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 Lódź University Press 2022, 163–173

DOI: https://doi.org/10.18778/8331-092-3.13

AN INVITATION TO THE POSITIVITY

AND GEOMETRY OF ALGEBRAIC CYCLES

JUSTYNA SZPOND

1. Problems

The purpose of this work is an introduction and overview of geometric and
numeric properties of algebraic cycles in smooth projective varieties. We recall
or propose several problems, which we consider worth to study. We are mainly
interested in, but do not restrict our story to, codimension 2 cycles in projective
spaces. These are points in P2, curves in P3, surfaces in P4 and so on.

We focus on the positivity aspects of such cycles on the one hand, and on attached
asymptotic invariants on the other hand.

Whereas positivity for divisors (i.e. codimension 1 cycles) is either well under-
stood or there is at least a clear conjectural picture, the study of positivity of higher
codimension cycles has been taken on seriously in this century and the theory is
much less developed.

Historically, there has been a lot of interest in the geometry of space curves. A lot
of research focused on the study of Hilbert schemes H(d, g) of smooth, irreducible
curves of degree d and genus g in PN . The Hilbert scheme perspective is naturally
associated to degeneration techniques. Whereas these techniques are inevitable
our objective is to inform about another approach motivated by recent results of
Fulger, Lehmann and others.

One of the most fundamental questions asked, in the context of positivity, about
divisors is whether a divisor is effective and if it is so, the next question is: what
is the dimension of the linear system it lives in. Similar approach can be taken on
studying cycles of higher codimension. We recall here the relevant invariant, which
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is the mobility count as introduced in early works of Daniel Perrin [25] and which
is a natural generalisation of the dimension of a linear system of divisors.

Let X be a smooth variety of dimension n and let α ∈ Nk(X) be an effective
integral k-cycle (k is here the dimension of the support of α, thus k = n − 1 if
α is a divisor). The mobility count mc(α) of α is the maximal number of general
points in X that can be imposed on the class of α (i.e. there exists an effective
cycle, numerically equivalent to α, passing through all these points). Note that for
a divisor, the mobility count is essentially (up to some issues between the numerical
and linear equivalence) the dimension of the linear system generated by this divisor.

It is natural to expect that if X has a simple, or well-known structure, the mo-
bility count should be easily performed. Surprisingly, this is not the case! Already
in the case of curves in P3 the picture is far from being complete. Indeed, given
a positive number s, Perrin asked what is the minimal degree d(s) of a curve
C ⊂ P3, with mc(C) ⩾ s. Interestingly, it is not known in general. Note that
for divisors the same question is an elementary exercise. This motivates the first
problem we propose to study.

Problem 1.1. Find new, lower and upper, bounds on the numbers d(s). Addi-
tionally, introduce and study numbers d(s,m) corresponding to cycles which pass
through s general points and have there multiplicity at least m (thus d(s) = d(s, 1)
for all s ⩾ 1).

We expect that this is a hard problem. Introducing the multiplicities is hard
already in the setting of divisors. On the other hand, even partial results in this
direction would mark a landscape, which seems unexplored to large extend so far.

The volume of a divisor can be thought of as an asymptotic version of the
dimension of the linear system. An important advantage of the volume when
compared with the dimension of the linear series is that the volume depends only
on the numerical equivalence class of the underlying divisor, whereas the dimension
depends in general on the linear equivalence class. Motivated by the concept of the
volume of divisors Lehman [20] and Xiao [30] introduced the notion of the mobility.
For cycles of dimension k the mobility is defined as follows

mob(α) = lim sup
m→∞

mc(mα)

mn/(n−k)/n!
.

Thus if the codimension of α is 1, then mob(α) = vol(α), i.e., we recover the
volume of the divisor. For cycles of higher codimension mobility parallels essential
properties of the volume. In particular, Lehman [20, Theorem 1.2] showed that
the mobility is a continuous n

n−k -homogeneous function on the space of k-cycles

Nk(X).

Whereas, at least for big and nef divisors, the count of the volume reduces to
the simple computation of the self-intersection number of the divisor, the picture
is much more mysterious for cycles of higher codimension. Suffices it to say that
already the number mob(ℓ) for a line ℓ ⊆ P3 is not known! The best estimate up
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to date 1 ⩽ mob(ℓ) ⩽ 3.54 is due to Lehmann [20]. Establishing the exact value of
mob(ℓ) is related to the enumerative problem mentioned above: what is the minimal
degree of a curve in P3 passing through s general points? It is expected that the
answer is governed by the values of (6s)

2
3 but this is not known. Accordingly, it

is conjectured that the actual value is mob(ℓ) = 1. All this motivates he second
problem we put forward.

