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Preface

Mortality is generally considered relatively easy to forecast, particu-
larly when the forecasting horizon is short. In longer periods however,
its course may be a�ected by various changes brought about by all
kinds of disturbances and events. A case in point is the health crisis
in Poland of the 1970s and 1980s [Okólski 2003]. In such cases, it is of
key importance that appropriate assumptions and an adequate model
are selected.

Mortality forecasting is usually supported by extrapolative models,
making use of the regularity found in age patterns and trends of death
rates or probabilities over time.

There are several reasons why one should learn more about morta-
lity models. Forecasting of mortality has a wide range of applications
outside the �eld of statistics and mathematics. It is of fundamen-
tal importance in such areas as funding of public or private pensions
and life insurance. Annuity providers and policy makers use mortality
projections to determine appropriate pension bene�ts, to assess retire-
ment income or life insurance products, to hold additional reserving
capital or to manage the long term demographic risk. Thus, one of
the important question arises: What is the best way to forecast future
mortality rates and to model the uncertainty of such forecasts? A key
input to address this question is the development of advanced mortality
modeling methodology.

These notes are an attempt to capture the stochastic nature of
mortality by approaching the subject of mortality modeling and fore-
casting from a new theoretical point of view, using theory of stochastic
di�erential equations, theory of fuzzy numbers and complex numbers.

The book is addressed to tertiary students, doctoral students and
specialists in the �elds of demography, life insurance, statistics and
economics. This research project was funded by the National Science
Center pursuant to its decision no. 2015/17/B/HS4/00927.
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Abbreviation and notation

Throughout this book, the following abbreviations for mortality models
have been adopted:

SLC Standard Lee�Carter
LCH Lee�Carter hybrid
DLC Dynamic Lee�Carter
DDLC Discrete Dynamic Lee�Carter model
LCH Lee�Carter hybrid
DLCH discrete Lee�Carter hybrid
FLC Fuzzy Lee�Carter
EFLC Extended Fuzzy Lee�Carter
MFLC Modi�ed Fuzzy Lee�Carter
CFLC Complex-Function Lee�Carter
QVLC Quaternion-Valued Lee�Carter
V Vasi£ek
DV Discrete Vasi£ek
VH Vasi£ek hybrid
DVH Discrete Vasi£ek hybrid
VHM Vasi£ek hybrid moment
DVHM Discrete Vasi£ek hybrid moment
MV Modi�ed Vasi£ek
DMV Discrete Modi�ed Vasi£ek
MVH Modi�ed Vasi£ek hybrid
DMVH Discrete Modi�ed Vasi£ek hybrid
MVHM Modi�ed Vasi£ek hybrid moment
DMVHM Discrete Modi�ed Vasi£ek hybrid moment
CIR Cox�Ingersoll�Ross
DCIR Discrete Cox�Ingersoll�Ross
CIRH Cox�Ingersoll�Ross hybrid
DCIRH Discrete Cox�Ingersoll�Ross hybrid
CIRHM Cox�Ingersoll�Ross hybrid moment
DCIRHM Discrete Cox�Ingersoll�Ross hybrid moment
MCIR Modi�ed Cox�Ingersoll�Ross
DMCIR Discrete Modi�ed Cox�Ingersoll�Ross
MCIRH Modi�ed Cox�Ingersoll�Ross hybrid
DMCIRH Discrete Modi�ed Cox�Ingersoll�Ross hybrid
MCIRHM Modi�ed Cox�Ingersoll�Ross hybrid moment
DMCIRHM Discrete Modi�ed Cox�Ingersoll�Ross hybrid moment
GOB Giacometti�Ortobelli�Bertocchi
DGOB Discrete Giacometti�Ortobelli�Bertocchi
GOBH Giacometti�Ortobelli�Bertocchi hybrid
DGOBH Discrete Giacometti�Ortobelli�Bertocchi hybrid
GOBHM Giacometti�Ortobelli�Bertocchi hybrid moment
DGOBHM Discrete Giacometti�Ortobelli�Bertocchi hybrid moment
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MP Milevsky�Promislow
DMP Discrete Milevsky�Promislow
MMP Modi�ed Milevsky�Promislow
DMMP Discrete Modi�ed Milevsky�Promislow
DMPH Discrete Milevsky�Promislow hybrid
MPHM Milevsky�Promislow hybrid moment
DMPHM Discrete Milevsky�Promislow hybrid moment
MMPH Modi�ed Milevsky�Promislow hybrid
DMMPH Discrete Modi�ed Milevsky�Promislow hybrid
MMPHM Modi�ed Milevsky�Promislow hybrid moment
DMMPHM Discrete Modi�ed Milevsky�Promislow hybrid moment
MP-2DF Milevsky�Promislow, with 2 dependent �lters
MPH-2DF Milevsky�Promislow hybrid, with 2 dependent �lters
MPHM-2DF Milevsky�Promislow hybrid moment, with 2 dependent �lters
DMPHM-2DF Discrete Milevsky�Promislow hybrid moment

with 2 dependent �lters
MP-2IF Milevsky�Promislow, with 2 independent �lters
MPH-2IF Milevsky�Promislow hybrid, with 2 independent �lters
MPHM-2IF Milevsky�Promislow hybrid moment, with 2 independent �lters
DMPHM-2IF Discrete Milevsky�Promislow hybrid moment

with 2 independent �lters
MP-VLF Milevsky�Promislow with vector linear �lter
MPH Milevsky�Promislow hybrid
MPH-VLF Milevsky�Promislow hybrid, with a vector linear �lter
MPHM-VLF Milevsky�Promislow hybrid moment, with a vector linear �lter
DMPH-VLF Discrete Milevsky�Promislow hybrid, with a vector linear �lter



Introduction

The phenomenon of mortality has been studied for many centuries.
In the early 3rd c., a Roman jurist, Domitius Ulpianus, created for �scal
purposes the so-called Ulpian table containing life expectancies for the
citizens of the Roman Empire. As historical sources do not mention
what calculation method and source materials he had used, the Ulpian
table is mainly of historical value [Rosset 1979, pp. 102�103].

It is recognized that the father of the mortality table methodology
is John Graunt (1620�1674), since his work [Graunt, 1662] where mor-
tality of generations of London residents was examined. Graunt based
his analysis on the records of London parishes, but did not specify
which periods they concerned. Graunt's research was continued by an
English astronomer Edmond Halley (1656�1742), who proposed mor-
tality tables for the Wrocªaw population [Halley 1693].

The modern methodology for constructing mortality tables, also
known as �life-tables�, is credited to Chin L. Chiang (1914�2014) and
his book [Chiang 1968]. The more works on life-tables and mortality
models come from 19th c. [Gompertz 1825, Thiele, Sprague 1871], but
it is only during the last decades that the mortality modeling methodo-
logy started to develop, as evidenced by numerous books on this sub-
ject [Rosset 1979, Keilman 1990, Okólski 1990, Benjamin, Pollard 1993,
Kannisto 1994, Tabeau et al. 2001, Keilman 2005, Alho, Spencer 2005,
Girosi, King 2006, K�edelski, Paradysz 2006, Rossa et al. 2011].

Since the introduction of the Lee�Carter model [Lee, Carter 1992]
proposed to forecast the trend of age-speci�c mortality rates, a range
of mortality models have been proposed with modeling the probability
of death, the age-speci�c mortality rate or the force of mortality.

Among mortality models three main approaches can be identi�ed:
extrapolation, expectation and explanation [Pitacco 2004, Booth 2006,
Tabeau et al. 2001]. The most common one is an extrapolative approach
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which uses a real or fuzzy variable functions of age and time to de-
scribe patterns and trends in death probabilities, mortality rates (or
their transformations) and other measures [Heligman, Pollard 1980,
Brouhns et al. 2002, Lee,Miller 2001, Renshaw,Haberman 2003a, 2003b,
2003c, 2006, 2008, Koissi, Shapiro 2006, Cairns et al. 2006, 2008a, 2008b,
2009, 2011, Denuit 2007, Debon et al. 2008, Haberman, Renshaw 2008,
2009, 2011, Hatzopoulos, Haberman 2011, Fung et al. 2017].

Mortality models can be divided also into two main categories:
static and dynamic models. Models in the �rst group are based on some
algebraic equations, while in dynamic models of the second group the
force of mortality (the intensity process) is expressed as a solution of
stochastic di�erential equations [Vasi£ek 1977, Cox et al. 1985a, 1985b,
Janssen,Skiadas 1995, Milevsky, Promislow 2001, Dahl 2004, Bi�s 2005,
Bi�s,Denuit 2006, Schrager 2006, Bravo, Braumann 2007, Yashin 2007,
Hainaut,Devolder 2007, 2008, Luciano et al. 2008, Luciano,Vigna 2008,
Plat 2009, Bayraktar et al. 2009, Bi�s et al. 2010, Coelho et al. 2010,
Giacometti et al. 2011, Russoet al. 2011, Wanget al. 2011, Hainaut 2012,
Rossa, Socha 2013].

Unfortunately, the simple dynamic models based on stochastic di�e-
rential equations can be inadequate to describe demographic processes.
In particular, they may fail to explain evolution of the phenomena,
meaning that their behavior changes in continuous time or discrete
time intervals. To make up for this disadvantage, researchers put for-
ward a new type of models, called hybrid models, which account for
interactions between continuous and discrete dynamics.

Hybrid models, or switching models [Boukas 2005], are construc-
ted as the generalizations of the models with switching points that
have been already used for automatic control and for random struc-
ture models [Kazakov, Artemiev 1980] describing phenomena within
mechanics, biology, economics or empirical sciences. The authors of
some studies have proposed complex mortality models sharing charac-
teristics with the hybrid models [Bi�s,Denuit 2006, Bi�s et al. 2010,
Hainaut 2012, Rossa, Socha 2013].

For the purposes of this study, a hybrid system will henceforth be
understood as a family of static or dynamic models where the switch-
ings take place according to some switching rule. The dynamic models
will be described using stochastic di�erential equations. There exists
a class of equations for which analytical solutions of relatively complex
structure can be found, therefore a new group of hybrid models will
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be proposed called the moment hybrid models. The idea underlying
their construction involves the replacement of the stochastic models by
equivalent di�erential equations for moments.

Another promising approach to mortality modeling o�ers theory
of fuzzy numbers. It is well-known that the main di�culty in the
applications of the Lee�Carter model is due to the assumed homo-
geneity of random terms. However, this property is not con�rmed by
the real-life data. The problem prompted search for solutions that
could do without this assumption. One of the possible options is to
set research in the framework of the fuzzy number theory. This line of
thinking was adopted by [Koissi, Shapiro 2006], where empirical obser-
vations and parameters of the Lee�Carter model were converted into
fuzzy symmetric triangular numbers.

Unfortunately, the Koissi�Shapiro model involves some di�culties,
which arise from the necessity to �nd the minimum of a criterion func-
tion containing a max-type operator and cannot be solved using stan-
dard optimization algorithms. One approach to such a problem can be
applying the Banach algebra of oriented fuzzy numbers (OFN) deve-
loped by [Kosi«ski et al. 2003]. The results of using this algebra to the
Koissi�Shapiro model have been published in [Szyma«ski, Rossa 2014].

A more sophisticated modi�cation of the Koissi�Shapiro model in-
volves the replacement of the Banach OFN algebra by the Banach
C∗�algebra to allow the use of the Gelfand�Mazur theorem about iso-
metric isomorphism between the C∗�algebra and the Banach algebra of
complex functions and, consequently, to move the optimization prob-
lem into the framework of complex analysis. To our best knowledge,
this is an innovative approach to mortality modeling.

This book has the following structure. In Chapter 1, basic mor-
tality characteristics and some static and dynamic mortality models
are discussed, especially the oldest historical mortality models (the
so-called �mortality laws�), the well-known Lee�Carter model with its
extensions and generalizations, the Vasi£ek and Cox�Ingersoll-Ross
models, the Giacometti�Ortobelli�Bertocchi model and some variants
of the Milevsky�Promislow model. Chapter 2 introduces theoretical
backgrounds of hybrid modeling. In Chapter 3, hybrid counterparts of
the dynamic models presented in Chapter 1 are provided and some es-
timation procedures are proposed. Chapter 4 discusses the theoretical
underpinnings of the fuzzy mortality modeling based on the algebra of
Oriented Fuzzy Numbers (OFN), whereas Chapter 5 presents mortality
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models from the perspective of the so-called modi�ed fuzzy numbers
(MFN) and complex functions. Chapter 6 illustrates results of estima-
tions of some proposed models, the parameters of which were estimated
using empirical mortality data sets. The comparative analysis of the
models' prediction accuracy is also performed.



Chapter 1

Basic mortality characteristics and

models

1.1. Introduction

Demographic models are an attempt to generalize and simplify real
demographic processes by means of mathematical functions or a set
of mathematical relations in order to approximate possible variations
observed in the real data and to support demographic forecasting.

In this chapter basic notions, relations and some discrete-time as
well as continuous-time extrapolative mortality models are introduced.

The main attention is focused on the well-known Lee�Carter model,
its generalizations, the Vasi£ek and Cox�Ingersoll�Ross models as well
as the Milevsky�Promislow and Giacometti�Ortobelli�Bertocchi mo-
dels. They will be converted to hybrid models in Chapter 3.

1.2. Discrete-time mortality frameworks

1.2.1. Age-speci�c rates and probabilities of death

The de�nition of a mortality rate used in this book draws on the
general de�nition of a cohort (or period) demographic rate de�ned as
a ratio of the number of demographic events occurring in some de�ned
cohort (or in a real population within some de�ned time period) to
the time-to-exposure, understood as the number of time units lived
by the cohort (or by the population during the given time period)
[Preston et al. 2001, pp. 5�32].

If person-years are used in the denominator, a demographic rate
is termed �an annualized rate�. Below the de�nitions of both a co-
hort and a period annualized age-speci�c mortality rates are provided
[Rossa et al. 2011, pp. 229�231].



20

An important notion used in the De�nition 1.1 is �a cohort�, de�ned
as a real or hypothetical aggregate of individuals that experience a spe-
ci�c demographic event, e.g. births, during a speci�c time interval.
The cohort is identi�ed by the event itself and by its time frame.

For the purposes of this discussion, let index t indicate a calendar
year from the given set {1, 2, . . . , T}, and index x the attained age,
meaning that it takes values from the set {0, 1, . . . , X}, where X is the
�xed upper age limit.

De�nition 1.1. A cohort age-speci�c mortality rate m(s)
x in the s-th

cohort is a ratio of the number of deaths, D(s)
x , among individuals aged

x years last birthday to the number of person-years, K(s)
x , lived in the

age range [x, x+ 1)

m(s)
x =

D
(s)
x

K
(s)
x

. (1.2.1)

De�nition 1.2. A period age-speci�c mortality rate mx,t is a ratio of
the number of deaths, Dx,t, among individuals in the age range [x, x+1)
years during the calendar year t to the number of person-years, Kx,t,
lived in th age interval [x, x+ 1) during this year

mx,t =
Dx,t

Kx,t

. (1.2.2)

It is worth noting that the denominators K(s)
x in (1.2.1) and Kx,t

in (1.2.2) can be treated as the number of individuals exposed to the
risk of death in the given age interval or in the age-time interval, re-
spectively. In the case of (1.2.2) the denominator is usually replaced
by the midyear population L̄x,t, lived in the age range [x, x+ 1) during
the given year t. Therefore, period mortality rates (1.2.2) are often
described as central death rates because of a midyear population used
in the denominator.

For convenience (1.2.1), (1.2.2) are often expressed in thousands as

m(s)
x =

D
(s)
x

K
(s)
x

· 1 000, mx,t =
Dx,t

Kx,t

· 1 000. (1.2.3)

In a more general discrete approach, it is possible to consider an age
interval [x, x+n), where n ∈ N and n > 1. The cohort age-speci�c mor-
tality rates (1.2.1) are then denoted as nm

(s)
x and the period age-speci�c

mortality rates (1.2.2) as nmx,t.
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In addition to demographic rates, the set of measures used in de-
mographic analysis also includes the probability of death.

De�nition 1.3. The probability of death, q(s)
x , in the s-th cohort is

a ratio of the number of deaths, D(s)
x , among individuals aged x years

last birthday to the number of individuals, L(s)
x , surviving to this age,

i.e.

q(s)
x =

D
(s)
x

L
(s)
x

. (1.2.4)

When the age interval under consideration is [x, x+ n) and n > 1,
the cohort death probability is denoted as nq

(s)
x .

For simplicity, the index of s-th cohort (s) will be omitted from
further notations.

1.2.2. The relationship between mortality rates and death
probabilities

Let nDx and nKx be, respectively, the number of deaths and the
time of exposure to the risk of death (time-to-exposure) for a cohort in
the age range [x, x + n) years. Let nax represent the average number
of years lived by individuals in that age range who died before their
(x+ n)�th birthday. Additionally, let Lx be the number of individuals
surviving to the age x.

The characteristics nDx, nKx, nax and Lx are linked by the follo-
wing relations, de�ned by analogy to the balancing equations for a clo-
sed population [Preston et al. 2001, p. 2]

nKx = n · Lx − n · nDx + nax · nDx (1.2.5)

and

nKx = n · Lx+n + nax · nDx. (1.2.6)

Additionally, we have

Lx = Lx+n + nDx. (1.2.7)

From (1.2.5) we obtain

Lx =
nKx

n
+ nDx − nDx · nax

n
=

nKx + (n− nax)nDx

n
, (1.2.8)
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hence

nqx =
nDx

Lx
=

n · nDx

nKx + (n− nax) · nDx

=

=
n · nDx

nKx

nKx

nKx
+ (n− nax) · nDx

nKx

=
n · nmx

1 + (n− nax) · nmx

.

(1.2.9)

Thus, the following relation is obtained

nqx =
n · nmx

1 + (n− nax) · nmx

. (1.2.10)

Formula (1.2.10) shows how the cohort age-speci�c death rate and
the probability of death are related to each other. In the special case
of n = 1, we obtain

qx =
mx

1 + (1− ax) ·mx

. (1.2.11)

1.2.3. Interpolation models

Let Lx+y for a �xed age x and for y ∈ [0, n] be the number of
individuals surviving the age x+y. In this section we will assume that
Lx+y is a continuous function of y∈ [0, n].

A linear interpolation model

Let us assume that Lx+y is a linear function of variable y, i.e.

Lx+y = a+ by for y ∈ [0, n]. (1.2.12)

The parameters a, b of this function are determined so that it takes
values Lx for y = 0 and Lx+n for y = n, where Lx ≥ Lx+n > 0 are
�xed in advance. These two conditions can be written as

Lx+0 = a and Lx+n = a+ bn. (1.2.13)

It follows from (1.2.13) that

a = Lx and b =
Lx+n − Lx

n
= −nDx

n
, (1.2.14)

where nDx is the number of deaths observed in age interval [x, x+ n).
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Therefore, (1.2.12) can be written as

Lx+y = a+ by = Lx − nDx

n
y. (1.2.15)

Let us now calculate the time-to-exposure nKx in the age interval
[x, x+n). If Lx+n is a integrable function, then nKx can be calculated as
the integral of Lx+n on the interval [0, n]. In this case, the integrability
of Lx+y arises from its linear form (1.2.12). Hence, we have

nKx =

∫ n

0

Lx+ydy =

∫ n

0

(Lx − nDx

n
y)dy =

= n · Lx − nDx

n
· 1

2
y2
∣∣∣n
0

= n · Lx −
n

2
· nDx.

(1.2.16)

Since Lx, Lx+n are connected by relation (1.2.7), we obtain

nKx = n · Lx+n +
n

2
· nDx. (1.2.17)

A comparison of the above result with the general formula (1.2.6) for
the time-to-exposure

nKx = n · Lx+n + nax · nDx, (1.2.18)

leads us to the conclusion that

nax =
n

2
. (1.2.19)

Thus in the linear interpolation framework, formula (1.2.10) identifying
the relation between probability nqx and the age-speci�c death rate
nmx can be reduced to

nqx =
n · nmx

1 + (n− n
2
) · nmx

=
2n · nmx

2 + n · nmx

. (1.2.20)

For the special case of n = 1, we get

qx =
mx

1 + (1− 1
2
) ·mx

=
2mx

2 +mx

. (1.2.21)
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An exponential interpolation model

Let us assume now that Lx+y for y ∈ [0, n] is an exponential func-
tion of variable y expressed by the formula

Lx+y = aby for y ∈ [0, n], (1.2.22)

given the following constraints

Lx+0 = ab0 = a and Lx+n = abn, (1.2.23)

where Lx ≥ Lx+n > 0 are known values.

From (1.2.23) it follows that

a = Lx and b =

(
Lx+n

Lx

)1
n

. (1.2.24)

Hence, Lx+y de�ned in (1.2.22) is of the form

Lx+y = Lx

(
Lx+n

Lx

)y
n

. (1.2.25)

Let us denote
npx = 1− nqx for nqx ∈ (0, 1). (1.2.26)

Since
Lx+n

Lx
= npx, (1.2.27)

from (1.2.25) we get
Lx+y = Lx (npx)

y
n. (1.2.28)

Let us calculate the time-to-exposure nKx as an integral of Lx+y on
the interval [0, n]. We have

Kx =

∫ n

0

Lx+ydy =

∫ n

0

Lx (npx)
y
n dy =

= Lx

∫ n

0

exp
{y
n

ln npx

}
dy.

(1.2.29)

The last transformation under the integral is due to the fact that

az ≡ ez ln a for any positive constant a. (1.2.30)
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By applying the variable substitution

z =
y

n
ln npx and dy =

n

ln npx
dz, (1.2.31)

we get

nKx = n · Lx
∫ ln npx

0

ez

ln npx
dz =

=
n · Lx
ln npx

∫ ln npx

0

ezdz =
n · Lx
ln npx

ez
∣∣∣ln npx

0
=

=
n · Lx
ln npx

(
eln npx − e0

)
=
n · Lx
ln npx

(npx − 1) =

= −n · Lx
ln npx

nqx.

(1.2.32)

Because of the de�nition of probability of death (see De�nition 1.3),
the following equality holds

Lx · nqx = nDx. (1.2.33)

We obtain

nKx = −n nDx

ln npx
. (1.2.34)

It follows from the comparison of the above result with the general
formula (1.2.6) for the time-to-exposure nKx that

nKx = n · Lx+n + nax · nDx. (1.2.35)

We receive equality

−n nDx

ln npx
= n · Lx+n + nax · nDx. (1.2.36)

Hence, the formula for nax takes the following form

nax = −nLx+n

nDx

− n

ln npx
= −nnpx

nqx
− n

ln npx
=

= n− n

nqx
− n

ln(1− nqx)
.

(1.2.37)
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Let us determine now how mortality rate nmx and probability nqx
in the exponential interpolation model are related to each other. Based
on the cohort age-speci�c mortality rate (see De�nition 1.1), we have

nmx =
nDx

nKx

. (1.2.38)

Then, using (1.2.34) we can reduce (1.2.38) to

nmx =
nDx

nKx

=
nDx

−n nDx

ln npx

= − 1

n
ln npx = − 1

n
ln(1− nqx). (1.2.39)

Thus, we get

nmx = − 1

n
ln(1− nqx). (1.2.40)

The relation between mortality rates and death probabilities can be
equivalently written as

nqx = 1− e−n·nmx. (1.2.41)

In the special case of n = 1, the above formula reduces to

qx = 1− e−mx . (1.2.42)

1.2.4. Other life-table measures

Since John Graunt life-tables has been constructed by demogra-
phers, actuaries, statisticians and others to present mortality over the
whole lifespan of a real or hypothetical cohort. Cohort age-speci�c
mortality rates nmx and death probabilities nqx represent the main
life-table parameters. They are also called tabular mortality param-
eters, because they are calculated for arbitrarily de�ned age intervals
[x, x+ n), n ∈ N.

Other major life-table measures of mortality are derived from death
probabilities qx. These are, for instance, person-years lived above age
x, Tx or life expectancy, ex (see e.g. [Balicki 2006]). The de�nitions
for these characteristics are respectively:

Tx � person-years lived above age x, the remaining lifetime for all
individuals surviving to the age of x

Tx =
∞∑
y=x

Ky, (1.2.43)
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ex � remaining life expectancy, the average number of additional
years that a survivor to age x will live beyond that age

ex =
Tx
Lx
. (1.2.44)

In practice, calculation of the above values from the observations
of real cohorts (generations) causes some di�culties, because cohort
data might be unavailable, outdated, or incomplete. Therefore, de-
mographers have developed a concept of �a period life-table�. In this
approach, it is usually assumed that there is a hypothetical cohort,
which is subjected throughout its life to a set of mortality conditions
of the given period, which is usually a �xed calendar year. This solution
allows calculating period mortality rates for all age groups and for an
individual calendar year. Life-table characteristics that are calculated
from period data will be marked with the symbol of the year t, e.g.
mx,t, qx,t, ex,t.

1.3. Continuous-time mortality frameworks

In the analysis of discrete life-table models, arbitrary, discrete age
intervals [x, x + n) are assumed, where x, n are non-negative integers.
However, for some uses it is important that some mortality functions
are calculated for any non-negative real ages x or for intervals [x, x+y)
of any small length y > 0. For this purpose, the lifetime of an indi-
vidual is treated as a random variable of some continuous probability
distribution, what is a natural extension, since lifetime and mortality
evolve continuously.

1.3.1. Survival distributions

De�nition 1.4. Let X be a non-negative and continuous scalar ran-
dom variable representing the lifetime of a new-born (age-at-death)
and let FX be a cumulative distribution function of X, i.e.

FX(x) = P (X < x), (1.3.1)

for which FX(0) = 0.
The survival function SX of variableX is a complementary function

to FX of the form
SX(x) = 1− FX(x). (1.3.2)
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To keep things simple, let functions FX , SX be denoted as F , S,
respectively. It is by de�nition that for given x ≥ 0 the value of S(x)
stands for the probability of a new-born surviving until the age x.

De�nition 1.5. Let Y (x) be a scalar random variable de�ned as

Y (x) = X − x for X ≥ x, (1.3.3)

where x ≥ 0 is a known real number.

Random variable Y (x) represents the residual lifetime of an indi-
vidual aged x. The cumulative distribution function FY (x)(y) of Y (x)
for a given y ≥ 0 is as follows

FY (x)(y) = P (Y (x) < y) =

= P (X−x<y | X≥x)=P (X<x+y | X≥x) =

= 1− P (X ≥ x+ y | X ≥ x) =

= 1− P (X ≥ y + x)

P (X ≥ x)
= 1− S(x+ y)

S(x)
.

(1.3.4)

Let us notice that for x = 0 we have Y (0) = X and FY (0) = F ,
which shows that variable X is a special case of Y (x).

De�nition 1.6. Let F ′ be a derivative of cumulative distribution
function F , i.e. the density function f of variable X. The force of
mortality is de�ned as the ratio

µ(x) =
f(x)

S(x)
, x ≥ 0. (1.3.5)

Expression µ(x)dx approximates the probability of dying in the age
range [x, x+ dx) given that the person is surviving until the age x.

Integrating both sides of the expression (1.3.5) over interval [0, x],
we get ∫ x

0

µ(z)dz =

∫ x

0

f(z)

S(z)
dz. (1.3.6)
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Let us apply the variable substitution v = S(z). Then we have
dv = S ′(z)dz. Since the derivative of S(z) is −f(z), so dv = −f(z)dz.
From this, we get∫ x

0

µ(z)dz=−
∫ S(x)

1

1

v
dv=− ln v

∣∣∣S(x)

1
= − lnS(x). (1.3.7)

Therefore, the following relations are true

F (x)=1−exp
{
−
∫ x

0

µ(z)dz

}
(1.3.8)

S(x)=exp

{
−
∫ x

0

µ(z)dz

}
. (1.3.9)

We also have

FY (x)(y) = 1− S(x+ y)

S(x)
=

= 1−
exp

{
−
∫ x+y

0
µ(z)dz

}
exp

{
−
∫ x

0
µ(z)dz

} =

= 1− exp

{
−
∫ x+y

x

µ(z)dz

}
(1.3.10)

and

SY (x)(y) = 1− FY (x)(y) =
S(x+ y)

S(x)
=

= exp

{
−
∫ x+y

x

µ(z)dz

}
.

(1.3.11)

Let us notice that the force of mortality µ(x) identi�es the distri-
butions of both random variables X and Y (x).

Using the actuarial notation, the distribution functions (1.3.8) and
(1.3.10) will be denoted by xq0 and yqx and the survival functions (1.3.9)
and (1.3.11) will be denoted by xp0 and ypx, respectively.
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With the above formula (1.3.10), it is also easy to calculate density
fY (x) of random variable Y (x). Since

FY (x)(y) = 1− S(x+ y)

S(x)
, x ≥ 0, (1.3.12)

thus for any y ≥ 0, we have

fY (x)(y) =
dFY (x)(y)

dy
= − 1

S(x)

dS(x+ y)

dy
=

= − 1

S(x)
(−f(x+ y)) =

f(x+ y)

S(x)
=

=
f(x+ y)

S(x+ y)

S(x+ y)

S(x)
= µ(x+ y) ypx =

= µ(x+ y) exp

{
−
∫ x+y

x

µ(z)dz

}
,

(1.3.13)

where ypx = 1− yqx.

It follows from (1.3.11) and (1.3.13) that the force of mortality
µx(y) of the variable Y (x) equals to

µx(y)=
fY (x)(y)

SY (x)(y)
=
µ(x+y) exp

{
−
∫ x+y

x
µ(z)dz

}
exp

{
−
∫ x+y

x
µ(z)dz

} =µ(x+ y), (1.3.14)

for x, y ≥ 0.

1.3.2. The relationship between the mortality rate and the
force of mortality

It is worth reminding here the relationship between the cohort
mortality rate (1.2.2) and the force of mortality (1.3.5). The cohort
mortality rate nmx is de�ned as the following ratio

nmx =
nDx

nKx

. (1.3.15)
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The number of deaths nDx in the age range [x, x + n) can be written
as

nDx = Lx − Lx+n, (1.3.16)

where Lx the number of survivors until the age x.

The time-to-exposure for this interval is given as

nKx = nLx+n + nax · nDx. (1.3.17)

We now let the age interval range n to be positive real number, not
necessarily an integer, tending to the limit n → 0. Let us investigate
limn→0 nmx.

For a small value of n, the time-to-exposure nKx can be approxi-
mated as

nKx ≈ nLx, (1.3.18)

The approximation is the more accurate, the shorter length n of an
interval [x, x+ n). For n→ 0 we have

lim
n→0

nmx = lim
n→0

Lx − Lx+n

nLx
. (1.3.19)

From the de�nition of a function derivative, we have

lim
n→0

Lx − Lx+n

n
= −L′x. (1.3.20)

Hence, we obtain

lim
n→0

nmx = −L
′
x

Lx
. (1.3.21)

Let us notice that the following equality holds

Lx = L0S(x), (1.3.22)

where L0 is the number of births (real or hypothetical) and S(x) is the
probability of survival until age x. Finally, we have

lim
n→0

nmx = −L0S
′(x)

L0S(x)
=
f(x)

S(x)
= µ(x). (1.3.23)

It follows that the force of mortality µ(x) is the limit to which the
mortality rate nmx tends with n→ 0.
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1.4. Laws of mortality

Many models were proposed in the literature with the intention
of de�ning �a simple law of mortality� expressing the way in which
mortality changes age by age.

Di�erent authors have considered mathematical functions depend-
ing on age x, among others µ(x), S(x), xp0 or qx as most suitable to
represent the law of mortality.

In the simplest exponential model the force of mortality is constant

µ(x) ≡ µ = const, x ≥ 0. (1.4.1)

However, the exponential model is not appropriate for human popu-
lations, as it assumes that the force of mortality is the same for all ages
x. Other demographic models use a more realistic assumption that, for
instance, µ(x) is piecewise constant, which in the case of su�ciently
narrow age intervals o�ers a good approximation of the force of mor-
tality as it is. Making an assumption about a piecewise constant force
of mortality reduces, in fact, the problem to the approach considered
in Section 1.2.3.

Among the better known laws of mortality are the historically old-
est de Moivre model, the Lambert model and the Gompertz�Makeham
or Weibull models [Fr�atczak 1997, Ostasiewicz 2011].

The assumption on which de Moivre built his model [Moivre 1725]
states that there is a limit age X. Then the force of mortality is given
by the formula

µ(x) =
1

X − x
for 0 ≤ x < X and µ(x) = 0 for x ≥ X. (1.4.2)

This model is equivalent to an assumption that xp0 declines linearly
with x. It follows from (1.4.2)

xp0 = 1− x

X
for 0 ≤ x < X and xp0 = 0 for x ≥ X. (1.4.3)

Lambert proposed a model for xp0 with four parameters [Lambert 1776]

xp0 =

[
a− x
x

]2

− b
[
e−

x
c − e−

x
d

]
. (1.4.4)

In the model of [Gompertz 1825] the force of mortality is de�ned as

µ(x) = Bcx, B > 0, c ≥ 1, x ≥ 0, (1.4.5)
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what leads to the formula for xp0 of the form

xp0 = e−k(cx−1), (1.4.6)

where k = −B/ ln c.

The Gompertz model is based on the assumption that the force of
mortality increases exponentially with age. In 1867 Makeham modi�ed
this assumption by putting forward the following 3-parameter formula
[Makeham 1867]

µ(x) = A+Bcx, A,B > 0, c ≥ 1, x ≥ 0, (1.4.7)

or equivalently

xp0 = e−k(bx+cx−1), (1.4.8)

where b = A ln c/B and k = −B/ ln c.

This model is an extended version of the Gompertz model by in-
cluding a term A independent of age, representing constant level of
mortality caused, for example, by accidents. Now (1.4.7) or (1.4.8) is
called the Gompertz�Makeham mortality law and is frequently used
by actuaries.

In 1939 Weibull proposed a 2-parameter formula [Weibull 1939]

µ(x) = axb−1, a, b > 0, x ≥ 0 (1.4.9)

or equivalently

xp0 = e−
a
b
xb . (1.4.10)

It is worth noting that the Weibull force of mortality (1.4.9) is de-
�ned as a monotonic function (i.e. increasing, decreasing or constant),
therefore it is inadequate as a mortality model of a human population
with an unimodal or multi-modal force of mortality.

There are many studies in the contemporary literature that deal
with models of the force of mortality, death probability etc. A review
of historical mortality laws is provided in the books [Tabeau et al. 2001]
and [Wunsch et al. 2002], among others (see Table 1.1).
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Table 1.1. Mortality laws (overview of historical parametric models)

Author Force of mortality µx, survival function S(x)

and year or probability of death qx

[Moivre 1725] µ(x) = 1
X−x

[Lambert 1776] xp0 =
[
a−x
x

]2 − b [e− x
c − e− x

d

]
[Gompertz 1825] µ(x) = Bcx

[Makeham 1867] µ(x) = A+Bcx

[Opperman 1870] µ(x) = a√
x

+ b+ c 3
√
x for young ages x ∈ [0, 20]

[Thiele, Sprague 1871] µ(x) = a1e
−b1x + a2e

− 1
2 b2(x−c)

2

+ a3e
b3x

[Wittstein, Bumsted 1883] qx = 1
ma
−(mx)n + a−(M−x)

n

[Ste�ensen 1930] log10 S(x) = 10−A
√
x−B + C

µ(x) = A+Bcx

1+Dcx

[Perks 1932]

µ(x) = A+Bcx

Kc−x+1+Dcx

[Harper 1936] log10 S(x) = A+ 10B
√
x+Cx+D

[Weibull 1939] µ(x) = axb−1

µ(x) = A+Bx+ Cx2 + 1
N−x

[Van der Maen 1943]

µ(x) = A+Bcx + c
N−x

Source: [Tabeau et al. 2001, p. 7] and [Wunsch et al. 2002, pp. 144�146]

[Thatcher et al. 1998] performed studies to �t di�erent mathema-
tical models to the mortality data of adult ages. They discovered that
the logistic model was the best mathematical model of human adult
mortality, even better then the popular Makeham�Gompertz model.
The logistic force of mortality is a function of age x and can be written
as

µ(x) =
aebx

1 + aebx
, x ≥ 0. (1.4.11)
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Many studies deal with modeling of survival distributions, including
the force of mortality, be means of parametric distributions, for in-
stance the gamma, generalized gamma, log-gamma, log-normal distri-
butions [Stacy 1962, Proschan 1963, Stacy,Mihram1965, Harter 1967,
Prentice 1974, DiCiccio 1987, Gupta et al. 1997] or the Pareto dis-
tribution [Quandt 1966, Malik 1970, Arnold 1983, Arnold, Press 1989,
Brazauskas, Ser�ing 2000, 2001, Wu 2003].

