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ZARISKI MULTIPLICITY CONJECTURE
IN FAMILIES OF NON-DEGENERATE SINGULARITIES

SZYMON BRZOSTOWSKI, TADEUSZ KRASIŃSKI, AND GRZEGORZ OLEKSIK

Abstract. We give a new, elementary proof of the Zariski multiplicity con-
jecture in µ-constant families of non-degenerate singularities.

1. Introduction

One of the most longstanding conjectures in singularity theory is the Zariski
multiplicity conjecture [Zar71] that if two hypersurface singularities are embedded
topologically equivalent, then their multiplicities (= the orders of reduced functions
defining them), are the same. By definition, two hypersurface singularities, not
necessarily isolated, (V, 0) = (V (f), 0) and (W, 0) = (V (f̃), 0) in Cn are embedded
topologically equivalent iff there exists a homeomorphism Φ : (U, 0) → (U ′, 0) of
small neighbourhoods of the origin in Cn which transforms V ∩U onto W ∩U ′. Fifty
years have passed, but the conjecture has been solved only in a few special cases.
Information on these particular results one can find in the survey by Ch. Eyral
[Eyr07] (up to 2007) and in the monograph by the same author [Eyr16]. One of the
general results is that the conjecture is true for plane curve singularities (because in
this case, we have complete, discrete characteristics of embedded topological types,
for instance so-called Puiseux pairs, and one member of this characteristic is the
multiplicity). It seems to be a simpler problem to prove the conjecture for pairs f, f̃
that are members of a holomorphic family (ft) of pairwise embedded topologically
equivalent singularities. But this last assumption is implied, in the case of isolated
singularities, by the fact that (ft) is µ-constant, i.e., the Milnor number µ(ft) at
0 in this family is constant. This follows from the Lê and Ramanujam theorem
[LR76]. Because of this, B. Teissier [Tei77] posed the following conjecture
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Conjecture 1 (B. Teissier). Let (ft) be a holomorphic family of isolated singularities.
If µ(ft) is constant, then (ft) is equimultiple.

Until recently, this has been a wide-open problem, except for several special cases
that have been settled. In [dBP22], J. F. de Bobadilla and T. Pełka announced
a positive solution to Teissier’s conjecture. Since, however, this paper counts 80
pages and has not yet been published in a recognized journal, the result still requires
independent confirmation. Somewhat earlier, Y. O. M. Abderrahmane [Abd16]
proved this conjecture in the case the family is additionally non-degenerate, i.e., all
ft are non-degenerate in the Kushnirenko sense. He proved even more – that the
family (ft) is also topologically trivial. He used advanced results of the singularity
theory (characterizations of (c)-regularity and µ-constancy). In the paper, we give
a simpler, elementary proof of the Teissier conjecture in the Abderrahmane case,
based on the recent result by M. Leyton-Álvarez, H. Mourtada and M. Spivakovsky
[LÁMS21] concerning a characterization of the difference of the Newton polyhedra
of singularities with the same Newton number.

2. Preliminaries

Let 0 ̸= f : (Cn, 0) → (C, 0) be a holomorphic function defined by
a convergent power series

∑
ν∈Nn aνz

ν , z = (z1, . . . , zn), ν = (ν1, . . . , νn). Let
Rn

+ := {(x1, . . . , xn) ∈ Rn : xi ⩾ 0, i = 1, . . . , n}. We define supp f := {ν ∈ Nn :
aν ̸= 0} ⊂ Rn

+ and the Newton polyhedron Γ+(f) ⊂ Rn
+ of f as the convex hull

of the set {ν + Rn
+ : ν ∈ supp f}. It is a non-compact polyhedron with a finite

number of vertices Vert(f). We say f is convenient if Γ+(f) has non-empty inter-
section with each coordinate xi-axis, i = 1, . . . , n. Let Γ(f) be the set of compact
boundary faces of any dimension of Γ+(f) – the Newton boundary of f. Denote
by Γk(f) the subset of Γ(f) of all k-dimensional faces, k = 0, . . . , n − 1. Then
Γ(f) =

⋃
kΓ

k(f) and Γ0(f) = Vert(f). Elements of Γ1(f) we will call edges. For
each (n−1)-dimensional face (compact) S ∈ Γn−1(f) we denote by vS = (v1, . . . , vn)
the unique vector, perpendicular to S with positive, integer coordinates satisfying
GCD(v1, . . . , vn) = 1. From this we get that the projection of any S ∈ Γn−1(f) on
any coordinate hyperplane Hi := {x ∈ Rn : xi = 0} is a linear homeomorphism. For
each face S ∈ Γ(f) of any dimension, we define the quasihomogeneous polynomial
fS :=

∑
ν∈S aνz

ν . We say f is non-degenerate on S if the system of polynomial
equations ∂fS/∂zi = 0, i = 1, . . . , n, has no solution in (C∗)n; f is non-degenerate
(in the Kushnirenko sense) if f is non-degenerate on each face S ∈ Γ(f).