Problem 1.2. Improve the upper bound on the number mob(ℓ). Or even show
mob(ℓ) = 1.

In fact, it is expected that complete intersection curves are subject to the fol-
lowing conjectural statement.

Conjecture 1.3 (Lehmann). Let X be a projective variety of dimension n and let
L be an ample line bundle on X. Then for all k in the range 0 < k < n there is

mob(Ln−k) = vol(L).

It is natural to wonder what happens for cycles which are not complete inter-
sections. Thus we will be also interested in the number mob(T ) for T , a twisted
cubic. This is the first interesting example of a non-complete intersection curve in
P3. As in the case of Problem 1.1 for points of higher multiplicity, we were not
able to trace down any results in this direction in the literature. Note, that almost
certainly it is not mob(T ) = 3 mob(ℓ).

Both problems put forward so far concern postulation on codimension 2 cycles.
However, such cycles can be used themselves to formulate postulation problems on
divisors. The best known examples of such problems concern points in P2. We
mention here two most prominent conjectures in the field. Nagata’s Conjecture,
going back to 1959, is analogous to Problem 1.1. It predicts that the minimal degree
n(s,m) of a plane curve passing through s ⩾ 10 general points with multiplicity at
least m is subject to the following inequality

n(s,m) > m
√
s.

The Segre-Harbourne-Gimigliano-Hirschowitz Conjecture (SHGH for short) is
somewhat more geometrical in nature. Since this is not our objective to study
this conjecture, we provide a somewhat simplified formulation, basically due to
Segre. Given s general points in P2, the linear system of curves passing through
these points with fixed multiplicities is either non-special (i.e. its dimension is
provided by a simple calculation of Hilbert polynomials) or the system contains
a non-reduced base curve.

Passing to the postulation of higher dimensional cycles, it is natural to replace,
in the first step, points by flats, i.e., linear subspaces in projective spaces. The land-
scape here is much less explored. It has been proved by Hartshorne and Hirschowitz
in [15] that a general collection of lines in PN imposes independent conditions on
forms of any degree d. In other words, their result shows that finding the mini-
mal degree of a hypersurfaces containing s general lines in PN boils down to an
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easy calculation of Hilbert functions. Allowing only one fat line introduces a lot of
complications, see our work with Bauer, Di Rocco, Schmitz and Szemberg [3] and
the work of Aladpoosh [1]. To the best of our knowledge the postulation problem
for planes in P4 is not solved. An obvious, new complication, arising here, is that
planes in P4 are not disjoint. This gets even more involved for unions of codimen-
sion 2 flats in higher dimensional projective spaces as not only the flats intersect
each other but their intersections interact with other intersections as well. This
makes our next problem pretty challenging.

Problem 1.4. Study the postulation problem for unions of general flats of codi-
mension 2 in projective spaces.

We expect that there is no simple analogy of the Hartshorne-Hirschowitz result
and that some special linear systems can be identified in this way. Such systems
might in turn prove quite useful, for example, in the area of birational geometry in
the spirit of [7].

As already indicated in Problem 1.1 there is an additional difficulty when we
consider postulation of multiple (fat) points. This is especially transparent in
the case of Nagata’s Conjecture. For reduced points, its prediction is trivial and
can be proved by linear algebra. Introducing singularities changes the problem
dramatically.

Bocci and Chiantini initiated in [5] a new line of investigation. They considered
ideals of sets Z of arbitrary points in P2 and asked how the assumption that the
difference between the minimal degree of a curve passing through Z and that
passing doubly through Z is minimal (i.e. equal 1) influences the geometry of Z.
They showed that the constrain is serious and the points in Z either form what
is now known as a star configuration (see [10]) or they are all collinear. This
result has been generalised for flats of codimension 2 by Janssen [18] and Haghighi,
Zaman Fashami and Szemberg [8] under the additional assumption that the union
of studied flats is an arithmetically Cohen-Macaulay variety. Already in P3 it is
natural to study the same problem for connected curves. This is exactly the next
and the last problem we want to spell out.

Problem 1.5. Let C ⊆ P3 be a smooth (or just connected) curve such that the
minimal degree of a generator of its ideal I(C) is α and the minimal degree of
the second symbolic power I(C)(2) is α + 1. Show that then C is contained in
a hyperplane.