Other classes of distributions that are considered are those with
a non-monotonic force of mortality, including a quadratic function
or, more generally, a polynomial or a bathtub function [Krane 1963,
Kodlin 1967, Polovko 1968, Bain 1974, Hjorth 1980, Chen 2000].

In the 1960s, parametric regression models of the force of morta-
lity were proposed, which assumed a multiplicative dependence of
this function on the so-called base hazard and a set of risk factors
[Feigl, Zelen 1965, Galsser 1967, Zippin, Armitage 1966].

Such models paved the way for the popular Cox semi-parametric
model. Hazard estimation in these models boils down to the estima-
tion of the base hazard and the regression coe�cients of explanatory
variables.

The Cox model is semi-parametric model, because it accepts any
form of the base hazard function as a function of age and the parametric
speci�cation of the function of risk factors. If the explanatory variables
are not time-dependent and the base hazard function is the same for
all individuals in the population, the Cox model is called a model of
proportional hazards. Its parameters are estimated by maximizing the
so-called partial likelihood function [Cox 1972, Cox 1975].

An alternative to the multiplicative regression models of the force of
mortality is additive regression models and proportional odds models
[Bennett 1983, Pettitt 1984, Hu�er, McKeague 1991, Lin 1991].

Other well-known models are of non-parametric kind, such as the
Kaplan�Meier survival model or the Nelson�Aalen model of the cumu-
lative force of mortality [Kaplan,Meier 1958, Nelson 1969, Aalen 1978].

Models described in this section belong to the group of models, i.e.
the parameters are assumed to be constant over time. However, the
actual mortality evolves continuously, therefore it seems justi�ed to
re�t parameters in such models periodically to accommodate changes
in mortality patterns.
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1.5. The Lee�Carter model and its extensions

Long-term observations have shown signi�cant improvements in
mortality caused by di�erent driving factors (e.g. medical advances,
nutrition improvement, lifestyle changes), especially for older ages. For
instance, it follows from the observation of mortality rates in developed
countries that they are declining in time, while expected lifetimes are
rising. Other general characteristics also change in time, e.g. the domi-
nant lifetime (mode), the average age at death, or the maximal age at
death. Thus, mortality pro�les evolve in two main dimensions: age
and time. However, some accidental shocks caused by war or natural
disasters etc. can also appear.

The common features of mortality behavior that have been ob-
served in developed countries since the second half of the 20th c. can be
summed up as follows [Wilmoth, Horiuchi 1999, Vaupel et al. 2011]:

� mortality rates are falling at all ages,

� rate of decrease in mortality varies over time and by age group,

� the dominant lifetime (mode), the average age at death as well as
the maximal age at death shift to the right, toward older ages,

� ages at death concentrating around the mode,

� the survival curve undergoing expansion and rectangularization
(because of the aforementioned trends),

� life expectancy increases and life disparity decreases,

� levels of accidental deaths from external causes (injuries, accidents,
poisoning) in the young population are rising, especially among
young males aged 20+ years, with corresponding larger dispersion.

The observed two-dimensional evolution implies the use of mo-
dels exhibiting both the age-period and stochastic nature of morta-
lity. Some works on this subject have used for instance the time-series
analysis to capture the general trend of mortality and its stochastic
uncertainty. Nowadays, one of the most popular models of this type is
the Lee�Carter model [Lee, Carter 1992]. Further, it will be termed as
the Standard Lee�Carter model (SLC model).

In addition to static approaches presented in the previous sections,
in the remainder of this chapter we review basic mortality models, both
in discrete and continuous time.
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Some sophisticated stochastic models can be performed in a frame-
work of stochastic di�erential equations. Models based on such equa-
tions will be termed dynamic models or dynamic systems. In the
dynamic context, force of mortality µx(t) is treated as a mortality
intensity process and is derived as a solution of stochastic di�erential
equations.

The representatives of this category of models are the Vasi£ek and
Cox�Ingersoll�Ross models [Vasi£ek 1977, Cox et al. 1985a, 1985b], the
dynamic Lee�Carter model [Rossa, Socha 2013], the Milevsky�Promis-
low model [Milevsky, Promislow 2001] as well as the Giacometti�Orto-
belli�Bertocchi model [Giacometti et al. 2011]. The models are intro-
duced in Sections 1.6�1.11.

1.5.1. The Lee�Carter model

Let mx,t be a central age-speci�c death rate for exact ages between
x and x+ 1 registered for calendar year t

mx,t =
Dx,t

L̄x,t
, (1.5.1)

where
Dx,t � number of deaths between ages x and x+ 1 in year t,
L̄x,t � midyear population alive at the age x in year t,
x = 0, 1, . . . , X � subscripts denoting one-year age groups,
t = 1, 2, . . . , T � subscripts denoting calendar years.

The age-speci�c mortality rate mx,t is constructed as a ratio of
deaths between ages x and x + 1 to the midyear population alive at
age x in year t, which is also referred to as the mean population in year
t. Because of the midyear population being used in the denominator,
(1.5.1) is described also as the central death rate.

The Lee�Carter model [Lee, Carter 1992] for the log-central death
rates can be written as

lnmx,t = αx + βxκt + εx,t, (1.5.2)

or, equivalently, as

mx,t = exp {αx + βxκt + εx,t}, (1.5.3)

where αx, βx (x = 0, 1, . . . , X) and κt (t = 1, 2, . . . , T ) are the unknown
parameters and the double-indexed terms εx,t are independent random
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variables, which are assumed to have the same normal distribution
with mean E[εx,t] = 0 and constant variance Var[εx,t] = σ2.

The system of equations (1.5.2) or (1.5.3) cannot be explicitly
solved unless normalizing constraints are imposed. Indeed, let us as-
sume for instance that the model (1.5.2) is valid for a set of parameters

{αx, βx, κt}, (1.5.4)

It is easy to see that the model holds true also for any constant c and
parameters

{αx − cβx, βx, κt + c}, or {αx, cβx, κt/c}. (1.5.5)

Thus for full model identi�cation, additional constraints are im-
posed. Lee and Carter assumed that the sum of parameters βx is 1
and the sum of parameters κt is 0, i.e.

X∑
x=0

βx = 1 (1.5.6)

and
T∑
t=1

κt = 0. (1.5.7)

The age-related e�ects αx indicate the age pro�le of mortality, the
time-related e�ects κt describe the general mortality trend, whereas
βx describe patterns of deviations from the age pro�le in response to
change of the general trend.

It is worth noting that βx could be negative at some ages, indicating
that log-central mortality rates lnmx,t at those ages tend to rise when
falling at other ages. In other words, parameters βx tell which rates
decline rapidly and which slowly over time in response to change of κt.

Parameters αx and βx do not depend on time t, meaning that after
they have been derived they can also be used to forecast mx,t for future
periods t > T .

The time-related e�ects are κt. They can be modeled and pre-
dicted using, for instance, the time-series analysis. Lee and Carter
applied a random walk model with a drift to �nd predicted κ̃t for
t > T , but the range of proposals discussed in the literature is wider
[Nielsen, Nielsen 2010].
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A random walk process with a drift is given by the formula

κt = δ + κt−1 + ξt, t ∈ N, (1.5.8)

where δ is a constant (a drift) and ξt are random terms.

Parameter δ in (1.5.8) usually takes negative values showing that
mortality is declining. Random �uctuations are represented by inde-
pendent random terms ξt, each having the normal distribution with
mean 0 and �nite variance σ2

ξt
.

With the predicted values κ̃t obtained from (1.5.8) for t > T and
the estimates ax, bx of parameters αx, βx, respectively, mortality rates
mx,t can be predicted according to the formula

m̃x,t = exp{α̂x + β̂xκ̃t}, (1.5.9)

where m̃x,t denote forecasts of mx,t for t > T .

The original approach used by Lee and Carter to estimate model's
parameters βx and κt is via Singular Value Decomposition (SVD) (a re-
view of the SVD history was given by [Steward 1993]). This method
was further developed by [Wilmoth 1993] as weighted SVD.

The SVD method allows decomposing any m × n matrix W into
a matrix of singular values D and two matrices U and V of the left
and right singular vectors, i.e.

W = UDVT. (1.5.10)

Matrix D takes the form

D =

 Σr×r 0r×(n−r)

0(m−r)×r 0(m−r)×(n−r)

, (1.5.11)

where

Σr×r =


d1 0 . . . 0
0 d2 . . . 0
. . . . . . . . . . . .
0 0 . . . dr

 (1.5.12)

and r denotes the number of positive singular values d1, d2, . . . , dr.

Singular values di are calculated as the square roots of the eigen-
values of matrix WTW, and the orthogonal matrix V consists of the
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right singular column vectors [v1,v2, . . . ,vn], derived as the eigenvec-
tors of the square matrix YTY. The orthogonal matrix U consists
of the left singular vectors [u1,u2, . . . ,um], where ui = 1

di
Wvi for

i = 1, 2, . . . , r.
It follows from (1.5.10) that each element wx,t of W can be repre-

sented by the following sum

wx,t =
r∑
i=1

diux,ivt,i, (1.5.13)

where
ux,i � x-th element of the i-th left column vector of U,
vt,i � t-th element of the i-th right column vector of V,
di � i-th singular value of W,

and ∑
t

vt,i = 0, for i = 1, 2, . . . , r. (1.5.14)

To express (1.5.13) in terms of the Lee-Carter model, let elements
wx,t be de�ned as

wx,t = lnmx,t − αx. (1.5.15)

From (1.5.13) we have

lnmx,t − αx =
r∑
i=1

diux,ivt,i, (1.5.16)

or equivalently

lnmx,t = αx +
r∑
i=1

diux,ivt,i. (1.5.17)

Denoting

β(i)
x =

ux,i∑X
x=0 ux,i

, κ
(i)
t = divt,i

X∑
x=0

ux,i, (1.5.18)

equality (1.5.13) reduces to the following one

lnmx,t = αx +
r∑
i=1

β(i)
x κ

(i)
t , (1.5.19)

where superscript (i) refers to the i-th singular value and to the i-th
left and right singular vectors.
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Let us reduce the number of components of the sum in (1.5.19) to
the �rst one and let us replace the remaining components by εx,t. For
simplicity, we will denote β(1)

x , κ
(1)
t as βx, κt, respectively. Thus, we

have

βx =
ux,1∑X
x=0 ux,1

, κt = d1vt,1

X∑
x=0

ux,1. (1.5.20)

We get from (1.5.19)

lnmx,t = αx + βxκt + εx,t, (1.5.21)

where
X∑
x=0

βx = 1,
T∑
t=1

κt = 0. (1.5.22)

It is worth noting that such an approach assumes homoscedasticity
of residuals εx,t, i.e. it is assumed that the variance of εx,t is constant
across age x and time t.

In order to determine αx, we refer to the assumption that random
terms εx,t have expectation 0, i.e.

E[εx,t] = 0. (1.5.23)

It means that the following equality holds, i.e.

T∑
t=1

[lnmx,t − (α+βxκt)] = 0. (1.5.24)

After simple transformations we get

Tαx + βx

T∑
t=1

κt =
T∑
t=1

lnmx,t. (1.5.25)

Because of the constraint (1.5.7), equality (1.5.25) can be reduced to

αx =
1

T

T∑
t=1

lnmx,t. (1.5.26)

Expressions (1.5.20) and (1.5.26) can be used to de�ne estimators
ax, bx, kt of parameters αxβx, κt of the SLC model by taking the �rst
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singular value as well as the �rst right and left singular vectors of the
matrix W = [lnmx,t − ax], where ax for x = 0, 1, . . . , X represent
arithmetic averages of log-central death rates in rows of the sample
matrix M = [lnmx,t]X+1×T .

Lee and Carter suggested, that after the parameters κt have been
estimated, they can be re-estimated using a di�erent criterion. Howe-
ver, we will skip this re-estimation stage, since it is not a de�ning
feature of this method.

Another well-known method of parameters' estimation is via maxi-
mum likelihood, assuming the Poisson distribution of the number of
deaths [Brouhns et al. 2002].

For constant mortality rates in age intervals [x, x + 1), number of
deaths Dx,t can be treated as independent random variables with the
Poisson distribution, i.e.

Dx,t ∼ Poisson(λx,t), x = 0, 1, . . . , X, t = 1, 2, . . . , T, (1.5.27)

where λx,t = Kx,tmx,t represents one parameter of the Poisson distri-
bution, Kx,t is time-to-exposure in age group [x, x+ 1) and mx,t is the
age-speci�c central mortality rate.

The estimators of αx, βx, κt are then derived by means of the maxi-
mum likelihood method, where the likelihood function is de�ned as

L(αx, βx, κt|Dx,t, Kx,t) =
X∏
x=0

T∏
t=1

e−Kx,tmx,t
(Kx,tmx,t)

Dx,t

Dx,t!
. (1.5.28)

The logarithm of (1.5.28) can be expressed as

lnL(αx, βx, κt|Dx,t, Kx,t)=
X∑
x=0

T∑
t=1

Dx,t lnmx,t−Kx,tmx,t+C, (1.5.29)

where
C = Dx,t lnKx,t − ln(Dx,t!). (1.5.30)

Let us assume that (1.5.2) and (1.5.3) hold. Then (1.5.29) can be
written as

lnL(αx,βx, κt|Dx,t,Kx,t) =

=
X∑
x=0

T∑
t=1

Dx,t (αx + βxκt)−Kx,t exp{αx + βxκt}+ C,

(1.5.31)
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where C is de�ned in (1.5.30). Note that C is independent on the
estimated parameters.

Estimators are de�ned as such values of αx, βx, κt for which func-
tion (1.5.31) reaches maximum. The maximum is found by means of
iterative algorithms [Brouhns et al. 2002].

1.5.2. Age-period-cohort modi�cations

The SLC model (1.5.2) has been frequently modi�ed by di�erent
authors mainly by allowing successive extensions of the right-hand side
of (1.5.17) [Renshaw,Haberman 2003a, 2003b, 2006, Currie 2006].

Some authors have considered extrapolative models by substituting
the so-called logits of death probabilities qx,t for the log-central death
rates lnmx,t [Cairns et al. 2006, 2009].

The qx,t logit can be de�ned as

ηx,t ≡ logit qx,t = ln
qx,t

1− qx,t
, (1.5.32)

where qx,t is the probability of death during one year for individuals
aged x last birthday in the calendar year t.

Betweenmx,t and qx,t there is a general relation (1.2.11). Depending
on the assumed interpolation model (Section 1.2.3), the relation can
be reduced to (1.2.21) or (1.2.42), i.e.

qx,t =
2mx,t

2 +mx,t

, (1.5.33)

or

qx,t = 1− exp{−mx,t}. (1.5.34)

Some extensions of the SLC model take also into account of the
so-called cohort-related e�ects γt−x, which are functions of the year of
birth of persons aged x.

The reason for adding γt−x is that cohorts may di�er in terms of
the course and pace of changes in mortality. The sub-index t − x of
the cohort parameter γt−x stands for the year in which the cohort was
born.
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Several models for logmx,t or ηx,t, incorporating age- and time-rela-
ted e�ects as well as cohort e�ects, are discussed in [Cairns et al. 2006,
2009, Van Berkum et al. 2013] as listed below in (1.5.35).

M1 : logmx,t = αx + β(1)
x κ

(1)
t ,

M2 : logmx,t = αx + β(1)
x κ

(1)
t + β(2)

x γt−x,

M3 : logmx,t = αx + κ
(1)
t + γt−x,

M4 : logmx,t =
∑
i,j

θijB
ay
ij (x, t),

M5 : ηx,t = κ
(1)
t + κ

(2)
t (x− x̄),

M6 : ηx,t = κ
(1)
t + κ

(2)
t (x− x̄) + γt−x,

M7 : ηx,t = κ
(1)
t + κ

(2)
t (x− x̄) + κ

(3)
t ((x− x̄)2 − σ2

x) + γt−x,

M8 : ηx,t = κ
(1)
t + κ

(2)
t (x− x̄) + γt−x(xc − x),

(1.5.35)

where
αx and β

(i)
x represent the age-related e�ects,

κ
(i)
t are the time-related e�ects,
γc serve for the cohort-related e�ects, with c = t− x,
x̄ and σ2

x are, respectively, average age and its variance in the age
group under consideration, i.e.

x̄ =
1

n

xn∑
x=x1

x, σ2
x =

1

n

xn∑
x=x1

(x− x̄)2, (1.5.36)

x1 is the youngest and xn the oldest age included in the data set,
xc is a given constant adjusted to the age range [x1, xn],
Bay
ij (x, t) denote the splines and θij are their weights.

Which model is selected depends on our knowledge and beliefs
about the mortality behavior in a given population. Let us notice
that M1 represents simply the SLC model and M2 is its generaliza-
tion [Renshaw,Haberman 2003a, 2003b, 2006], as it additionally takes
account of cohort e�ects. Both models are equivalent for γt−x = 0.

Since M2 shares the identi�ability problem like M1 does, additional
constraints are imposed∑

x

β(i)
x = 1, i = 1, 2,

∑
t

κ
(1)
t = 0,

∑
c∈C

γc = 0, (1.5.37)
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where c = t − x and C is the set of years in which the analyzed
generations were born.

From the second and third constraints it follows that αx present in
the model M2 are the arithmetic averages of the log-central death rates.
The other parameters can be estimated using an iterative method [Ren-
shaw 2006].

Model M3 is a special case of M2, when β
(1)
x = β

(2)
x = 1. In this

model additional constraints are imposed, i.e.∑
t

κ
(1)
t = 0,

∑
c∈C

γc = 0. (1.5.38)

Model M4 assumes that there exists some surface re�ecting smooth
arrangement of log-central death rates in two dimensions: age x and
time t. This approach is basically di�erent from that used in models
M1�M3, which do not assume smooth transition of mortality rates
between age groups and calendar years, but rather jumping changes
arising from casual factors.

A di�erent class of models is represented by models M5�M8, which
have logits (1.5.32) on the left-hand sides instead of the log-central
death rates. We will call them the logit mortality models. In such
models analogous parameters are used as in M1�M4 to represent the
e�ects of age, time and cohort. The simplest one is M5 with two
parameters κ(1)

t , κ
(2)
t and without any additional constraints.

The other three models, M6�M8, are the extended versions of M5
that incorporate cohort-related e�ects. However, because of the iden-
ti�ability problem additional constraints have to be imposed on these
parameters. In the case of M6, the constraints have the following form∑

c∈C

γc = 0,
∑
c∈C

cγc = 0, (1.5.39)

where c = t − x and C is the set of years in which the analyzed
generations were born.

Constraints (1.5.39) follow from the following reasoning. If we use
the least squares method to �t linear function φ1 + φ2c to γc, then the
�tted function should by identically equal to zero, what means that
both scalars φ1, φ2 should satisfy equalities

φ1 = φ2 = 0. (1.5.40)
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This requires constraints (1.5.39) to ensure that equalities (1.5.40)
hold. It follows from these constraints that estimates of γc will be
centered around zero and there will be no constant trend up or down.

In M7 a quadratic term to the age e�ect is added inspired by the
possible curvature identi�ed in the plot of the qx,t logits. Therefore,
three constraints are imposed on the cohort e�ects∑

c∈C

γc = 0,
∑
c∈C

cγc = 0,
∑
c∈C

c2γc = 0. (1.5.41)

Constraints (1.5.41) enforce a quadratic function φ1 + φ2c + φ3c
2

�tted to γc to be identically equal to zero, what ensures that scalars
φ1, φ2, φ3 satisfy equalities

φ1 = φ2 = φ3 = 0, (1.5.42)

what allows to obtain estimates of γc �uctuating around zero with no
trend up or down and no systematic curvature [Cairns et al. 2006, 2009].

In M8 one simple constraint imposed on cohort e�ects is assumed∑
c∈C

γc = 0. (1.5.43)

The comparative study of the logit mortality models is presented
more at length in [Haberman, Renshaw 2008, 2011], where the follo-
wing models are investigated:

LC : ηx,t=αx + β(1)
x κ

(1)
t ,

H1 : ηx,t=αx + β(1)
x κ

(1)
t + γt−x,

M : ηx,t=αx + β(1)
x κ

(1)
t + β(2)

x γt−x,

LC2 : ηx,t=αx + β(1)
x κ

(1)
t + β(2)

x κ
(2)
t ,

M5 : ηx,t=κ
(1)
t + κ

(2)
t (x− x̄),

M6 : ηx,t=κ
(1)
t + κ

(2)
t (x− x̄) + γt−x,

M7 : ηx,t=κ
(1)
t + κ

(2)
t (x− x̄) + κ

(3)
t vx + γt−x,

M8 : ηx,t=κ
(1)
t + κ

(2)
t (x− x̄) + γt−x(xc − x),

M5∗ : ηx,t=αx + κ
(1)
t +κ

(2)
t (x−x̄)+κ

(3)
t (x̄−x)+,

M6∗ : ηx,t=αx + κ
(1)
t +κ

(2)
t (x−x̄)+κ

(3)
t (x̄−x)+ + γt−x,

M7∗ : ηx,t=αx+κ
(1)
t +κ

(2)
t (x−x̄)+κ

(3)
t (x̄−x)++κ

(4)
t vx+γt−x,

M8∗ : ηx,t=αx+κ
(1)
t +κ

(2)
t (x−x̄)+κ

(3)
t (x̄−x)++γt−x(xc−x),

(1.5.44)
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where
αx, β

(i)
x are the age-related e�ects,

κ
(i)
t are the time-related e�ects,
γt−x are the cohort-related e�ects,
xc is a constant parameter,
x̄ and σ2

x are, respectively, average age and age variance in the
analyzed data set de�ned in (1.5.36),
vx are coe�cients expressed as vx = (x− x̄)2 − σ2

x.

Components
(x̄− x)+ = max(x̄− x, 0) (1.5.45)

are included in the group of models M5*�M8* because of additional
parameters κ(3)

t representing higher level of mortality in young age
groups, i.e. for x < x̄.

Parameters of models (1.5.44) are estimated by means of iterative
methods [Haberman, Renshaw 2008, 2011].

The generalized family of the above models can be given by the
following one

ηx,t=αx+κ
(1)
t +(x−x̄)κ

(2)
t +(xc−x)+κ

(3)
t +vxκ

(4)
t +(xc−x)γt−x, (1.5.46)

which serves as the generalization of M7* and M8*.

1.5.3. The fuzzy Lee�Carter model

One of the most interesting extensions of the SLC model was pro-
posed by [Koissi, Shapiro 2006]. In their version of the SLC model �
called the fuzzy Lee�Carter model (FLC model) or the Koissi�Shapiro
model � fuzzy representation of the mortality data is assumed. This
concept allows taking account of uncertainty involved in mortality and
including random terms into the fuzzy structure of the model. Their
approach builds on the assumption that exact mortality rates are usu-
ally not known, therefore fuzzi�ed mortality data should be used.

It is well-known that death statistics are subject to reporting errors
of several kinds. They may be reported for incorrect year, area, or
assigned statistics that are incorrect, e.g. age. Moreover, the midyear
population data that often serve as the denominators of mortality rates
are also the subject of errors. It is regarded as the population at July
1 and is assumed to be the point at which half of the deaths in the
population during the year have occurred. Such an estimate can be
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actually underestimated or overestimated. For these reasons, mortali-
ty rates cannot be exactly determined and their fuzzy representation
seems to be justi�ed.

[Koissi, Shapiro 2006] created fuzzy death rates Yx,t by converting
log-central mortality rates yx,t = lnmx,t into symmetric, triangular
fuzzy numbers Yx,t expressed by ordered pairs (yx,t, ex,t), i.e.

Yx,t = (yx,t, ex,t), x = 0, 1, . . . , X, t = 1, 2, . . . , T, (1.5.47)

where yx,t = lnmx,t and ex,t are the so-called central values and spreads,
respectively (basic notions relating to fuzzy numbers are provided in
Chapter 4, see especially De�nition 4.3 and De�nition 4.4).

This approach supports the structure of the FLC model, where
the role of the explanatory variable is played by the fuzzy log-central
mortality rates (1.5.47).

The FLC model is then de�ned as

Yx,t = Ax ⊕ (Bx �Kt), x = 0, 1, . . . , X, t = 1, 2, . . . , T, (1.5.48)

where Ax = (αx, sAx), Bx = (βx, sBx), Kt = (κx, sKt) are fuzzy trian-
gular symmetric numbers with central values αx, βx, κx and spreads
sAx , sBx , sKx , respectively, representing unknown parameters and ⊕, �
are the addition and multiplication operators of fuzzy numbers (De�-
nition 4.6).

Koissi and Shapiro assumed that the parameters of the FLC model
be estimated minimizing a criterion function based on the Diamond
distance (De�nition 4.8). The components S1, S2 of the criterion S =
S1 + S2 can be written as follows

S1(αx, βx, κt)=
X∑
x=0

T∑
t=1

[
3α2

x+3(βxκt)
2+3y2

x,t+6αxβxκt

−4αxyx,t−4βxκtyx,t+2e2
x,t

]
,

S2(βx, κt, sAx, sBx, sKt)= 2
X∑
x=0

T∑
t=1

[
(max{sAx, |βx|sKt, |κt|sBx})2

−2ex,t max{sAx , |βx|sKt , |κt|sBx}].

(1.5.49)
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However, the FLC model poses a major problem in estimation of
parameters, since the expression max{sAx , |βx|sKt , |κt|sBx} appearing
in S2 prevents the use of standard non-linear optimization methods.
In Chapters 4 and 5, new fuzzy mortality models simplifying the esti-
mation procedure are proposed.

1.6. The dynamic Lee�Carter model

In contrast to the SLC model, [Rossa, Socha 2013] proposed the
dynamic dynamic Lee�Carter models described by means of the Itô
stochastic di�erential equations. Both models are discussed in this
section.

1.6.1. Dynamic LC model

In the Dynamic Lee�Carter model (DLC model) the force of mor-
tality µx(t) is expressed as

dµx(t) =

(
γx(t) +

1

2
σ2
x

)
µx(t)dt+ σxµx(t)dw(t), t ∈ R+, (1.6.1)

γx(t) = βxκ
′(t), µx(t0) = eαx+βxκ(t0), (1.6.2)

where
αx, βx are age-related scalar coe�cients,

κ(t) is a scalar, di�erentiable, deterministic function of time t, with
an initial value κ(t0),

σx > 0 are age-speci�c volatility parameters,

w(t) is a standard Wiener process.

The solution of (1.6.1)�(1.6.2) follows from the Itô formula (The-
orem A.7, formula (A.2.21) in Appendix A). It takes the form

lnµx(t) = αx + βxκ(t) + σxw(t), (1.6.3)

or, equivalently

µx(t) = exp {αx + βxκ(t) + σxw(t)}. (1.6.4)
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This model structurally resembles the SLC model (see (1.5.2) or
(1.5.3)), but di�ers from it in the properties of random terms.

Let us assume a linear form of function κ(t)

κ(t) = χ+ δt, (1.6.5)

such that ∫ t1

t0

κ(t)dt = 0, (1.6.6)

where [t0, t1] represents the interval of observation period.

Additionally, for full model identi�cation the following constraint
is imposed

X∑
x=0

βx = 1. (1.6.7)

Then (1.6.3) is written as

lnµx(t) = αx + βx(χ+ δt) + σxw(t). (1.6.8)

1.6.2. Discrete dynamic LC model

The Discrete Dynamic Lee�Carter model (DDLC model) can be
derived for t∈N by subtracting lnµx(t) from lnµx(t+1), where lnµx(t)
is de�ned in (1.6.8). As a result, we have

lnµx(t+ 1) = lnµx(t) + βxδ + σxεx,t+1, t ∈ N, (1.6.9)

or, substituting ξx,t+1 for σxεx,t+1, we also have

lnµx(t+ 1) = lnµx(t) + βxδ + ξx,t+1, t ∈ N, (1.6.10)

subject to constraints (1.6.5)�(1.6.7).

Terms ξx,t+1 are Gaussian random variables with mean E[ξx,t+1] and
variance Var[ξx,t+1] equal, respectively,

E[ξx,t+1] = 0, Var[ξx,t+1] = E[ξ2
x,t+1] = σ2

x. (1.6.11)

Note that it follows from (1.6.10) that

ξx,t+1 = lnµx(t+ 1)− lnµx(t)− βxδ. (1.6.12)
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1.6.3. Parameters' estimation of the dynamic LC model

Let us consider the discrete dynamic LC model (1.6.10) subject to
constraints (1.6.5)�(1.6.7). Let us denote by ax, bx, s2

x, d, c estimators
of parameters αx, βx, σ2

x, δ, χ, respectively.

The model's parameters can be estimated using the method of mo-
ments. The �rst and the second raw moments of random term (1.6.12)
are given in (1.6.11). We will consider the following two moments

E [lnµx(t+ 1)− lnµx(t)− βxδ] ,

E
[
(lnµx(t+ 1)− lnµx(t)− βxδ)2 − σ2

x

]
.

(1.6.13)

Note that the moments are de�ned so that both are equal 0. Equa-
ling analogous sample moments to 0 we obtain moment equations from
which estimators bx and s2

x can be determined. The sample moment
equations are as follows

1
t1−t0

∑t1−1
t=t0

[lnmx,t+1 − lnmx,t − bxd] = 0,

1
t1−t0

∑t1−1
t=t0

[
(lnmx,t+1 − lnmx,t − bxd)2 − s2

x

]
= 0,

(1.6.14)

where lnmx,t are log-central death rates from a sample time series
{lnmx,t, t = t0, t0 + 1, . . . , t1}.

From the �rst moment equation of (1.6.14) we receive

bx =
lnmx,t1 − lnmx,t0

d(t1 − t0)
, x = 0, 1, . . . , X, (1.6.15)

while from the second moment equation there is

s2
x =

1

t1 − t0

t1−1∑
t=t0

(lnmx,t+1−lnmx,t−bxd)2, x = 0, 1, . . . , X. (1.6.16)

Moreover, the following equality holds

X∑
x=0

t1−1∑
t=t0

(lnmx,t+1 − lnmx,t − bxd) = 0. (1.6.17)
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Thus, allowing for condition (1.6.7) we get from (1.6.17)

d =
1

t1 − t0

X∑
x=0

(lnmx,t1 − lnmx,t0). (1.6.18)

Let us denote vx,t = lnmx,t+1 − lnmx,t, then estimators d, bx and
s2
x can be expressed as

d =
X∑
x=0

v̄x, (1.6.19)

bx =
v̄x
d

=
v̄x∑X
x=0 v̄x

, (1.6.20)

s2
x =

1

t1 − t0

t1−1∑
t=t0

(vx,t − v̄x)2 , (1.6.21)

where x = 0, 1, . . . , X and v̄x is an average value of vx,t0 , . . . , vx,t1−1.

Parameter χ is determined by relations (1.6.5)�(1.6.6). We have

χ = −δ(t0 + t1)

2
, (1.6.22)

thus estimator c of χ takes the form

c = −d(t0 + t1)

2
. (1.6.23)

In order to �nd estimator ax of αx, the method of moments is used
again. Since from (1.6.8) we get

E [lnµx(t)− αx − βx(χ+ tδ)] = 0, (1.6.24)

therefore ax will be derived from the equation

t1∑
t=t0

[lnmx,t − ax − bx(c+ td)] = 0. (1.6.25)

After simple transformations and using formula (1.6.23), we arrive at

ax =
1

t1 − t0 + 1

t1∑
t=t0

lnmx,t, x = 0, 1, . . . , X. (1.6.26)

If the observation period is [1, T ] then t0 = 1 and t1 = T in the
above formulas.
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1.7. The Vasi£ek and Cox�Ingersoll�Ross models

Vasi£ek [Vasi£ek 1977] and Cox, Ingersoll, Ross [Cox et al. 1985a,
1985b] considered dynamic models for the risk-free spot interest rate.
However, it is recognized that the spot interest rate and the force
of mortality have nearly identical representations, although there are
also some important di�erences (see e.g. [Milevsky, Promislow 2001,
Dahl 2004]). For instance, mortality rates are assumed to be positive
and show non-mean reversion property.

In this section we present the Vasi£ek and Cox�Ingersoll�Ross mo-
dels de�ned for the force of mortality µx(t).

1.7.1. V and CIR models

The Vasi£ek model (V model) takes the form of the Itô scalar
stochastic di�erential equation

dµx(t) = κx (θx − µx(t)) dt+ σxdw(t), t ∈ R+, (1.7.1)

and the Cox�Ingersoll�Ross model (CIR model) can be written as

dµx(t) = κx (θx − µx(t)) dt+ σx
√
µx(t)dw(t), t ∈ R+, (1.7.2)

where σx, θx, κx > 0 are constant parameters and w(t) is a standard
Wiener process.

In the case of the V model one can �nd the analytical solution. Let
us introduce the following function

K(t, µx(t)) = eκxt(µx(t)− θx). (1.7.3)

Using the Itô formula (see Theorem A.7, formula (A.2.21) in Appendix
A), we have

dK =
∂K

∂t
dt+

∂K

∂µx
dµx +

1

2

∂2K

∂µ2
x

dµ2
x + . . . (1.7.4)

If we substitute (1.7.1) for dµx(t) in (1.7.4), then we receive

dK =
∂K

∂t
dt+

∂K

∂µx
[κx (θx − µx(t)) dt+

+ σxdw(t)] +
1

2

∂2K

∂µ2
x

dµ2
x + . . .

(1.7.5)
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From (1.7.3) we have

∂K

∂t
= κxe

κxt(µx(t)−θx),
∂K

∂µx
= eκxt,

∂2K

∂µ2
x

= 0. (1.7.6)

Then (1.7.4) takes the form

dK = eκxtκx(µx(t)− θx)dt+ eκxtκx (θx − µx(t)) dt+

+ eκxtσxdw(t) = eκxtσxdw(t).

(1.7.7)

After integration of (1.7.7) between times t0 and t, we arrive at

K(t, µx(t)) = K(t0, µx(t0)) + σx

∫ t

t0

eκxsdw(s), (1.7.8)

what leads to the following solution of the stochastic di�erential equa-
tion (1.7.1)

µx(t) = µx(t0)e−κx(t−t0) + θx
(
1− e−κx(t−t0)

)
+

+σxe
−κxt

∫ t

t0

eκxsdw(s).

(1.7.9)

In the case of the Cox�Ingersoll�Ross model, application of the Itô
formula leads to the equality

µx(t) =µx(t0)e−κx(t−t0) + θx
(
1− e−κx(t−t0)

)
+

+σxe
−κxt

∫ t

t0

√
µx(s)e

κxsdw(s).

(1.7.10)

It indicates that the CIR model is described by a non-linear stochas-
tic di�erential equation and the solution cannot be found in an explicit
form as it is possible for the Vasi£ek model.

The drawback of the Vasi£ek model (1.7.1) is that it can yield the
negative values of µx(t). In the CIR model (1.7.2) the di�usion function
σ2
xµx(t) is proportional to µx(t) what ensures that the process stays on

a positive domain.
A general form of both models can be written as

dµx(t) = κx (θx − µx(t)) dt+ σxµ
γx
x (t)dw(t), t ∈ R+. (1.7.11)

For the Vasi£ek model we have γx = 0 and for the CIR model γx = 1
2
.



55

1.7.2. Discrete V and CIR models

The Discrete Vasi£ek model (DV model) comes down to the follo-
wing approximation

µx(t+ 1) = κxθx + (1− κx)µx(t) + σxεx,t+1, t ∈ N. (1.7.12)

From (1.7.12) it follows that the value of µx(t+ 1) is the weighted
average of µx(t) in the period preceding t + 1 and of the long-term
average θx. From (1.7.12) we have also

ξx,t+1 = µx(t+ 1)− µx(t)− κx (θx − µx(t)) , t ∈ N, (1.7.13)

where ξx,t+1 = σxεx,t+1 are Gaussian random variables with means and
variances equal E[ξx,t+1] = 0 and Var[ξx,t+1] = σ2

x.

