can also be proved without the result of [3] but with some effort.

In every bi-algebraic lattice, every element is completely join-irreducible
or is the lattice join of all completely join-irreducible elements that are be-
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low. Moreover, completely join-irreducible elements are compact. Lemma
1.2 stated below follows from Lemma 1.1.

Lemma 1.2. For a bi-algebraic lattice L, the following conditions are equiv-
alent.

i) L ∈ SP(N5).

ii) For every completely join-irreducible element x of L that is not join-
prime, there is a unique minimal non-trivial join cover {a, b} of x
such that both a and b are completely join-irreducible and join-prime
and, moreover, they satisfy either a < x and {x, b} is an antichain
or b < x and {x, a} is an antichain.

Lemma 1.2 is the key lemma in the construction of the functor N : B5 →
N5 on the objects of B5 and, consequently, the functor B : N5 → B5 on the
objects of N5 but after having (discovering) the precise definition of the
category N5. Lemma 1.2 says how to define the function f : Y → X2 which
is the most important ingredient in the definition of N5-space (an object
of N5) that is assigned to L (an object of B5).

Lemma 1.1 is the key lemma in the construction of the functor T : L5 →
T5 on the objects of L5 and, consequently, the functor L : T5 → L5 on
the objects of T5 and again after having (discovering) the precise defi-
nition of the category T5. Lemma 1.1 says how to define the function
f : Y (L) → X(L)2 on the spectral N5-space (an object of T5) assigned to
L (an object of L5). In defining f , we use the known facts which say that
any lattice L embeds into the lattice F (L) of filters on L, F (L) is dually
algebraic, and that L and F (L) satisfy the same lattice equations. A de-
tailed description of the correctness of the presented dualities depend on
the proof type context.

2. Categories N5 and B5

Definition 2.1. A structure S = ⟨X,Y,≤, f⟩ is an N5-space, if

(s1) X ∪ Y ̸= ∅ and X ∩ Y = ∅; moreover, if Y ̸= ∅, then X ̸= ∅;

(s2) ≤ is a partial order on X ∪ Y ;

(s3) f : Y → X2 is a function and for all y ∈ Y with f(y) = (a, b), the
following conditions hold:
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(a) a ≤ y and {a, b}, {y, b} are antichains;

(b) if a, b ≤ z for some z ∈ X ∪ Y then y ≤ z;

(c) if z ≤ y for some z ∈ X ∪Y then either z ≤ a or z ≤ b, or z ∈ Y
and {u, v} ≪ {a, b} where f(z) = (u, v).

Definition 2.2. Let S = ⟨X,Y,≤, f⟩ and S′ = ⟨X ′, Y ′,≤′, f ′⟩ be N5-
spaces. A mapping φ : S → S′ is an N5-morphism, if the following condi-
tions hold:

(m1) φ maps X ∪ Y into X ′ ∪ Y ′ ∪ 2X ′, where 2X ′ denotes the collection
of 2-element antichains in ⟨X ′,≤′⟩

(m2) if u, v ∈ X ∪ Y are such that φ(u), φ(v) ∈ X ′ ∪ Y ′ and u ≤ v then
φ(u) ≤ φ(v);

(m3) for all x ∈ X, φ(x) ∈ X ′;

(m4) for all y ∈ Y with f(y) = (a, b), the following holds:

(a) if φ(y) ∈ X ′, then either φ(y) = φ(a) or φ(y) ≤ φ(b);

(b) if φ(y) ∈ Y ′, then f ′(φ(y)
)

=
(
φ(a), φ(b)

)
;

(c) if φ(y) ∈ 2X ′, then φ(y) =
{
φ(a), φ(b)

}
and, for every z ∈ X∪Y

with y ≤ z, one has φ(a), φ(b) ≤′ φ(z) if φ(z) ∈ X ′ ∪ Y ′, and
{φ(a), φ(b)} ≪ φ(z) if φ(z) ∈ 2X ′.

Proposition 2.3. Let φ0 : S0 → S1, φ1 : S1 → S2 be N5-morphisms. The
composition φ0 ◦ φ1 : S0 → S2 of φ0 and φ1 in N5 is as follows, where
z ∈ X0 ∪ Y0.

(c1) If φ0(z) ∈ X1 ∪ Y1, then φ0 ◦ φ1(z) = φ1φ0(z).

(c2) If φ0(z) ∈ 2X1, then

φ0 ◦ φ1(z) =


φ1φ0(u),

φ1φ0(v),

if φ1φ0(v) ≤ φ1φ0(u);

if φ1φ0(u) ≤ φ1φ0(v);

{φ1φ0(u), φ1φ0(v)}, if {φ1φ0(u), φ1φ0(v)} ∈ 2X2,

where f(z) = (u, v) in S0.