In a sense, this is the most challenging problem, because there is no analogy in
the literature to build on. Note that proving the reverse implication in Problem
1.5 is elementary.

2. Significance

On smooth varieties (for example in projective spaces) codimension 1 subva-
rieties (divisors) are in one-to-one correspondence with sections of line bundles.
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Higher codimension cycles can be obtained by intersecting divisors. It is natural
to wonder if one obtains all cycles in this way. A classical result along these lines
is due to Noether and Lefschetz.

Theorem 2.1 (Noether-Lefschetz). Let S be a general surface of degree d ⩾ 4 in
P3. Then any curve C contained in S is a complete intersection, i.e., it is cut out
by another surface S′ ⊂ P3.

This result, proved in the final form only in 1985 by Griffiths and Harris [11],
stimulated a lot of research on higher codimension cycles. In particular, Griffiths
and Harris raised the following interesting question.

Conjecture 2.2 (Degree Conjecture). Let X ⊂ P4 be a general threefold of degree
d ⩾ 6 and let C be a curve contained in X. Is then the degree of C a multiple of
d?

This conjecture would easily follow if the following statement, analogous to The-
orem 2.1, would hold: Any curve as in the Degree Conjecture is the intersection of
X with some surface S ⊂ P4. Voisin showed in 1988 that this statement is false.
Of course her result shows that an even more naive hope that C might be an inter-
section of three threefolds in P4 fails, but it was already known at the point when
the conjecture was stated. Interestingly, the Degree Conjecture is still open. Some
strong evidence supporting the Conjecture has been provided recently by Kollár.
This developments and names appearing here prove that studying codimension 2
cycles in algebraic varieties is an important and hard problem in contemporary
algebraic geometry.

We have just seen that one cannot expect in general that cycles of high codi-
mension come up as intersections of cycles of lower codimension. There is another
possibility to extend the relation between effective divisors and sections of line bun-
dles. To this end one can study sections in higher rank locally free sheaves, i.e.,
vector bundles. For codimension 2 cycles it is natural to look at vector bundles of
rank 2. Whereas this relation again fails in general, even for cycles in projective
spaces, there is a very challenging conjecture due to Hartshorne [19, Conjecture
3.2.8].

Conjecture 2.3 (Hartshorne). Let X ⊂ PN be a smooth, irreducible subvariety of
codimension 2. For N ⩾ 6 it follows that X is a complete intersection.

This conjecture has stimulated a lot of research on codimension 2 subvarieties.
The proof with available methods seems out of reach. However one can hope
that assuming the Conjecture (possibly in a slightly stronger form) one can obtain
progress in Problem 1.4 precisely in the cases where iterated intersections between
involved flats become messy. It is also possible that progress on Problem 1.4 can be
obtained without assuming Hartshorne’s conjecture, but studying instead, from the
perspective of our problem, its consequences. By this we mean the general yoga
that small codimension subvarieties in projective spaces behave cohomologically
like complete intersections and it is the cohomology we are interested in.
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In the formulation provided above, Conjecture 2.3 is equivalent to the following
statement, see [14].

Conjecture 2.4 (Hartshorne’s splitting conjecture). Any rank 2 vector bundle on
PN with N ⩾ 6 splits as a direct sum of line bundles.

It is well-known that this conjecture fails in lower dimensional projective spaces,
perhaps the most prominent example being that of Horrocks-Mumford bundle [17].
In any case, it is clear that vector bundle techniques come naturally into the picture,
when higher codimension subvarieties are considered. It is also worth to mention
the following two facts. A well-known splitting criterion due to Horrocks asserts
that a vector bundle E on the projective space PN splits if and only if Hi(PN , E⊗
OPN (d)) = 0 for all d and all 0 < i < N . An improvement, due to Evans and
Griffiths, asserts that it suffices to check the splitting for i < min{N, rk(E)}. Hence
for the rank 2 case (i.e. codimension 2 cycles) it suffices to check the vanishing
H1(PN , E) = 0 for all rank 2 vector bundles E.