By analogy, the Discrete Cox�Ingersoll�Ross model (DCIR model)
takes the form

µx(t+ 1) = κxθx + (1− κx)µx(t) + σx
√
µx(t)εx,t+1, t ∈ N. (1.7.14)

It follows from (1.7.14) that

ξx,t+1 = µx(t+ 1)− µx(t)− κx (θx − µx(t)) , t ∈ N, (1.7.15)

where ξx,t+1 = σx
√
µx(t)εx,t+1 are random variables with means and

conditional variances equal E[ξx,t+1]=0 and Var[ξx,t+1|µx(t)]=σ2
xµx(t),

respectively.

With the discrete-time version of (1.7.11), the following expression
is obtained

µx(t+ 1) = κxθx + (1− κx)µx(t) + σxµ
γx
x (t)εx,t+1, t ∈ N, (1.7.16)

where ξx,t+1 = σxµ
γx
x (t)εx,t+1 are random variables with with means

and conditional variances equal E[ξx,t+1] = 0 and Var[ξx,t+1|µx(t)] =
σ2
xµ

2γx
x (t).

1.7.3. Modi�ed V and CIR models

If we substitute a non-linear di�erentiable function fx(t) for the
scalar parameter σx in the Vasi£ek and Cox�Ingersoll�Ross models
(1.7.1) and (1.7.2), respectively, then we obtain modi�ed dynamic mo-
dels, hereafter termed as the Modi�ed Vasi£ek model (MV model) and
the Modi�ed Cox�Ingersoll�Ross model (MCIR model).
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Thus, the MV model can be expressed by means of the following
Itô stochastic di�erential equation

dµx(t) = κx (θx − µx(t)) dt+ fx(t)dw(t), t ∈ R+ (1.7.17)

and the MCIR model can be written as

dµx(t) = κx (θx − µx(t)) dt+ fx(t)
√
µx(t)dw(t) t ∈ R+, (1.7.18)

where θx, κx > 0 are constant parameters, fx(t) > 0 is a time-depen-
ding di�usion function and w(t) represents a standard Wiener process.

We will further assume that the di�usion function takes the form

fx(t) = eζxt, ζx ∈ R. (1.7.19)

Large positive values of the scalar ζx imply that the volatility of
the di�usion term can explode. On the contrary, negative values of ζx
indicate that volatility decreases exponentially.

Let us apply the Itô formula to the following function de�ned as in
(1.7.3)

K(t, µx(t)) = eκxt(µx(t)− θx). (1.7.20)

Similarly as solution (1.7.9) of the Vasi£ek model, the solution of
(1.7.17) is as follows

µx(t) =µx(t0)e−κx(t−t0) + θx
(
1− e−κx(t−t0)

)
+

+e−κxt
∫ t

t0

e(ζx+κx)sdw(s)

(1.7.21)

and for the MCIR model (1.7.18) we receive the following equation

µx(t) = µx(t0)e−κx(t−t0) + θx
(
1− e−κx(t−t0)

)
+

+ e−κxt
∫ t

t0

√
µx(s)e

(ζx+κx)sdw(s).

(1.7.22)
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1.7.4. Discrete modi�ed V and CIR models

The Discrete Modi�ed Vasi£ek model (DMV model) is of the form

µx(t+ 1) = κxθx + (1− κx)µx(t) + ξx,t+1, t ∈ N, (1.7.23)

where ξx,t+1 are Gaussian random variables with means E[ξx,t+1] = 0
and variances Var[ξx,t+1] = e2ζxt.

By analogy to (1.7.23), the Discrete Modi�ed Cox�Ingersoll�Ross
model (DMCIR model) can be expressed as

µx(t+ 1) = κxθx + (1− κx)µx(t) + ξx,t+1, t ∈ N, (1.7.24)

where ξx,t+1 are random variables with means E[ξx,t+1] = 0 and condi-
tional variances Var[ξx,t+1|µx(t)] = e2ζxtµx(t).

1.7.5. Parameters' estimation of the V and CIR models

Parameters θx, κx, σx of the DV model (1.7.12) or the DCIR model
(1.7.14) can be estimated using the generalized method of moments
(GMM) [Hansen 1982].

Let us note that both for the DV and DCIR model there is

E[ξx,t+1] = 0. (1.7.25)

Moreover, for the DV model we have

E[ξ2
x,t+1] = σ2

x. (1.7.26)

In the case of the DCIR model there is

E[ξ2
x,t+1|µx(t)] = σ2

xµx(t). (1.7.27)

Thus, employing properties (1.7.25)�(1.7.27) of respective random
terms (1.7.13) and (1.7.15) and assuming the orthogonality condition

E[ξx,t+1µx(t)] = 0, (1.7.28)

we can consider a set of three moments.

For the DV model the set of moments is as follows

E [µx(t+ 1)−µx(t)−κx (θx−µx(t))] ,

E
[
(µx(t+ 1)−µx(t)− κx (θx−µx(t)))2 − σ2

x

]
,

E [(µx(t+ 1)−µx(t)− κx (θx−µx(t)))µx(t)] .

(1.7.29)
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For the DCIR model the analogous set of moments takes the form

E [µx(t+ 1)−µx(t)−κx (θx−µx(t))] ,

E
[
(µx(t+1)−µx(t)− κx(θx−µx(t)))2−σ2

xµx(t)
]
,

E [(µx(t+ 1)−µx(t)− κx (θx−µx(t)))µx(t)] .

(1.7.30)

Note that the moments are de�ned so that they all are equal 0.

The sample moments corresponding with (1.7.29) can be written
as

g(κx, θx, σ
2
x) =

=


1

T−1

∑T−1
t=1 [mx,t+1−mx,t−κx (θx−mx,t)]

1
T−1

∑T−1
t=1

[
(mx,t+1−mx,t− κx(θx−mx,t))

2−σ2
x

]
1

T−1

∑T−1
t=1 [(mx,t+1−mx,t− κx (θx−mx,t))mx,t]


(1.7.31)

and the sample moments corresponding with (1.7.30) are

g(κx, θx, σ
2
x) =

=


1

T−1

∑T−1
t=1 [mx,t+1−mx,t−κx (θx−mx,t)]

1
T−1

∑T−1
t=1

[
(mx,t+1−mx,t− κx(θx−mx,t))

2−σ2
xmx,t

]
1

T−1

∑T−1
t=1 [(mx,t+1−mx,t− κx (θx−mx,t))mx,t]

,
(1.7.32)

wheremx,t are age-speci�c central death rates from a sample time series
{mx,t, t = 1, 2, . . . , T}.

The GMM estimators of κx, θx, σ2
x can be found by minimizing the

sum of squared sample moments, i.e. by solving the following opti-
mization problem

minimize S(κx, θx, σ
2
x) = gT (κx, θx, σ

2
x)g(κx, θx, σ

2
x) (1.7.33)

with respect to κx, θx, σ2
x.

In the case of the DMV model (1.7.23) or DMCIR model (1.7.24)
the unknown parameters are κx, θx, ζx. They can be estimated in a si-
milar way, i.e. by means of the generalized method of moments.
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1.8. The Milevsky�Promislow model

The range of mortality models based on the Itô stochastic di�eren-
tial equation includes a model proposed by [Milevsky, Promislow 2001].

1.8.1. MP model

In the Milevsky�Promislow approach, the force of mortality µx(t)
is de�ned as a stochastic process

µx(t) = µx0 exp{γxt+ qxz(t)}, t ∈ R+, γx, qx, µx0 > 0, (1.8.1)

where z(t) is expressed via the Itô stochastic di�erential equation

dz(t) = −βxz(t)dt+ dw(t), z(0) = 0, βx ≥ 0, (1.8.2)

with a scalar Wiener process w(t), t ∈ R+.

The model (1.8.1)�(1.8.2) will be called the Milevsky�Promislow
model (MP model).

It is worth noting that if βx = 0, then z(t) in (1.8.2) collapses to
w(t) and the process becomes a geometric Brownian motion. If βx > 0
then it is the Ornstein�Uhlenbeck process.

Similarly to the derivation presented in [Giacometti et al. 2011], we
introduce the twice-di�erentiable function

K(t, lnµx(t)) = lnµx(t). (1.8.3)

Thus, taking under account equation (1.8.1) we have also

K(t, lnµx(t)) = lnµx(t) = lnµx0 + γxt+ qxz(t). (1.8.4)

By applying the Itô formula (see (A.2.21) in Appendix A), we arrive
at

dK =
∂K

∂t
dt+

∂K

∂z
dz+

1

2

∂2K

∂z2
dz2 =

=
∂K

∂t
dt+

∂K

∂z
[−βxz(t)dt+dw(t)]+

1

2

∂2K

∂z2
dt =

=

[
∂K

∂t
−βxz(t)

∂K

∂z
+

1

2

∂2K

∂z2

]
dt+

∂K

∂z
dw(t).

(1.8.5)
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From (1.8.4) we have

∂K

∂t
= γx,

∂K

∂z
= qx,

∂2K

∂z2
= 0. (1.8.6)

It follows that (1.8.5) can be transformed to

dK =

[
γx−qx

βx
qx

(K(t, lnµx(t))−lnµx0−γxt)
]
dt+qxdw(t)=

= [γx−βxK(t, lnµx(t))+βx lnµx0+γxβxt] dt+qxdw(t).

(1.8.7)

Since K(t, lnµx(t)) = lnµx(t), thus we have also an equivalent stochas-
tic di�erential equation

d lnµx(t)=[γx−βx lnµx(t)+βx lnµx0+γxβxt] dt+qxdw(t). (1.8.8)

Equation (1.8.8) can be solved explicitly by applying the Itô for-
mula to function eβxK(t, lnµx(t)) with K(t, lnµx(t)) de�ned in (1.8.4),
obtaining the following solution

lnµx(t) =e−βxt lnµx0 +

∫ t

0

e−βx(t−s)[γx+βxlnµx0+βxγxs]ds+

+qx

∫ t

0

e−βx(t−s)dw(s).

(1.8.9)

1.8.2. Discrete MP model

The respective Discrete Milevsky�Promislow model (DMP model)
is derived from equality (1.8.9) by subtracting from lnµx(t) the follo-
wing product

e−βx lnµx(t− 1). (1.8.10)

Hence, we have

lnµx(t)− e−βx lnµx(t−1) =ψx,t + qxεx,t, t ∈ N, (1.8.11)

or equivalently

lnµx(t)= e−βx lnµx(t−1) + ψx,t + qxεx,t, t ∈ N, (1.8.12)
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where

ψx,t =

∫ 1

0

e−βxu[γx + βx lnµx0 + βxγx(t− u)]du,

εx,t = −
∫ 1

0

e−βxudw(t− u).

(1.8.13)

After integration, ψx,t reduces to

ψx,t = (1− e−βx)lnµx0+γxe
−βx +γxt(1− e−βx). (1.8.14)

Relationship (1.8.12) can be written also as a di�erence equation

yx(t) = bx,0(t) + bx,1yx(t− 1) + ξx,t, t ∈ N, (1.8.15)

where

yx(t) = K(t, lnµx(t)) = lnµx(t),

bx,0(t) = ψx,t = (1− e−βx) lnµx0 + γxe
−βx + γxt(1− e−βx),

bx,1 = e−βx ,

ξx,t = qxεx,t.

(1.8.16)

Formula (1.8.15) can be also transformed to the following one

yx(t) = ax,0 + ax,1t+ ax,2yx(t− 1) + ξx,t, t ∈ N, (1.8.17)

where

yx(t) = lnµx(t),

ax,0 = (1− e−βx) lnµx0+γxe
−βx ,

ax,1 = γx(1− e−βx),

ax,2 = e−βx ,

ξx,t = qxεx,t,

(1.8.18)

After substituting ax,1ax,2/(1 − ax,2) for γxe−βx , a 2-factor model
can be derived

yx(t) = (1− ax,2) lnµx0 +
ax,1ax,2
1− ax,2

+ ax,1t+

+ ax,2yx(t− 1) + ξx,t, t ∈ N,

(1.8.19)
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where

yx(t) = lnµx(t),

ax,1 = γx(1− e−βx),

ax,2 = e−βx ,

ξx,t = qxεx,t.

(1.8.20)

It follows from properties of the Itô integral and from the Itô iso-
metry [Oksendal 2003, p. 25 and 29] that

E

[∫ t

0

g(u)dw(u)

]
= 0, E

[∫ t

0

g(u)dw(u)

]2

=

∫ t

0

E[g(u)]2du. (1.8.21)

Thus, random terms εx,t in (1.8.13) as well as ξx,t = qxεx,t in
(1.8.15), (1.8.17) and (1.8.19) are Gaussian random variables with
means and variances equal, respectively,

E[εx,t] = E[ξx,t] = 0,

Var[εx,t] = E[ε2x,t] =
1− e−2βx

2βx
≈ 1,

Var[ξx,t] = q2
xE[ε2x,t] = q2

x

1− e−2βx

2βx
≈ q2

x.

(1.8.22)

1.8.3. Parameters' estimation of the MP model

Parameters of the DMP model (1.8.19) can be estimated by means
of the least squares method, i.e. by minimizing the following sum of
squared errors with respect to ax,1, ax,2

T∑
t=2

[
yx,t−

(
(1−ax,2)lnµx0+

ax,1ax,2
1− ax,2

+ax,1t+ax,2yx,t−1

)]2
, (1.8.23)

where yx,t = lnmx,t represent log-central death rates from a sample
time series {lnmx,t, t = 1, 2, . . . , T}.

Subsequently, estimates of βx, γx are obtained from (1.8.20), while
parameters q2

x representing the variance of residuals ξx,t are estimated
by determining errors ξ̂x,t from the optimization problem (1.8.23) and
by calculating the second sample moment of the residuals obtained.
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1.9. The Giacometti�Ortobelli�Bertocchi model

Giacometti, Ortobelli and Bertocchi [Giacometti et al. 2011] consi-
dered an analogous model as given in [Milevsky, Promislow 2001], by
extending the stochastic di�erential equation of the �lter.

1.9.1. GOB model

Let us consider the equation (1.8.1)

µx(t) = µx0 exp{γxt+ qxz(t)}, t ∈ R+, γx, qx, µx0 > 0, (1.9.1)

where z(t) is de�ned by means of the following Itô stochastic di�erential
equation

dz(t) = −βxz(t)dt+ fx(t)dw(t), z(0) = 0, βx > 0, (1.9.2)

with fx(t) being a non-linear di�erentiable function of time and w(t)
representing a standard Wiener process.

The model (1.9.1)�(1.9.2) is termed the Giacometti�Ortobelli�Ber-
tocchi model (GOB model).

Similarly to the derivation presented in [Giacometti et al. 2011], let
us consider a function

K(t, lnµx(t)) =
lnµx(t)

fx(t)
. (1.9.3)

Taking into account equation (1.9.1), we have

K(t, lnµx(t)) =
lnµx(t)

fx(t)
=

lnµx0 + γxt+ qxz(t)

fx(t)
. (1.9.4)

The following equation follows from the Itô formula (see (A.2.21),
Theorem A.7 in Appendix A)

dK(t, lnµx(t)) =
∂K

∂t
dt+

∂K

∂z
dz+

1

2

∂2K

∂z2
dz2 =

=
∂K

∂t
dt+

∂K

∂z
[−βxz(t)dt+ fx(t)dw(t)]+

1

2

∂2K

∂z2
f 2
x(t)dt.

(1.9.5)
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From (1.9.4) we have

∂K

∂t
=

γx
fx(t)

− f ′x(t)

f 2
x(t)

(lnµx0 + γxt+ qxz) ,

∂K

∂z
=

qx
fx(t)

,
∂2K

∂z2
= 0,

(1.9.6)

where f ′x(t) denotes the �rst derivative of fx(t).

Equation (1.9.5) can then be expressed as

dK(t, lnµx(t)) =

[
γx
fx(t)

− f ′x(t)

fx(t)
K(t, lnµx(t))

]
dt+

+
qx
fx(t)

[−βxz(t)dt+ fx(t)dw(t)] .

(1.9.7)

After simple transformations of (1.9.7), we receive

dK(t, lnµx(t)) =

[
γx+βx lnµx0+γxβxt

fx(t)
+

−K(t, lnµx(t))

(
f ′x(t)

fx(t)
+βx

)]
dt+ qxdw(t), t ∈ R+.

(1.9.8)

Let us assume that the di�usion function fx(t) takes the form

fx(t) = exp{ζxt}, ζx ∈ R. (1.9.9)

For (1.9.9) equation (1.9.8) can be written as

dK(t, lnµx(t)) = (γx + βx lnµx0 + γxβxt)e
−ζxtdt+

− (ζx + βx)K(t, µx(t))dt+ qxdw(t), t ∈ R+.

(1.9.10)

Equation (1.9.10) can be solved by applying again the Itô formula
to the expression e(ζx+βx)tK(t, lnµx(t)).



65

It leads to the following solution

K(t, lnµx(t)) = e−(ζx+βx)tK(0, lnµx0)+

+

∫ t

0

e−(ζx+βx)(t−s)[γx+βxlnµx0+βxγxs]e
−ζxsds+

+qx

∫ t

0

e−(ζx+βx)(t−s)dw(s).

(1.9.11)

For K(t, lnµx(t)) de�ned in (1.9.4) an equation can be also derived
for lnµx(t) from equality (1.9.11)

lnµx(t) = e−βxt lnµx0+

∫ t

0

e−βx(t−s)[γx+βxlnµx0+βxγxs]ds+

+ e−βxtqx

∫ t

0

e(ζx+βx)sdw(s).

(1.9.12)

It is worth noting that analogous solution as in (1.9.12) can be
obtained by using the Itô formula with respect to eβxt lnµx(t).

1.9.2. Discrete GOB model

The discrete-time form of (1.9.8) is as follows

K(t, lnµx(t)) =

=K(t−1, lnµx(t−1))+

[
γx+βx lnµx0+γxβx(t−1)

fx(t−1)
+

−K(t−1, lnµx(t−1))

(
fx(t)−fx(t−1)

fx(t−1)
+βx

)]
+qxεx,t, t∈N

(1.9.13)

and the Discrete Giacometti�Ortobelli�Bertocchi model (DGOB mo-
del) is obtained from (1.9.11) by subtracting from K(t, lnµx(t)) the
following product

e−(ζx+βx)K(t− 1, lnµx(t− 1)). (1.9.14)
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Thus, we have for t ∈ N

K(t, lnµx(t))−e−(ζx+βx)K(t−1, lnµx(t−1)) + ψx,t + qxεx,t, (1.9.15)

or equivalently

K(t, lnµx(t))=e−(ζx+βx)K(t−1, lnµx(t−1)) = ψx,t + qxεx,t, (1.9.16)

where

ψx,t =

∫ 1

0

e−(ζx+βx)u[γx+βx lnµx0+βxγx(t−u)]e−ζx(t−u)du,

εx,t = −
∫ 1

0

e−(ζx+βx)udw(t− u).

(1.9.17)

After integration, ψx,t reduces to

ψx,t = e−ζxt
[
(1− e−βx) lnµx0 + γxe

−βx + γxt(1− e−βx)
]
. (1.9.18)

Let us notice that random terms εx,t in (1.9.15) or (1.9.16) are Gaus-
sian random variables with means and variances equal, respectively,

E[εx,t] = 0,

Var[εx,t] = E[ε2x,t] =
1− e−2(ζx+βx)

2(ζx + βx)
≈ 1.

(1.9.19)

Moreover, the p-th raw absolute moments of random terms εx,t
satisfy the following condition [Winkelbauer 2014]

E [|εx,t|p] = 2
p
2

Γ
(
p+1

2

)
√
π

[Var[εx,t]]
p
2 , p > −1, (1.9.20)

where Γ(z) =
∫∞

0
vz−1e−vdv for z ∈ R+. Thus, from (1.9.20) it follows

that the �rst raw absolute moments are

E [|εx,t|] =

√
2

π
·

√
1− e−2(ζx+βx)

2(ζx + βx)
≈
√

2

π
, (1.9.21)

since |εx,t| follows a half-normal distribution.
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Relationship (1.9.16) can be written as a di�erence equation

Kx(t) = bx,0(t) + bx,1Kx(t− 1) + ξx,t, t ∈ N, (1.9.22)

where

Kx(t) = K(t, lnµx(t)) = e−ζxt lnµx(t),

bx,0(t)=ψx,t=e−ζxt
[
(1−e−βx)lnµx0+γxe

−βx +γxt(1−e−βx)
]
,

bx,1 = e−(ζx+βx),

ξx,t = qxεx,t.

(1.9.23)

By variable substitution, (1.9.22) can be transformed to

yx(t) = ax,0 + ax,1t+ ax,2yx(t− 1) + εx,t, t ∈ N, (1.9.24)

where

yx(t) = lnµx(t),

ax,0 = (1−e−βx) lnµx0+γxe
−βx ,

ax,1 =γx(1−e−βx),
ax,2 = e−βx ,

εx,t = eζxtξx,t.

(1.9.25)

The 2-factor DGOB model derived from (1.9.24) is as follows

yx(t) = (1− ax,2) lnµx0 +
ax,1ax,2
1− ax,2

+ ax,1t+

+ ax,2yx(t−1) + εx,t, t ∈ N,

(1.9.26)

where

yx(t) = lnµx(t),

ax,1 =γx(1−e−βx),

ax,2 = e−βx ,

εx,t = eζxtξx,t.

(1.9.27)

Random terms ξx,t appearing in (1.9.22) and εx,t in (1.9.24), (1.9.26)
are Gaussian random variables with means and variances

E[ξx,t] = E[εx,t] = 0,

Var[ξx,t] = E[ξ2
x,t] = q2

x, Var[εx,t] = E[ε2
x,t] = q2

xe
2ζxt.

(1.9.28)
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The �rst absolute raw moments approximated according to (1.9.20)
are as follows

E [|ξx,t|] = qx

√
2

π
, E [|εx,t|] = qxe

ζxt

√
2

π
(1.9.29)

and the following equalities hold

E

[
ε2
x,t

e2ζxt

]
= q2

x, E
[∣∣∣ εx,t
eζxt

∣∣∣] = qx

√
2

π
. (1.9.30)

1.9.3. Parameters' estimation of the GOB model

Parameters ax,1, ax,2 of the model (1.9.26) are estimated using the
least squares method, i.e. by minimizing the following sum of squared
errors with respect to ax,1, ax,2

T∑
t=2

[
yx,t −

(
(1−ax,2)lnµx0+

ax,1ax,2
1−ax,2

+ax,1t+ax,2yx,t−1

)]2
, (1.9.31)

where yx,t = lnmx,t are log-central death rates from a sample time
series {lnmx,t, t = 1, 2, . . . , T}.

Subsequently, estimators of βx, γx are obtained from (1.9.27) and
parameters qx, ζx are estimated by calculating errors ε̂x,t from the
optimization problem (1.9.31) and by �nding estimates q̂x and ζ̂x from
sample moment equations determined by analogy to (1.9.30).

1.10. The modi�ed Milevsky�Promislow model

In this section a mortality model analogous to (1.8.1)�(1.8.2) is
proposed. It di�ers from the MP model with the de�nition of the �lter
equation.

1.10.1. Modi�ed MP model

The Modi�ed Milevsky�Promislow model (MMP model) is de�ned
by means of the following equations

µx(t) = µx0 exp{γxt+ z(t)}, t ∈ R+, γx, µx0 > 0, (1.10.1)
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where z(t) is the Ornstein�Uhlenbeck stochastic process satisfying the
following stochastic di�erential equation

dz(t)=βx(αx−z(t))dt+σxdw(t), z(0)=0, αx∈R, βx, σx>0, (1.10.2)

with a scalar Wiener process w(t).

To �nd an explicit solution of (1.10.1)�(1.10.2), let us consider func-
tion

K(t, lnµx(t)) = eβxt lnµx(t). (1.10.3)

Taking under account relation (1.10.1), function K(t, lnµx(t)) can
be written as

K(t, lnµx(t)) = eβxt lnµx(t) = eβxt (lnµx0 + γxt+ z(t)) . (1.10.4)

Application of the Itô formula results in the following equation

dK(t, lnµx(t)) =

[
∂K

∂t
+βx(αx−z(t))

∂K

∂z
+

1

2

∂2K

∂z2
σ2
x

]
dt+

+
∂K

∂z
σxdw(t),

(1.10.5)

where

∂K

∂t
=βeβxt (lnµx0+γxt+z)+γxe

βxt,
∂K

∂z
=eβxt,

∂2K

∂z2
=0. (1.10.6)

Thus, we have

dK(t, lnµx(t)) =

=
[
βxe

βxt (lnµx0+γxt+z(t))+γxe
βxt+βx(αx−z(t))eβxt

]
dt+

+σxe
βxtdw(t).

(1.10.7)

Finally, the following stochastic di�erential equation is obtained

dK(t, lnµx(t)) = eβxt [βx lnµx0 + βxγxt+ γx + βxαx] dt+

+ σxe
βxtdw(t).

(1.10.8)
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Equation (1.10.8) leads to the following solution

K(t,lnµx(t))=K(0,lnµx0)+

+

∫ t

0

eβxs[βx lnµx0+βxγxs+γx+βxαx] ds+σx

∫ t

0

eβxsdw(s).

(1.10.9)

SinceK(t, lnµx(t)) = eβxt lnµx(t), therefore (1.10.9) can be also rewrit-
ten as

lnµx(t) = e−βxt lnµx0+

∫ t

0

e−βx(t−s) [βx lnµx0+βxγxs+ γx+

+βxαx] ds+ σx

∫ t

0

e−βx(t−s)dw(s).

(1.10.10)

1.10.2. Discrete modi�ed MP model

The Discrete Modi�ed Milevsky�Promislow model (DMMP model)
is derived from (1.10.10) by multiplying lnµx(t− 1) by e−βx and sub-
tracting from lnµx(t). Hence, we have

lnµx(t)− e−βx lnµx(t− 1) = ψx,t + σxεx,t, t ∈ N, (1.10.11)

or equivalently

lnµx(t) = e−βx lnµx(t− 1) + ψx,t + σxεx,t, t ∈ N, (1.10.12)

where

ψx,t =

∫ 1

0

e−βxu [βx lnµx0 + βxγx(t− u) + γx + βxαx] du, (1.10.13)

εx,t = −
∫ 1

0

e−βxudw(t− u). (1.10.14)

Integrating right-hand side of (1.10.13), we receive

ψx,t= (lnµx0 + αx)
(
1−e−βx

)
+γxe

−βx +γx
(
1−e−βx

)
t. (1.10.15)
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Relationship (1.10.12) can be written as a di�erence equation

lnµx(t) = bx,0(t) + bx,1 lnµx(t− 1) + ξx,t, (1.10.16)

where

bx,0(t) =ψx,t=(lnµx0+αx)
(
1−e−βx

)
+γxe

−βx +γx
(
1−e−βx

)
t,

bx,1 = e−βx ,

ξx,t = σxεx,t.

(1.10.17)

The model (1.10.16) can be also expressed as

yx(t) = ax,0 + ax,1t+ ax,2yx(t− 1) + ξx,t, (1.10.18)

where

yx(t) = lnµx(t),

ax,0 = (lnµx0 + αx)
(
1− e−βx

)
+ γxe

−βx ,

ax,1 = γx(1− e−βx),

ax,2 = e−βx ,

ξx,t = σxεx,t.

(1.10.19)

Let us remark that the random terms εx,t in (1.10.11) and ξx,t in
(1.10.16) or (1.10.18) are Gaussian random variables with means and
variances equal, respectively,

E[εx,t] = E[ξx,t] = 0,

Var[εx,t] =
1− e−2βx

2βx
≈ 1,

Var[ξx,t] = σ2
x Var[εx,t] = σ2

x

1− e−2βx

2βx
≈ σ2

x.

(1.10.20)
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1.10.3. Parameters' estimation of the modi�ed MP model

Parameters of the DMMP model (1.10.18) are estimated using the
least squares method, i.e. by minimizing the following sum of squared
errors with respect to ax,0, ax,1, ax,2

T∑
t=2

[yx,t − (ax,0 + ax,1t+ ax,2yx,t−1)]2 , (1.10.21)

where yx,t = lnmx,t are log-central death rates from a sample time
series {lnmx,t, t = 1, 2, . . . , T}.

The estimates of αx, βx, γx are obtained from relations (1.10.19)
and σ2

x are estimated by determining errors ξ̂x,t from the optimization
problem (1.10.21) and by calculating the second raw moment of the
residuals obtained.

1.11. The Milevsky�Promislow models with two or

more linear scalar �lters

1.11.1. MP model with two dependent �lters

Let us consider the MP model with two linear scalar �lters, i.e.

µx(t) = µx0 exp{γxt+ qx1z1(t) + qx2z2(t)}, t ∈ R+, (1.11.1)

where γx, qx1, qx2, µx0 > 0 and z1, z2 are two dependent �lters de�ned
by means of the following stochastic di�erential equations

dz1(t) = −βx1z1(t)dt+ σx1dw(t), βx1, σx1 > 0, (1.11.2)

dz2(t) = −βx2z2(t)dt+ σx2dw(t), βx2, σx2 > 0, (1.11.3)

with w(t) standing for a standard Wiener process.

Equations (1.11.1)�(1.11.3) de�ne the Milevsky�Promislow model
with 2 Dependent Filters (MP-2DF model).

By applying the Itô formula to the logarithm of (1.11.1) we obtain
the stochastic di�erential equation

d lnµx(t) = [γx − βx1qx1z1(t)− βx2qx2z2(t)]dt+

+ [σx1qx1 + σx2qx2]dw(t), t ∈ R+.

(1.11.4)
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Let us assume that βx1 6= βx2 and introduce a new state vector

hx(t) = [hx1(t), hx2(t), hx3(t)]T = [lnµx(t), z1(t), z2(t)]T . (1.11.5)

Then equations (1.11.4) and (1.11.2)�(1.11.3) can be then written down
as a vector equation

dhx(t)=




0 −βx1qx1 −βx2qx2

0 −βx1 0

0 0 −βx2

hx(t)+


γx

0

0


dt+

+


σx1qx1+σx2qx2

σx1

σx2

dw(t).

(1.11.6)

1.11.2. MP model with two independent �lters

By analogy to equations (1.11.1)�(1.11.3) the Milevsky�Promislow
model with 2 Independent Filters (MP-2IF model) can be written as

µx(t) = µx0 exp{γxt+ qx1z1(t) + qx2z2(t)}, t ∈ R+, (1.11.7)

dz1(t) = −βx1z1(t)dt+ σx1dw1(t), σx1, βx1 > 0, (1.11.8)

dz2(t) = −βx2z2(t)dt+ σx2dw2(t), σx2, βx2 > 0, (1.11.9)

where γx, qx1, qx2, µx0, σx1, σx2, βx1, βx2 > 0 are model's parameters and
w1(t), w2(t) are two independent standard Wiener processes.

Let us take logarithms of both sides of equality (1.11.7) and apply
the Itô formula. As a result, we receive the following representation

d lnµx(t) = [γx − βx1qx1z1(t)− βx2qx2z2(t)]dt+

+ σx1qx1dw1(t) + σx2qx2dw2(t), t ∈ R+.

(1.11.10)
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We de�ne a new state vector, assuming that βx1 6= βx2

hx(t) = [hx1(t), hx2(t), hx3(t)]T = [lnµx(t), z1(t), z2(t)]T. (1.11.11)

Then equations (1.11.10) and (1.11.8)�(1.11.9) can be replaced by
a vector equation

dhx(t)=




0 −βx1qx1 −βx2qx2

0 −βx1 0

0 0 −βx2

hx(t)+


γx

0

0


dt+

+


σx1qx1

σx1

0

dw1(t)+


σx2qx2

0

σx2

dw2(t).

(1.11.12)

1.11.3. MP model with a vector �lter

Substituting a vector �lter for one-dimensional �lter equation in
(1.8.1)�(1.8.2), we obtain the generalized version of the MP model

µx(t) = µx0 exp{γxt+ qTx z(t)}, t ∈ R+, (1.11.13)

dz(t) = Axz(t)dt+ Gx(t)dw(t), (1.11.14)

where
γx, µx0 > 0 are constant parameters and qx = [q1

x, . . . , q
n
x ]T is a con-

stant vector,

z ∈ Rn is a �lter vector,

Ax is an n×n constant matrix with Ai
x as an i-th row of the matrix,

Gx(t) = [G1
x(t), . . . , G

n
x(t)]T is a vector with coordinates Gi

x(t) > 0
representing deterministic, di�erentiable functions of time,

w(t) is a scalar standard Wiener process.

Model (1.11.13)�(1.11.14) will be called the Milevsky�Promislow
model with a Vector Linear Filter (MP-VLF model).
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By taking logarithms of both sides of (1.11.13) and using the Itô
formula, the MP-VLF model can be transformed to

d lnµx(t) = [γx +
n∑
i=1

qixA
i
xz(t)]dt+

n∑
i=1

qixG
i
x(t)dw(t),

dz(t) = Axz(t)dt+Gx(t)dw(t), t ∈ R+.

(1.11.15)

1.12. Final remarks

In the beginning of this chapter basic mortality notions and char-
acteristics are introduced, among others some life-table measures as
well as continuous-time survival functions. An overview of static mor-
tality models is also provided, including historical laws of mortality.
In greater details the well-known Lee�Carter model and some of its
extensions, i.e. a fuzzy version, are discussed.

In the second part of the chapter several dynamic mortality models
described by Itô's stochastic di�erential equations are presented, both
in the discrete-time and continuous-time framework, in particular the
Vasi£ek, Cox�Ingersoll�Ross, dynamic Lee�Carter, Milevsky�Promis-
low and Giacometti�Ortobelli�Bertocchi models. A few modi�cations
of these models are also proposed, i.e. with some constant coe�cients
replaced by time depending functions, with two or more linear �lter
equations, or with a particular combination of the Milevsky�Promislow
and Vasi£ek models.

This methodology suggests possibilities to create and study a new
class of advanced dynamic mortality models. For instance, one can ap-
ply the Milevsky�Promislow model with linear �lters described by Itô's
stochastic di�erential equations with states depending di�usion terms.
Also the Milevsky�Promislow model with some non-linear �lters or
continuous non-Gaussian excitation can be considered.

Unfortunately, models of dynamic systems expressed by means of
simple stochastic di�erential equations can be insu�cient to represent
adequately evolving demographic processes. As a result, a family of
models called hybrid models can be employed, i.e. models which ac-
count for interactions between continuous and discrete dynamics. Such
hybrid mortality models are developed in Chapter 3 and the general
theoretical introduction to hybrid modeling is provided in Chapter 2.





Chapter 2

Static and dynamic hybrid models

2.1. Introduction

As it was mentioned at the beginning of the book, the idea of con-
structing generalized mathematical models can be successfully realized
by applying hybrid (or switching) systems. These models are usually
described by algebraic equations or di�erential equations, deterministic
or stochastic. In successive switching points the structure of the mo-
dels changes according to the given switching rule thereupon creates
the hybrid model. The switching rule can be random or dependent
on some state variables. When subsystems (structures) are described
by algebraic equations the underlying models are called static hybrid
models.

Similar switching rules are used when subsystems are described
by stochastic di�erential equations. The models are then called dy-
namic hybrid models. Such models with a switching rule de�ned as
a right-continuous Markov chain are called Markov jump processes.

In this chapter we consider hybrid models described by linear Itô's
stochastic di�erential equations for all subsystems with a given set of
switching time points.

When the di�usion part of equations do not depend on a vector
state it is possible to �nd the solution for each subsystem analytically.
Assuming that the �nal value of the solution for the �rst subsystem
is equal to the initial value of the solution for the second subsystem
etc., we obtain the continuous solution for the whole hybrid system.
When the di�usion part of equations depends on a vector state and it
is not possible to �nd the solution for each subsystem in an analytical
way, we will �nd moment equations constituting a new deterministic
hybrid system. The mathematical tools introduced in this chapter will
be used in Chapter 3.
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2.2. Static hybrid models

Let us consider a family of static random systems represented by
non-linear random vector equations such as

y(t, l, ω) = f(x(t, ω), l), x(t0, ω) = x0, l ∈ S, (2.2.1)

where

S = {1, . . . , N} is a set of states of the system,
ω is an element of probabilistic space Ω,
f(x0, l) = 0, l ∈ S,
x(t) ∈ Rn is a continuous input process with the initial condition
x0∈Rn,
y(t, l) is an output process of the l-th subsystem.