For convenient f we define Γ−(f) as Rn
+ \ Γ+(f). It is a compact polyhedron

(not necessarily convex) which is the union of cones over faces from Γn−1(f) with
vertex at 0. We define the Newton number ν(f) of f as

ν(f) := n!Vn − (n− 1)!Vn−1 + · · ·+ (−1)n−1 V1 + (−1)n,

where Vn is the n-dimensional volume of Γ−(f) and Vi is the sum of the i-dimensional
volumes of the intersections of Γ−(f) with all the coordinate hyperplanes of di-
mension i, 1 ⩽ i ⩽ (n − 1). The Newton number may also be defined in the
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non-convenient case, but we will not use this notion. Now we recall two important
results. The first one is the formula for the Milnor number of an isolated singularity
f in the generic case, expressed in terms of the Newton polyhedron of f .

Theorem 1 (Kushnirenko [Kou76]). Let f : (Cn, 0) → (C, 0) be a holomorphic,
convenient function with an isolated critical point at 0 (= an isolated singularity)
and µ(f) be the Milnor number of f at 0. Then

µ(f) ⩾ ν(f)

and the equality holds if f is non-degenerate. Moreover, non-degeneracy is a generic
property in the space of coefficients corresponding to integer points of Γ(f).

The second result is a recent one, by M. Leyton-Álvarez, H. Mourtada and M.
Spivakovsky [LÁMS21, Thm. 2.25], giving a characterization of the difference of
the Newton polyhedra of isolated singularities with the same Newton number. The
same result in the particular case of isolated surface singularities (n = 3) was proved
in [BKW19]. We will formulate this theorem in a form convenient for us.

Theorem 2. Let f, g : (Cn, 0) → (C, 0) be two holomorphic, convenient functions
such that Γ+(f) ⊊ Γ+(g) (equivalently Γ−(g) ⊊ Γ−(f)). Then ν(f) = ν(g) if and
only if for each vertex α = (α1, . . . , αn) ∈ Vert(g) \Vert(f) :

1. α lies in one of the coordinate hyperplanes Hi, i.e., there exists i ∈ {1, . . . , n}
such that αi = 0. Denote the set of such i by I.

2. There exists i0 ∈ I for which there exists a unique edge αβ′ of Γ+(g),
β′ ∈ Vert(g), which does not lie in Hi0 . Moreover, there exists β = (β1, . . . , βn) ∈
αβ′ ∩Vert(f) with coordinates βi0 = 1 and βi = 0 for i ∈ I \ {i0}.

Remark 3. The possible configurations for n = 3 are illustrated in Fig. 1 (the case
β′ = β) and Fig. 2 (the case β′ ̸= β). Notice that in the case β′ ̸= β the segment
αβ′ is an extension of the segment αβ.

Figure 1.
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Figure 2.

Remark 4. Geometrically, if Vert(g) \Vert(f) consists of only one vertex α ∈ Hi0

(as in Fig. 1 and Fig. 2), then conditions 1 and 2 in the theorem mean that the
difference Γ−(f) \ Γ−(g) is an n-dimensional pyramid of height 1 with the apex in
β and the base in Hi0 , and, moreover, β has the same zero coordinates as α except
for one equal to 1.

We also recall the following monotonicity property (see e.g. [Gwo08]).

Proposition 5. If Γ1, Γ2 are two convenient Newton polyhedra of holomorphic
functions such that Γ1 ⊂ Γ2, then

ν(Γ2) ⩽ ν(Γ1) < ∞.