The two categories N5 and B5 are as follows. Objects in N5 are N5-
spaces; morphisms are N5-morphisms. Objects in B5 are bi-algebraic lat-
tices belonging to the variety SP(N5); morphisms are complete (0, 1)-
lattice homomorphisms. In this section, we construct two contravariant
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functors B : N5 → B5 and N : B5 → N5 which establish duality between N5

and B5.

Definition 2.4. Let S = ⟨X,Y,≤, f⟩ be an N5-space. A subset I ⊆ X ∪Y
is an ideal of N5-space S if I is a lower cone with respect to ≤ and has the
following property:

if f(y) = (a, b) in S and a, b ∈ I then y ∈ I.

The set of all ideals of S forms a complete (0, 1)-lattice with the lattice
operations given by:∧

i∈I Ai =
⋂

i∈I Ai;∨
i∈I Ai =

⋃
i∈I Ai ∪ {y ∈ Y | y = f(a, b) and a, b ∈

⋃
i∈I X ∩Ai}.

The functor B : N5 → B5 is defined as follows, where S and S′ are N5-
spaces and φ : S → S′ is an N5-morphism:

B(S) is the complete (0, 1)-lattice defined above;

B(φ) : B(S′) → B(S) is defined by B(φ)(Z ′) = φ−1(Z ′).

Proposition 2.5. The following statements hold.

(1) B(S) is a bi-algebraic lattice that belongs to SP(N5).

(2) B(φ) : B(S′) → B(S) is a complete (0, 1)-lattice homomorphism.

Corollary 2.6. B : N5 → B5 is a contravariant functor.

For a lattice L ∈ B5, let

N(L) = ⟨X,Y,≤, f⟩,

where X is the set of all completely join-irreducible elements of L which
are join-prime, Y is the set of all completely join-irreducible elements of L
which are not join-prime, ≤ is the lattice order in L, and f : Y → X2 is a
function that is defined as follows: f(y) = (a, b), where {a, b} is the unique
pair of elements of X which, by Lemma 1.2, exists for y and, by choice,
a < y.
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For L,L′ ∈ B5 and a complete lattice (0, 1)-lattice homomorphism
g : L → L′, consider the map:

βg : L′ → L, βg : a 7→
∧

{b ∈ L′ | g(b) = a}.

We note that g(βg(a)) = a for all a of L′. We also note that if a is
completely join-irreducible in L′, then so is βg(a) but in L.

For a morphism g : L → L′ in B5, we define N(g) : N(L′) → N(L) as
follows:

N(g)(y) =

{
βg(y) if βg(y) ∈ X ∪ Y ;

{βg(a), βg(b)} if βg(y) ∈ 2X and f(y) = (a, b)

N(L) and N(g) above define the second contravariant functor N : B5 → N5

justification of which follows from the proposition below.

Proposition 2.7. The following statements hold.

(1) N(L) ∈ N5.

(2) N(g) : N(L) → N(M) is an N5-morphism.

Corollary 2.8. N : B5 → N5 is a contravariant functor.

Let 1N5 and 1B5 denote the identity functors within the categories N5

and B5, respectively.

Proposition 2.9. The pair NB and 1N5
as well as the pair BN and 1B5

are
isomorphic functors.

Corollaries 2.6, 2.8 and Proposition 2.9 justify the following theorem.

Theorem 2.10. The categories N5 and B5 are dually equivalent.

The following corollary of Theorem 2.10 and the properties of the func-
tors used show an advantage of dualities over algebraic approach if one
wants to establish a technically demanding in proof result.

Corollary 2.11. The following statements hold.

(1) N5-morphisms in N5 which are onto correspond by duality to one-to-
one homomorphisms in B5 and vice versa.

(2) N5-morphisms in N5 which are one-to-one correspond by duality to
onto homomorphisms in B5 and vice versa.
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(3) Disjoint unions of spaces (coproducts in N5) correspond by duality
to Cartesian products in B5 and vice versa.

Let (N5)fin and (B5)fin denote the full subcategories in N5 and B5,
respectively, whose objects are finite. From our construction of functors B
and N and Theorem 2.10, we obtain

Corollary 2.12. The categories (N5)fin and (B5)fin are dually equiva-
lent.

3. Categories T5 and L5

The two categories in this section T5 and L5 are as follows. Objects
in T5 are spectral N5-spaces; morphisms are spectral N5-morphisms; see
Definitions 3.1 and 3.4 provided below. Objects in L5 are bounded lat-
tices belonging to the variety SP(N5); morphisms are (0, 1)-lattice ho-
momorphisms. In this section, we construct two contravariant functors
L : T5 → L5 and T : L5 → T5 which establish duality between T5 and L5.