Let us assume that there are of non-negative constants Kl meeting
the conditions

|f(x(t), l)| ≤ Kl|x| ∀x ∈ Rn, ∀l ∈ S, ∀ω ∈ Ω. (2.2.2)

The system of equations (2.2.1) can also be written as

y(t, σ(t), ω) = f(x(t, ω), σ(t)), x(t0, ω) = x0, σ(t0) = σ0, (2.2.3)

where σ(t) : R+ → S is a switching rule. We assume that σ(t) is
independent of the initial condition x(t0) = x0.

In the analysis of switching systems, an important role is played by
switching processes. The three main types of switchings considered in
the literature are the following:

� an arbitrary switching,

� a switching dependent on the value of x(t), i.e. σ(x(t)) : Rn → S,
� a random switching usually represented by the Markov chain, i.e.

σ(t)=r(t) is a right-continuous Markov chain de�ned on the proba-
bilistic space Ω and taking values in a �nite space of states S =
{1, . . . , N} with generator Γ = [γij]N×N , i.e.

P{r(t+δ)=j|r(t)= i}=


γijδ + o(δ) for i 6= j,

1 + γiiδ + o(δ) for i = j,
(2.2.4)

where δ > 0 and γij ≥ 0 is the probability of transition from state
i to state j if i 6= j, γii = −

∑
i 6=j γij.
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Since the Markov chain is assumed to be irreducible, rank(Γ)=N−1
and it has only one stationary solution P = [π1, π2, . . . , πN ]T ∈ RN ,
which can be found by solving a system of equations{

PΓ = 0,

where
∑N

i=1 pi = 1 and pi > 0 ∀i ∈ S. (2.2.5)

The time points when changes in the discrete system take place,
i.e. when a model given, for instance, by function f(x(t), i) becomes
a model described by f(x(t), j), will be called switching time points or
switchings and will be denoted by {τj}j∈N, so

0 = τ0 < τ1 < τ2 < ... < τj (2.2.6)

Let us assume that at moment t = τj current discrete state lcurrent =
l(τj−1) changes into future state lfuture = l(τj); at the same time, an
abrupt change in the continuous state can also take place, i.e.

x(τj) 6= x(τj−). (2.2.7)

The discrete state l(t) remains constant between successive switching
times

l(t) = lcurrent ∈ S for t ∈ [τj−1, τj), (2.2.8)

so

f(x(t), l(t)) = f(x(t), lcurrent) for t ∈ [τj−1, τj), j ∈ N. (2.2.9)

Example 2.1. Let us consider a deterministic scalar hybrid system
with two states, de�ned by functions

f(x, 1) = a1 exp{−α1x}+ b1,

f(x, 2) = a2 exp{−α2x}+ b2,

(2.2.10)

where x ∈ R and ai, bi, αi for i = 1, 2 are constant parameters.

Let us assume that state 1 changes into state 2 when x = x̄ and
that the �nal value of the �rst function and the initial value of the
second function are equal, i.e.

f(x̄, 1) = a1 exp{−α1x̄}+ b1 = f(x̄, 2) = a2 exp{−α2x̄}+ b2. (2.2.11)
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For b1 = b2, (2.2.11) is equivalent to condition

ln

(
a1

a2

)
= −x̄(α2 − α1) (2.2.12)

and the output of the hybrid system is represented by

y(x) =


a1 exp{−α1x}+ b1 for x < x̄,

a2 exp{−α2x}+ b2 for x ≥ x̄.
(2.2.13)

2.3. Dynamic hybrid models

There are two classes of models that can be identi�ed within dy-
namic hybrid models. The �rst class contains stationary and non-sta-
tionary models with known analytical solutions of the Itô stochastic
di�erential equations, with known analytical solutions of the moment
equations, or with known probability densities. The second class is
represented by models which are solved through di�erence schemes.

In the approach applied here, the hybrid dynamic stochastic system
will be presented as a family of the Itô stochastic di�erential vector
equations describing their dynamics in the time intervals between the
switching time points.

We will assume that a vector stochastic process x(t) solving a sto-
chastic vector equation and starting at time t0 from initial state x0

switches at times τ1, τ2, . . . , τM . We also assume that τ0 = t0 and that
in time intervals [τi, τi+1) the hybrid system remains in states li ∈ S,
i = 0, 1, . . . ,M , where l0, l1, . . . , lM is any subsequence of N states
(subsystems). The continuity of solutions is also assumed, meaning
that the value of the process in state li at time τi, i.e. x(τi, li), is equal
to the value of the process in state li−1 at time τi, i.e. x(τi, li−1).

For the sake of illustration, let us use an example.

Example 2.2. Let us consider a hybrid system with a three-element
set of states, i.e. S = {1, 2, 3}. Let the initial state be l0 = 2 and
the successive states are l1 = 3, l2 = 2, l3 = 1, l4 = 3, l5 = 1. The
times when switchings take place are τ1, τ2, . . . , τ5. These switchings
are assumed to be signi�cant, meaning that two successive states are
di�erent from each other. In other words, a switching from state l2 to
state l2 is not considered as a switching.
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Let functions f : Rn × S→ Rn and gk : Rn × S → Rn de�ne the
initial conditions for the subsystems. The Itô vector stochastic di�e-
rential equation for the l-th subsystem (l ∈ S) is then of the form

dx(t, l)= f(x(t, l), l)dt+
m∑
k=1

gk(x(t, l), l)dwk(t), x(t0l, l)=x0l, (2.3.1)

where
l ∈ S, x0l ∈ Rn, t0l ∈ R+,

f(0, l)=0, f(x, l)=[f1(x, l), . . . , fn(x, l)]T ,

gk(0, l) = 0, gk(x, l) = [σk1(x, l), . . . , σkn(x, l)]T , k = 1, . . . ,m, are
such that there exist non-negative constants Kl satisfying the follo-
wing conditions

|f(x, l)|2 +
m∑
k=1

|gk(x, l)|2 ≤ Kl(1 + |x|2), ∀x ∈ U ⊂ Rn,

|f(x,l)−f(y,l)|+
m∑
k=1

|gk(x,l)−gk(y,l)|≤Kl|x−y|, ∀x,y∈U.
(2.3.2)

The above conditions ensure the existence of a solution of (2.3.1).

Equations (2.3.1) can be presented as a hybrid system

dx(t)= f(x(t), σ(t))dt+
m∑
k=1

gk(x(t), σ(t))dwk(t),

x(t0)=x0, σ(t0)=σ0,

(2.3.3)

where σ(t) is a switching rule de�ned in the same manner as for the
static hybrid models.

For a special case of linear systems with additive noise, let us con-
sider a hybrid system given by a vector stochastic di�erential equation

dx(t)=[A0(t, σ(t))+A(t, σ(t))x(t)]dt+
m∑
k=1

Gk0(t, σ(t))dwk(t),

x(t0)=x0, σ(t0) = σ0,

(2.3.4)
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where
x(t) = [x1(t), ..., xn(t)]T and x0 = [x01, ..., x0n]T is an initial condi-
tion,

σ(t) : T→ S is a switching rule and σ0 ∈ S,
A(t, l) = [aij(t, l)], l ∈ S, i, j = 1, ..., n, k = 1, . . . ,m,

A0(t, l) = [a1
0(t, l), ..., an0 (t, l)]T ,

Gk0(t, l) = [g1
k0(t, l), ..., gnk0(t, l)]T are n-dimensional vectors,

ai0(t, l), aij(t, l) and gik0(t, l), are limited measurable deterministic
functions of t ∈ R+,

wk(t), k = 1, . . . ,m are independent standard Wiener processes.

The solution is then given by

x(t) = Ψ(t, t0, σ(t))x(t0)+

∫ t

t0

Ψ(t, s, σ(s))A0(s, σ(s))ds+

+

∫ t

t0

Ψ(t, s, σ(s))
m∑
k=1

Gk0(s, σ(s))dwk(s),

(2.3.5)

where the n×n fundamental matrix Ψ(t, t0, σ(t)) is de�ned by appro-
priate n× n fundamental matrices for subsystems Ψ(t, t0l, l), l ∈ S

dx(t, l)

dt
= A(t, l)x(t, l), x(t0l, l) = x0l. (2.3.6)

In particular, when A(t, l) = A(l) are constant matrices, the follo-
wing relation takes place in time t− t0l for l-th subsystem

Ψ(t, t0l, l)=Ψ(t−t0l, l)=exp {A(l)(t−t0l)}=

=
∞∑
j=0

1

j!
Aj(l)(t−t0l)j.

(2.3.7)

Relation (2.3.5) is then reduced to

x(t, l)=exp {A(l)(t−t0l)}x0l+

∫ t

t0l

exp {A(l)(t−s)}A0(s, l)ds+

+

∫ t

t0l

exp {A(l)(t− s)}
m∑
k=1

Gk0(s, l)dw(s).

(2.3.8)
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Let us assume that the switching time points are τ1, τ2, . . . , τM ,
that τ0 = t0 and that in time intervals [τi, τi+1) the hybrid system is
in states li ∈ S, i = 0, 1, . . . ,M , where l0, l1, . . . , lM is any subsequence
of N states (subsystems). The continuity of solutions is also assumed,
i.e. x(τi, li) = x(τi, li−1).

In this case, for A0(s, li) = 0 for all i = 0, 1, . . . , k the following
solution of the hybrid system (2.3.4) reduced to (2.3.8) is obtained

x(t, l0)=exp{A(l0)(t−t0)}x0 +

+

∫ t

t0

exp{A(l0)(t−s)}
m∑
k=1

Gk0(s, l0)dw(s), t ∈ [τ0, τ1),

x(t, l1)=exp{A(l1)(t−τ1)}x(τ1, l0)+

+

∫ t

τ1

exp{A(l2)(t−s)}
m∑
k=1

Gk0(s, l1)dw(s), t ∈ [τ1, τ2),

...

x(t, lM)=exp{A(lM)(t−τM)}x(τM , lM−1)+

+

∫ t

τM

exp{A(lM)(t−s)}
m∑
k=1

Gk0(s, lM)dw(s), t ≥ τM .

(2.3.9)

Figure 2.1. Trajectories of a switching process and of a dynamic system

Source: Developed by the authors
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A trajectory of a switching rule q(t) described in Example 2.2 and
a corresponding trajectory of a dynamic switching system solution x(t)
are plotted in Figure 2.1.

Linear systems with parametric noise do not have an explicit solu-
tion, excluding a scalar case.

Scalar homogeneous hybrid system

Let us consider a scalar linear hybrid system with M switchings
that constitutes a family of the Itô homogenous stochastic equations

dx(t, li) = a(t, li)x(t, li)dt+ g(t, li)x(t, li)dw(t), (2.3.10)

with an initial condition x(τ0, l0) = x0, where t ∈ [t0,∞), a(t, li) and
g(t, li), i = 0, 1, . . . ,M are some linear functions of variable t,

We assume that switching time points are τ1, . . . , τM , that τ0 = t0
and that in time intervals [τi, τi+1) the hybrid system is in states li ∈ S,
i = 0, 1, . . . ,M , where l0, l1, . . . , lM is any subsequence of N states.
The continuity of the solutions of (2.3.10) is assumed, i.e. x(τi, li) =
x(τi, li−1). Initial conditions x(τi, li) are random variables independent
of a standard Wiener process w(t).

Based on the Itô formula, we can prove that the solution of equation
(2.3.10) is a stochastic process

x(t, li)=ψ(t, τi, li) x(τi, li−1),

where

ψ(t,τi, li)=exp

{∫ t

τi

[
a(s,li)−

g2(s,li)

2

]
ds+

∫ t

τi

g(s,li)dw(s)

}
.

(2.3.11)

From equalities (2.3.11) it follows that the value of the solution of
equation (2.3.10) after M switchings is given by

x(t)= ψ(t, τM , lM) ... ψ(τ2, τ1, l1) ψ(τ1, τ0, l0) x(τ0) =

=exp

{∫ t

τM

[
a(s, lM)− g

2(s, lM)

2

]
ds+

∫ t

τM

g(s, lM)dw(s)+

+
M∑
i=1

∫ τi

τi−1

[
a(s, li)−

g2(s, li)

2

]
ds+

M∑
i=1

∫ τi

τi−1

g(s, li)dw(s)

}
x(τ0).

(2.3.12)
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Scalar heterogeneous hybrid system

Let us consider a scalar linear hybrid system with M switchings,
constituting a family of the Itô stochastic equations

dx(t, li) = [a(t, li)x(t, li) + b(t, li)]dt+

+ [g(t, li)x(t, li) + q(t, li)]dw(t),

(2.3.13)

with an initial condition x(τ0, l0) = x0, where t ∈ [t0,∞), b(t, li) and
q(t, li), i = 0, 1, . . . ,M are some non-linear functions of time t; all
other symbols are the same as in equation (2.3.10). The continuity of
solutions is also assumed, i.e. x(τi, li) = x(τi, li−1).

The solution of (2.3.13) is then given by

x(t, li)=ψ(t,τi, li)

{
x(τi,li−1)+

∫ t

τi

ψ−1(s,τi,li)q(s,li)dw(s)

+

∫ t

τi

ψ−1(s, τi, li)[b(s, li)−q(s, li)g(s, li)]ds

}
, t∈ [τi,τi+1).

(2.3.14)

By dividing (2.3.14) into subintervals we have

x(t, l0)=

{
x(τ0, l0)+

∫ t

τ0

ψ−1(s,τ0,l0)[b(s, l0)−q(s, l0)g(s, l0)]ds

+

∫ t

τ0

ψ−1(s, τ0, l0)q(s, l0)dw(s)

}
ψ(t, τ0, l0) for t∈ [τ0, τ1),

x(t, l1)=

{
x(τ1, l0)+

∫ t

τ1

ψ−1(s,τ1,l1)[b(s,l1)−q(s,l1)g(s,l1)]ds

+

∫ t

τ1

ψ−1(s, τ1, l1)q(s, l1)dw(s)

}
ψ(t, τ1, l1) for t ∈ [τ1, τ2),

...

x(t,lM)=

{
x(τM,lM−1)+

∫ t

τM

[ψ−1(s,τM,lM)[b(s,lM)−q(s,lM)g(s,lM)]ds

+

∫ t

τM

ψ−1(s, τM , lM)q(s, lM)dw(s)

}
ψ(t, τM , lM) for t≥τM .

(2.3.15)
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2.4. Moment equations for the hybrid models

When equations (2.3.1) cannot be explicitly solved, the moment
equations come in handy in analyzing a stochastic hybrid system. We
shall consider them with respect to the linear systems with additive
and parametric excitations for any switchings.

Let us analyze the hybrid vector linear Itô stochastic equation with
additive and parametric excitation and any switchings

dx(t) = [A0(t, σ(t)) + A(t, σ(t))x(t)]dt+

+
m∑
k=1

[Gk0(t, σ(t)) + Gk(t, σ(t))x(t)]dwk(t),

x(t0) = x0, σ(t0) = σ0,

(2.4.1)

where
x(t) = [x1(t), ..., xn(t)]T and x0 = [x01, ..., x0n]T is an initial condi-
tion,

A0(t, σ(t)) = [a1
0(t, σ(t)), ..., an0 (t, σ(t))]T ,

Gk0(t) = [σ1
k0(t, σ(t)), ..., σnk0(t, σ(t))]T are n-dimensional vectors,

k = 1, . . . ,m,

A(t, σ(t)) = [apj(t, σ(t))], Gk(t, σ(t)) = [σpkj(t, σ(t))] are n× n ma-
trices, p, j=1, . . . , n,

ai0, aij and σ
i
k0 are limited measurable and deterministic functions

of t ∈ [0,∞),

wk(t), k = 1, . . . ,m are independent standard Wiener processes,

For simplicity, let us assume that x0 = [x01, . . . , x0n]T is a random
variable independent of wk(t), k = 1, . . . ,m.

Using the Itô formula and averaging, we arrive at equations for
the �rst- and second-order moments of the li-th subsystem. Thus, for
t ∈ [τi, τi+1) we have

dm(t, li)

dt
= A0(t, li) + A(t, li)m(t, li),

m(τi, li) = m(τi, li−1),

(2.4.2)
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dΓ(t, li)

dt
= m(t, li)A

T
0 (t, li) + A0(t, li)m

T (t, li)+

+Γ(t, li)A
T (t, li) + A(t, li))Γ(t, li)+

+
m∑
k=1

[Gk0(t, li)G
T
k0(t, li) + Gk(t, li)m(t, li)Gk0(t, li)+

+Gk0(t, li)m
T (t, li)G

T
k (t, li) + Gk(t, li)Γ(t, li)G

T
k (t, li)],

Γ(τi, li) = Γ(τi, li−1),

(2.4.3)

where

m(t, li) = E[x(t, li)], Γ(t, li) = E[x(t, li)x
T (t, li)],

m(τ0, l0) = E[x(t0, l0)], Γ(τ0, l0) = E[x(τ0, l0)xT (τ0, l0)].

(2.4.4)

The coordinate equations (2.4.2) and (2.4.3) for li-th subsystem and
t ∈ [τi, τi+1) are of the following form

dmp(t, li)

dt
=ap0(t, li) +

n∑
j=1

apj(t, li)mj(t, li),

mp(τi, li)=mp(τi, li−1),

dΓpj(t, li)

dt
=ap0(t, li)mj(t, li) + aj0(t, li)mp(t, li)+

+
n∑
q=1

[apq(t, li))Γqj(t, li) + ajq(t, li)Γqp(t, li)]+

+
m∑
k=1

σpk0(t, li)σ
j
k0(t, li)+

+
m∑
k=1

n∑
α=1

σikα(t, li)σ
j
k0(t, li)mα(t, li)+

+
m∑
k=1

n∑
α=1

σjkα(t, li)σ
p
k0(t, li)mα(t, li)+

+
m∑
k=1

n∑
α=1

n∑
β=1

σpkα(t, li)σ
j
kα(t, li)Γαβ(t, li),

Γpj(τ0, l0)=Γpj0, Γpj(τi, li)=Γpj(τi, li−1),

(2.4.5)
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where

mp(t, li) = E[xp(t, li)], Γpj(t, li) = E[xp(t, li)xj(t, li)],

mp0 = E[xp(t0, l0)], Γpj0 = E[xp(t0, l0)xj(t0, l0)].

(2.4.6)

It is noteworthy that the moment equations obtained are closed,
i.e. their right-hand side and left-hand side moments are of the same
order and the second-order moments only depend on variable t ∈ R+.

Example 2.3. Let us consider a scalar hybrid system with parametric
and additive stochastic excitation and a random initial condition that
constitutes a family of the Itô scalar linear equations

dx(t, li) =[a0(li)+a(li)x(t, li)]dt+[b0(li)+b(li)x(t, li)]dw(t), (2.4.7)

with an initial condition x(τ0, l0) = x0, where t ∈ [t0,∞), a0(li),
a(li), b0(li) and b(li), i = 0, 1, ...,M are constants and initial condi-
tion x(τ0, l0) is a random variable independent of a standard Wiener
process w(t). Let us denote E[x(τ0, l0)]=m0, E[x2(τ0, l0)] = v0.

We assume that switchings take place at times τ1, ..., τM , that τ0 = t0
and that in time intervals [τi, τi+1) the hybrid system is in states li∈S,
i = 0, 1, . . . ,M , where l0, l1, . . . , lM is any subsequence of N states.
The continuity of solutions is also assumed, i.e. x(τi, li) = x(τi, li−1).

Based on the Itô formula we can prove that the �rst- and second-or-
der moment equations m(t, li) = E[x(t, li)], Γ(t, li) = E[x2(t, li)], satis-
fy, respectively, the following di�erential equations for li-th subsystem
and t ∈ [τi, τi+1)

dm(t, li)

dt
= a0(li) + a(li)m(t, li),

m(τi, li) = m(τi, li−1),

(2.4.8)

dΓ(t, li)

dt
= 2a0(li)m(t, li) + 2a(li)Γ(t, li) + b2

0(li)+

+ 2b0(li)b(li)m+ b0(li)Γ(t, li),

Γ(τi, li)=Γ(τi, li−1).

(2.4.9)
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By solving the system of equations (2.4.8), (2.4.9), we obtain

m(t, li) = −a0(li)

a(li)
+

(
m(τi, li) +

a0(li)

a(li)

)
exp {a(li)(t− τi)}, (2.4.10)

Γ(t, li) = −A1 − A2 exp {a(li)(t− τi)}+

+
[
Γ2(τi, li)+A1+A2

]
exp

{
(2a(li)+b2(li))(t−τi)

}
,

(2.4.11)

where

A1 =
b2

0(li)− a0(li)
a(li)

(2a0(li) + 2b0(li)b(li))

2a(li) + b2(li)
,

A2 =

(
m(τi, li) + a0(li)

a(li)

)
(2a0(li) + 2b0(li)b(li))

a(li) + b2(li)
.

(2.4.12)

Example 2.4. Let us consider a linear hybrid oscillator equation
with deterministic and stochastic coe�cients and excitation and with
a deterministic initial condition, represented by the Itô vector linear
hybrid equation

dx(t) = A0(σ(t)) + A(σ(t))x(t)]dt+

+
2∑

k=0

[Gk0(σ(t)) + Gk(σ(t))x(t)]dwk(t),

x(t0) = x0, σ(t0) = σ0,

(2.4.13)

where

x=

[
x1

x2

]
, x0 =

[
x10

x20

]
,

A0(l)=

[
0
−a0l

]
, A(l)=

[
0 1
−λ2

0l −2ζlλ0l

]
,

(2.4.14)
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G10(l)=G20(l)=G0(l) = 0,

G00(l)=

[
0
σ0l

]
, G1(l) =

[
0 0
σ1l 0

]
, G2(l) =

[
0 0
0 σ2l

]
,

(2.4.15)

λ0l, ζl, a0l, σ0l, σ1l and σ2l, l = 1, 2 are constant parameters and wk(t),
k = 0, 1, 2 are independent Wiener processes. Initial conditions x10

and x20 are random variables independent of wk(t).

The �rst- and second-order moment equations for the li-th subsys-
tem have the following form

dm1(t, li)

dt
= m2(t, li),

dm2(t, li)

dt
= −λ2

0li
m1(t, li)− 2ζliλ0lim2(t, li)− a0li ,

(2.4.16)

dΓ11(t, li)

dt
= 2Γ12(t, li),

dΓ12(t, li)

dt
=Γ22(t, li)−a0lim1(t, li)−2ζliλ0liΓ12(t, li)+

−λ2
0li

Γ11(t, li),

dΓ22(t, li)

dt
= −2a0lim2(t, li)−4ζliλ0liΓ22(t, li)+ σ2

0li
+

− 2λ2
0li

Γ12(t, li) + σ2
1li

Γ11(t, li) + σ2
2li

Γ22(t, li),

(2.4.17)

where

mp(t, li) = E[xp(t, li)],

Γpj(t, li) = E[xp(t, li)xj(t, li)], p, j = 1, 2, i = 1, 2, . . .

(2.4.18)
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Since moment equations (2.4.2) constitute a system of linear, de-
terministic equations, an analytical solution of this system is possible
and it is of the following form

m(t, li) = exp

{∫ t

τi

A(s, li)ds

}
m(τi, li−1)+

+

∫ t

τi

exp

{∫ t

s

A(u, li)du

}
A0(s, li)ds,

m(τi, li) = m(τi, li−1) for t ∈ [τi, τi+1).

(2.4.19)

To solve the system of the moment equations (2.4.3) in a similar
manner, equation (2.4.3) must �rst be replaced by the corresponding
deterministic vector equation. To perform this, we will use scA, a nota-
tion used in the literature, which represents a column vector consisting
of the column vectors of matrix A

scA = |[A(α)]|. (2.4.20)

The Kronecker product of matrices A and B is a matrix A⊗B, de�ned
as follows

A⊗B =


A11B A12B . . . A1nB
A21B A22B . . . A2nB
. . . . . . . . . . . .

Am1B Am2B . . . AmnB

, (2.4.21)

We have

scΓ(t, li) = exp

{∫ t

τi

A(s, li)ds

}
scΓ(τi, li−1)+

+

∫ t

τi

exp

{∫ t

s

A(u, li)du

}
scQ0(s, li)ds,

scΓ(τi, li) = scΓ(τi, li−1) for t ∈ [τi, τi+1),

(2.4.22)

where

A(s, li) = I⊗A(s, li) +A(s, li)⊗ I+
m∑
k=1

Gk(s, li)⊗Gk(s, li), (2.4.23)
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scQ0(s, li) = sc
(
(A0(s, li) + Ḡ(m))(A0(s, li) + Ḡ(m))T

)
, (2.4.24)

Ḡ(m) =

[
n∑
j=1

σpkj(s, li)mj(s, li)

]
. (2.4.25)

2.5. Final remarks

In this chapter some linear hybrid systems are presented. Espe-
cially, the explicit solutions of linear hybrid vector systems with an
additive Gaussian excitation are provided, both for realizations and
for moments.

For linear hybrid vector systems with additive and multiplicative
Gaussian excitations the explicit solutions can be obtained only for
a special class of scalar systems. For non-linear hybrid vector systems
with additive and multiplicative Gaussian excitations the exact solu-
tions for realizations and for moments cannot be found analytically,
since on the right-hand sides of the di�erential moment equations ap-
pear functions of moments of higher order than those on the left-hand
sides of the respective equations. To omit these di�culties some clo-
sure techniques can be applied but in such cases only approximate
solutions can be found. The wide analysis of these problems is pro-
vided for instance in the following books [Evlanov, Konstantinov 1976,
Ibrahim 1985, Pugachev, Sinitsyn 1987, Socha 2008].

The methodology of constructing dynamic hybrid models presented
in this chapter will be utilized in Chapter 3 on the hybrid mortality
models.



Chapter 3

Dynamic hybrid mortality models

3.1. Introduction

In this chapter we will extend the mortality models presented in
Chapter 1 to the corresponding hybrid mortality models. In the case of
models (1.5.44) a natural approach to generalizing this family of models
to the family of hybrid mortality models is de�ning them individually
for separate subsystems l ∈ S, e.g. for each time interval in which
a given model �works� with the same set of parameters' values. For
instance, by analogy to (1.5.44), the hybrid models for the log-central
mortality rates lnmx,t (x = 0, 1, . . . , X, t = 1, 2, . . . , T ), can be written
as

lnmx,t(l)=αx(l)+βx(l)κt(l),

lnmx,t(l)=αx(l)+βx(l)κt(l) + γt−x(l),

lnmx,t(l)=αx(l)+βx(l)κt(l)+β(1)
x (l)γt−x(l),

lnmx,t(l)=αx(l)+κ
(1)
t (l)+κ

(2)
t (l)(x−x̄)+κ

(3)
t (l(xc−x)+),

lnmx,t(l)=αx(l)+κ
(1)
t (l)+κ

(2)
t (l)(x−x̄)+κ

(3)
t (l)(xc−x)++

+γt−x(l),

lnmx,t(l)=αx(l)+κ
(1)
t (l)+κ

(2)
t (l)(x−x̄)+κ

(3)
t (l)(xc−x)++

+vxκ
(4)
t (l)+γt−x(l),

lnmx,t(l)=αx(l)+κ
(1)
t (l)+κ

(2)
t (l)(x−x̄)+κ

(3)
t (l)(xc−x)++

+γt−x(l)(xc−x).

(3.1.1)
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ηx,t(l) =κ
(1)
t (l) + κ

(2)
t (l)(x− x̄),

ηx,t(l) =κ
(1)
t (l) + κ

(2)
t (l)(x− x̄) + γt−x(l),

ηx,t(l) =κ
(1)
t (l) + κ

(2)
t (l)(x− x̄) + κ

(3)
t (l)vx + γt−x(l),

ηx,t(l) =κ
(1)
t (l)+κ

(2)
t (l)(x−x̄)+γt−x(l)(xc−x),

(3.1.2)

where
ηx,t(l) is a logit transformation of qx,t(l) for age x, year t and sub-
system l ∈ S, i.e.

ηx,t(l) = ln
qx,t(l)

1− qx,t(l)
, (3.1.3)

xc is a �xed value,

vx = (x − x̄)2 − σ2
x, where x̄ and σ2

x denote, respectively, average
age and age variance for the age groups,

αx(l), βx(l), β
(1)
x (l) are age-related parameters for l-th subsystem,

κt(l) and κ
(i)
t (l) for i = 1, 2, 3, 4 and γt−x(l) are time- and cohort-re-

lated parameters for l-th subsystem, respectively.

The �rst equation in (3.1.1) will be called the Lee�Carter Hybrid
model (LCH model).

In the remainder of this chapter we will consider some hybrid dy-
namic mortality models, which are hybrid versions of the dynamic
models developed in Chapter 1.

Since the dynamic models are described by the Itô stochastic dif-
ferential equations, thus the corresponding hybrid models will be also
described by means of the I�to stochastic di�erential equations. Further,
for simplicity, we will omit the term �dynamic�.

For almost all the hybrid models we will consider their discrete-time
representations, both for realizations and for moments.

To estimate the parameters of the proposed models, we shall use
methods described in the literature [Ladde, Wu 2009, Yin et al. 2002,
2003]. In particular, we will consider estimation procedures which can
be described according to the following two main steps.
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Firstly, some switching points τ1, τ2, . . . , τM are determined. Time
intervals I0 = [t0, τ1), I1 = [τ1, τ2), . . . , IM = [τM , T ] within the ob-
servation period [t0, T ] will be called �mortality regimes�. Di�erent
subsystems l ∈ S of hybrid models will be identi�ed by successive
mortality regimes Il.

In the second step, estimates of the model's parameters for each
mortality regime are found, by solving the optimization problem or by
using some iterative estimation algorithms.

Let us start our considerations from identi�cation of switchings.

3.2. Identi�cation of switchings

An important issue in de�ning hybrid models are the so-called
switchings, used to identify sub-models of the hybrid system. In this
approach switchings are recognized as di�erent times at which the un-
derlying mortality process switches from one state to another.

This section provides theoretical backgrounds of the self-adaptive
statistical test which will be used for �nding signi�cant switchings in
the time series of mortality rates. The test was originally proposed by
[Janic-Wróblewska, Ledwina 2000].

3.2.1. An introductory example

Example 3.1. Let us consider the time series of log-central death
rates {lnmx,t, t = 1, 2, . . . , T} for a subpopulation of Polish women
aged x = 40 years observed in the period 1958�2014 (Figure 3.1).

Estimates ĉ1x, ĉ0x of the trend line parameters plotted in Figure 3.2
equal, respectively,

ĉ1x ≈ −0.0142, ĉ0x ≈ 0.8515 (3.2.1)

and mean forecast error is Sεx ≈ 0.1236.

The way in which points in Figure 3.1 are arranged reveals a change
observed in mortality pattern for the investigated population of women
between years 1990 and 1991.

Better goodness-of-�t for trend lines for sub-periods 1958�1990 and
1991�2014 seems to con�rm that this change is signi�cant (Figure 3.3).
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Figure 3.1. Log-central death rates for women aged x = 40 years

(observation period 1958�2014)

Source: Developed by the authors

Figure 3.2. Log-central death rates for women aged x = 40 years

and a �tted trend line

Source: Developed by the authors
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Figure 3.3. Log-central death rates for women aged x = 40 years

and two �tted trend lines for years 1958�1990 and 1991�2014

Source: Developed by the authors

The 1958�1990 estimates of coe�cients c1x, c0x are the following

ĉ∗1x ≈ −0.0095, ĉ∗0x ≈ 0.7636 (3.2.2)

with mean forecast error S∗εx ≈ 0.1012.

The values of the 1991�2014 estimates of coe�cients c1x, c0x are

ĉ∗∗1x ≈ −0.0327, ĉ∗∗0x ≈ 0.6256 (3.2.3)

with mean forecast error S∗∗εx ≈ 0.0514.

Because of distinctively di�erent direction and pace of mortality
change, it seems also rational to break up the period of observation
into three sub-periods or �mortality regimes� (see Figure 3.4).
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Figure 3.4. Log-central death rates for women aged x = 40 years

and three �tted trend lines for years 1958�1977, 1978�1990 and 1991�2014

Source: Developed by the authors

According to the above example, years 1978 and 1991 seem po-
tentially signi�cant as time points marking a change in the mortality
trend for women aged x = 40 years in the period 1958�2014.

However, it is necessary to consider whether or not the potential
switchings are accidental. If they are signi�cant, several sub-models
can be used, separately for each of the identi�ed sub-periods.

The concept for �nding statistically signi�cant switching points
used in determining sub-models of the hybrid models will be based
here on the so-called self-adaptive statistical test (JL) introduced by
[Janic-Wróblewska, Ledwina 2000, Antoch et al. 2008] and adopted to
analyze mortality data series.

3.2.2. Theoretical backgrounds of the JL test

Let continuous random variables U1, U2, . . . , UN be observed and
let Ft denote the cumulative distribution function (CDF) of random
variable Ut. We wish to verify the null hypothesis

H0 : F1 = F2 = . . . = FN , (3.2.4)
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against an alternative hypothesis

H1 : ∃η∈(0.1) F1 = F[Nη] 6= F[Nη+1] = . . . = FN , (3.2.5)

where [Nη] denotes an integer part of Nη.

Statistics MN of the JL test is of the form

MN(e, pN) = max
[eN ]≤m≤[(1−e)N ]

T (S(m, pN);m), (3.2.6)

where
N � sample size,

e ∈
(
0, 1

2

)
� �xed value (hereafter e = 0.1),

pN = 1, 5 logN � positive number representing �penalty�,

S(m, pN) � statistics de�ned by the formula

S(m, pN) =

min{k∈ [1,dN ] : T (k,m)−kpN≥T (l,m)−lpN ; l=1,. . . ,dN},
(3.2.7)

dN � natural number representing the complexity of the problem
(hereafter dN = 10),

T (k,m) � statistics de�ned as

T (k,m) =
k∑

n=1

L2(m; bn), (3.2.8)

L(m, bn) � statistics de�ned by formula

L(m, bn) =
N∑
t=1

cmtbn

(
Rt − 0.5

N

)
, (3.2.9)

Rt � rank of Ut in a non-decreasing sequence U1, . . . , UN ,

cmt � weights de�ned as

cmt =


√

m(N−m)
N

1
m
, t = 1, 2, . . . ,m,

−
√

m(N−m)
N

1
N−m , t = m+ 1, . . . , N,

(3.2.10)
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bn, n= 1, . . . , k � Legendre's polynomials, orthonormal on interval
[0, 1], i.e.

bn(z) =
1

n! 2n
dn{(z2 − 1)n}

dzn
. (3.2.11)

The critical values of the JL test were derived by means of the
Monte-Carlo method [Janic-Wróblewska, Ledwina 2000]. Since for k =
1 the statistics of the JL test and the statistics of Wilcoxon rank test
are equivalent, the tabulated critical values of the latter test can be
applied. A high value of MN supports the rejection of H0 hypothesis
in favor of H1 hypothesis.

3.2.3. Determining switching points from mortality rates

To �nd switching points in the mortality process lnµx(t), we shall
apply the JL test. According to the relation (1.3.23), we assume that
yx(t) = lnµx(t) are approximated by log-central death rates yx,t =
lnmx,t observed in sample time series {lnmx,t, t = 1, 2, . . . , T} (see
Section 1.3.2).

Let us consider the following sequence de�ned for �xed x = 0, 1, . . . , X

{Ux,1, Ux,2, . . . , Ux,N}, (3.2.12)

where Ux,t = yx,t+1 − yx,t, yx,t = lnmx,t, t = 1, 2, . . . , T .

Random variables Ux,t represent here increments in the log-central
death rates for the selected age group x. Because we have T −1 of
di�erences, hence N = T − 1.

The proposed application of the JL test to the analyzed problem
is based on the following concept. Assume that for any t∗ (1≤ t∗<T )
variables

Ux,1, Ux,2, . . . , Ux,t∗ (3.2.13)

have the same probability distributions as variables

Ux,t∗+1, Ux,t∗+2 . . . , Ux,N . (3.2.14)

In such a case a switching point does not exist; otherwise, there is at
least one switching point.

Example 3.2. Let us consider the data set from Example 3.1, i.e. the
time series of log-central death rates recorded in years 1958�2000 for
Polish women aged x = 40 (see Table 3.1).



101

Let us calculate di�erences Ux,t = yx,t+1 − yx,t and then statistics
L(m, bn) from (3.2.9) for m = 1, 2, . . . , N − 1, n = 1, 2, . . . , k, k ∈ N.