Among codimension 2 subvarieties in projective spaces, curves in P3 play
a special role. This is due to the fact that, by an elementary classical theorem,
any smooth curve can be embedded into the projective space of dimension 3 (very
much as any smooth variety of dimension n can be embedded into P2n+1). Thus
one cannot expect that curves in P3 enjoy any special properties, contrary e.g.
to surfaces in P4 as only special surfaces can be embedded into P4. On the other
hand there are certain constraints relating the genus and the degree of space curves,
worked out by Gruson and Peskine [13]. Further refinements in term of the ideal
I(C) defining C have been obtained by Gruson, Lazarsfeld and Peskine in [12].
The ideals with the simplest structure are those generated by a regular sequence.
For codimension two subvarieties there is a striking result due to Gaeta [9] to the
effect that any arithmetically Cohen-Macaulay (ACM) subvariety X is minimally
linked to a complete intersection subvariety, see [24] for the modern treatment of
liason theory and much more. The study of non-ACM subschemes of projective
spaces is an area of active research to which we hope to attract even more attention,
see e.g. [23] for a nice introduction to this circle of ideas. In particular, Problem 1.5
is stated without assuming that the considered curve is an ACM-subscheme. Note
that this assumption was inevitable in the approach taken on by Janssen [18] and in
the generalisations proved in [8]. The reason is the application of the Hilbert-Burch
theorem, which gives a useful description of the defining ideal of an arithmetically
Cohen-Macaulay subvariety of codimension 2 in a projective space (or more gen-
erally: in a smooth projective variety). Of course, dealing with a connected curve
C provides much stronger tools, including the normal sheaf and the infinitesimal
neighbourhoods of C. In this context we quote the following illuminating result
due to Ran [26].

Theorem 2.5 (Ran). Let X be a degree d, locally complete intersection, codimen-

sion 2 subvariety in Pn+2. Let NX be the normal sheaf of X and let
∧2

NX =
OX(a). If
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either a ⩾ d/n + n;
or d ⩽ n,

then X is a complete intersection.

3. Possible path of research

As already stated in Section 1, even the conjectural picture of the positivity of
codimension 2 subvarieties is far from being well understood. The most striking
manifestation of how little is known is the problem to determine the mobility of the
class of a line in P3. Therefor it seems reasonable to focus on the phenomenological
part of the research, namely to explore connected codimension 2-cycles given by
the intersections of hyperplane arrangements in projective spaces, e.g., defined as
skeletons of Fermat arrangements [27] and thus collecting data before approaching
the more general research problems. Such a strategy turned out to be quite success-
ful in different areas of studies, for instance in questions concerning the existence
of unexpected subvarieties and in the problems revolving around the containment
conjectures. Skeletons of Fermat arrangements are an interesting testing ground for
various hypotheses. In a sense, they resemble the so called star configurations, see
[10], which are close to general arrangements on the one hand and special enough
to exhibit interesting patterns on the other hand. Such patterns are particularly
reach in algebraic objects connected to both classes varieties (i.e. skeletons of Fer-
mat and star configurations), starting with their defining equations and various
powers of them.

The proposed path of research consists of the following four questions:

(1) Find minimal degree d(s) of a connected curve C ⊂ P3 passing though s
general points.

(2) Improve an upper bound on the mobility of the class of a line in P3.
(3) Study postulation problems for unions of (general) flats of codimension 2

in PN .
(4) Explore the fattening effect for connected curves in P3.

These problems are clearly divided in two groups: one concerning curves and the
other higher dimensional subvarieties. In both cases we propose to test working
hypothesis with symbolic algebra programs. This approach is well established in
this area, see for example the Crelle work of Holme and Schneider [16].

4. Related methods

The Castelnuovo-Mumford regularity (CM-regularity for short) is a fundamen-
tal invariant in commutative algebra and algebraic geometry. It has (informally)
appeared in works of Guido Castelnuovo, long before it has been formally defined.
Castelnuovo studied linear series on curves in P3 cut out by surfaces of fixed de-
gree. In modern terms, he was interested in determining the dimension of the vector
space of global sections H0(C,OC(d)) for a curve C in P3. For d large enough, this
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dimension is, by the Riemann-Roch theorem, equal to cd − g(C), where c is the
degree of C and g(C) is the genus. The CM-regularity of I(C) makes sense of
the phrase ”large enough”, turning it to an effective statement. Along these lines,
there is the following interesting problem due to Eisenbud and Goto.

Conjecture 4.1 (Regularity Conjecture). For a non-reduced and connected in
codimension 1 subscheme X ⊂ PN , there is

reg(I(X)) ⩽ deg(X) − codim(X) + 1.

This conjecture has been recently shown to fail spectacularly by McCullough
and Peeva [22]. We suggest to explore methods from [22] in order to deal with
problems listed in the previous section. In particular, it seems feasible to couple
these new methods with those of Bertram, Ein and Lazarsfeld from [4]. One of
results of that paper seems of direct interest.