We will consider pairs (S, T ) such that S = ⟨X,Y,≤, f⟩ is a N5-space
and T is a topology on X ∪ Y .

A subset A of X ∪ Y is said to be N5-compact in (S, T ) if the following
conditions are satisfied:

(i) A ∩X is compact in (X, {X ∩ Z | Z ∈ T });

(ii) for every family {Ai | i ∈ I} of open sets in (X ∪ Y, T ), from A ⊆⋃
i∈I Ai it follows that A ⊆

⋃
i∈J Ai∪{y ∈ Y | f(y) = (a, b) and a, b ∈⋃

i∈J X ∩Ai} for some finite subset J of I.

We say that a subset A of X ∪ Y is f -closed in S if it is an ideal in S;
see Definition 2.4.

On the elements of every topological T0-space with topology T , there
is a partial order ≤T defined as follows: x ≤T y iff every open set of T
containing x contains y.

Definition 3.1. A pair (S, T ) is said to be a spectral N5-space if the
following conditions are fulfilled:

(1) S is a N5-space, T is a T0 topology on X ∪ Y the restriction to X of
which makes X to be a spectral space, and X ∪ Y is N5-compact in
(S, T ).
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(2) ≤ = ≤−1
T .

(3) The collection of all sets that are f -closed in S, open in (X ∪ Y,F),
and N5-compact in (S,F) forms a basis for (X ∪ Y, T ) that is closed
under finite set intersections.

(4) For all sets A and B that are f -closed in S, open in (X ∪ Y,F), and
N5-compact in (S,F), A ∪ B ∪ {y ∈ Y | f(y) = (a, b) and a, b ∈
(A ∪B) ∩X} is open in (X ∪ Y, T );

(5) (S, T ) does not have a proper uN5-extension; see Definition 3.10 pro-
vided below.

Remark 3.2. One can show that the set in the conclusion of (4) in Definition
3.1 is N5-compact in (S, T ) and, obviously, is f -closed in S.

Remark 3.3. The set of all subsets of X ∪ Y that are f -closed in S, open
in (X ∪ Y, T ), and N5-compact in (S, T ) forms a (0, 1)-lattice with lattice
operations defined by:

A ∧B = A ∩B;

A ∨B = A ∪B ∪ {y ∈ Y | f(y) = (a, b) and a, b ∈ X ∩ (A ∪B)}.

Definition 3.4. For spectral N5-spaces (S, T ) and (S′, T ′) and a map
φ : S → S′ that is N5-morphism, we say that φ is a spectral N5-morphism if,
for every N5-compact open set A in (S′, T ′), the set φ−1(A) is N5-compact
open in (S, T ).

The functor L : T5 → L5 is defined as follows, where (S, T ), (S′, T ′) are
objects of T5, and φ : S → S′ is a spectral N5-morphism:

L(S, T ) is the (0, 1)-lattice defined above;

L(φ) : L(S′, T ′) → L(S, T ) is given by L(φ)(A′) = φ−1(A′).

Proposition 3.5. The following statements hold.

(1) L(S, T ) forms a lattice which is a (0, 1)-sublattice of the ideal lattice
of S (= B(S)) and so L(S, T ) belongs to SP(N5).

(2) L(φ) : L(S′, T ′) → L(S, T ) is a (0, 1)-lattice homomorphism.

Remark 3.6. Proof of the above proposition does not use the condition (5)
of Definition 3.1.
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Corollary 3.7. L : T5 → L5 is a contravariant functor.

In order to construct a contravariant functor T : L5 → T5, we now
consider, for a (0, 1)-lattice L ∈ SP(N5), the lattice F (L) of filters on
L with the inverse inclusion as the lattice order. The lattices L and F (L)
satisfy the same lattice equations. Moreover, F (L) is dually algebraic. This
implies that every element of F (L) is join-irreducible (in fact, completely
join-irreducible) or is the lattice join in F (L) of the join-irreducible (in fact,
completely join-irreducible) elements below it. We say that a filter on L is
join-irreducible or join-prime if the filter regarded as an element of F (L)
is join-irreducible or join-prime, respectively.