For m = 1 expressions (3.2.9)�(3.2.10) de�ning statistics L(1, bn)
and coe�cients c1t reduce to

L(1, bn) =
N∑
t=1

c1tbn

(
Rt − 0.5

N

)
, (3.2.15)

where

c1t =


√

N−1
N
, t = 1,

−
√

N−1
N

1
N−1

, t = 2, 3, . . . , N.

(3.2.16)

The Legendre polynomial bn in (3.2.15) is determined from formula

bn(zt) = Bn(zt)
√

2n+ 1. (3.2.17)

For n = 0, 1, 2, polynomials Bn take the following forms

B0(zt)=1,

B1(zt)=2zt−1,

B2(zt)=
1

2

(
3(2zt−1)2−1

)
.

(3.2.18)

For n = 3, 4, . . ., polynomials Bn are obtained from formula

Bn+1(zt) =
2n+ 1

n+ 1
(2zt − 1)Bn(zt)−

n

n+ 1
Bn−1(zt), (3.2.19)

where arguments zt are expressed as

zt =
Rt − 0.5

N
, t = 1, 2, . . . , N (3.2.20)

and Rt are the ranks of observations Ux,t in the ordered sample.
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Table 3.1. Log-central death rates for women aged x = 40 years

(Poland, 1958�2000)

Year lnmx,t Year lnmx,t

1958 0.9155 1979 0.4187
1959 0.8220 1980 0.5295
1960 0.8591 1981 0.5822
1961 0.8398 1982 0.3880
1962 0.7871 1983 0.4141
1963 0.8242 1984 0.6259
1964 0.6755 1985 0.5693
1965 0.6387 1986 0.5955
1966 0.6785 1987 0.5664
1967 0.5939 1988 0.4762
1968 0.5839 1989 0.6109
1969 0.6323 1990 0.6038
1970 0.5828 1991 0.6617
1971 0.5104 1992 0.5789
1972 0.4472 1993 0.4700
1973 0.4965 1994 0.4479
1974 0.4929 1995 0.4793
1975 0.5098 1996 0.4008
1976 0.5038 1997 0.3598
1977 0.5365 1998 0.4618
1978 0.5844 1999 0.4246
1979 0.4187 2000 0.3141

Source: Human Mortality Data Base.

Table 3.2 contains statistics L(m, b1) calculated for m = 1 and
m = 2. Let us note that statistics L(1, b1) and L(2, b1) have di�erent
values only because of changes in the values of coe�cients cmt.

The sums of terms in columns 7 and 9 of Table 3.2 are the values
of statistics L(1; b1) and L(2; b1), i.e.

L(1, b1) = −1.2939, L(2, b1) = −0.2988. (3.2.21)

Thus, we also get

L2(1, b1) = 1.6742, L2(2, b1) = 0.0893. (3.2.22)

Statistics L2(1, b1) and L2(2, b1) are the components of T (k, 1) and
T (k, 2), respectively. The general de�nition of statistics T (k,m) for
given values of k and m comes from formula (3.2.8).

For k = 1 andm = 1, statistics T (k,m) can be reduced to T (1, 1) =
L2(1, b1). For k = 1 and m = 2, we have T (1, 2) = L2(2, b1).
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Table 3.2. Auxiliary calculations for statistics L(1; b1) and L(2; b1)

Year Ux,t Rt zt b1(zt) c1t c1tb1(zt) c2t c2tb1(zt)

1959 −0.0935 6 0.13 −1.2784 0.9880 −1.2631 0.6901 −0.8822
1960 0.0371 32 0.75 0.8660 −0.0241 −0.0209 0.6901 0.5976
1961 −0.0192 21 0.49 −0.0412 −0.0241 0.0010 −0.0345 0.0014
1962 −0.0527 14 0.32 −0.6186 −0.0241 0.0149 −0.0345 0.0213
1963 0.0371 31 0.73 0.7835 −0.0241 −0.0189 −0.0345 −0.0270
1964 −0.1487 3 0.06 −1.5259 −0.0241 0.0368 −0.0345 0.0526
1965 −0.0368 18 0.42 −0.2887 −0.0241 0.0070 −0.0345 0.0100
1966 0.0399 33 0.77 0.9485 −0.0241 −0.0229 −0.0345 −0.0327
1967 −0.0847 8 0.18 −1.1135 −0.0241 0.0268 −0.0345 0.0384
1968 −0.0100 22 0.51 0.0412 −0.0241 −0.0010 −0.0345 −0.0014
1969 0.0484 35 0.82 1.1135 −0.0241 −0.0268 −0.0345 −0.0384
1970 −0.0496 15 0.35 −0.5361 −0.0241 0.0129 −0.0345 0.0185
1971 −0.0723 11 0.25 −0.8660 −0.0241 0.0209 −0.0345 0.0299
1972 −0.0632 12 0.27 −0.7835 −0.0241 0.0189 −0.0345 0.0270
1973 0.0493 36 0.85 1.1959 −0.0241 −0.0288 −0.0345 −0.0413
1974 −0.0037 25 0.58 0.2887 −0.0241 −0.0070 −0.0345 −0.0100
1975 0.0170 26 0.61 0.3712 −0.0241 −0.0089 −0.0345 −0.0128
1976 −0.0060 24 0.56 0.2062 −0.0241 −0.0050 −0.0345 −0.0071
1977 0.0327 30 0.70 0.7011 −0.0241 −0.0169 −0.0345 −0.0242
1978 0.0480 34 0.80 1.0310 −0.0241 −0.0248 −0.0345 −0.0356
1979 −0.1657 2 0.04 −1.6083 −0.0241 0.0388 −0.0345 0.0555
1980 0.1107 40 0.94 1,5259 −0.0241 −0.0368 −0.0345 −0.0526
1981 0.0528 37 0.87 1,2784 −0.0241 −0.0308 −0.0345 −0.0441
1982 −0.1942 1 0.01 −1.6908 −0.0241 0.0407 −0.0345 0.0583
1983 0.0261 27 0.63 0.4536 −0.0241 −0.0109 −0.0345 −0.0157
1984 0.2118 42 0.99 1,6908 −0.0241 −0.0407 −0.0345 −0.0583
1985 −0.0567 13 0.30 −0.7011 −0.0241 0.0169 −0.0345 0.0242
1986 0.0263 28 0.65 0.5361 −0.0241 −0.0129 −0.0345 −0.0185
1987 −0.0291 19 0.44 −0.2062 −0.0241 0.0050 −0.0345 0.0071
1988 −0.0902 7 0.15 −1.1959 −0.0241 0.0288 −0.0345 0.0413
1989 0.1346 41 0.96 1.6083 −0.0241 −0.0388 −0.0345 −0.0555
1990 −0.0071 23 0.54 0.1237 −0.0241 −0.0030 −0.0345 −0.0043
1991 0.0579 38 0.89 1.3609 −0.0241 −0.0328 −0.0345 −0.0470
1992 −0.0828 9 0.20 −1.0310 −0.0241 0.0248 −0.0345 0.0356
1993 −0.1089 5 0.11 −1.3609 −0.0241 0.0328 −0.0345 0.0470
1994 −0.0221 20 0.46 −0.1237 −0.0241 0.0030 −0.0345 0.0043
1995 0.0314 29 0.68 0.6186 −0.0241 −0.0149 −0.0345 −0.0213
1996 −0.0785 10 0.23 −0.9485 −0.0241 0.0229 −0.0345 0.0327
1997 −0.0410 16 0.37 −0.4536 −0.0241 0.0109 −0.0345 0.0157
1998 0.1021 39 0.92 1,4434 −0.0241 −0.0348 −0.0345 −0.0498
1999 −0.0372 17 0.39 −0.3712 −0.0241 0.0089 −0.0345 0.0128
2000 −0.1105 4 0.08 −1.4434 −0.0241 0.0348 −0.0345 0.0498

Total × −1.2939 × −0.2988

Source: Own calculations.
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Statistics L(m, b1) and T (1,m) for k = 1 and m = 1, 2, . . . , N − 1
can be calculated in a similar way.

Based on the de�nition of (3.2.6), we shall consider statistics T (1,m)
for m satisfying double inequality [eN ]≤m≤ [(1−e)N ], where e = 0.1.
For N = 42, we have 5 ≤ m ≤ 37.

The values of T (1,m), m = 5, 6, . . . , 37 are contained in Table 3.3.

Table 3.3. Values of L(m, b1), T (1,m), m = 5, . . . , 37

m L(m, b1) T (1,m)

5 −0.1375 0.0189
6 −0.8001 0.6402
7 −0.8708 0.7583
8 −0.4537 0.2059
9 −0.8529 0.7275
10 −0.8068 0.6509
11 −0.3908 0.1527
12 −0.5634 0.3175
13 −0.8396 0.7050
14 −1.0799 1.1662
15 −0.6773 0.4587
16 −0.5766 0.3324
17 −0.4537 0.2059
18 −0.3858 0.1488
19 −0.1662 0.0276
20 0.1529 0.0234
21 −0.3436 0.1181
22 0.1274 0.0162
23 0.5242 0.2748
24 0.0000 0.0000
25 0.1426 0.0203
26 0.6814 0.4643
27 0.4648 0.2160
28 0.6479 0.4198
29 0.5919 0.3503
30 0.1972 0.0389
31 0.7671 0.5884
32 0.8367 0.7000
33 1.3802 1.9050
34 1.0371 1.0756
35 0.5293 0.2802
36 0.5092 0.2593
37 0.8449 0.7139

Source: Own calculations.
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Statistics T (2,m) for m = 5, 6, . . . , 37 are de�ned as T (2,m) =
L2(m, b1) + L2(m, b2), where L(m, bn) is given in (3.2.9) and polyno-
mials b1, b2 are as follows

b1(zt) =
√

3 (2zt − 1), b2(zt) =
√

5

(
3

2
(2zt − 1)2 − 1

2

)
, (3.2.23)

where zt = Rt−0.5
N

, t = 1, 2, . . . , N.

Table 3.4. Values of L(m, b1), L(m, b2), T (2,m), m = 5, . . . , 37

m L(m, b1) L(m, b2) T (2,m)

5 −0.1375 −0.8601 0.7586
6 −0.8001 −0.1409 0.6601
7 −0.8708 −0.5563 1.0678
8 −0.4537 −0.5718 0.5329
9 −0.8529 −0.4462 0.9266
10 −0.8068 −0.8340 1.3464
11 −0.3908 −0.7136 0.6619
12 −0.5634 −0.9664 1.2514
13 −0.8396 −1.0374 1.7813
14 −1.0799 −1.1585 2.5082
15 −0.6773 −0.9846 1.4282
16 −0.5766 −1.2969 2.0145
17 −0.4537 −1.5860 2.7212
18 −0.3858 −1.9067 3.7842
19 −0.1662 −2.0718 4.3199
20 0.1529 −2.0428 4.1963
21 −0.3436 −1.4928 2.3465
22 0.1274 −1.0355 1.0885
23 0.5242 −0.8190 0.9455
24 0.0000 −0.1755 0.0308
25 0.1426 −0.4559 0.2282
26 0.6814 0.1998 0.5042
27 0.4648 0.0196 0.2164
28 0.6479 −0.2407 0.4777
29 0.5919 −0.6025 0.7133
30 0.1972 −0.4520 0.2432
31 0.7671 0.1584 0.6135
32 0.8367 −0.2351 0.7553
33 1.3802 0.1144 1.9181
34 1.0371 0.1474 1.0974
35 0.5293 0.5500 0.5827
36 0.5092 0.1006 0.2694
37 0.8449 −0.2199 0.7622

Source: Own calculations.
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The values of L(m, b1), L(m, b2), T (2,m) are presented in Table 3.4.

Table 3.5. Values of statistics T (k,m), k = 3, . . . , 10, m = 5, . . . , 37

m
T (k,m)

k = 3 k = 4 k = 5 k = 6 k = 7 k = 8 k = 9 k = 10
5 0.9267 1.7483 2.0939 2.0939 2.9248 2.9277 5.8176 5.8231
6 1.3520 2.1503 2.1509 2.1509 4.5209 5.0748 6.1496 6.2405
7 1.3381 1.4499 1.4862 1.4862 5.0686 5.4595 7.5431 7.5773
8 1.3803 1.7862 1.8306 1.8306 6.8936 7.1247 10.038 10.4501
9 1.2658 2.6588 2.7375 2.7375 5.7573 5.7573 9.0131 9.7243
10 1.7007 2.3980 2.4151 2.4151 4.9796 5.1454 7.8567 9.2966
11 1.3934 2.5297 2.5325 2.5325 6.2929 6.9749 9.0355 10.9292
12 1.4816 2.3959 2.4137 2.4137 7.0958 7.3029 9.4206 10.3077
13 1.7881 3.3140 3.5862 3.5862 6.9205 7.0415 8.1072 9.5486
14 2.6020 4.7308 5.5466 5.5466 8.2464 8.2545 8.6556 10.2335
15 1.4426 5.2268 5.8376 5.8376 9.2229 9.4829 9.5565 10.9032
16 2.0212 4.4868 4.8554 4.8554 7.0228 7.3360 7.3447 8.4891
17 2.8288 4.4745 4.7713 4.7713 5.9781 6.1925 6.3603 7.0330
18 4.0043 4.9293 5.0142 5.0142 5.6768 6.0986 6.6259 7.4652
19 5.0063 6.2539 6.6442 6.6442 7.2939 7.3928 7.5989 8.2147
20 5.4609 7.5609 8.2483 8.2483 9.6650 9.9934 10.1295 11.4057
21 4.9719 6.1165 6.7412 6.7412 8.8118 8.8353 9.6520 12.5092
22 2.7919 3.7694 3.9520 3.9520 4.8603 4.9715 5.2511 8.6941
23 2.8865 4.9621 4.9864 4.9864 5.9325 5.9334 6.8463 9.1806
24 4.4906 6.4617 7.0780 7.0780 7.2847 7.4196 7.9331 10.0277
25 6.0775 7.1514 7.8739 7.8739 7.8906 7.9120 8.7812 10.0214
26 3.4641 3.5774 5.8252 5.8252 6.2664 6.5731 7.9923 9.0625
27 2.0868 2.3624 5.8498 5.8498 6.3075 6.3546 8.5621 9.4037
28 3.4637 3.5232 7.8305 7.8305 8.0092 8.0221 10.4742 10.7785
29 3.2992 3.7175 7.1394 7.1394 7.6665 7.6742 9.2476 9.6996
30 2.3554 2.3680 5.5344 5.5344 5.7905 6.0790 6.9078 7.2776
31 1.4747 1.8014 4.9894 4.9894 5.0449 5.0506 5.1573 6.7546
32 1.8784 2.8958 5.0879 5.0879 5.0891 5.2639 5.6174 8.1620
33 3.0548 3.5118 4.5960 4.5960 4.6490 4.9207 5.9439 7.1763
34 1.6361 1.6869 3.5109 3.5109 4.0481 4.8135 6.1667 8.7338
35 1.2399 1.6408 2.4105 2.4105 2.6407 3.6767 4.3030 5.4855
36 0.8162 1.1686 1.4118 1.4118 1.4774 3.7230 4.0036 6.2890
37 2.5332 3.6750 4.5559 4.5559 4.7973 5.9429 6.0956 7.5271

Source: Own calculations.

Proceeding in the same way for k = 3, 4, . . . and m = 5, 6, . . . , 37,
we obtain the values of statistics T (k,m) (table 3.5). In the next
step, statistics S(m, pN) given by formula (3.2.7) will be found. For
a �xed m, S(m, pN) corresponds to the smallest value k∗ of index k
(k = 1, 2, . . . , dN) for which di�erence T (k,m)− kpN is the largest.
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Parameter pN is found from formula

pN = 1.5 ln(N) = 1.5 ln(42) ≈ 5.61, (3.2.24)

where 10 represents the value of dN according to suggestion given by
[Janic-Wróblewska, Ledwina 2000].

Table 3.6. Values of statistics T (k,m)− kpN , k∗ = S(m, pN )

m
T (k,m)− kpN k∗

k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7 k = 8 k = 9 k = 10
5 −5.6 −10.5 −15.9 −20.9 −26.3 −31.5 −36.3 −41.9 −44.6 −50.2 1
6 −5.0 −10.6 −15.5 −20.8 −25.9 −31.5 −34.7 −39.8 −44.3 −49.8 1
7 −4.8 −10.1 −15.5 −21.1 −26.6 −32.2 −34.2 −39.4 −42.9 −48.5 1
8 −5.4 −10.7 −15.4 −20.7 −26.2 −31.8 −32.4 −37.7 −40.4 −45.6 1
9 −4.9 −10.3 −15.6 −20.1 −25.4 −30.9 −33.5 −39.1 −41.4 −46.3 1
10 −5.0 −9.9 −15.1 −20.4 −25.6 −31.2 −34.3 −39.7 −42.6 −46.8 1
11 −5.5 −10.6 −15.4 −20.0 −25.5 −31.1 −33.0 −37.9 −41.4 −45.1 1
12 −5.3 −10.0 −15.3 −20.0 −25.6 −31.2 −32.1 −37.5 −41.0 −45.8 1
13 −4.9 −9.4 −15.0 −19.2 −24.7 −30.1 −32.3 −37.8 −42.4 −46.5 1
14 −4.4 −8.7 −14.2 −17.9 −23.3 −28.1 −31.0 −36.6 −41.8 −45.8 1
15 −5.1 −9.8 −15.4 −17.8 −22.8 −27.8 −30.0 −35.4 −40.9 −45.2 1
16 −5.3 −9.2 −14.8 −18.2 −23.5 −28.8 −32.2 −37.5 −43.1 −47.6 1
17 −5.4 −8.5 −14.0 −18.0 −23.6 −28.9 −33.3 −38.7 −44.1 −49.0 1
18 −5.5 −7.4 −12.8 −17.5 −23.1 −28.6 −33.6 −38.8 −43.8 −48.6 1
19 −5.6 −6.9 −11.8 −16.3 −21.8 −27.0 −32.0 −37.5 −42.9 −47.9 1
20 −5.6 −7.0 −11.4 −14.9 −20.5 −25.4 −29.6 −34.9 −40.3 −44.7 1
21 −5.5 −8.9 −11.8 −16.3 −21.9 −26.9 −30.4 −36.0 −40.8 −43.6 1
22 −5.6 −10.1 −14.0 −18.7 −24.3 −29.7 −34.4 −39.9 −45.2 −47.4 1
23 −5.3 −10.3 −13.9 −17.8 −23.1 −28.7 −33.3 −38.9 −43.6 −46.9 1
24 −5.6 −11.2 −12.3 −17.6 −21.6 −26.6 −32.0 −37.4 −42.5 −46.0 1
25 −5.6 −11.0 −10.7 −16.1 −20.9 −25.8 −31.4 −36.9 −41.7 −46.0 1
26 −5.1 −10.7 −13.4 −18.9 −24.5 −27.8 −33.0 −38.3 −42.5 −47.0 1
27 −5.4 −11.0 −14.7 −20.3 −25.7 −27.8 −32.9 −38.5 −41.9 −46.7 1
28 −5.2 −10.7 −13.4 −18.9 −24.5 −25.8 −31.2 −36.8 −40.0 −45.3 1
29 −5.3 −10.5 −13.5 −18.8 −24.3 −26.5 −31.6 −37.2 −41.2 −46.4 1
30 −5.6 −11.0 −14.5 −20.1 −25.7 −28.1 −33.5 −38.8 −43.6 −48.8 1
31 −5.0 −10.6 −15.3 −20.7 −26.2 −28.6 −34.2 −39.8 −45.3 −49.3 1
32 −4.9 −10.5 −14.9 −19.7 −25.1 −28.6 −34.2 −39.6 −44.8 −47.9 1
33 −3.7 −9.3 −13.8 −18.9 −24.5 −29.0 −34.6 −39.9 −44.5 −48.9 1
34 −4.5 −10.1 −15.2 −20.7 −26.3 −30.1 −35.2 −40.0 −44.3 −47.3 1
35 −5.3 −10.6 −15.6 −21.2 −26.4 −31.2 −36.6 −41.2 −46.2 −50.6 1
36 −5.3 −10.9 −16.0 −21.5 −26.9 −32.2 −37.8 −41.1 −46.5 −49.8 1
37 −4.9 −10.5 −14.3 −19.8 −24.4 −29.1 −34.4 −38.9 −44.4 −48.5 1

Source: Own calculations.
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Table 3.5 shows the values of T (k,m) for k = 3, 4, . . . , dN , while
Table 3.6 contains di�erences T (k,m)−kpN and the values of statistics
S(m, pN) for k = 1, 2, . . . , dN and m = 5, 6, . . . , 37.

Since for each m we have k∗ = 1 (table 3.6), we shall calculate
statistics MN taking account of the terms corresponding to k= 1 and
representing the values of statistics T (1,m) (the last column in Table
3.3). Thereafter, we shall review the values of T (1,m) to �nd its great-
est value. It is T (1, 33), meaning that the value of the JL test statistics
is MN = 1.905 and the switching point m = 33 that corresponds to it
occurs in the year 1991.

Comparing the statistics obtained in this example with the critical
value of the JL test that for k = 1 equals the critical value of the
Wilcoxon test we �nd that the switching point is statistically signi�-
cant.

The calculations presented in Example 3.2 refer to switching points'
identi�cation for Polish women aged x=40 years. The JL test results
obtained for all one-year age groups of males and females in Poland
are provided in Chapter 6 (see Table 6.1).

The concept of switching time points is incorporated in the struc-
ture of hybrid mortality models proposed in the remainder of this chap-
ter.

3.3. The dynamic Lee�Carter hybrid model

3.3.1. Dynamic LCH model

The family of the subsystems comprising the Lee�Carter Hybrid
model (LCH model) is de�ned by analogy to (1.6.1)�(1.6.2), i.e.

dµx(t,l)=

[
γx(t,l)+

1

2
σ2
x(l)

]
µx(t,l)dt+σx(l)µx(t,l)dw(t), t∈R+, (3.3.1)

γx(t, l)=βx(l)κ
′(t, l), µx(t0, l)=exp{αx(l)+βx(l)κ(t0, l)}, (3.3.2)

where
l ∈ S � state of the hybrid system,
αx(l), βx(l) � age-related scalar coe�cients,
κ(t, l) � scalar di�erentiable and deterministic functions of time t,
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κ(t0, l) � initial constant parameters,
σ2
x(l) > 0 � age-speci�c volatility parameters,
w(t) � standard Wiener process.

Let us assume that κ(t, l) are linear functions of time t and can be
di�erent for di�erent subsystems, i.e.

κ(t, l) = χ(l) + δ(l)t, l ∈ S, (3.3.3)

such that∫ τ1

t0

κ(t, l1)dt+

∫ τ2

τ1

κ(t, l2)dt+ . . .+

∫ T

τM

κ(t, lM)dt = 0 (3.3.4)

and

κ(τ1, l0) = κ(τ1, l1),

κ(τ2, l1) = κ(τ2, l2),

. . . . . . . . . . . .

κ(τM , lM−1) = κ(τM , lM).

(3.3.5)

where I0 = [t0, τ1), I1 = [τ1, τ2), . . . , IM = [τM , T ] are time intervals
(mortality regimes) and τ1, τ2, . . . , τM are switching points.

Successive subsystems of the LCH model correspond to di�erent
mortality regimes I0, I1, . . . , IM . In the more complex approach, func-
tions κ(t, l) for separate subsystems can be represented by more so-
phisticated formulas then (3.3.3).

Let the following additional constraint be also imposed

X∑
x=0

βx(l) = 1, l ∈ S. (3.3.6)

By applying the Itô formula (see (A.2.21), Theorem A.7 in Ap-
pendix A), equation (3.3.1) has the following solution

lnµx(t, l) = αx(l) + βx(l)κ(t, l) + σx(l)w(t), (3.3.7)

or, equivalently, in its exponential form

µx(t, l) = exp {αx(l) + βx(l)κ(t, l) + σx(l)w(t)} . (3.3.8)
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The solutions of the subsystems will be used to create a solution
for the hybrid model.

We assume the continuity of solutions of stochastic di�erential
equations, it means that the value of the process in state li at time τi,
i.e. µx(τi, li−1), and the value of the process in state li−1 at switching
time τi, i.e. µx(τi, li−1), are equal. Then the solution is of the following
form

µx(t, li) = µx(τi, li−1) exp {βx(li)(κ(t, li)− κ(τi, li))+

+ σx(li)(w(t)−w(τi))} for t ∈ [τi, τi+1).

(3.3.9)

3.3.2. Discrete LCH model

The Discrete Lee�Carter Hybrid model(DLCH model) can be de-
rived from equation (3.3.7) by subtracting lnµx(t−1, l) from lnµx(t, l)

lnµx(t, l) =lnµx(t−1, l)+βx(l)[κ(t, l)−κ(t−1, l)]+

+ σx(l)εx,t(l), t ∈ N,
(3.3.10)

or, equivalently

lnµx(t,l)=lnµx(t−1,l)+βx(l)[κ(t,l)−κ(t−1,l)]+ξx,t(l), t∈N, (3.3.11)

where ξx,t(l) = σx(l)εx,t(l) are Gaussian random variables with means
E[ξx,t(l)] and variances Var[ξx,t(l)] equal, respectively,

E[ξx,t(l)] = 0, Var[ξx,t(l)] = E[ξ2
x,t(l)] = σ2

x(l). (3.3.12)

Coe�cients αx(l), βx(l), χ(l), δ(l), σ2
x(l) for l ∈ S constitute a set

of unknown parameters. Parameters βx(l) and functions κ(t, l) satisfy
constraints (3.3.3)�(3.3.6).

3.3.3. Parameters' estimation of the dynamic LCH model

Let us consider the discrete LCH model as given in (3.3.11) and
assume that there exist M switching time points τ1, τ2, . . . , τM within
the observation period [t0, T ].

Parameters δ(l), βx(l) and σ2
x(l) can be estimated by analogy to

(1.6.19)�(1.6.21). Thus, the respective estimators are as follows

d(l) =
X∑
x=0

v̄x(l), (3.3.13)
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bx(l) =
v̄x(l)

d(l)
=

v̄x(l)∑X
x=0 v̄x(l)

(3.3.14)

and
s2
x(l) = (vx,t(l)− v̄x(l))2, (3.3.15)

where
vx,t(l) = lnmx,t+1−lnmx,t for t ∈ Il,
lnmx,t, t = t0, t0 + 1, . . . , T are log-central death rates in a sample
time series,
v̄x(l), (vx,t(l)− v̄x(l))2 are arithmetic averages of the respective ex-
pressions calculated for each mortality regime Il.

Parameters χ(l) de�ned via (3.3.3) satisfy constraints (3.3.3)�(3.3.5).
Their estimators c(l) can be obtained in an analogous way as provided
in Section 1.6.3. As a result, estimators k(t, l) of κ(t, l) take the form

k(t, l) = c(l) + d(l)t. (3.3.16)

Remaining parameters αx(l) can be estimated for each sub-period
Il using formula (1.6.26) with t0, t1 replaced by successive switching
points τi, τi+1.

3.4. The Vasi£ek and Cox�Ingersoll�Ross hybrid

models

In this section we propose some extensions of the Vasi£ek and
Cox�Ingersoll�Ross models discussed in Section 1.7, termed, respec-
tively, the hybrid Vasi£ek and hybrid Cox�Ingersoll�Ross models.

3.4.1. VH and CIRH models

The family of subsystems representing the Vasi£ek Hybrid model
(VH model) is of the form

dµx(t, l) = κx(l) [θx(l)− µx(t, l)] dt+ σx(l)dw(t), t ∈ R+, (3.4.1)

and the family of subsystems representing the Cox�Ingersoll�Ross Hy-
brid model (CIRH model) is as follows

dµx(t, l)=κx(l)[θx(l)−µx(t, l)]dt+σx(l)
√
µx(t, l)dw(t), t∈R+, (3.4.2)
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where σx(l), θx(l), κx(l) > 0 for l ∈ S are constant parameters and w(t)
is a standard Wiener process.

For the Vasi£ek model one can �nd the exact analytical solution
using the Itô formula (see (A.2.21), Theorem A.7 in Appendix A)

µx(t, l) = µx(t0, l)e
−κx(l)(t−t0) + θx(l)

(
1− e−κx(l)(t−t0)

)
+

+ σx(l)e
−κx(l)t

∫ t

t0

eκx(l)sdw(s).

(3.4.3)

We assume that the scalar hybrid di�erential model starting at mo-
ment t0 from some initial state µx0 switches at time points τ1, . . . , τM .
We also assume that τ0 = t0 and that in time intervals [τi, τi+1) the
hybrid system stays in state li ∈ S, i = 0, 1, . . . ,M , where l0, l1, . . . , lM
is any subsequence of N states.

The continuity of solutions is also assumed, meaning that the initial
value of the process µx(t, l) in state li at time τi is equal to the value
of the process in state li−1 at time τi respectively, i.e. µx(τi, li) =
µx(τi, li−1). Then we have

µx(t, li) = µx(τi, li)e
−κx(l)(t−τi) + θx(l)

(
1− e−κx(l)(t−τi)

)
+

+ σx(l)e
−κx(l)t

∫ t

τi

eκx(l)sdw(s), t ∈ [τi, τi+1).

(3.4.4)

3.4.2. VH and CIRH moment models

Using the Itô formula one can �nd the �rst and second moment
equations for the Vasi£ek Hybrid Moment model (VHM model). The
equations are as follows

dE[µx(t, l)]

dt
=−κx(l)E[µx(t, l)]+κx(l)θx(l),

dE[µ2
x(t, l)]

dt
=−2κx(l)E[µ2

x(t, l)]+2κx(l)θx(l)E[µx(t, l)]+σ
2
x(l)

(3.4.5)

and the stationary solutions are

E[µx(t, l)] = θx(l), E[µ2
x(t, l)] = θ2

x(l) +
σ2
x(l)

2κx(l)
. (3.4.6)
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Similarly, the moment equations for the Cox�Ingersoll�Ross Hybrid
Moment model (CIRHM model) are as follows

dE[µx(t, t)]

dt
=− κx(l)E[µx(t, l)] + κx(l)θx(l),

dE[µ2
x(t, l)]

dt
=− 2κx(l)E[µ2

x(t, l)]+2κx(l)θx(l)E[µx(t, l)]+

+ σ2
x(l)E[µx(t, l)]

(3.4.7)

and the stationary solutions are

E[µx(t, l)] = θx(l), E[µ2
x(t, l)] = θ2

x(l) +
σ2
x(l)θx(l)

2κx(l)
. (3.4.8)

The continuity of the moment of the solutions of the stochastic
di�erential equations can be assumed only in the case of non-stationary
solutions, meaning that the initial value of the process E[µx(t)] in state
li at time τi, i.e. E[µx(τi, li)], is equal to the value of the process in
state li−1 at time τi, i.e. E[µx(τi, li)] = E[µx(τi, li−1)].

3.4.3. Discrete VH and CIRH models

The discrete-time approximation of the model (3.4.1) results in the
Discrete Vasi£ek Hybrid model (DVH model) de�ned as

µx(t+ 1, l) = κx(l)θx(l) + (1− κx(l))µx(t, l)+

+ σx(l)εx,t+1(l), t ∈ N,
(3.4.9)

where ξx,t+1(l) = σx(l)εx,t+1(l) on the right-hand side of (3.4.9) are
Gaussian random variables with means and variances equal, respectively,

E[ξx,t+1(l)] = 0, Var[ξx,t+1(l)] = E[ξ2
x,t+1(l)] = σ2

x(l). (3.4.10)

By analogy, the discrete-time approximation of (3.4.2) leads to the
Discrete Cox�Ingersoll�Ross Hybrid model (DCIRH model)

µx(t+ 1, l) = κx(l)θx(l) + (1− κx(l))µx(t, l)+

+ σx(l)
√
µx(t, l)εx,t+1(l), t ∈ N,

(3.4.11)
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where ξx,t+1(l) = σx(l)
√
µx(t, l)εx,t+1(l) are random variables with

means and conditional variances equal, respectively,

E[ξx,t+1(l)] = 0, Var [ξx,t+1(l)|µx(t, l)] = σ2
x(l)µx(t, l). (3.4.12)

Note that in the case of the DVH model we also have

ξx,t+1 = σx(l)εx,t+1(l) =

= µx(t+ 1, l)− µx(t, l)− κx(l) (θx(l)− µx(t, l)) ,
(3.4.13)

while for the DCIRH model there is

ξx,t+1 = σx(l)
√
µx(t, l)εx,t+1(l) =

= µx(t+ 1, l)− µx(t, l)− κx(l) (θx(l)− µx(t, l)) .
(3.4.14)

Both expressions will be used in the estimation procedure described in
Section 3.4.9.

3.4.4. Discrete VH and CIRH moment models

Using the moment equations (3.4.5) we �nd the Discrete Vasi£ek
Hybrid Moment model (DVHM model)

E[µx]i+1(l) = E[µx]i(l)− (κx(l)E[µx]i(l)− κx(l)θx(l))δ, (3.4.15)

E[µ2
x]i+1(l) = E[µ2

x]i(l)− (2κx(l)E[µ2
x]i(l)+

− 2κx(l)θx(l)E[µx]i(l)− σ2
x(l))δ,

(3.4.16)

Similarly, using the moment equations (3.4.7) we �nd the Discrete
Cox�Ingersoll�Ross Hybrid Moment model (DCIRHM model)

E[µx]i+1(l) = E[µx]i(l)− (κx(l)E[µx]i(l)− κx(l)θx(l))δ, (3.4.17)

E[µ2
x]i+1(l) = E[µ2

x]i(l)− (2κx(l)E[µ2
x]i(l)+

− 2κx(l)θx(l)E[µx]i(l)− σ2
x(l)E[µx]i(l))δ.

(3.4.18)
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3.4.5. Modi�ed VH and CIRH models

The Modi�ed Vasi£ek Hybrid model (MVH model) takes the form
of the scalar stochastic Itô equation

dµx(t, l) = κx(l) [θx(l)− µx(t, l)] dt+ fx(t, l)dw(t), t ∈ R+, (3.4.19)

whereas the Modi�ed Cox�Ingersoll�Ross Hybrid model (MCIRH mo-
del) can be written as

dµx(t, l) = κx(l) [θx(l)− µx(t, l)] dt+

fx(t, l)
√
µx(t, l)dw(t), t∈R+,

(3.4.20)

where θx(l), κx(l) > 0 for l ∈ S are constant parameters, fx(t, l) > 0
are time-depending di�usion functions and w(t) is a standard Wiener
process.

Similarly as in (1.9.9), we will assume in further considerations that
the di�usion functions have the following parametric form

fx(t, l) = eζx(l)t, ζx(l) ∈ R. (3.4.21)

To �nd solution of (3.4.19), let us consider the following expression

K(t, µx(t, l)) = µx(t, l)e
κx(l)t. (3.4.22)

The Itô formula applied to (3.4.22) leads to the following solution

µx(t, l)=µx(t0, l)e
−κx(l)(t−t0)+θx(l)

(
1−e−κx(l)(t−t0)

)
+

+e−κx(l)t

∫ t

t0

e(ζx(l)+κx(l))sdw(s).

(3.4.23)

In the case of the MCIRH model (3.4.20) the following equation is
received by means of the Itô formula

µx(t, l) = µx(t0, l)e
−κx(l)(t−t0) + θx(l)

(
1− e−κx(l)(t−t0)

)
+

+ e−κx(l)t

∫ t

t0

√
µx(s, l)e

(ζx(l)+κx(l))sdw(s).

(3.4.24)
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3.4.6. Modi�ed VH and CIRH moment models

Using the Itô formula one can �nd the �rst and second moment
equations of the Modi�ed Vasi£ek Hybrid Moment model (MVHM
model), i.e.

dE[µx(t, l)]

dt
=− κx(l)E[µx(t, l)] + κx(l)θx(l),

dE[µ2
x(t, l)]

dt
=− 2κx(l)E[µ2

x(t, l)] + 2κx(l)θx(l)E[µx(t, l)]+

+ f 2
x(t, l).

(3.4.25)

The moment equations for the modi�ed Cox�Ingersoll�Ross Hybrid
Moment model (MCIRHM model) take the similar form

dE[µx(t, t)]

dt
=− κx(l)E[µx(t, l)] + κx(l)θx(l),

dE[µ2
x(t, l)]

dt
=− 2κx(l)E[µ2

x(t, l)] + 2κx(l)θx(l)E[µx(t, l)]+

+ f 2
x(t, l)E[µx(t, l)].