Theorem 4.2 (Bertram-Ein-Lazarsfeld). Let X be a subvariety in projective space
PN defined scheme-theoretically by equations of degree d1 ⩾ d2 ⩾ . . . ⩾ dm (i.e. the
equations in the minimal set of generators of the ideal I(X) have these degrees).
Then X is

(d1 + . . . + de − e + 1) − regular,

where e = codim(X).

This result is of course in general far from the Regularity Conjecture but, on the
other hand, it can be very useful towards solving Problem 1.5. Even if the Problem
cannot be solved in the full generality, it could be more tractable, in particular with
Theorem 4.2, for curves defined by quadratic equations.

In order to attack Problem 1.1, one of possible approaches is to study properties
of the scheme Dm;d,g which parametrizes couples of the form (M,C), where M is
a finite scheme of length m and C is a curve of degree d and genus g such that
M ⊂ C. If we denote by m(d, g) the maximal number of general points in P3 with
the property that there is a curve of degree d and genus g passing through them,
and by Hd,g the Hilbert scheme of connected curves C of degree d and genus g in
P3, then we have

m(d, g) ⩽

[
1

2
dimHd,g

]
.

However, this bound is not sharp in general. If we take g = (d − 1)(d − 2)/2,
then curves in Hd,g are planar, so m(d, g) = 3 < 1

2Hd,g. In order to cope with

this problem, Perrin introduced h0-stability for locally free sheaves of rank 2 –
a model example here is the normal sheaf NC of a curve C ⊂ P3. In this case,
we say that NC is h0-semi-stable if and only if for every invertible subsheaf L of
NC one has h0(L) ⩽ 1

2h
0(NC). Building upon the work of Perrin [25], Vogt in

[28] has shown recently that there exists a Brill-Noether curve C of degree d and
genus g in P3 passing through a maximum of 2d general points apart of a short
list of exceptions. Let us recall that a Brill-Noether curve is a member of a unique
irreducible component of the Kontsevich space Mg(P3, d) which dominates Mg and



AN INVITATION TO THE POSITIVITY... 171

whose general member is a non-degenerate immersion of a smooth curve. This
shows that there is still a room for improvements, see [2].

The postulation problem for codimension 2 subvarieties is directly related to
the geometry of Veneroni maps. These are certain birational transformations of
higher dimensional projective spaces whose base loci consist of unions of general
codimension 2 linear subspaces. Thus the whole machinery of Cremona groups
becomes relevant. A special feature of codimension 2 flats is that this approach is
neatly connected to free resolutions via the Hilbert-Burch Theorem.

Volume of divisors played a crucial role in Witt-Nyström [29] approach to the
duality, postulated by Boucksom-Demailly-Păun-Peternell [6], between the cones

Eff(X) of pseudo-effective divisors and the cone of movable curves Mov(X), under
the assumption that X is a projective variety. The key idea was to introduce and
use the following transcendental Morse inequality.

Theorem 4.3 (Morse inequality). Let α and β be two nef classes on a projective
manifold X of dimension n, then

vol(α− β) ⩾ αn − n(αn−1β).

If we focus on big divisors on a projective variety X, then Khovanskii-Teissier
inequality asserts that for big and nef divisors A,B and a movable curve class β
one has

n(A ·Bn−1)(B · β) ⩾ Bn(A · β).

It is expected that inequalities of this kind hold for cycles of higher codimension.
It seems that various generalizations of the Morse-type inequalities to codimension
2-cycles are possible. Towards this direction, one can be guided by ideas and
methods introduced by Lehmann and Xiao in [21]. They stated some very natural
generalization of the Morse inequalities to convex bodies and support functions.
This provides another way of thinking about the volume function based on purely
combinatorial and convex geometry methods. This example manifests a natural
bridging that can be observed very recently in literature of the subject: highly
non-trivial results in algebraic geometry are generalized to the framework of the
combinatorial world. It is reasonable to expect that such links are lurking behind
in the world of cycles of higher codimension and the mobility function.

Finally, we expect that the mobility function flagged in Section 1, should shed
new light on relations expected for codimension 2 cycles. A particularly nice case,
we have in mind, is that of surfaces in 4-dimensional projective space (or more
generally in 4-dimensional varieties). The study of arrangements of planes in P4

should be viewed as the degenerate case of this situation. An important, additional
tool which one has here at the disposal is the self-intersection formula.
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