3. The main theorem

Let 0 ̸= f : (Cn, 0) → (C, 0) be a holomorphic function defined by a conver-
gent power series

∑
ν∈Nn aνz

ν . By ord f we denote the order of f. If f is reduced
in C{z1, . . . zn}, i.e., has no multiple factors in the factorization into irreducible
elements in C{z1, . . . zn}, then the multiplicity multV (f) of V (f) is equal to ord f .
Before the main theorem, we give a geometric lemma that easily follows from
properties of the Newton polyhedron of a holomorphic function gathered in Pre-
liminaries. By Prn : Rn → Rn−1 we denote the projection of Rn onto Rn−1 :
(x1, . . . , xn) 7→ (x1, . . . , xn−1) and, accordingly, Pri (1 ⩽ i ⩽ n− 1).

Lemma 6. If f is convenient and we put δ :=
⋃
Γn−1(f), the union of com-

pact (n − 1)-dimensional faces of Γ+(f), then, for any i ∈ {1, . . . , n}, we have
Pri(δ) = Γ−(f) ∩ Hi and the restriction Pri |δ is a homeomorphism (piecewise
linear). In particular, if Γn−1(f) = {S1, . . . , Sk}, then Pri(S1), . . . ,Pri(Sk) are
(n−1)-dimensional convex polyhedra which give a partition of Γ−(f)∩Hi preserving
the boundary relation. Moreover, from any point α̃ ∈ Pri(Sj) we “see” all the vertices
of Sj, i.e., the segments joining α̃ with the vertices of Sj lie in Γ−(f).

Now we may pass to the main aim of our paper – a new proof of the Abderrahmane
theorem.
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Theorem 7. Let (ft) be a holomorphic family of isolated, non-degenerate singu-
larities, where t is a parameter in a neighbourhood of 0 in C. If µ(ft) is constant,
then ord ft is also constant for small t.

The same assertion holds for any holomorphic family of functions (ft) if f0 is
convenient and ν(ft) = const.

Proof. Notice that the first part of the theorem follows from the second one. Indeed,
if (ft) are non-degenerate, isolated singularities, then if we add to ft the sum of
specific monomials a1zN1 +· · ·+anz

N
n with sufficiently large N and generic a1, . . . , an,

we get a new holomorphic family of convenient , isolated singularities, which are also
non-degenerate with the same Milnor numbers and the same orders as ft. By the
Kushnirenko theorem, we now have constant ν for this new family; thus, we may
assume from the beginning that f0 is some convenient function and ν(ft) = const.

Let us pass to the proof of the second part of the theorem. Because both
the Newton number and the multiplicity depend only on the Newton diagram,
we may change ft at will, demanding that Supp ft = Vert ft, for all |t| ≪ 1; in
particular, Supp f0 is finite. Clearly, Γ+(f0) ⊂ Γ+(ft) and we may assume the
containment is strict for t ̸= 0. Hence, Proposition 5 allows us to reduce the
problem further, to the case where Γ+(f0) and Γ+(ft) “differ by one point only”,
i.e., Γ+(ft) = conv(Γ+(f0), α), where {α} = Vert ft \Vert f0 (t ̸= 0). Accordingly,
we may put ft := f0 + t · zα. Now, let us note the following

Claim. We may additionally assume that in f0 there are no surplus vertices (not
on any axis), in the sense that removing any vertex monomial from f0 changes its
Newton number.

Proof of Claim. Indeed, let ι be a vertex of Γ+(f0) not lying on any axis and let
cι · zι be the corresponding monomial with the property that for f̃0 := f0 − cι · zι
we have Γ+(f̃0) ⊊ Γ+(f0) and ν(f̃0) = ν(f0). Set f̃t := ft − cι · zι. We have

ν(f̃0) ⩾ ν(f̃t) ⩾ ν(ft) = ν(f0) = ν(f̃0),

where the inequalities follow from the monotonicity of the Newton number (Propos-
ition 5). Thus, ν(f̃t) = ν(f̃0). Moreover, we obviously have ord f̃0 ⩾ ord f0, with
strict inequality if, and only if, |ι| = ord f0 and cι ·zι is the only monomial appearing
in f0 and having the degree equal to ord f0. It follows that if we prove ord f̃t = ord f̃0,
then ord ft = min(ord f̃t, |ι|) = min(ord f̃0, |ι|) = ord f0. Note also that we still have
f̃t = f̃0 + t · zα and Γ+(f̃t) = conv(Γ+(f̃0), α), where {α} = Vert f̃t \Vert f̃0, t ̸= 0.
Hence, we may replace the pair (f0, ft) by (f̃0, f̃t) in our reasoning. Repeating this
reduction finitely many times (bounded by the number of elements of Supp f0), we
reach the conclusion of the claim. ♢

Continuing the main reasoning, we have ord ft = const for t ̸= 0, and we need to
prove ord ft = ord f0. By upper semicontinuity of the order, we have

ord ft ⩽ ord f0.
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Assume to the contrary that

(3.1) ord ft < ord f0.