(3.4.26)

3.4.7. Discrete modi�ed VH and CIRH models

The discrete-time version of the MVH model (3.4.19) is represented
by the following equation called the Discrete Modi�ed Vasi£ek Hybrid
model (DMVH model)

µx(t+ 1, l) = κx(l)θx(l) + (1− κx(l))µx(t, l)+

+ fx(t, l)εx,t+1(l), t ∈ N,
(3.4.27)

where fx(t, l) = eζx(l)t (l ∈ S) are time-depending di�usion functions.
The terms

ξx,t+1(l) = eζx(l)tεx,t+1(l) (3.4.28)
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are Gaussian random variables with means and variances equal, re-
spectively,

E[ξx,t+1(l)] = 0,

Var[ξx,t+1(l)] = e2ζx(l)t.

(3.4.29)

By analogy, the Discrete Modi�ed Cox�Ingersoll�Ross Hybrid model
(DMCIRH model) based on (3.4.20) takes the form

µx(t+ 1, l) = κx(l)θx(l) + (1− κx(l))µx(t, l)

+ fx(t, l)
√
µx(t, l)εx,t+1(l), t ∈ N.

(3.4.30)

3.4.8. Discrete modi�ed VH and CIRH moment models

Using the moment equations (3.4.25) we �nd also the Discrete Mo-
di�ed Vasi£ek Hybrid Moment model (DMVHM model)

E[µx]i+1(l) = E[µx]i(l)− (κx(l)E[µx]i(l)− κx(l)θx(l))δ, (3.4.31)

E[µ2
x]i+1(l) = E[µ2

x]i(l)− (2κx(l)E[µ2
x]i(l)+

− 2κx(l)θx(l)E[µx]i(l)− f 2
xi(l))δ,

(3.4.32)

where f 2
xi(l) = e2ζ(l)i.

Similarly, from the moment equations (3.4.26) we �nd the Discrete
Modi�ed Cox�Ingersoll�Ross Hybrid Moment model (DMCIRHM mo-
del) expressed by equations

E[µx]i+1(l) = E[µx]i(l)− (κx(l)E[µx]i(l)− κx(l)θx(l))δ, (3.4.33)

E[µ2
x]i+1(l) = E[µ2

x]i(l)− (2κx(l)E[µ2
x]i(l)+

− 2κx(l)θx(l)E[µx]i(l)− f 2
x(t, l)E[µx]i(l))δ.

(3.4.34)
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3.4.9. Parameters' estimation of the VH and CIRH models

In this section we present some procedures used in estimation of
the Vasi£ek and Cox�Ingersoll�Ross hybrid models, concerning both
models for realizations and models for moments.

Estimation of the DVH/DMVH and DCIRH/DMCIRH
models for realizations

Let us consider the DVH and DCIRH models expressed by equa-
tions (3.4.9), (3.4.11), respectively. We apply the method of estimation
termed the generalized method of moments (see Section 1.7.5).

Estimates of parameters κx(l), θx(l), σ2
x(l) can be found for separate

l ∈ S by solving the following optimization problem with respect to
κx(l), θx(l), σ

2
x(l)

minimize S(κx(l), θx(l), σ
2
x(l)) =

=gT (κx(l), θx(l), σ
2
x(l))g(κx(l), θx(l), σ

2
x(l)),

(3.4.35)

where g(κx(l), θx(l), σ
2
x(l)) is de�ned by analogy to (1.7.31) or (1.7.32),

respectively, i.e. by means of sample moments of random terms (3.4.13)
in the DVH model or sample moments of random terms (3.4.14) in the
DCIRH model.

Parameters κx(l), θx(l), ζx(l) of the MDVH and MDCIRH models
can be estimated in a similar way.

Iterative estimation of the DVH and DCIRH moment models

Let us consider estimation of the DVHM and DCIRHM models
using the discrete-time moment equations.

The estimation procedure for the DVHM model (3.4.15)�(3.4.16)
and for the DCIRHM model (3.4.17)�(3.4.18) is as follows:

1o Take constant initial values for E[µx]0(l) = px(l), E[µ2
x]0(l) = p2

x(l),
where px(l) is a �xed parameter.

2o Assume initial conditions for parameters px(l), κx(l), θx(l), σx(l)
e.g. px(l) = 0.1, κx(l) = 0.1, θx(l) = 0.1, σx(l) = 0.1.
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3o Estimate the successive values of E[µx]i(l), E[µ2
x]i(l) from equations

(3.4.15)�(3.4.16) or from equations (3.4.17)�(3.4.18), for an i-th itera-
tion (i = 1, 2, . . .) and for the given values of px(l), κx(l), θx(l), σx(l).

4o Determine the values of Ê[µx]i(l), Ê[µ2
x]i(l), i.e. the central mortality

rates and their squares from a sample time series.

5o Minimize the following estimation criterion

SV =
∑
l

∑
i

(
(Ê[µx]i+1(l)−E[µx]i(l)(1−κx(l))−κx(l)θx(l)

)2

+

+
(
Ê[µ2

x]i+1(l)− E[µ2
x]i(l) + (2κx(l)E[µ2

x]i(l)+

−2 κx(l)θx(l)E[µx]i(l)− σ2
x(l))

)2
,

(3.4.36)

or

SCIR=
∑
l

∑
i

(
(Ê[µx]i+1(l)−E[µx]i(l)(1−κx(l))−κx(l)θx(l)

)2

+

+
(
Ê[µ2

x]i+1(l)− E[µ2
x]i(l) + (2κx(l)E[µ2

x]i(l)+

−2 κx(l)θx(l)E[µx]i(l)− σ2
x(l)E[µx]i(l))

)2
.

(3.4.37)

Estimation of the VH and CIRH moment models
with stationary �rst order moments

Let us consider the VHM and CIRHM models using the moments'
equations (3.4.6) and (3.4.8), respectively.

The Vasi£ek stationary hybrid moment model has the form

E[µx(t, l)] = θx(l), E[µ2
x(t, l)] = θ2

x(l) +
σ2
x(l)

2κx(l)
, (3.4.38)

while the Cox�Ingersoll�Ross stationary hybrid moment model is as
follows

E[µx(t, l)] = θx(l), E[µ2
x(t, l)] = θ2

x(l) +
σ2
x(l)θx(l)

2κx(l)
. (3.4.39)
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In both models only θx(l) and
σ2
x(l)

2κx(l)
for each l∈S can be estimated.

It means that estimates of σ2
x(l) and κx(l) cannot be found. To this end,

it is enough to determine the theoretical moments (3.4.38) and (3.4.39)
and compare them with values of their respective counterparts obtained
from sample central death rates {mx,t, t + 1, 2, . . . , T}, separately for
each mortality regime Il. It reduces to solving the following equations

Ê[µx(t, l)] = θx(l), Ê[µ2
x(t, l)] = θ2

x(l) +
σ2
x(l)

2κx(l)
, (3.4.40)

or

Ê[µx(t, l)] = θx(l), Ê[µ2
x(t, l)] = θ2

x(l) +
σ2
x(l)θx(l)

2κx(l)
. (3.4.41)

Iterative estimation of the DMVHM and DMCIRHM models

Let us consider the DMVHM model expressed by the discrete-time
moment equations (3.4.31)�(3.4.32) and the DMCIRHM model de�ned
by the discrete-time moment equations (3.4.33)�(3.4.34). The iterative
estimation procedure for both models can be described as follows:

1o Take constant initial values of E[µx]0(l) = px(l), E[µ2
x]0(l) = p2

x(l),
where px(l) is a �xed parameter.

2o Assume initial values for parameters px(l), κx(l), θx(l), ζx(l), e.g.
px(l) = 0.1, κx(l) = 0.1, θx(l) = 0.1, ζx(l) = −0.1.

3o Estimate successive values of E[µx]i(l), E[µ2
x]i(l) from expressions

(3.4.31)�(3.4.32) or (3.4.33)�(3.4.34) for an i-th iteration (i = 1, 2, ...)
and for the given values of px(l), κx(l), θx(l), ζx(l).

4o Determine the values of Ê[µx]i(l), Ê[µ2
x]i(l), i.e. the central mortality

rates and their squares from a sample time series.

5o Minimize the estimation criterion

SV =
∑
l

∑
i

[(Ê[µx]i+1(l)−E[µx]i(l)(1−κx(l))−κx(l)θx(l))2+

+ (Ê[µ2
x]i+1(l)− E[µ2

x]i(l)− (2κx(l)E[µ2
x]i(l)+

− 2κx(l)θx(l)E[µx]i(l)− f 2
xi(l)))

2,

(3.4.42)
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or

SCIR=
∑
l

∑
i

[(Ê[µx]i+1(l)−E[µx]i(l)(1−κx(l))−κx(l)θx(l))2+

+(Ê[µ2
x]i+1(l)− E[µ2

x]i(l) + (2κx(l)E[µ2
x]i(l)+

−2κx(l)θx(l)E[µx]i(l)− f 2
xi(l)E[µx]i(l)))

2,

(3.4.43)

where f 2
xi(l) = e2ζ(l)i.

3.5. The Milevsky�Promislow hybrid models with

one linear scalar �lter

In this section dynamic hybrid mortality models are presented which
are some generalizations of the Milevsky�Promislow model.

3.5.1. MPH model

Let us consider the Milevsky�Promislow Hybrid model (MPH mo-
del) with a linear scalar �lter

µx(t, l) = µx(0, l) exp{γx(l)t+ qx(l)z(t, l)}, t ∈ R+, (3.5.1)

dz(t, l) = −βx(l)z(t, l)dt+ dw(t), (3.5.2)

where µx0, γx(l), βx(l), qx(l) > 0 for l ∈ S are constant parameters and
w(t) is a standard Wiener process.

By taking logarithms on both sides of (3.5.1) and using the Itô
formula, we receive the following equation

d lnµx(t, l)=[γx(l)−βx(l)qx(l)z(t, l)]dt+ qx(l)dw(t). (3.5.3)

Let us introduce a new state vector

hx(t, l) = [hx1(t, l), hx2(t, l)]T = [lnµx(t, l), z(t, l)]
T . (3.5.4)

Then equations (3.5.2) and (3.5.3) can be written as vector equations

dhx(t)=


0 −βx(l)qx(l)

0 −βx1(l)

hx(t,l)+

γx(l)
0

dt+

qx(l)
1

dw(t). (3.5.5)

For the simpli�ed version, we can also assume that qx(l) = 1 for l ∈ S.
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3.5.2. MPH moment model

The moment equations of the Milevsky�Promislow Hybrid Moment
model (MPHM model) are of the form

dE[hx1(t,l)]

dt
=γx(l)−βx(l)qx1(l)E[hx2(t, l)], (3.5.6)

dE[hx2(t, l)]

dt
= −βx1(l)E[hx2(t, l)], (3.5.7)

dE[h2
x1(t, l)]

dt
= 2γx(l)E[hx1(t, l)]+

− 2βx(l)qx(l)E[hx1(t, l)hx2(t, l)] + q2
x(l),

(3.5.8)

dE[h2
x2(t, l)]

dt
= −2βx(l)E[h2

x2(t, l)] + 1, (3.5.9)

dE[hx1(t,l)hx2(t,l)]

dt
=γx(l)E[hx2(t,l)]−βx(l)qx(l)E[h2

x2(t,l)]+

− βx(l)E[hx1(t, l)hx2(t, l)] + qx(l).

(3.5.10)

MPHM model with a part of stationary moments

By equating to zero the derivatives in equations (3.5.7), we obtain
the following condition for the stationary �rst order moment

E[hx2(l)] = 0. (3.5.11)

Thus, from equation (3.5.6) we �nd

E[hx1(t, l)] = γx(l)t+ γx0(l), (3.5.12)

where γx0(l) is a constant of integration of equation (3.5.6). In the
special case it can be assumed that γx0(l) = lnµx(0, l) = E[hx1(0, l)]
and lnµx(0, l) is a constant parameter.
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Next, by equating to zero the derivatives in (3.5.9) and (3.5.10) and
taking into account conditions (3.5.11) we obtain

E[h2
x2(l)] =

1

2βx(l)
, E[hx1(l)hx2(l)] =

qx(l)

2βx(l)
. (3.5.13)

By introducing quantities E[hx1(l)hx2(l)] given in (3.5.13) to equa-
tion (3.5.8), we obtain

dE[h2
x1(t, l)]

dt
= 2γx(l)E[hx1(t, l)]. (3.5.14)

Hence, from (3.5.12) and (3.5.14) we �nd

E[h2
x1(t,l)]= γ2

x(l)t
2 + 2γx(l)γx0(l)t+ cx0(l), (3.5.15)

where cx0(l) is a constant of integration of equation (3.5.14).

In the particular case, we have cx0(l) = ln2µx(0, l) = E[h2
x1(0, l)], where

ln2µx(0, l) is a constant parameter.

3.5.3. Discrete MPH model

The derivation of the discrete-time form of the MP model (1.8.17)
allow de�ning the Discrete Milevsky�Promislow Hybrid model (DMPH
model)

yx(t, l) = ax,0(l) +ax,1(l)t+ax,2(l)yx(t− 1, l) + ξx,t(l), t ∈ N, (3.5.16)

where

yx(t, l) =lnµx(t, l), yx(0, l) = lnµx(0, l),

ax,0(l) =(1−e−βx(l))yx(0, l)+γx(l)e
−βx(l),

ax,1(l) =γx(l)(1−e−βx(l)),

ax,2(l) = e−βx(l),

ξx,t(l) = −qx(l)
∫ 1

0

e−βx(l)udw(t− u).

(3.5.17)
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The model can be equivalently expressed as

yx(t, l) = (1− ax,2(l))yx(0, l) +
ax,1(l)ax,2(l)

1− ax,2
(l) + ax,1(l)t+

+ ax,2(l)yx(t− 1, l) + ξx,t(l), t ∈ N,

(3.5.18)

where
yx(t, l) = lnµx(t, l), yx(0, l) = lnµx(0, l),

ax,1(l) = γx(l)(1− e−βx(l)),

ax,2(l) = e−βx(l).

(3.5.19)

Random terms ξx,t(l) in (3.5.16) or (3.5.18) are Gaussian random
variables with means and variances equal, respectively,

E[ξx,t(l)] = 0, Var[ξx,t(l)] = E[ξ2
x,t(l)] = q2

x(l). (3.5.20)

3.5.4. Discrete MPH moment model

From the moment equations (3.5.6)�(3.5.10) we receive the Discrete
Milevsky�Promislow Hybrid Moment model (DMPHM model) as

E[hx1]i+1(l) = E[hx1]i(l) + γx(l)δ, (3.5.21)

E[h2
x1]i+1(l) = E[h2

x1]i(l) + (2γx(l)E[hx1]i(l)+

− 2βx(l)qx(l)E[hx1hx2]i(l) + q2
x(l))δ,

(3.5.22)

E[h2
x2]i+1(l) = E[h2

x2]i(l) + (−2βx1(l)E[h2
x2]i(l) + 1)δ, (3.5.23)

E[hx1hx2]i+1(l)=E[hx1hx2]i(l)+(−βx(l)qx(l)E[h2
x2]i(l)+

− βx(l)E[hx1hx2]i(l) + qx(l))δ,

(3.5.24)

where
E[hx1]i(l) = E[hx1](ti, l), E[h2

xj]i(l) = E[h2
xj](ti, l), j = 1, 2,

E[hx1hx2]i = E[hx1hx2](ti), δ = ti+1 − ti = const.

(3.5.25)
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3.5.5. Parameters' estimation of the MPH models

In this section we will present iterative procedures of the parame-
ters' estimation for the Milevsky�Promislow hybrid models, both for
realizations and for moments.

Estimation of the DMPH model for realizations

Let us consider the discrete version of the MPH model expressed
by (3.5.18). The parameters of the DMPH model are estimated by
minimizing the sum of squared errors with respect to ax,1(l) and ax,2(l),
i.e. by minimizing the following criterion

S =
∑
l

∑
t∈Il

(
yx,t − (1− ax,2(l))yx,0 −

ax,1(l)ax,2(l)

1− ax,2(l)
+

− ax,1(l)t− ax,2(l)yx,t−1)2 ,

(3.5.26)

where yx,t = lnmx,t are log-central death rates observed in a sample
time series {lnmx,t, t = 1, 2, . . . , T}.

Iterative estimation of the DMPH moment model

The iterative estimation procedure for the DMPHM model given
in (3.5.21)�(3.5.24) consists of the following steps:

1o Take constant initial conditions, e.g. E[hx1hx2]0(l)=0, E[h2
x2]0(l) =

1, and initial conditions E[hx1]0(l) = px(l), E[h2
x1]0(l) = p2

x(l), where
px(l) is a �xed parameter.

2o Assume initial values for parameters px(l), γx(l), βx(l), qx(l), e.g.
px(l) = lnµx(0, l), γx(l) = 0.1, βx(l) = 0.1, qx(l) = 1.

3o Estimate the successive values of E[hx1]i(l), E[h2
x1]i(l), E[hx1hx2]i(l),

E[h2
x2]i(l) from expressions (3.5.21)�(3.5.24) for an i-th iteration (i =

1, 2, ...) and for the given values of px(l) = lnµx(0, l), γx(l), βx(l), qx(l).

4o Determine the values of Ê[hx1]i(l), Ê[h2
x1]i(l), i.e. the log-central

mortality rates and their squares from a sample time series.
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5o Minimize the estimation criterion

S =
∑
l

∑
i

(
Ê[hx1]i+1(l)−E[hx1]i(l)−γx(l)

)2

+

+
(
Ê[h2

x1]i+1(l)−E[h2
x1]i(l)−(2γx(l)E[hx1]i(l)+

− 2βx(l)qx(l)E[hx1hx2]i(l) + q2
x(l))

)2
.

(3.5.27)

Estimation of the MPH moment model
with stationary �rst order moments

Let us assume the MPHM model expressed by moment equations
(3.5.12) and (3.5.15). In this case the estimation procedure reduces to
the minimization of the following sum

S =
∑
l

∑
t∈Il

[(Ê[hx1(t, l)]− γx(l)t− γx0(l))2+

+(Ê[h2
x1(t, l)]−γ2

x(l)t
2−2γx(l)γx0(l)t−cx0(l))2,

(3.5.28)

where γx(l), γx0(l) and cx0(l) are some parameters.

In the general case, (3.5.28) is minimized with respect to three
parameters γx(l), γx0(l) and cx0(l) for l ∈ S. However, for γx0(l) =
lnµx(0, l) and cx0(l) = ln2µx(0, l) criterion (3.5.28) can be minimized
with respect to one parameter γx(l) for l ∈ S.

3.6. The Giacometti�Ortobelli�Bertocchi hybrid

models

3.6.1. GOBH model

The family of subsystems making up the Giacometti�Ortobelli�Ber-
tocchi Hybrid model (GOBH model) with a scalar linear �lter is given
by equations

µx(t, l) = µx(0, l) exp{γx(l)t+ qx(l)z(t, l)}, t ∈ R+, (3.6.1)

dz(t, l) = −βx(l)z(t, l)dt+ fx(t, l)dw(t), (3.6.2)
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where γx(l), βx(l), qx(l), µx(0, l) > 0 for l ∈ S are constant parameters
and fx(t, l) = eζ(l)t are time dependent di�erentiable functions of t.

Hence, the following stochastic di�erential equation results from
the Itô formula

d lnµx(t, l)=[γx(l)−βx(l)(lnµx(t, l)−lnµx(0, l)−γx(l)t)]dt+

+qx(l)fx(t, l)dw(t).

(3.6.3)

Let us introduce a new state vector

hx(t, l) = [hx1(t, l), hx2(t, l)]T = [lnµx(t, l), z(t, l)]
T . (3.6.4)

Then equations (3.6.3) and (3.6.2) can be written as a vector equation

dhx(t)=


−βx(l) 0

0 −βx(l)

hx(t,l)+

+

γx(l)+βx(l)(lnµx(0, l)+γx(l)t)

0

dt+

+

qx(l)fx(t,l)
fx(t,l)

dw(t).

(3.6.5)

For the simpli�ed version, we can assume that qx(l) = 1 for l ∈ S.

3.6.2. GOBH moment model

The moment equations of the Giacometti�Ortobelli�Bertocchi Hy-
brid Moment model (GOBHM model) are as follows

dE[hx1(t, l)]

dt
= γx(l)− βx(l)qx1(l)E[hx2(t, l)], (3.6.6)

dE[hx2(t, l)]

dt
= −βx1(l)E[hx2(t, l)], (3.6.7)
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dE[h2
x1(t, l)]

dt
= 2γx(l)E[hx1(t, l)]+

− 2βx(l)qx(l)E[hx1(t, l)hx2(t, l)] + q2
x(l),

(3.6.8)

dE[h2
x2(t, l)]

dt
= −2βx(l)E[h2

x2(t, l)] + f 2
x(t, l), (3.6.9)

dE[hx1(t,l)hx2(t,l)]

dt
=γx(l)E[hx2(t, l)]−βx(l)qx(l)E[h2

x2(t,l)]+

− βx(l)E[hx1(t, l)hx2(t, l)] + fx(t, l)qx(l).

(3.6.10)

3.6.3. Discrete GOBH model

By analogy to the derivations of the discrete form (1.9.24) of the
GOB model, we obtain the Discrete Giacometti�Ortobelli� Bertocchi
Hybrid model (DGOBH model)

yx(t, l) = ax,0(l)+ax,1(l)t+ax,2(l)yx(t−1, l)+εx,t(l), t∈N, (3.6.11)

where

yx(t, l) = lnµx(t, l), yx(0, l) = lnµx(0, l),

ax,0(l) = (1− e−βx(l) lnµx0,l + γx(l)e
−βx(l),

ax,1(l) = γx(l)(1− e−βx(l)),

ax,2(l) = e−βx(l),

εx,t(l) = −qx(l)eζx(l)t

∫ 1

0

e−(ζx(l)+βx(l))udw(t− u).

(3.6.12)

The model takes also the following equivalent form

yx(t, l) = (1− ax,2(l))yx(0, l) +
ax,1(l)ax,2(l)

1− ax,2(l)
+ ax,1(l)t+

+ ax,2(l)yx(t− 1, l) + εx,t(l), t ∈ N,

(3.6.13)
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where

yx(t, l) = lnµx(t, l), yx(0, l) = lnµx(0, l),

ax,1(l) = γx(l)(1− e−βx(l)),

ax,2(l) = e−βx(l).

(3.6.14)

Random terms εx,t(l) in (3.6.11) or (3.6.13) are Gaussian random
variables with means and variances equal, respectively,

E[εx,t(l)] = 0, Var[εx,t(l)] = E[ε2
x,t(l)] = q2

x(l)e
2ζx(l)t. (3.6.15)

3.6.4. Discrete GOBH moment model

From the moment equations (3.6.6)�(3.6.10) we �nd the discrete
representation, called the Giacometti�Ortobelli�Bertocchi Hybrid Mo-
ment model (DGOBHM model), expressed by the following equations

E[hx1]i+1(l) = E[hx1]i(l) + γx(l)δ, (3.6.16)

E[h2
x1]i+1(l) = E[h2

x1]i(l) + (2γx(l)E[hx1]i(l)+

− 2βx(l)qx(l)E[hx1hx2]i(l) + q2
x(l))δ,

(3.6.17)

E[h2
x2]i+1(l) = E[h2

x2]i(l) + (−2βx1(l)E[h2
x2]i(l) + f 2

xi(l))δ, (3.6.18)

E[hx1hx2]i+1(l)=E[hx1hx2]i(l)+(−βx(l)qx(l)E[h2
x2]i(l)+

− βx1(l)E[hx1hx2]i(l) + fxi(l)qx(l))δ,

(3.6.19)

where

E[hx1]i(l) = E[hx1](ti, l), E[h2
xj]i(l) = E[h2

xj](ti, l), j = 1, 2,

E[hx1hx2]i = E[hx1hx2](ti),

fxi(l) = eζx(l)i, δ = ti+1 − ti = const.

(3.6.20)
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3.6.5. Parameters' estimation of the GOBH models

Estimation of the DGOBH model for realizations

Parameters' estimation of the DGOBH model (3.6.13) is performed
by minimizing the sum of squared errors, i.e. by minimizing the follo-
wing criterion with respect to ax,1(l) and ax,2(l)

S =
∑
l

∑
t∈Il

(
yx,t − (1− ax,2(l))yx,0 −

ax,1(l)ax,2(l)

1− ax,2(l)
+

− ax,1(l)t− ax,2(l)yx,t−1)2,

(3.6.21)

where yx,t = lnmx,t are log-central death rates from a sample.

Iterative estimation of the DGOBH moment model

The estimation procedure for the DGOBHM model expressed by
moment equations (3.6.16)�(3.6.19) is as follows.

1o Take constant initial conditions, e.g. E[hx1hx2]0(l)=0, E[h2
x2]0(l) = 1

and initial conditions E[hx1]0(l) = px(l), E[h2
x1]0(l)= p2

x(l), where px(l)
is a �xed parameter.

2o Assume initial values for px(l), γx(l), βx(l), qx(l), ζx(l), e.g. px(l) =
lnµx(0, l), γx(l) = 0.1, βx(l) = 0.1, qx(l) = 1.

3o Estimate the successive values of E[hx1]i(l), E[h2
x1]i(l), E[hx1hx2]i(l),

E[h2
x2]i(l) from expressions (3.6.16)�(3.6.19) for an i-th iteration (i =

1, 2, ...) and for the given values of px(l) = lnµx(0, l), γx(l), βx(l),
qx(l), ζx(l).

4o Determine the values of Ê[hx1]i(l), Ê[h2
x1]i(l), i.e. the log-central

mortality rates and their squares from a sample time series.

5o Minimize the following estimation criterion

S =
∑
l

∑
i

(
Ê[hx1]i+1(l)− E[hx1]i(l)− γx(l)

)2

+

+
(
Ê[h2

x1]i+1(l)−E[h2
x1]i(l)−(2γx(l)E[hx1]i(l)+

− 2βx(l)qx(l)E[hx1hx2]i(l) + q2
x(l))

)2
.

(3.6.22)
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It is worth noting that although parameter ζx(l) does not appear
explicit in (3.6.22), it is a part of E[hx1hx2]i(l) and therefore criterion
(3.6.22) depends also on ζx(l).

3.7. Modi�ed Milevsky�Promislow hybrid models

3.7.1. Modi�ed MPH model

We will formulate a model analogous to (3.5.1)�(3.5.2), further
termed as the Modi�ed Milevsky�Promislow Hybrid model (MMPH
model)

µx(t, l) = µx(0, l) exp{γx(l)t+ z(t, l)}, t ∈ R+, (3.7.1)

where z(t, l) for l ∈ S are the Ornstein�Uhlenbeck stochastic processes
satisfying the following stochastic di�erential equations

dz(t, l)=βx(l)(αx(l)−z(t, l))dt+σx(l)dw(t), z(0, l)=0, (3.7.2)

where αx(l)∈R and µx(0, l), γx(l), βx(l), σx(l) > 0 are constant para-
meters.

Hence, the following stochastic di�erential equation results from
the Itô formula

d lnµx(t, l)=[γx(l)+βx(l)αx(l)−βx(l)z(t, l)]dt+σx(l)dw(t). (3.7.3)

Let us introduce a new state vector

hx(t, l) = [hx1(t, l), hx2(t, l)]T = [lnµx(t, l), z(t, l)]
T . (3.7.4)

Then equations (3.7.3) and (3.7.2) can be written as a vector equation

dhx(t)=


0−βx(l)

0−βx(l)

hx(t,l)+

γx(l)+βx(l)αx(l)
βx(l)αx(l)

dt+
σx(l)
σx(l)

dw(t). (3.7.5)

3.7.2. Modi�ed MPH moment model

The moment equations of the Modi�ed Milevsky�Promislow Hybrid
Moment model (MMPHM model) are of the form

dE[hx1(t, l)]

dt
= γx(l) + βx(l)αx(l)− βx(l)E[hx2(t, l)], (3.7.6)
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dE[hx2(t, l)]

dt
= −βx(l)E[hx2(t, l)] + βx(l)αx(l), (3.7.7)

dE[h2
x1(t, l)]

dt
= 2(γx(l)+βx(l)αx(l))E[hx1(t, l)]+

− 2βx(l)E[hx1(t, l)hx2(t, l)] + σ2
x(l),

(3.7.8)

dE[h2
x2(t, l)]

dt
= 2βx(l)αx(l)E[hx2(t, l)]+

− 2βx(l)E[h2
x2(t, l)] + σ2

x(l),

(3.7.9)

dE[hx1(t, l)hx2(t, l)]

dt
=(γx(l) + βx(l)αx(l))E[hx2(t, l)]+

− βx(l)E[h2
x2(t, l)]−βx(l)E[hx1(t, l)hx2(t, l)]+

+ βx(l)αx(l)E[hx1(t, l)] + σ2
x(l).

(3.7.10)

MMPHM model with a part of stationary moments

By equating to zero the derivative in equation (3.7.7), we receive
the condition for the stationary �rst order moment

E[hx2(l)] = αx(l). (3.7.11)

Thus, from equation (3.7.6) we �nd

E[hx1(t, l)] = γx(l)t+ γx0(l), (3.7.12)

where γx0(l) is a constant in integration of equation (3.7.6).

In the particular case, it can be assumed that γx0(l) = lnµx(0, l) =
E[hx1(0, l)] with lnµx(0, l) as a constant parameter.

By equating to zero the derivatives in (3.7.9) and (3.7.10) and tak-
ing into account conditions (3.7.11), we obtain

E[h2
x2(l)] = α2

x(l)
σ2
x(l)

2βx(l)
, (3.7.13)

E[hx1(t, l)hx2(t, l)] =
σ2
x(l)

2βx(l)
+αx(l)E[hx1(t, l)]+

γx(l)αx(l)

βx(l)
. (3.7.14)



133

Let us replace E[hx1(t, l)hx2(t, l)] in equation (3.7.8) with an ex-
pression given on the right-hand side of (3.7.14). Then we obtain

dE[h2
x1(t, l)]

dt
= 2γx(l)E[hx1(t, l)]− 2γx(l)αx(l). (3.7.15)

Hence, from (3.7.12) and (3.7.15) we have

E[h2
x1(t, l)] = γ2

x(l)t
2 + 2γx(l)(γx0(l)− αx(l))t+ cx0(l), (3.7.16)

where cx0(l) is a constant of integration of equation (3.7.15).

In the particular case, we have cx0(l) = ln2µx(0, l) = E[h2
x1(0, l)], where

ln2 µx(0, l) is a constant parameter.

3.7.3. Discrete modi�ed MPH model

From the derivation of the discrete-time version of the modi�ed
Milevsky�Promislow model (1.10.1)�(1.10.2) we �nd analogous equa-
tions de�ning the Discrete Modi�ed Milevsky�Promislow Hybrid model
(DMMPH model) which corresponds with the model (3.7.1)�(3.7.2)

yx(t, l) = ax,0(l)+ax,1(l)t+ax,2(l)yx(t−1, l)+ ξx,t(l), t∈N, (3.7.17)

where

yx(t, l) = lnµx(t, l), yx(0, l) = lnµx(0, l),

ax,0(l) = (1−e−βx(l))(yx(0, l) + αx(l))+γx(l)e
−βx(l),

ax,1(l) = γx(l)(1−e−βx(l)),

ax,2(l) = e−βx(l),

ξx,t(l) = −σx(l)
∫ 1

0

e−βx(l)udw(t− u).

(3.7.18)

Let us remark that ξx,t(l) in (3.7.17) are Gaussian random variables
with means and variances equal, respectively,

E[ξx,t(l)] = 0, Var[ξx,t(l)] = E[ξ2
x,t(l)] = σ2

x(l). (3.7.19)
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3.7.4. Discrete modi�ed MPH moment model

From the moment equations (3.7.6)�(3.7.10) we �nd the Discrete
Modi�ed Milevsky�Promislow Hybrid Moment model (DMMPHMmo-
del) described by equations

E[hx1]i+1(l) = E[hx1]i(l) + (γx(l) + βx(l)αx(l))δ, (3.7.20)

E[h2
x1]i+1(l) = E[h2

x1]i(l) + (2(γx(l) + βx(l)αx(l))E[hx1]i(l)+

− 2βx(l)E[hx1hx2]i(l) + σ2
x(l))δ,

(3.7.21)

E[h2
x2]i+1(l) = E[h2

x2]i(l) + (−2βx(l)E[h2
x2]i(l) + σ2

x(l))δ, (3.7.22)

E[hx1hx2]i+1(l)=E[hx1hx2]i(l)+(−βx(l)E[h2
x2]i(l)+

− βx(l)E[hx1hx2]i(l)+βx(l)αx(l)E[hx1]i(l)+σ2
x(l))δ,

(3.7.23)

where

E[hx1]i(l) = E[hx1](ti, l), E[h2
xj]i(l) = E[h2

xj](ti, l), j = 1, 2,

E[hx1hx2]i(l) = E[hx1hx2](ti, l), δ = ti+1 − ti = const.

(3.7.24)

3.7.5. Parameters' estimation of the modi�ed MPH models

Estimation of the DMMPH model for realizations

Let as consider the DMMPHmodel (3.7.17). One can �nd estimates
of the model's parameters by minimizing the sum of squared errors,
i.e. by minimizing the following criterion with respect to ax,0(l), ax,1(l)
and ax,2(l)

S =
∑
l

∑
t∈Il

[yx,t − (ax,0(l) + ax,1(l)t+ ax,2(l)yx,t−1)]2, (3.7.25)

where yx,t = lnmx,t are log-central death rates from a sample time
series.
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Iterative estimation of the DMMPH moment model

For the DMMPHM model (3.7.20)�(3.7.23) the estimation proce-
dure can be described in the following steps.

1o Take constant initial conditions, e.g. E[hx1hx2]0(l)=0, E[h2
x2]0(l) =

1, and initial conditions E[hx1]0(l) = px(l), E[h2
x1]0(l) = p2

x(l), where
px(l) is a �xed parameter.

2o Assume initial values for px(l), γx(l), βx(l), qx(l), e.g. px(l) =
lnµx(0, l), γx(l) = 0.1, βx(l) = 0.1, qx(l) = 1.

3o Estimate the successive values of E[hx1]i(l), E[h2
x1]i(l), E[hx1hx2]i(l),

E[h2
x2]i(l) from expressions (3.7.20)�(3.7.23) for an i-th iteration (i =

1, 2, ...) and for the given values of px(l) = lnµx(0, l), γx(l), βx(l), qx(l).

4o Determine the values of Ê[hx1]i(l), Ê[h2
x1]i(l), i.e. the log-central

mortality rates and their squares from a sample time series.

5o Minimize the estimation criterion

S =
∑
l

∑
i

(
Ê[hx1]i+1(l)−E[hx1]i(l)−γx(l)−βx(l)αx(l)

)2

+

+
(
Ê[h2

x1]i+1(l)−E[h2
x1]i(l)−(2(γx(l)+βx(l)αx(l))E[hx1]i(l)+

−2βx(l)qx(l)E[hx1hx2]i(l) + q2
x(l))

)2
.

(3.7.26)

Estimation of the MMPH moment model
with stationary �rst order moments

Let us consider the DMMPHM model using the discrete-time ver-
sion of moment equations (3.7.11)�(3.7.16). The estimation procedure
reduces here to the minimization of the following square criterion

S =
∑
l

∑
t∈Il

(
Ê[hx1(t, l)]− γx(l)t− γ0(l)

)2

+

+
(
Ê[h2

x1(t, l)]−γ2
x(l)t

2−2γx(l)(γx0(l)−αx(l))t−cx0(l)
)2

,

(3.7.27)

where γx(l), γx0(l) and cx0(l) are some parameters.
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In the general case, criterion (3.7.27) is minimized with respect to
three parameters γx(l), γx0(l) and cx0(l) for l ∈ S. However, for γx0(l) =
lnµx(0, l) and cx0(l) = ln2µx(0, l) the criterion can be minimized with
respect to one parameter γx(l) for l ∈ S.