Let X(L) denote the set of join-prime filters of L and let Y (L) denote
the set of join-irreducible filters of L which are not join-prime. Then S(L) =
X(L) ∪ Y (L) consists of all join-irreducible filters of L. We put S(L) =
⟨X(L), Y (L),⊇, f⟩, where f : Y (L) → X(L)2 is a function which is defined
as follows: f(F ) = (G,H), where {G,H} is the unique pair of elements
of X(L) which, by Lemma 1.1, exists for F and, by choice, F ⊂ G. One
can show that S(L) is an N5-space and, consequently, the ideal lattice of
S(L)(= B(L)) is bi-algebraic and belongs to SP(N5).

We now enhance S(L) by a topology and denote it by T (L). As a
consequence, we obtain the pair (S(L), T (L)).

For x ∈ L, let I(x) = {F ∈ S(L) | x ∈ F} and for M ⊆ L, let
I(M) =

⋃
x∈M I(x).

Definition 3.8. The open sets of T (L) are exactly sets of the form I(M),
where M ⊆ L.

Remark 3.9. Notice that the collection of all sets I(x), x ∈ L, is a multi-
plicative base for T (L). This is so because I(x) ∩ I(y) = I(x ∧ y). Notice
also that I(x) is f -closed in S(L) and that ≤T (L) coincides with ⊆ because
T (L) is T0. Moreover, one can show that the family {I(x) | x ∈ L} is ex-
actly the collection of all sets that are f -closed in S, open in (S(L), T (L)),
and N5-compact in (S(L), T (L)). Also, one can show that X(L) with the
topology T (L) restricted to X(L) is a spectral space. And also, one can
show that (S(L), T (L)) fulfills the condition (5) of Definition 3.1 according
to Definition 3.10 that is now given below.

For N5-spaces S = ⟨X,Y,≤, f⟩ and S′ = ⟨X ′, Y ′,≤′, f ′⟩ with X ∪ Y ⊆
X ′∪Y ′ and 2X ⊆ 2X ′, we say that S is an N5-subspace of S′ if the identity
map from X ∪ Y ∪ 2X to X ′ ∪ Y ′ ∪ 2X ′ is an N5-morphism.
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Definition 3.10. For pairs (S, T ) and (S′, T ′) satisfying the conditions
(1)–(4) of Definition 3.1 with S being an N5-subspace of S′ and (X ∪ Y, T )
a topological subspace of (X ′ ∪ Y ′, T ′), we say that (S′, T ′) is a uN5-
extension of (S, T ) if, for every A that is f -closed in S′, N5-compact in
(S′, T ′), and open in (X ′ ∪ Y ′, T ′), the following holds :

A =
⋃

{B ∈ T ′ | B ∩ (X ∪ Y ) = A}.

Remark 3.11. The notion of uN5-extension originates from the concept of
u-extension considered in a general topological context in [6], see also [7]
and [8].

The functor T : L5 → T5 on objects of L5 is defined by T(L) =
(S(L), T (L)) and T(g) : T(L′) → T(L) on morphisms g : L → L′ of L5

by

T(g)(F ) =

{
g−1(F ), if g−1(F ) ∈ X(L) ∪ Y (L);{
g−1(G), g−1(H)

}
, if g−1(F ) ∈ 2X(L) and f(F ) = (G,H).

Proposition 3.12. The following statements hold.

(1) T(L) is spectral N5-space.

(2) T(g) : T(L′) → T(L) is a spectral N5-morphism.

Corollary 3.13. T : L5 → T5 is a contravariant functor.

For (S, T ) ∈ T5 and L ∈ L5, we define

τ(S,T ) : (S, T ) → T(L(S, T )) by τ(S,T )(x) = {A ∈ L(S, T ) | x ∈ A};

ρL : L → L(T(L)) by ρL(x) = {F ∈ S(L) | x ∈ F}.

Proposition 3.14. The following statements hold.

(1) τ(S,T ) is an N5-isomorphism on the N5-space part of (S, T ) and a home-
omorphism on the topological part of (S, T ). Moreover, for every
morphism φ : (S, T ) → (S′, T ′) in T5, TL(φ) ◦ τ(S,T ) = τ(S′,T ′) ◦ φ.

(2) ρL is a (0, 1)-lattice isomorphism. Moreover, for every morphism
f : L → L′ in L5, LT(f) ◦ ρL = ρL′ ◦ f .

Remark 3.15. We are now ready to explain the role of the condition (5) of
Definition 3.1. In the proof of (1) of Proposition 3.14, it is established first
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that τ(S,T ) is an embedding in the N5-space and topological space sense.
Next, it is established that T(L(S, T )) is a uN5-extension of the image of
(S, T ) by τ(S,T ). This, by the condition (5) of Definition 3.1 implies that
that τ(S,T ) is surjective.

Corollaries 3.7, 3.13 and Proposition 3.14 justify the following theorem.