If α = (α1, . . . , αn), then from (3.1)

(3.2) α1 + · · ·+ αn < ord f0.

By assumption, the family is ν-constant, i.e, ν(ft) = ν(f0). Since of course
Γ−(ft) ⊊ Γ−(f0) for t ≠ 0, Theorem 2 implies that the vertex α lies in one of the
coordinate hyperplanes, say Hn, i.e., α = (α1, . . . , αn−1, 0), and α is a vertex of the
unique edge αβ′ of Γ+(ft) not lying in Hn, which joins α with β′ ∈ Vert(ft) and
for which there exists β = (β1, . . . , βn−1, 1) ∈ αβ′ ∩ Vert(f0) satisfying βi = 0 if
αi = 0 (i ̸= n). Since α ∈ Γ−(ft) ∩Hn ⊂ Γ−(f0) ∩Hn, by Lemma 6 we have that
α ∈ Prn(S), for some S ∈ Γn−1(f0).

We shall show that the face S has only one vertex, exactly β, not lying in Hn. To
this end, we will first exclude vertices outside the set {β, β′}. Indeed, suppose there
is a vertex γ ̸∈ {β, β′} of S not lying in Hn. Since, by Lemma 6, γ is visible from α
and the edge αβ′ of Γ+(ft) is the unique one containing α and lying outside Hn, it
follows that γ ̸∈ Vert(ft) for t ̸= 0. Consider g0 := f0 − cγz

γ , i.e., f0 without the
monomial corresponding to γ. Note that γ ̸∈ Hn cannot lie on any axis; otherwise,
γ would still be a vertex of Γ+(ft) for t ̸= 0. Hence, g0 is convenient. By the Claim,
we have that ν(g0) > ν(f0). Putting gt := ft− cγz

γ , we get Γ+(gt) = Γ+(ft) (t ̸= 0)
because γ ̸∈ Vert(ft) for t ̸= 0. Thus, ∞ > ν(g0) > ν(f0) = ν(ft) = ν(gt). This
contradicts Theorem 2 because {α} = Vert(gt) \Vert(g0) = Vert(ft) \Vert(f0) and
Γ+(gt) = Γ+(ft) (t ̸= 0) so we should have ν(g0) = ν(gt).

Now, note that for β ≠ β′ we must also have β′ ̸∈ S; for, in the opposite case,
β ∈ αβ′ and we cannot “see” the point β′ from α, contrary to Lemma 6.

Summing up, the only vertex of S outside Hn is β, i.e., S is a pyramid with
the apex β and the base T ∈ Γn−2(f0), where T is an (n− 2)-dimensional convex
polyhedron lying in Hn (see Fig. 3).

Figure 3.

Of course, α /∈ T as T is a face of Γ(f0). From (3.2)

α1 + · · ·+ αn−1 < ord f0 ⩽ β1 + · · ·+ βn−1 + 1
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and, hence,

(3.3) α1 + · · ·+ αn−1 ⩽ β1 + · · ·+ βn−1.

Consider the hyperplane Π : x1 + · · ·+ xn−1 = β1 + · · ·+ βn−1 in Hn, treated
as Rn−1, which passes through Prn(β). Then from (3.3), α lies beneath or on
Π. Since S is a pyramid with the base T lying in Hn and the apex β, Prn(S) is
also a pyramid with the base T and the apex Prn(β). Notice Prn(β) ̸= α because
otherwise the edge αβ would be vertical (perpendicular to Hn). Hence the unique
line passing through Prn(β) and α ∈ Prn(S) intersects the base T in a point, say
κ = (κ1, . . . , κn−1). Of course

(3.4) κ1 + · · ·+ κn−1 ⩽ α1 + · · ·+ αn−1

as α lies between Prn(β) and κ on this line, and by (3.3). Since T is a convex,
compact polyhedron and has points lying beneath the hyperplane Π̃ : x1 + · · · +
xn−1 = α1 + · · ·+ αn−1 (by (3.4)), it also has a vertex lying beneath Π̃. But such
a vertex is in supp(f0) and, hence, we obtain a contradiction with (3.1). □
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