3.8. The Milevsky�Promislow hybrid models with

two or more linear �lters

3.8.1. MPH model with two dependent �lters

The family of subsystems making up the Milevsky�Promislow Hy-
brid Model with 2 Dependent Filters (MPH-2DF model) is described
by the following equations

µx(t, l)= µx(0, l) exp{γx(l)t+ qx1(l)z1(t, l) + qx2(l)z2(t, l)}, (3.8.1)

dz1(t, l) = −βx1(l)z1(t, l)dt+ σx1(l)dw(t), (3.8.2)

dz2(t, l) = −βx2(l)z2(t, l)dt+ σx2(l)dw(t), (3.8.3)

where t ∈ R+, l ∈ S and γx(l), qx1(l), qx2(l), µx(0, l), βx1(l), βx2(l),
σx1(l), σx2(l)> 0 are constant parameters, w(t) is a standard Wiener
process.

The Itô formula applied to the logarithm of (3.8.1) leads to the
following equation

d lnµx(t,l)=[γx(l)−βx1(l)qx1(l)z1(t,l)−βx2(l)qx2(l)z2(t,l)]dt+

+[σx1(l)qx1(l) + σx2(l)qx2(l)]dw(t).

(3.8.4)

We assume that βx1(l) 6= βx2(l). To obtain the moment equations
for system (3.8.4) and (3.8.2)�(3.8.3) we introduce a new state vector

hx(t, l) = [hx1(t, l), hx2(t, l), hx3(t, l)]T =

= [lnµx(t, l), z1(t, l), z2(t, l)]T .

(3.8.5)
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Equations (3.8.4) and (3.8.2)�(3.8.3) can then be written as vector
equation

dhx(t,l)=




0−βx1(l)qx1(l) −βx2(l)qx2(l)

0 −βx1(l) 0

0 0 −βx2(l)

hx(t,l)+


γx(l)

0

0


dt+

+


σx1(l)qx1(l)+σx2(l)qx2(l)

σx1(l)

σx2(l)

dw(t).

(3.8.6)

For the simpli�ed version, we can assume that qx1(l) = qx2(l) = 1.

3.8.2. MPH moment model with two dependent �lters

The moment equations of the Milevsky�Promislow Hybrid Moment
model with 2 Dependent Filters (MPHM-2DF model) are as follows

dE[hx1(t, l)]

dt
=γx(l)− βx1(l)qx1(l)E[hx2(t, l)]+

− βx2(l)qx2(l)E[hx3(t, l)],

(3.8.7)

dE[hx2(t, l)]

dt
=−βx1(l)E[hx2(t, l)], (3.8.8)

dE[hx3(t, l)]

dt
=−βx2(l)E[hx3(t, l)], (3.8.9)

dE[h2
x1(t,l)]

dt
=2γx(l)E[hx1(t,l)]−2βx1(l)qx1(l)E[hx1(t,l)hx2(t,l)]

− 2βx2(l)qx2(l)E[hx1(t, l)hx3(t, l)]+

+ (σx1(l)qx1(l) + σx2(l)qx2(l))2,

(3.8.10)

dE[h2
x2(t, l)]

dt
= −2βx1(l)E[h2

x2(t, l)] + σ2
x1(l), (3.8.11)
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dE[h2
x3(t, l)]

dt
= −2βx2(l)E[h2

x3(t, l)] + σ2
x2(l), (3.8.12)

dE[hx1(t,l)hx2(t,l)]

dt
=γx(l)E[hx2(t,l)]−βx1(l)qx1(l)E[h2

x2(t,l)]+

− βx2(l)qx2(l)E[hx2(t, l)hx3(t, l)]+

− βx1(l)E[hx1(t, l)hx2(t, l)]+

+ (σx1(l)qx1(l) + σx2(l)qx2(l))σx1(l),

(3.8.13)

dE[hx1(t,l)hx3(t,l)]

dt
=γx(l)E[hx3(t,l)]− βx2(l)qx2(l)E[h2

x3(t,l)]+

−βx1(l)qx1(l)E[hx2(t, l)hx3(t, l)]+

−βx2(l)E[hx1(t, l)hx3(t, l)]+

+ (σx1(l)qx1(l) + σx2(l)qx2(l))σx2(l),

(3.8.14)

dE[hx2(t,l)hx3(t,l)]

dt
=−βx1(l)E[hx2(t,l)hx3(t,l)]+

− βx2(l)E[hx2(t, l)hx3(t,l)] + σx1(l)σx2(l).

(3.8.15)

MPHM-2DF model with a part of stationary moments

By equating to zero the derivatives in equations (3.8.8)�(3.8.9), we
�nd the following conditions for stationary �rst order moments

E[hx2(l)] = E[hx3(l)] = 0. (3.8.16)

From equation (3.8.7) we have

E[hx1(t, l)] = γx(l)t+ γx0(l), (3.8.17)

where γx0(l) is a constant in integration of equation (3.8.7).
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In the particular case, it can be assumed that γx0(l) = lnµx(0, l) =
E[hx1(0, l)].

After equating to zero derivatives in (3.8.11)�(3.8.15) and taking
into account conditions (3.8.16), we obtain the following equations

E[h2
x2(l)] =

σ2
x1(l)

2βx1(l)
, (3.8.18)

E[h2
x3(l)] =

σ2
x2(l)

2βx2(l)
, (3.8.19)

E[hx2(l)hx3(l)] =
σx1(l)σx2(l)

βx1(l) + βx2(l)
, (3.8.20)

E[hx1(l)hx2(l)]=
1

βx1(l)

(
−qx1σ

2
x1(l)

2
−βx2qx2

σx1(l)σx2(l)

βx1(l)+βx2(l)

)
+

+
1

βx1(l)
(σx1(l)qx1(l) + σx2(l)qx2(l))σx1(l),

(3.8.21)

E[hx1(l)hx3(l)]=
1

βx2(l)

(
−qx2σ

2
x2(l)

2
−βx1qx1

σx1(l)σx2(l)

βx1(l)+βx2(l)

)
+

+
1

βx2(l)
(σx1(l)qx1(l) + σx2(l)qx2(l))σx2(l).

(3.8.22)

Let us introduce quantities (3.8.18)�(3.8.22) to equation (3.8.10).
Then we obtain

dE[h2
x1(t, l)]

dt
= 2γx(l)E[hx1(t, l)]. (3.8.23)

Hence, from (3.8.17) and (3.8.23) we �nd

E[h2
x1(t, l)] = γ2

x(l)t
2 + 2γx(l)γx0(l)t+ cx0(l), (3.8.24)

where cx0(l) is a constant of integration of equation (3.8.23).

In the particular case, there is cx0(l) = ln2µx(0, l) = E[h2
x1(0, l)].
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3.8.3. MPH model with two independent �lters

Let us consider the Milevsky�Promislow Hybrid Model with 2 In-
dependent Linear Scalar Filters (MPH-2IF model) of the form

µx(t, l) = µx(0, l) exp{γx(l)t+ qx1(l)z1(t, l) + qx2(l)z2(t, l)}, (3.8.25)

dz1(t, l) = −βx1(l)z1(t, l)dt+ σx1(l)dw1(t), (3.8.26)

dz2(t, l) = −βx2(l)z2(t, l)dt+ σx2(l)dw2(t), (3.8.27)

where t ∈ R+, l ∈ S and γx(l), qx1(l), qx2(l), µx(0, l), βx1(l), βx2(l),
σx1(l), σx2(l) > 0 are constant parameters, and w1(t), w2(t) are inde-
pendent Wiener processes.

By taking logarithms on both sides of equality (3.8.25) and using
the Itô formula, we receive the following equation

d lnµx(t)=[γx(l)−βx1(l)qx1(l)z1(t)−βx2(l)qx2(l)z2(t)]dt+

+ σx1(l)qx1(l)dw1(t) + σx2(l)qx2(l)dw2(t).

(3.8.28)

We assume that βx1(l) 6= βx2(l). Let us introduce a new state vector

hx(t, l) = [hx1(t, l), hx2(t, l), hx3(t, l)]T =

= [lnµx(t, l), z1(t, l), z2(t, l)]T .

(3.8.29)

Then equations (3.8.26)�(3.8.28) can be written as vector equations

dhx(t,l)=




0 −βx1(l)qx1(l) −βx2(l)qx2(l)

0 −βx1(l) 0

0 0 −βx2(l)

hx(t,l)+


γx(l)

0

0


dt+

+


σx1(l)qx1(l)

σx1(l)

0

dw1(t)+


σx2(l)qx2(l)

0

σx2(l)

dw2(t),

(3.8.30)

For the simpli�ed version, we can assume that qx1(l) = qx2(l) = 1.



141

3.8.4. MPH moment model with two independent �lters

The moment equations of system (3.8.30) lead to the Milevsky�Pro-
mislow Hybrid Moment model with 2 Independent Filters (MPHM-2IF
model) of the form

dE[hx1(t, l)]

dt
= γx(l)− βx1(l)qx1(l)E[hx2(t, l)]+

− βx2(l)qx2(l)E[hx3(t, l)],

(3.8.31)

dE[hx2(t, l)]

dt
= −βx1(l)E[hx2(t, l)], (3.8.32)

dE[hx3(t, l)]

dt
= −βx2(l)E[hx3(t, l)], (3.8.33)

dE[h2
x1(t,l)]

dt
=2γx(l)E[hx1(t,l)]−2βx1(l)qx1(l)E[hx1(t,l)hx2(t,l)]

− 2βx2(l)qx2(l)E[hx1(t, l)hx3(t, l)]+

+ σ2
x1(l)q2

x1(l) + σ2
x2(l)q2

x2(l),

(3.8.34)

dE[h2
x2(t, l)]

dt
= −2βx1(l)E[h2

x2(t, l)] + σ2
x1(l), (3.8.35)

dE[h2
x3(t, l)]

dt
= −2βx2(l)E[h2

x3(t, l)] + σ2
x2(l), (3.8.36)

dE[hx1(t,l)hx2(t,l)]

dt
=γx(l)E[hx2(t,l)]−βx1(l)qx1(l)E[h2

x2(t,l)]+

− βx2(l)qx2(l)E[hx2(t, l)hx3(t, l)]+

− βx1(l)E[hx1(t, l)hx2(t, l)] + σ2
x1(l)qx1(l),

(3.8.37)

dE[hx1(t,l)hx3(t,l)]

dt
=γx(l)E[hx3(t,l)]−βx2(l)qx2(l)E[h2

x3(t,l)]+

−βx1(l)qx1(l)E[hx2(t, l)hx3(t, l)]+

−βx2(l)E[hx1(t, l)hx3(t, l)]+σ2
x2(l)qx2(l),

(3.8.38)
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dE[hx2(t, l)hx3(t, l)]

dt
=− (βx1(l) + βx2(l))E[hx2(t, l)hx3(t, l)]. (3.8.39)

MPHM-2IF model with a part of stationary moments

By equating to zero the derivatives in (3.8.32) and (3.8.33), we
receive the following conditions for stationary moments

E[hx2(l)] = E[hx3(l)] = 0. (3.8.40)

From equation (3.8.31) we �nd

E[hx1(t, l)] = γx(l)t+ γx0(l), (3.8.41)

where γx0(l) is a constant in integration of equation (3.8.31).

In the particular case, it can be assumed that γx0(l) = lnµx(0, l) =
E[hx1(0, l)] and lnµx(0, l) is a constant parameter.

By equating to zero the derivatives in (3.8.35)�(3.8.39) and taking
into account conditions (3.8.41), we obtain

E[h2
x2(l)] =

σ2
x1(l)

2βx1(l)
, (3.8.42)

E[h2
x3(l)] =

σ2
x2(l)

2βx2(l)
, (3.8.43)

E[hx2(l)hx3(l)] = 0, (3.8.44)

E[hx1(l)hx2(l)] =
qx1(l)σ2

x1(l)

2βx1(l)
, (3.8.45)

E[hx1(l)hx3(l)] =
qx2(l)σ2

x2(l)

2βx2(l)
. (3.8.46)

By substituting quantities (3.8.45) and (3.8.46) for E[hx1(l)hx2(l)]
and E[hx1(l)hx3(l)] in the expression (3.8.34), we obtain

dE[h2
x1(t, l)]

dt
= 2γx(l)E[hx1(t, l)]. (3.8.47)

Hence, from (3.8.41) and (3.8.47) we �nd

E[h2
x1(t, l)] = γ2

x(l)t
2 + 2γx(l)γx0(l)t + cx0(l), (3.8.48)

where cx0(l) is a constant of integration of equation (3.8.47).

In the particular case, we have cx0(l) = ln2µx(0, l) = E[h2
x1(0, l)].
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3.8.5. MPH model with a vector linear �lter

Let us replace the one-dimensional �lter (3.5.2) in the MPH model
with a vector linear �lter. As a result, we obtain the Milevsky�Promi-
slow Hybrid model with a Vector Linear Filter (MPH-VLF model) of
the following form

µx(t, l) = µx(0, l) exp{γx(l)t+ qTx (l)zx(t, l)}, (3.8.49)

dzx(t, l)=Ax(l)zx(t, l)dt+Gx(t, l)dw(t), zx(t0, l)=zx0l, (3.8.50)

where
t ∈ R+, l∈S,
zx(t, l) ∈ Rn is a �lter vector,
zx0l ∈ Rn is an initial condition �lter vector,
Ax(l) are n×n constant stable matrices, i.e. Re λi(Ax(l)) < 0,
i=1, . . . , n,
qx(l) ∈ Rn are constant vectors,
Gx(t, l) = [G1

x(t, l), . . . , G
n
x(t, l)]T ,

Gi
x(t, l) are the deterministic, non-linear functions of time repre-

senting �lter dynamics,
γx(l), µx(0, l) > 0 are constant parameters,
w(t) is a standard Wiener process.

Model (3.8.49)�(3.8.50) represented by the Itô stochastic di�eren-
tial vector equation has the following form

d lnµx(t, l) =

= [γx(l)+
n∑
i=1

qix(l)A
i
x(l)zx(t, l)]dt+

n∑
i=1

qix(l)G
i
x(t, l)dw(t),

(3.8.51)

dzx(t, l)=Ax(l)zx(t, l)dt+Gx(t, l)dw(t), zx(t0, l)=zx0l, (3.8.52)

where Ai
x(l) is the i-th row of matrix Ax(l), and qix(l), G

i
x(t, l) are the

i-th coordinates of vectors qx(l), Gx(t, l), respectively.

To �nd an analytical solution of equation (3.8.52), we will use a spe-
cial case of relation (2.3.8) for A0 =0,M=1 and one dimensional noise
w(t). The solution is the following

zx(t, l) =

=exp{Ax(l)(t−t0l)}zx0l+

∫ t

t0l

exp{Ax(l)(t−s)}Gx(s, l)dw(s).
(3.8.53)
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By introducing (3.8.53) to equality (3.8.49) we obtain

µx(t, l)=µx(0, l)exp
{
γx(l)t+qTx (l)exp{Ax(l)(t−t0l)}z0l+

+

∫ t

t0l

qTx (l) exp{Ax(l)(t− s)}Gx(s, l)dw(s)}.
(3.8.54)

The above solutions for the subsystems will be used to construct
the solution of a hybrid model.

We assume that scalar stochastic process µx(t), solving the scalar
hybrid stochastic equation and starting at moment t0, switches at times
τ1, . . . , τM . We also assume that τ0 = t0 and that in time intervals
[τi, τi+1) the hybrid system is in states li ∈ S, i = 0, . . . ,M , where
l0, l1, . . . , lM is any subsequence of N states.

The continuity of solutions is also assumed, meaning that the value
of the process in state li at time τi and the value of the process in state
li−1 at time τi are the same, i.e. µx(τi, li) = µx(τi, li−1). The solution
for t ∈ [τi, τi+1) is then written as

µx(t, li) = µx(τi, li−1) exp {γx(li)t+

+ qTx (li) exp {Ax(li)(t− τi)}z(τi, li−1)+

+

∫ t

τi

qTx (li) exp {Ax(li)(t− s)}Gx(s, li)dw(s)}.

(3.8.55)

3.8.6. MPH moment model with a vector linear �lter

The family of the �rst- and second-order moments of the subsys-
tems describing the Milevsky�Promislow Hybrid Moment model with
a Vector Linear Filter (MPHM-VLF model) is represented by the follo-
wing formulas

E[µx(t, l)] = E[µx(0, l)] exp{γx(l)t+qTx (l)E[zx(t, l)]+

+
1

2
tr{Qx(l)cov[zx(t, l)]},

(3.8.56)
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E[µ2
x(t, l)] = E[µ2

x0(l)] exp{2γx(l)t+2qTx (l)E[zx(t,l)]+

+ tr{Qx(l)cov[zx(t, l)]},
(3.8.57)

where

Qx(l) = qx(l)q
T
x (l),

cov[zx(t, l)] = E[zx(t,l)z
T
x (t, l)]− E[zx(t, l)]E[zTx (t, l)]

(3.8.58)

and

dE[zx(t, l)]

dt
= Ax(l)E[zx(t, l)],

dE[zx(t, l)z
T
x (t, l)]

dt
= Ax(l)E[zx(t, l)z

T
x (t, l)]+

+ E[zx(t, l)z
T
x (t, l)]AT

x (l) + Gx(t, l)G
T
x (t, l).

(3.8.59)

It follows from (3.8.59) that for stationary solutions, E[zx(t, l)]=0.
Consequently, there is cov[zx(t, l)] = E[zx(t, l)z

T
x (t, l)] for l ∈ S and

relationships (3.8.56) and (3.8.57) are then written, respectively, as

E[µx(t, l)] =

= E[µx(0, l)] exp{γx(l)t+
1

2
tr{Qx(l)E[zx(t, l)z

T
x (t, l)]},

(3.8.60)

E[µ2
x(t, l))] =

= E[µ2
x0(l)] exp{2γx(l)t+ tr{Qx(l)E[zx(t, l)z

T
x (t, l)]}.

(3.8.61)

As before, solutions obtained for the moments of the subsystems
will be used to solve the moment hybrid model.

We assume that the �rst two raw moments of the scalar stochas-
tic process E[µx(t)], E[µ2

x(t)], constituting the solutions of the scalar
moment hybrid di�erential equations and starting at time t0, switch
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at times τ1, τ2, . . . , τM . We also assume that τ0 = t0 and that in
time intervals [τi, τi+1) the moment hybrid system is in states li ∈ S,
i = 0, . . . ,M , where l0, l2, . . . , lM is any subsequence of N states.

The continuity of solutions is also assumed, meaning that the values
of the �rst and second moments of the process in state li at time τi are
equal to the respective values of the �rst and second moments of the
process in state li−1 at time τi, hence

E[µx(τi, li)] = E[µx(τi, li−1)], E[µ2
x(τi, li)] = E[µ2

x(τi, li−1)]. (3.8.62)

Then, the respective solutions for t ∈ [τi, τi+1) are written as follows

E[µx(t, li)] = E[µx(τi, li−1)] exp{γx(li)t+

+
1

2
tr{Qx(li)E[zx(t, li)z

T
x (t, li)]}},

(3.8.63)

E[µ2
x(t, li)] = E[µ2

x(τi, li−1)] exp{2γx(li)+

+ tr{Qx(li)E[zx(t,li)z
T
x(t, li)]}},

(3.8.64)

where matrix Γx(t, li)=E[zx(t, li)z
T
x (t, li)] satis�es for t ∈ [τi, τi+1) the

recurrence equation

dΓx(t,li)

dt
=Ax(li)Γx(t,li)+Γx(t,li)A

T
x(li)+Gx(t,li)G

T
x(t,li),

Γx(τi, li)=Γx(τi, li−1).

(3.8.65)

Equation (3.8.65) for the elements of the matrix

Γx(t, li) = [Γxkj(t, li)] = [E[zxk(t, li)zxj(t, li)]] (3.8.66)

can be written as

dΓxkj(t, li)

dt
=

n∑
q=1

[axkq(t,li)Γxqj(t, li)+axjq(t,li)Γxqk(t,li)]+

+Gxk(t, li)Gxj(t, li),

Γxkj(τi, li) = Γxkj(τi, li−1), k, j = 1, ..., n.

(3.8.67)
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In the special case of Gxk(t, li) = gxk(li) exp{axk(li)t}, equation
(3.8.67) is written as

dΓxkj(t,li)

dt
=

n∑
q=1

[axkq(t,li)Γxqj(t, li)+axjq(t,li)Γxqk(t,li)]+

+ gxk(t, li)gxj(t, li) exp{(axk(li) + axj(li))t},

Γxkj(τi, li) = Γxkj(τi, li−1), k, j = 1, ..., n.

(3.8.68)

Example 3.3. Let us consider a model with a two-dimensional linear
�lter represented by equations (3.8.49) and (3.8.50), where matrices
Ax(l) and vectors Gx(l), qx(l), l = 1, 2 are de�ned as follows

Ax(1)=

[
0 1

−ω2
x0(1) 2νx(1)

]
, Gx(1)=

[
0

gx1e
ax1

]
, qx(1)=

[
qx1

0

]
, (3.8.69)

Ax(2)=

[
0 1

−ω2
x0(2) 2νx(2)

]
, Gx(2)=

[
0

gx2e
ax2

]
, qx(2)=

[
0
qx2

]
, (3.8.70)

where µx(0, l), γx(l), ωx0(l), νx(l), gxi(l), axi(l), l = 1, 2, i = 1, 2 are con-
stant parameters.

In this case, two models of the subsystems are described by the
following equalities

µx(t, 1) = µx0(1) exp{γx(1)t+ qx1zx1(t, 1)}, (3.8.71)

dzx(t, 1) = Ax(1)zx(t, 1)dt+ Gx(t, 1)dw(t) (3.8.72)

and
µx(t, 2) = µx0(2) exp{γx(2)t+ qx2zx2(t, 2)}, (3.8.73)

dzx(t, 2) = Ax(2)zx(t, 2)dt+ Gx(t, 2)dw(t). (3.8.74)

Let us assume that the system in a state l = 1 operates under initial
conditions for t0 = 0 zx(0, 1) = [zx1(0, 1), zx2(0, 1)]T = [zx10, zx20]T and
µx0(1) = µx0, and that the state changes into a state l = 2 at time
t = τ1.
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Then stochastic equations (3.8.72) and (3.8.74) have the following
solutions

zx(t, 1) = exp{Ax(1)(t− 0)}zx(0, 1)+

+

∫ t

0

exp{Ax(1)(t−s)}Gx(s,1)dw(s) for t∈ [0, τ1),

(3.8.75)

zx(t, 2) = exp{Ax(2)(t− τ1)}zx(τ1, 1)+

+

∫ t

τ1

exp{Ax(2)(t− s)}Gx(s, 2)dw(s) for t ≥ τ1.

(3.8.76)

The family of the �rst- and second-order moments of subsystems
representing the MPH-VLF model has the following form

E[µx(t, 1)] = E[µx0(1)] exp{γx(1)t+qTx(1)E[zx(t, 1)]+

+
1

2
tr{Qx(1)cov[zx(t, 1)]}},

E[µx(t, 2)] = E[µx0(2)] exp{γx(2)t+qTx(2)E[zx(t, 2)]+

+
1

2
tr{Qx(2)cov[zx(t, 2)]}},

(3.8.77)

E[µ2
x(t, 1)] = E[µ2

x0(1)] exp{2γx(1)t+2qTx(1)E[zx(t,1)]+

+ tr{Qx(1)cov[zx(t,1)]}},

E[µ2
x(t, 2)] = E[µ2

x0(2)] exp{2γx(2)t+2qTx(2)E[zx(t,2)]+

+ tr{Qx(2)cov[zx(t,2)]}},

(3.8.78)

where

Qx(1) =

 q2
x1 0

0 0

, Qx(2) =

 0 0

0 q2
x2

. (3.8.79)
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The moments of processes zx(t, l), l = 1, 2 satisfy equations

dE[zx(t, l)]

dt
=Ax(l)E[zx(t, l)], (3.8.80)

dE[zx(t, l)z
T
x (t, l)]

dt
= Ax(l)E[zx(t, l)z

T
x (t, l)]+

+E[zx(t, l)z
T
x (t,l)]AT

x(l)+Gx(t,l)G
T
x (t,l).

(3.8.81)

From equation (3.8.80) it follows that for the stationary solution of
equation (3.8.80) we have E[zx(t, l)] = 0. Therefore, we get

cov[zx(t, l)] = E[zx(t, l)z
T
x (t, l)]=

=

 E[z2
x1(t, l)] E[zx1(t, l)zx2(t, l)]

E[zx1(t, l)zx2(t, l)] E[z2
x2(t, l)]

. (3.8.82)

For l = 1, 2 coordinate equation (3.8.81) takes the following form

dE[z2
x1(t, l)]

dt
= 2E[zx1(t, l)zx2(t, l)], E[z2

x1(0, l)] = Γx110 ,

dE[zx1(t, l)zx2(t, l)]

dt
= E[z2

x2(t, l)]− ωx0(l)E[z2
x1(t, l)]+

+2νx(l)E[zx1(t, l)zx2(t, l)], E[zx1(t, l)zx2(0, l)]=Γx120 ,

dE[z2
x2(t, l)]

dt
=−2ωx0(l)E[zx1(t, l)zx2(t, l)]+

+4νx(l)E[z2
x2(t, l)]+g2

xle
2axlt, E[z2

x2(0, l)]=Γx220 ,

(3.8.83)

when initial conditions Γx110 ,Γx120 ,Γx220 > 0 are positive,

Γx110Γx220 − Γ2
x120

> 0. (3.8.84)
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From equalities (3.8.79) and (3.8.82) it follows that the respective
relationships (3.8.77) can be expressed as

E[µx(t, 1)] = E[µx0(1)] exp{γx(1)t+
1

2
q2
x1E[z2

x1(t, 1)]},

E[µx(t, 2)] = E[µx0(2)] exp{γx(2)t+
1

2
q2
x2E[z2

x2(t, 1)]}

(3.8.85)

and

E[µ2
x(t, 1)] = E[µ2

x0(1)] exp{2γx(1)t+ q2
x1E[z2

x1(t, 1)]},

E[µ2
x(t, 2)] = E[µ2

x0(2)] exp{2γx(2)t+ q2
x2E[z2

x2(t, 2)]}.
(3.8.86)

When the state l= 1 switches to l= 2 at time t= τ1, the �rst and
second order moments of µx(t, 1) in the model (3.8.49)�(3.8.50) are
written as follows

E[µx(t, 1)] =E[µx0(1)] exp{γx(1)t+

+
1

2
q2
x1E[z2

x1(t, 1)]}, 0 ≤ t < τ1,

E[µx(t, 2)] =E[µx(τ1, 1)] exp{γx(2)(t− τ1)+

+
1

2
q2
x2E[z2

x2(t, 1)]}, t ≥ τ1,

(3.8.87)

E[µ2
x(t, 1)] =E[µ2

x0(1)] exp{2γx(1)t+

+q2
x1E[z2

x1(t, 1)]}, 0 ≤ t < τ1,

E[µ2
x(t, 2)] =E[µ2

x(τ1, 1)] exp{2γx(2)(t−τ1)+

+q2
x2E[z2

x2(t, 2)]}, t ≥ τ1,

(3.8.88)
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dE[z2
x1(t,1)]

dt
=2E[zx1(t,1)zx2(t,1)], E[z2

x1(0, 1)] = Γx110 ,

dE[z2
x1(t, 2)]

dt
=2E[zx1(t, 1)zx2(t, 1)],

E[z2
x1(τ1, 2)] = E[z2

x1(τ, 1)],

(3.8.89)

dE[z2
x2(t, 1)]

dt
=− 2ωx0(1)E[zx1(t, 1)zx2(t, 1)]+

+4νx(1)E[z2
x2(t, 1)] + g2

x1e
2ax1t,

E[z2
x2(0, 1)] = Γx220 , 0 ≤ t<τ1,

(3.8.90)

dE[z2
x2(t, 2)]

dt
=− 2ωx0(2)E[zx1(t, 2)zx2(t, 2)]+

+4νx(2)E[z2
x2(t, 2)] + g2

x1e
2ax2(t−τ1),

E[z2
x2(τ1, 2)] = E[z2

x2(τ1, 1)], t≥τ1.

(3.8.91)

dE[zx1(t, 1)zx2(t, 1)]

dt
= E[z2

x2(t, 1)]− ωx0(1)E[z2
x1(t, 1)]+

+2νx(1)E[zx1(t, 1)zx2(t, 1)], E[zx1(t, 1)zx2(0, 1)] = Γx120 ,

dE[zx1(t, 2)zx2(t, 2)]

dt
= E[z2

x2(t, 1)]− ωx0(2)E[z2
x1(t, 1)]+

+2νx(2)E[zx1(t, 1)zx2(t, 1)], E[zx1(τ, 2)zx2(τ, 2)] =

= E[zx1(τ, 1)zx2(τ1, 1)],

(3.8.92)
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3.8.7. Discrete MPH moment model with two dependent
�lters

From the moment equations (3.8.7)�(3.8.15) we de�ne the Discrete
Milevsky�Promislow Hybrid Moment model with 2 Dependent Linear
Scalar Filters (DMPHM-2DF model)

E[hx1]i+1(l) = E[hx1]i(l)+γx(l)δ, (3.8.93)

E[h2
x1]i+1(l)=E[h2

x1]i(l)+(2γx(l)E[hx1]i(l)+

− 2βx1(l)qx1(l)E[hx1hx2]i(l)−2βx2(l)qx2(l)E[hx1hx3]i(l)+

+ (σx1(l)qx1(l) + σx2(l)qx2(l))2)δ,

(3.8.94)

E[h2
x2]i+1(l) = E[h2

x2]i(l) + (−2βx1(l)E[h2
x2]i(l) + σ2

x1(l))δ, (3.8.95)

E[h2
x3]i+1(l) = E[h2

x3]i(l) + (−2βx2(l)E[h2
x3]i(l) + σ2

x2(l))δ, (3.8.96)

E[hx1hx2]i+1(l) =E[hx1hx2]i(l)+(−βx1(l)qx1(l)E[h2
x2]i(l)+

−βx2(l)qx2(l)E[hx2hx3]i(l)−βx1(lE[hx1hx2]i(l)+

+ (σx1(l)qx1(l) + σx2(l)qx2(l))σx1(l))δ,

(3.8.97)

E[hx1hx3]i+1(l) =E[hx1hx3](l)+(−βx1(l)qx1(l)E[hx2hx3]i(l)+

−βx2(l)qx2(l)E[h2
x3]i(l)− βx2(l)E[hx1hx3]i(l)+

+ (σx1(l)qx1(l) + σx2(l)qx2(l))σx2(l))δ,

(3.8.98)

E[hx2hx3]i+1(l) = E[hx2hx3]i(l) + (−βx1(l)E[hx2hx3]i(l)+

− βx2(l)E[hx2hx3]i(l) + σx1(l)σx2(l))δ,

(3.8.99)
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where

E[hx1]i(l)=E[hx1](ti, l), E[h2
xj]i(l)=E[h2

xj](ti, l), j=1, 2, 3,

E[hx1hx2]i(l)=E[hx1hx2](ti, l),

E[hx1hx3]i(l)=E[hx1hx3](ti, l),

E[hx2hx3]i(l)=E[hx2hx3](ti, l), δ= ti+1 − ti = const.

(3.8.100)

3.8.8. Discrete MPH moment model with two independent
�lters

From the moment equations (3.8.31)�(3.8.39) we obtain the Dis-
crete Milevsky�Promislow Hybrid Moment model with 2 Independent
Filters (DMPHM-2IF model) expressed as

E[hx1]i+1(l) = E[hx1]i(l)+(γx(l)−βx(l)qx(l)E[hx2]i(l))δ, (3.8.101)

E[h2
x1]i+1(l) = E[h2

x1]i(l) + (2γx(l)E[hx1]i(l)+

− 2βx1(l)qx1(l)E[hx1hx2]i(l)− 2βx2(l)qx2(l)E[hx1hx3]i(l)+

+ (σ2
x1(l)q2

x1(l) + σ2
x2(l)q2

x2(l)))δ,

(3.8.102)

E[h2
x2]i+1(l) = E[h2

x2]i(l) + (−2βx1(l)E[h2
x2]i(l) + σ2

x1(l))δ, (3.8.103)

E[h2
x3]i+1(l) = E[h2

x3]i(l) + (−2βx2(l)E[h2
x3]i(l) + σ2

x2(l))δ, (3.8.104)

E[hx1hx2]i+1(l)=E[hx1hx2]i(l)+(−βx1(l)qx1(l)E[h2
x2]i(l)+

− βx2(l)qx2(l)E[hx2hx3]i(l)− βx1(l)E[hx1hx2]i(l)+

+ σ2
x1(l)qx1(l))δ,

(3.8.105)
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E[hx1hx3]i+1(l)=E[hx1hx3]i(l)+(−βx1(l)qx1(l)E[hx2hx3]i(l)+

− βx2(l)qx2(l)E[h2
x3]i(l)− βx2(l)E[hx1hx3]i(l)+

+ σ2
x2(l)qx2(l))δ,

(3.8.106)

E[hx2hx3]i+1(l) = E[hx2hx3]i(l) + (−βx1(l)E[hx2hx3]i(l)+

− βx2(l)E[hx2hx3]i(l))δ,

(3.8.107)

where

E[hx1]i(l)=E[hx1](ti, l), E[h2
xj]i(l)=E[h2

xj](ti, l), j=1, 2, 3,

E[hx1hx2]i = E[hx1hx2](ti),

E[hx1hx3]i(l) = E[hx1hx3](ti, l),

E[hx2hx3]i(l) = E[hx2hx3](ti, l), δ = ti+1 − ti = const.

(3.8.108)

3.8.9. Discrete MPH model with a vector linear �lter

The discrete-time version of the MPH model (3.8.49)�(3.8.50), fur-
ther termed as the Discrete Milevsky�Promislow Hybrid model with
a Vector Linear Filter (DMPH-VLF model), can be written using the
following equations

yx(t, l) =αx0(l) + αx1(l)t+ qTx (l)zx(t, l), t ∈ N,

zx(t, l) =(Ax(l) + I)zx(t− 1, l) + Gx(l)∆wt.

(3.8.109)

To create the discrete solution of the hybrid model, the recurrence
relationships (3.8.109) of the equation solving subsystems will be em-
ployed.

We assume that a scalar stochastic process yx(t) = lnµx(t), solving
a scalar hybrid stochastic equation and starting at moment t0, switches
at times τ1, . . . , τM . We assume that τ0 = t0 and that in time intervals
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[τi, τi+1) the hybrid system is in states li ∈ S, i = 0, . . . ,M , where
l0, l1, . . . , lM is any subsequence of N states.

The continuity of the solutions is also assumed, meaning that the
value of the process in state li at time τi and the value of the process
in state li−1 at time τi are equal, i.e. yx(τi, li) = yx(τi, li−1). Then for
t ∈ [τi, τi+1) the hybrid discrete equations are written as

yx(t, li) =αx0(li) + αx1(li)(t− τi) + qTx (li)zx(t).

zx(t, li) = (A(li) + I)zx(t− 1, li) + G(li)∆wt,

zx(τi, li) = zx(τi, li−1), yx(τi, li) = yx(τi, li−1).

(3.8.110)

3.8.10. Parameters' estimation of the DMPH moment
models with two �lters

Iterative estimation of the DMPHM-2DF model

The iterative estimation procedure for the DMPHM-2DF model
(3.8.93)�(3.8.99) can be described as follows:

1o Take constant initial values, e.g. E[hx1hx2]0(l)=0, E[hx1hx3]0(l)=0,
E[h2

x2]0(l) = 1, E[hx2hx3]0(l) = 0, E[h2
x3]0(l) = 1 and initial conditions

E[hx1]0(l) = px(l), E[h2
x1]0(l)= p2

x(l), where px(l) is a �xed parameter.

2o Assume initial values for px(l), γx(l), βx1(l), βx2(l), qx1(l), qx2(l),
σx1(l), σx2(l), e.g. px(l) = lnµx(0, l), γx(l) = 0.1, βx1(l) = 0.1, βx2(l) =
0.1, qx1(l) = 1, qx2(l) = 1, σx1(l) = 0.01, σx2(l) = 0.01.

3o Estimate the successive values of E[hx1]i(l), E[h2
x1]i(l), E[hx1hx2]i(l),

E[hx1hx3]i(l), E[h2
x2]i(l), E[hx2hx3]i(l), E[h2

x3]i(l) from (3.8.93)�(3.8.99)
for an i-th iteration (i = 1, 2, ...) and for the given values of px(l) =
lnµx(0, l), γx(l), βx1(l), βx2(l), qx1(l), qx2(l), σx1(l), σx2(l).