Theorem 3.16. The categories L5 and T5 are dually equivalent.

Corollary 3.17. The categories (L5)fin and (T5)fin are dually equiva-
lent.

Remark 3.18. Under the assumption that Y = ∅ in all spectral N5-spaces,
we obtain the category of spectral spaces with spectral morphisms which,
as was proved by M. H. Stone in [16], is dually equivalent to the cate-
gory of bounded distributive lattices with (0, 1)-lattice homomorphism as
morphisms.

4. The Q-lattice of a non-trivial variety of bounded
lattices

Let P2 denote the category whose objects are partially ordered sets with
two distinguished constants and morphisms are mappings that preserve
partial orders and the distinguished constants.

Theorem 1.5 of [4] says that the category P2 is universal. An inspection
of the proof of this result presented in [4] shows more. It shows that P2

is finite-to-finite universal. This means that there is a faithful and full
functor from the category of undirected graphs with all compatible maps
as morphisms to the category P2 and has the property that it assigns a finite
object of P2 to every finite graph. This in turn means that in the category
P2 there exists a family of finite objects Ai = ⟨Xi,≤i, ai, bi⟩, i < ω, which
has the property:

(∗) For i, j < ω, there is a morphism of P2 between Ai and Aj iff i = j.
For each i < ω, let yi be an element not belonging to Xi, and let A+

i =
⟨Xi, {yi},≤+

i , fi⟩, where ≤+
i = ≤i ∪{(ai, yi), (yi, yi)} and fi(yi) = (ai, bi).

Each A+
i is a finite N5-space. Corollary 2.11 and the property (∗) imply

the following: For I, J ⊆ ω, SP(F(A+
i ) | i ∈ I) = SP(F(A+

i ) | i ∈ J) iff
I = J . Thus the Q-lattice of the variety of bounded lattices generated by
N5 is uncountable. Without much effort, one can construct a finite N5-
space S such that the quasivariety generated by B(S) is a join-irreducible



Categorical Dualities for Some Two Categories of Lattices. . . 341

but not join-prime element in the Q-lattice. This means that the Q-lattice
of the variety SP(N5) is not distributive. On the other hand, by Corollary
1.5 of [2], we know that the variety of bounded lattices generated by M3 is
uncountable and non-distributive. The two lattices N5 and M3 are the only
lattices which separate lattices from those which are distributive. As the
Q-lattice of the variety of bounded distributive lattice is a 2-element chain,
the result announced in the abstract is true: The Q-lattice of any nontrivial
variety of bounded lattices is either a 2-element chain or is uncountable and
non-distributive.

5. Concluding remarks

Our first duality is an extension of the well known due to G. Birkhoff duality
for distributive bi-algebraic lattices (assume that Y = ∅ in the definition
of N5-space). Our second duality is an extension of the Stone topological
duality for bounded distributive lattices. The categories of duals of the
Stone and the well-known Priestley [15] duality for bounded distributive
lattices are equivalent (see [5]). Our work confirms (see also [13]) that a
successful attempt of having topological dualities in the categorical (com-
plete) sense for bounded lattices should be focused only on a variety that
is generated by a finite lattice and the outcome will be in the style pro-
posed by M. H. Stone in [16]. The key concept in searching for them will
be the concept of minimal join cover refinement property and the navigat-
ing result will be Theorem 3.4 of [14]. Our original motivation for having
the first duality was the open problem independently raised by G. Birkhoff
and A. I. Maltsev which asks for a description of the Q-lattices (see [11] or
the survey article [1]). Based on our experience, we know that having a
good duality helps in contributing to this open problem. However, we do
not know what is the real lattice status of the Q-lattice of the variety of
bounded lattices generated by N5. For example, does this Q-lattice satisfy
any non-trivial lattice equation?

A result of [10] states that a variety of bounded lattices is universal iff
it contains a non-distributive simple lattice. Moreover, it states that the
variety is finite-to-finite universal iff the simple lattice is finite. As M3 is a
simple lattice that is not distributive, the variety of bounded lattices gen-
erated by M3 is finite-to-finite universal. The variety of bounded lattices
generated by N5 is not universal for N5 is not a simple lattice. Our origi-
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nal motivation of having the second duality was to know an answer to the
following question: Is the variety of bounded lattices generated by N5 finite-
to-finite universal relative to the variety of bounded distributive lattices?
The relative means that (0, 1)-lattice homomorphisms to bounded distribu-
tive lattices are disregarded in the successful construction of a functor from
the category of undirected graphs to the category of bounded lattices gen-
erated by N5. We do not know an answer to this well coined by literature
question.
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