4o Determine the values of Ê[hx1]i(l), Ê[h2
x1]i(l), i.e. the log-central

mortality rates and their squares from a sample time series.



156

5o Minimize the following sum with respect to parameters px(l) =
lnµx(0, l), γx(l), βx1(l), βx2(l), qx1(l), qx2(l), σx1(l), σx2(l)

S =
∑
l

∑
i

(
Ê[hx1]i+1(l)− E[hx1]i(l)− γx(l)

)2

+

+
(
Ê[h2

x1]i+1(l)− E[h2
x1]i(l)− (2γx(l)E[hx1]i(l)+

−2βx1(l)qx1(l)E[hx1hx2 ]i(l)− 2βx2(l)qx2(l)E[hx1hx3]i(l)+

+(σx1(l)qx1(l) + σx2(l)qx2(l))2)
)2
,

(3.8.111)

or the following sum de�ned for qx1(l) = qx2(l) = 1

S =
∑
l

∑
i

(
Ê[hx1]i+1(l)− E[hx1]i(l)− γx(l)

)2

+

+
(
Ê[h2

x1]i+1(l)− E[h2
x1]i(l)− (2γx(l)E[hx1]i(l)+

−2βx1(l)E[hx1hx2]i(l)− 2βx2(l)E[hx1hx3]i(l) .+

+(σx1(l) + σx2(l))2)
)2
.

(3.8.112)

Estimation of the DMPHM-2DF model
with stationary �rst order moments

Let us consider the DMPHM-2DF model expressed by the mo-
ment equations (3.8.17)�(3.8.24). The estimation procedure for the
DMPHM-2DF model reduces here to the minimization of square cri-
terion

S =
∑
l

∑
t∈Il

(
Ê[hx1(t, l)]− γx(l)t− γ0(l)

)2

+

+
(
Ê[h2

x1(t, l)]−γ2
x(l)t

2−2γx(l)γx0(l)t−cx0(l)
)2

,

(3.8.113)

where γx(l), γx0(l) and cx0(l) are some parameters.
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In the general case, criterion (3.8.113) is minimized with respect to
three parameters γx(l), γx0(l) and cx0(l) for l ∈ S. In the particular
case, for γx0(l) = lnµx(0, l) and cx0(l) = ln2µx(0, l), it is minimized
with respect to parameter γx(l) for l ∈ S.

Iterative estimation of the DMPHM-2IF model

The estimation of the DMPHM-2IF model (3.8.101)�(3.8.107) con-
sist of the following steps.

1o Take some initial conditions, e.g. E[hx1hx2]0(l)=0, E[hx1hx3]0(l)=0,
E[h2

x2]0(l) = 1, E[hx2hx3]0(l) = 0, E[h2
x3]0(l) = 1 and initial conditions

E[hx1]0(l) = px(l), E[h2
x1]0(l) = p2

x(l), where px(l) is �xed.

2o Assume initial values for px(l) = lnµx(0, l), γx(l), βx1(l) βx2(l),
qx1(l), qx2(l), σx1(l), σx2(l), e.g. γx(l) = 0.1, βx1(l) = 0.1, βx2(l) = 0.1,
qx1(l) = 1, qx2(l) = 1, σx1(l) = 0.01, σx2(l) = 0.01.

3o Calculate the values of E[hx1]i(l), E[h2
x1]i(l), E[h2

x2]i(l), E[h2
x3]i(l),

E[hx1hx2 ]i(l), E[hx1hx3 ]i(l), E[hx2hx3]i(l), from (3.8.101)�(3.8.107) for
an i-th iteration (i = 1, 2, ...) and for the given values of parameters
px(l) = lnµx(0, l), γx(l) βx1(l), βx2(l), qx1(l), qx2(l), σx1(l), σx2(l).

4o Determine the values of Ê[hx1]i(l), Ê[h2
x1]i(l), i.e. the log-central

mortality rates and their squares form a sample time series.

4o Minimize the following sum with respect to px(l) = lnµx(0, l), γx(l),
βx1(l), βx2(l), qx1(l), qx2(l), γ2

x1(l), γ2
x2(l)

S =
∑
l

∑
i

(
Ê[hx1]i+1(l)− E[hx1]i(l)− γx(l)

)2

+

+
(
Ê[h2

x1]i+1(l)− E[h2
x1]i(l)− (2γx(l)E[hx1]i(l)+

− 2βx1(l)qx1(l)E[hx1hx2]i(l)− 2βx2(l)qx2(l)E[hx1hx3]i(l)+

+σ2
x1(l)q2

x1(l) + σ2
x2(l)q2

x2(l))
)2
,

(3.8.114)
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or the following sum de�ned for qx1(l) = qx2(l) = 1

S =
∑
l

∑
i

(
Ê[hx1]i+1(l)− E[hx1]i(l)− γx(l)

)2

+

+
(
Ê[h2

x1]i+1(l)− E[h2
x1]i(l)− (2γx(l)E[hx1]i(l)+

− 2βx1(l)E[hx1hx2]i(l)− 2βx2(l)E[hx1hx3]i(l)+

+ σ2
x1(l) + σ2

x2(l)))2.

(3.8.115)

Let us notice that in the last case the unknown linear parameters
in the system of moment equations (3.8.101)�(3.8.107) the unknown
parameters are px(l) = lnµx(0, l), γx(l), βx1(l), βx2(l), σ2

x1(l), σ2
x2(l).

Estimation of the DMPHM-2IF model
with stationary �rst order moments

We will consider here the DMPHM-2IF model expressed by the
moment equations (3.8.41)�(3.8.48). The estimation procedure of the
DMPHM-2IF model reduces to the minimization of square criterion
(3.8.113) where γx(l), γx0(l) and cx0(l) are some parameters.

In the general case, criterion (3.8.113) is minimized with respect
to three parameters γx(l), γx0(l) and cx0(l) for l ∈ S. For γx0(l) =
lnµx(0, l) and cx0(l) = ln2µx(0, l) it can be minimized with respect to
one parameter γx(l) for l ∈ S.

3.9. Final remarks

In this chapter new dynamic hybrid mortality models, both for re-
alizations and for moments, are introduced. Except for the Cox�Inger-
soll�Ross model, the remaining models are described by Itô's stochastic
di�erential equations. The related discrete-time models are also pre-
sented and estimation procedures proposed.

It is worth noting that in the case of moment mortality models it
is possible to estimate only two parameters γx(l) and lnµx(0, l) using
criteria based on stationary solutions of moment equations with respect
to some of the equations.
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The general estimation procedures for hybrid models draw on the
switching points' concept, i.e. times at which hybrid models switch
from one to another state (subsystems). In Section 3.2 the switching
points' identi�cation procedure based on the self-adaptive test is pro-
posed and illustrated on the time series of log-central mortality rates
for Polish women aged 40 years.

Switchings obtained for all one-year age groups of Polish males
and females with the time period 1958�2000 as well as parameters'
estimation results of some hybrid models are presented in Chapter 6.





Chapter 4

Mortality model based on oriented

fuzzy numbers

4.1. Introduction

Part of the discussion in Chapter 1 focuses on the theoretical foun-
dations of the standard Lee�Carter model. The main problem in ap-
plying this model refers to the underlying assumption that the resi-
duals are homoscedastic. The analysis of residuals provides evidence
that such an assumption is mostly not ful�lled. As a result, the model
may have a poor goodness-of-�t for some age groups and years. It
is also known that empirical central death rates only approximate
the real ones, the exact values of which are often not known (see
[Rossa et al. 2011], Section 3.3).

All these drawbacks make it necessary to create solutions address-
ing the problem of heteroscedastic residuals and the approximative
character of input data. One option is to assume that age-speci�c
log-central death rates are fuzzy numbers. The approach was adopted
by [Koissi, Shapiro 2006], in which they presented a fuzzy version of
the Lee�Carter model (FLC) with both age-speci�c death rates and
model's parameters being fuzzy numbers.

Since the fuzzy Lee�Carter model as modi�ed by Koissi and Shapiro
uses a fuzzy representation of the data, it allows, inter alia, addressing
the issue of uncertainty of approximated death rates and incorporating
random terms into the fuzzy structure of the model.

The parameter estimation of the Koissi�Shapiro model involves
however some optimization problems, since minimization of the es-
timation criterion is performed on fuzzy numbers and uses a max-type
operator. A modi�ed fuzzy approach presented by Rossa, Socha and
Szyma«ski [Rossa et al. 2011] draws on the algebra of oriented fuzzy
numbers (OFN), theoretical backgrounds of which can be found in
[Kosi«ski et al. 2003, Kosi«ski, Prokopowicz 2004].
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The OFN approach facilitates solving the optimization problem and
consequently the estimation of the model's parameters.

This chapter explains basic notions relating to fuzzy numbers and
oriented fuzzy numbers, as well as the underlying concepts of an Ex-
tended Fuzzy Lee�Carter model (EFLC) based on the algebra of OFN.
For details on the general fuzzy set theory, the reader should refer to
[Dubois, Prade 1980].

4.2. Algebra of oriented fuzzy numbers

The fuzzy set theory emerged in 1965, with the publication of Lot�
Zadeh's work [Zadeh 1965].

A classical fuzzy set is a notion that generalizes the idea of a set
and allows partial membership of elements in a given set. The degree
of membership is usually expressed by a function mostly denoted as
µ. A 0 value of the function points to �non-membership�, 1 is �full�
membership, and values between 0 and 1 indicate an element's �partial�
membership in the set.

Fuzzy sets, or their special case fuzzy numbers, are frequently used
today as a convenient way to formally present imprecise linguistic no-
tions, e.g. subjective notions such as cold, hot or high, low, etc.

De�nition 4.1. [Zadeh 1965] A fuzzy subset A of a non-empty space
X is a set of ordered pairs

A = {〈u, µA(z)〉, u ∈ X}, (4.2.1)

where µA(u) : X → [0, 1] is a membership function assigning the
degree of membership in set A to each element u ∈ X .

The elements of space X can be arbitrarily de�ned objects such as
persons, notions, items, or numbers.

Let us assume now that X = R, where R is a set of real numbers.
Figure 4.1 is an example of the membership function µA(u) of fuzzy
set A for u ∈ R.

De�nition 4.2. [Dubois, Prade 1980] A fuzzy subset A of real space R
with membership function µA(u) : R→ [0, 1] is called a fuzzy number,
if
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(i) A is a normal set, i.e. supu∈R µA(u) = 1,

(ii) A is a fuzzy-convex set, i.e.

∀u1,u2∈R∀λ∈[0,1] µA(λu1+(1−λ)u2)≥min{µA(u1), µA(u2)}, (4.2.2)
(iii) µA is an upper semi-continuous function, i.e. {u∈R : µA(u)≥ν}

is a closed set for each ν ∈ R [Hong et al. 2001],

(iv) support suppA = cl{u ∈ R : µA(u) > 0} of a fuzzy set A is
bounded and cl is a closure operator.

Figure 4.1. Illustrative fuzzy set A = {〈u, µA(z)〉, u ∈ R}
Source: Developed by the authors

De�nition 4.3. [Hong 2001] A fuzzy number is considered triangular
if its membership function is of the following form

µA(z) =


1− |a−u|

lA
for a− lA ≤ u < a,

1 + |a−u|
rA

for a ≤ u ≤ a+ rA,

0 otherwise,

(4.2.3)

where a ∈ R is a central value and lA, rA > 0 are left and right spreads,
respectively.

A triangular fuzzy number A (also called a triangular number) is
written as

A = (a, lA, rA). (4.2.4)

The class of popular membership functions also includes, among
others, singleton, radial or ellipsoid functions.

De�nition 4.4. [Hong 2001] When lA = rA then triangular fuzzy
number is called symmetric; it is denoted by

A = (a, sA), (4.2.5)

where a ∈ R is a central value and sA > 0 is a spread.
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De�nition 4.5. [Zimmermann 2001, p. 14] The λ-cut of fuzzy number
A is a set Aλ de�ned as

Aλ = {u ∈ R : µA(u) ≥ λ} = [AL(λ), AR(λ)], (4.2.6)

where
AL(λ) = inf{u ∈ R : µA(u) ≥ λ}, (4.2.7)

AR(λ) = sup{u ∈ R : µA(u) ≥ λ}. (4.2.8)

Figure 4.2 illustrates the λ-cut of a symmetric triangular fuzzy
number (4.2.5) for λ = 0.5.

Figure 4.2. A symmetric triangular fuzzy number A = (a, sA)

and its λ-cut [AL(λ), AR(λ)] for λ = 0.5

Source: Developed by the authors

Example 4.1. If a fuzzy number is triangular and so it can be written
as A = (a, lA, rA), its λ-cut Aλ is given by

Aλ = [AL(λ), AR(λ)], (4.2.9)

where

AL(λ) = a− lA(1− λ),

AR(λ) = a+ rA(1− λ).

(4.2.10)

In the special case, when A is a triangular symmetric fuzzy number,
i.e. A = (a, sA)

AL(λ) = a− sA(1− λ),

AR(λ) = a+ sA(1− λ).

(4.2.11)
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De�nition 4.6. [Koissi, Shapiro 2006] Addition and multiplication of
two triangular symmetric fuzzy numbers A = (a, sA), B = (b, sB) are
the following

A⊕B = (a+ b, max(sA, sB)), (4.2.12)

A�B = (ab, max(sA|b|, sB|a|)). (4.2.13)

De�nition 4.7. [Kosi«ski, Prokopowicz 2004] Oriented fuzzy number
~A is an ordered pair

~A = (f, g), (4.2.14)

where f, g : [0, 1]→ R are continuous functions.

Functions f and g are the up part and down part of an oriented
fuzzy number, respectively. From the continuity of both these parts it
follows that the images of both functions are bounded intervals. The
images are respectively called UP and DOWN.
Let us denote

lA := f(0), 1−A := f(1), 1+
A := g(1), rA := g(0) (4.2.15)

and
UP = (lA, 1

−
A), DOWN = (1+

A, rA). (4.2.16)

By adding a third interval

CONST = [1−A, 1
+
A], (4.2.17)

we have three subintervals in the splitting of the support of each convex
fuzzy number.

In general, subintervals (4.2.16) and (4.2.17) may not satisfy the
conditions

lA ≤ 1−A, 1+
A ≤ rA. (4.2.18)

However, when functions f, g are strictly monotonic and f ≤ g, then
all these subintervals are proper and have the following relationships

lA ≤ 1−A ≤ 1+
A ≤ rA. (4.2.19)

In this case, the sum UP ∪ CONST ∪ DOWN can represent the base
of fuzzy number A in the classical sense [Kosi«ski, Prokopowicz 2004].
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Functions f, g that are strictly monotonic on interval [0, 1] have
inverse functions f−1, g−1 de�ned on intervals UP and DOWN, respec-
tively. Hence, a new membership function can be piecewisely de�ned
on R by taking the inverse f−1 of function f on UP and the inverse
g−1 of function g on DOWN.

Let us assign a constant value 1 to CONST. The relationship be-
tween the membership function µA of fuzzy numberA and the functions
f, g of oriented number ~A can then be written as follows

µA(u) =


1 for u ∈ CONST,

f−1(u) for u ∈ UP,

g−1(u) for u ∈ DOWN,

0 for u 6∈ (lA, rA).

(4.2.20)

Example 4.2. A triangular fuzzy number A = (a, lA, rA) corresponds
to a oriented fuzzy number ~A = (f, g), where

f(u) = a− lA(1− u), g(u) = a+ rA(1− u), u ∈ [0, 1]. (4.2.21)

From Example 4.1 it follows that a triangular fuzzy number A =
(a, lA, rA) has λ-cut Aλ = [AL(λ), AR(λ)], where

AL(λ) = a− lA(1−λ), AR(λ) = a+ rA(1−λ), λ ∈ [0, 1]. (4.2.22)

where a, lA, rA are known parameters.

Substituting u for λ, f(u) for AL(u) and g(u) for AR(u), we obtain

f(u) = a− lA(1− u), g(u) = a+ rA(1− u), u ∈ [0, 1]. (4.2.23)

Hence, given that functions f, g are continuous on interval [0, 1],
an oriented fuzzy number ~A is de�ned by an ordered pair of functions
(f, g).

The implication of the above is that the triangular symmetric fuzzy
number A = (a, sA) generates the oriented fuzzy number ~A = (f, g),
where f, g are of the form

f(u) = a− sA(1− u), g(u) = a+ sA(1− u), u ∈ [0, 1]. (4.2.24)

Figure 4.3 presents a symmetric triangular fuzzy number A=(a, sA)
with membership function µA(u) of the form

µA(u) =


1− a−u

sA
for u ∈ [a− sA, a],

1 + u−a
sA

for u ∈ (a, a+ sA],

0 otherwise

(4.2.25)
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and a corresponding oriented fuzzy number ~A = (f, g), where f, g are
de�ned in (4.2.24).

Figure 4.3. Triangular fuzzy number A = (a, sA)

and oriented fuzzy number ~A = (f, g)

Source: Developed by the authors

De�nition 4.8. [Diamond 1988] The Diamond distance between orien-
ted fuzzy numbers ~A = (fA, gA) and ~B = (fB, gB) is given by

D2( ~A, ~B)=

∫ 1

0

[
(fA(u)−fB(u))2+(gA(u)−gB(u))2

]
du, (4.2.26)

where fA, fB, gA, gB are integrable functions.

De�nition 4.9. [Kosi«ski, Prokopowicz 2004] Let ~A = (fA, gA), ~B =

(fB, gB), ~C = (fC , gC) be oriented fuzzy numbers. Then ~C is a sum of
~A and ~B, what is denoted as ~C = ~A⊕ ~B, if

fC(u) = fA(u) + fB(u), gC(u) = gA(u) + gB(u). (4.2.27)

De�nition 4.10. [Kosi«ski, Prokopowicz 2004] Let ~A = (fA, gA),
~B = (fB, gB), ~C = (fC , gC) be oriented fuzzy numbers. Then ~C is
a product of ~A and ~B, denoted as ~C = ~A⊗ ~B, if

fC(u) = fA(u)fB(u), gC(u) = gA(u)gB(u). (4.2.28)

De�nition 4.11. [Kosi«ski, Prokopowicz 2004] ~C = (fC , gC) is a pro-
duct of oriented fuzzy number ~A = (fA, gA) multiplied by scalar d,
which is symbolically written as ~C = d ~A, if

fC(u) = dfA(u), gC(u) = dgA(u). (4.2.29)
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De�nition 4.12. [Kosi«ski, Prokopowicz 2004] Let ~A = (fA, gA),
~B = (fB, gB), ~C = (fC , gC) be oriented fuzzy numbers. Then ~C is
a result of dividing ~A by ~B, which can be symbolically written as
~C = ~A� ~B, if for each argument u ∈ [0, 1] such as that fB(u) 6= 0 and
gB(u) 6= 0, there is

fC(u) =
fA(u)

fB(u)
and gC(u) =

gA(u)

gB(u)
. (4.2.30)

Example 4.3. Let A = (a, sA) and B = (b, sB) be triangular sym-
metric fuzzy numbers corresponding to oriented fuzzy numbers ~A =
(fA, gA) and ~B = (fB, gB), where

fA(u)=a− sA(1− u), gA(u)=a+ sA(1− u),

fB(u)=b− sB(1− u), gB(u)=b+ sB(1− u), u ∈ [0, 1].

(4.2.31)

We can write

~A⊕ ~B = (fA, gA)⊕ (fB, gB) = (fA + fB, gA + gB), (4.2.32)

where

fA(u) + fB(u) = a+ b− (sA + sB)(1− u),

gA(u) + gB(u) = a+ b+ (sA + sB)(1− u), u ∈ [0, 1].

(4.2.33)

Analogously, we have

~A⊗ ~B = (fA, gA)⊗ (fB, gB) = (fAfB, gAgB), (4.2.34)

where

fA(u)fB(u)=ab−(bsA+asB)(1−u)+sAsB(1−u)2,

gA(u)gB(u)=ab+(bsA+asB)(1−u)+sAsB(1−u)2, u∈ [0, 1].

(4.2.35)

In turn, for a given non-zero scalar d, from De�nition 4.11 we obtain

d ~A = (dfA, dgA), (4.2.36)
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where

dfA(u)=d(a−sA(1−u)), dgA(u)=d(a+sA(1−u)), u∈ [0, 1]. (4.2.37)

Property 4.1. If ~A = (fA, gA) is an oriented fuzzy number, then fuzzy
number − ~A can be expressed as follows

− ~A = (−fA, −gA). (4.2.38)

Let us note that − ~A can be taken to be the product of ~A and d = −1.

Property 4.2. Let us have two oriented fuzzy numbers Let ~A =
(fA, gA), ~B = (fB, gB). The di�erence between ~A and ~B is written as

~A	 ~B = (fA − fB, gA − gB). (4.2.39)

Subtracting ~B from ~A can be assumed equivalent to adding the oppo-
site of ~B, i.e. adding ~B multiplied by scalar d = −1 to ~A.

Property 4.3. By subtracting ~A from ~A we obtain

~A− ~A = (fA − fA, gA − gA) = (0, 0). (4.2.40)

Property 4.4. If ~A⊕ ~C1 = ~A⊕ ~C2, then ~C1 = ~C2.

Indeed, let

~A = (fA, gA), ~C1 = (fC1 , gC1), ~C2 = (fC2 , gC2). (4.2.41)

From De�nition 4.9, we have

~A⊕ ~C1 = (fA, gA)⊕ (fC1 , gC1) = (fA + fC1 , gA + gC1). (4.2.42)

The same result is obtained for ~A⊕ ~C2, i.e.

~A⊕ ~C2 = (fA, gA)⊕ (fC2 , gC2) = (fA + fC2 , gA + gC2). (4.2.43)

Following the assumption that ~A⊕ ~C1 = ~A⊕ ~C2 we have

(fA + fC1 , gA + gC1) = (fA + fC2 , gA + gC2) (4.2.44)

or

(fA + fC1 , gA + gC1)− (fA + fC2 , gA + gC2) = (0, 0), (4.2.45)
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i.e.

(fA + fC1 − fA − fC2 , gA + gC1 − gA − gC2) = (0, 0). (4.2.46)

This leads us to

fC1 − fC2 = 0, gC1 − gC2 = 0 (4.2.47)

or, equivalently,
fC1 = fC2 , gC1 = gC2 . (4.2.48)

From the above it follows that ~C1 = ~C2 which was to be proved.

Property 4.5. If ~A and ~B are oriented fuzzy numbers and c, d ∈ R
are any real numbers, the following conditions are ful�lled
(i) c(d ~A) = (cd) ~A,

(ii) d( ~A⊕ ~B) = d ~A⊕ d ~B,
(iii) (c+ d) ~A = c ~A⊕ d ~A,
(iv) 1 ~A = ~A.

Condition (i) follows from De�nition 4.11, and condition (ii) is
based on De�nitions 4.9 and 4.11 explaining how oriented fuzzy num-
bers should be added and multiplied by the scalar. Analogous reaso-
ning applies to condition (iii). Condition (iv) follows from the property
of multiplying an oriented fuzzy number by the scalar which in this case
equals 1.

Let us denote by R a set of oriented fuzzy numbers, with arithmetic
operations of adding oriented fuzzy numbers and multiplying them by
the scalar de�ned as above.

Property 4.6. If ~A, ~B, ~C ∈ R are oriented fuzzy numbers, the follo-
wing conditions are ful�lled

(v) ~A⊕ ~B = ~B ⊕ ~A (commutative addition),

(vi) ( ~A⊕ ~B)⊕ ~C = ~A⊕ ( ~B ⊕ ~C) (associative addition),

(vii) If ~A⊕ ~B = ~A⊕ ~C, then ~B = ~C (uniqueness of addition).

Conditions (i)�(vii) are called linear space axioms. Space R is a real
linear space, since scalars by which oriented fuzzy numbers are multi-
plied are real numbers.
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Let C([0, 1]) be a set of all continuous functions de�ned on a boun-
ded interval [0, 1]. Then R = C([0, 1]) × C([0, 1]) is a set of ordered
pairs (f, g) of continuous functions, each de�ned on interval [0, 1].

Space R is a linear space, because both the axiom of addition and
the axiom of multiplication by the scalar are met; they are given by

~A⊕ ~B = (fA + fB, gA + gB) (4.2.49)

and
d ~A = (dfA, dgA), (4.2.50)

where
~A = (fA, gA), ~B = (fB, gB), d ∈ R. (4.2.51)

Let us de�ne a norm in space R

‖(f, g)‖ = max(sup
u∈[0,1]

|f(u)|, sup
u∈[0,1]

|g(u)|). (4.2.52)

The interval [0, 1] is compact and for continuous functions f, g inequa-
lities supu∈[0,1] |f(u)|<∞, supu∈[0,1] |γg(u)|<∞ hold, thus ‖(f, g)‖<∞.
The following inequalities also hold: supu∈[0,1] |f(u)| > 0 for f(u) 6= 0,
supu∈[0,1] |g(u)| > 0 for g(u) 6= 0, supu∈[0,1] |f(u)| = 0 if ∀u∈[0,1]f(u)=0
and supu∈[0,1] |g(u)| = 0 if ∀u∈[0,1]g(u) = 0. Hence, ‖(f, g)‖ > 0 when
(f, g) 6= (0, 0) and ‖(f, g)‖ = 0, when (f, g) = (0, 0), meaning that the
�rst axiom of the norm is met.

In general, axioms of a norm are as follows [Kolodziej 1970, p. 35]
(i) ‖x‖ > 0 for x 6= 0, ‖0‖ = 0,

(ii) ‖x+ y‖ ≤ ‖x‖+ ‖y‖ (subadditivity),
(iii) ‖αx‖ = |α| ‖x‖ (homogeneity).

To check the second axiom of the norm (4.2.52), i.e. the triangle
inequality, let us assume that ~A = (fA, gA) and ~B = (fB, gB). From
the de�nition of the norm (4.2.52), we have

‖ ~A⊕ ~B‖ = max(sup
u∈[0,1]

|fA⊕B(u)|, sup
u∈[0,1]

|gA⊕B(u)|). (4.2.53)

On the other hand,

fA⊕B(u) = fA(u) + fB(u), (4.2.54)
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consequently

|fA⊕B(u)| = |fA(u) + fB(u)| ≤ sup
u∈[0,1]

|fA(u)|+ sup
u∈[0,1]

|fB(u)|, (4.2.55)

thus,
sup
u∈[0,1]

|fA⊕B(u)| ≤ ‖ ~A‖+ ‖ ~B‖. (4.2.56)

Analogously, we obtain

sup
u∈[0,1]

|gA⊕B(u)| ≤ ‖ ~A‖+ ‖ ~B‖, (4.2.57)

that is

max(sup
u∈[0,1]

|gA⊕B(u)|, sup
u∈[0,1]

|gA⊕B(u)|) ≤ ‖ ~A‖+ ‖ ~B‖. (4.2.58)

Therefore, we have

‖ ~A⊕ ~B‖ ≤ ‖ ~A‖+ ‖ ~B‖, (4.2.59)

which constitutes the triangle condition.

Let us test now the third axiom of the norm, i.e. the homogeneity
condition

‖α ~A‖ = max(sup
u∈[0,1]

|αfA(u)|, sup
u∈[0,1]

|αgA(u)|). (4.2.60)

Because of the norm's properties

|αfA(u)| = |α||fA(u)| ≤ |α| sup
u∈[0,1]

|fA(u)| ≤ |α|‖ ~A‖ (4.2.61)

and

|αgA(u)| = |α||gA(u)| ≤ |α| sup
u∈[0,1]

|gA(u)| ≤ |α|‖ ~A‖. (4.2.62)

Therefore
‖α ~A‖ ≤ |α|‖ ~A‖. (4.2.63)

By substituting α 1
α
~A for ~A we obtain

‖ ~A‖ = ‖α 1

α
~A‖ = ‖ 1

α
(α ~A)‖ ≤ 1

|α|
‖α ~A‖. (4.2.64)
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This leads us to
‖α ~A‖ ≥ |α| ‖ ~A‖. (4.2.65)

Taking both inequalities together, we arrive at

‖α ~A‖ = |α| ‖ ~A‖, (4.2.66)

which is the homogeneity axiom for the norm. Therefore, space R with
the norm the properties of which have been veri�ed is a normed space.

Property 4.7. R is the Banach space, because it is both a normed and
complete space (i.e. each sequence of the elements in space R satisfying
the Cauchy condition converges to a point in that space). The proof
is analogous to the proof of theorem 22.3 in [Kolodziej 1970, p. 44].

Property 4.8. A space of oriented fuzzy numbers is the Banach alge-
bra, i.e. the Banach space with associative and continuous operation of
multiplication [�elazko 1968, p. 16] with a unit element ~I = (1, 1), i.e.
with a pair of constant functions equal 1, such that ~A⊗~I = ~I⊗ ~A = ~A
for each ~A ∈ R.

Property 4.9. Algebra R is commutative, because the following equa-
lities hold ~A⊗ ~B = ~B ⊗ ~A for any ~A, ~B ∈ R.
Indeed, we have

~A⊗ ~B =(fA, gA)⊗ (fB, gB) = (fAfB, gAgB) =

=(fB, gB)⊗ (fA, gA) = ~B ⊗ ~A,

(4.2.67)

Property 4.10. Algebra R is isomorphic with the algebra of complex
numbers.

Gelfand�Mazur theorem [Alexiewicz 1969]. If the Banach space
with a unit element is an algebra, then it is isometrically isomorphic
with the algebra of complex numbers; more precisely, each element is
written as λe, where λ ∈ C and e is a unit element in the space of
complex numbers.

4.3. The extended Koissi�Shapiro mortality model

One of the most interesting generalizations of the Lee�Carter model
referring to the algebra of fuzzy numbers is the FLC model introduced
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by [Koissi, Shapiro 2006]. Their version of the Lee�Carter model as-
sumes fuzzy representation of the log-central death rates as well as
model's parameters (see (1.5.48) in Chapter 1).

In 2011 Rossa, Socha and Szyma«ski proposed a modi�ed version of
the FLC model, termed the Extended Fuzzy Lee�Carter model (EFLC
model), in which mortality rates and model's parameters were repre-
sented by means of oriented fuzzy numbers (OFN) [Rossa et al. 2011].

The EFLC model is written by analogy to (1.5.48) as

~Yx,t = ~Ax ⊕ ( ~Bx ⊗ ~Kt), x = 0, 1, . . . , X, t = 1, 2 . . . , T, (4.3.1)

where ~Ax, ~Bx, ~Kt are OFN's expressed by means of the following or-
dered pairs

~Ax = (fAx , gAx), ~Bx = (fBx , gBx), ~Kt = (fKt , gKt), (4.3.2)

with functions fAx , gAx , fBx , gBx and fKt , gKt de�ned for u ∈ [0, 1] as

fAx(u) = ax − (1− u)sAx , gAx(u) = ax + (1− u)sAx ,

fBx(u) = bx − (1− u)sBx , gBx(u) = bx + (1− u)sBx ,

fKt(u) = kt − (1− u)sKt , gKt(u) = kt + (1− u)sKt .

(4.3.3)

For the FLC model introduced by [Koissi, Shapiro 2006], it was as-
sumed that Ax, Bx, Kt are triangular symmetric numbers with cen-
tral values ax, bx, kt and spreads sAx , sBx , sKt , respectively (see Section
1.5.3). Thus, they are written using the notation from De�nition 4.4
as

Ax = (ax, sAx), Bx = (bx, sBx), Kt = (kt, sKt). (4.3.4)

For the EFLC model (4.3.1), it is assumed that the model's para-
meters are still ax, bx, kt and sAx , sBx , sKt , but they are incorporated in
functions (4.3.3).

In the EFLC model it is also assumed that the log-central death
rates have analogous OFN representation ~Yx,t = (fYx,t , gYx,t) with func-
tions fYx,t , gYx,t de�ned for u ∈ [0, 1] as

fYx,t(u) = yx,t − ex,t(1− u),

gYx,t(u) = yx,t + ex,t(1− u),

(4.3.5)
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where yx,t = lnmx,t are (crisp) log-central death rates and ex,t are
�fuzziness parameters� determined by means of the fuzzi�cation proce-
dure (see next section for more details).

After the oriented fuzzy numbers are added and multiplied accor-
ding to De�nitions 4.9 and 4.10, the right-hand side of (4.3.1) takes
the form

~Ax ⊕ ( ~Bx ⊗ ~Kt) = (fAx , gAx)⊕ (fBx⊗Kt , gBx⊗Kt) =

= (fAx + fBx⊗Kt , gAx + gBx⊗Kt),

(4.3.6)

where for u ∈ [0, 1] we have

fBx⊗Kt(u) = bxkt − (ktsBx + bxsKt)(1− u) + sBxsKt(1− u)2,

gBx⊗Kt(u) = bxkt + (ktsBx + bxsKt)(1− u) + sBxsKt(1− u)2

(4.3.7)

and

fAx(u) + fBx⊗Kt(u) =

=ax+bxkt−(sAx +ktsBx +bxsKt)(1− u)+sBxsKt(1− u)2,

gAx(u) + fBx⊗Kt(u) =

=ax+bxkt+(sAx +ktsBx +bxsKt)(1− u)+sBxsKt(1− u)2.

(4.3.8)

Let us notice that expressions sBxsKt(1 − u)2 in (4.3.8) are close
to 0 for small values of sBx , sKt and for u ∈ [0, 1]. Given this, we can
consider the following approximation

fAx(u)+fBx⊗Kt(u) ≈ ax+bxkt−(sAx +ktsBx +bxsKt)(1− u),

gAx(u)+gBx⊗Kt(u) ≈ ax+bxkt+(sAx +ktsBx +bxsKt)(1− u).

(4.3.9)

It follows from (4.3.9) that right-hand side of the EFLC model
(4.3.1), i.e. ~Ax ⊕ ( ~Bx ⊗ ~Kt), correspond to some symmetric triangular
numbers with central values ax + bxkt and spreads approximated by
the sum sAx + ktsBx + bxsKt .
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4.4. Data fuzzi�cation with switchings

In the mortality model proposed by [Koissi, Shapiro 2006] the in-
put data, i.e. log-central death rates, are fuzzi�ed. Let us therefore
apply the concept of fuzzi�cation to the model with oriented fuzzy
numbers [Rossa et al. 2011, pp. 167�174]. Since fuzzi�cation is the
basis of mortality modeling in the framework of fuzzy numbers, we
shall propose a fuzzi�cation method referring to the approach given by
[Koissi, Shapiro 2006]. Essential to the discussion is the fuzzi�cation of
log-central death rates yx,t = lnmx,t.

Using fuzzi�cation approach by [Koissi, Shapiro 2006], each �xed
value yx,t is transformed into a triangular, symmetric fuzzy number
Yx,t = (yx,t, ex,t), where ex,t is an unknown �fuzziness parameter� ser-
ving as a spread of fuzzy number Yx,t.

In order to determine ex,t, Koissi and Shapiro applied the fuzzy
regression model, by introducing symmetric triangular fuzzy numbers
(c0x, s0x) and (c1x, s1x) satisfying equalities

(yx,t, ex,t) = (c0x, s0x)⊕ (c1x, s1x) t for each x. (4.4.1)

Following De�nition 4.6, the above reduces to the postulate that for
each x the following equalities hold

yx,t = c0x + c1xt, (4.4.2)

ex,t = max(s0x, s1xt). (4.4.3)

What we propose here is to consider parameters ex,t in the frame-
work of oriented fuzzy numbers (OFN). Accordingly, the triangular
numbers (yx,t, ex,t), (c0x, s0x), (c1x, s1x) are replaced by their OFN coun-
terparts

~Yx,t = (fYx,t , gYx,t), ~C0x = (fC0x , gC0x), ~C1x = (fC1x , gC1x),

where fYx,t , gYx,t are de�ned in (4.3.5), and functions fC0x , gC0x , fC1x , gC1x

have the form

fC0x(u) = c0x − s0x(1− u), gC0x(u) = c0x + s0x(1− u),

fC1x(u) = c1x − s1x(1− u), gC1x(u) = c1x + s1x(1− u).

(4.4.4)
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The above means that condition (4.4.1) can be replaced by the follo-
wing one

(fYx,t , gYx,t) = (fC0x , gC0x)⊕ (fC1x , gC1x) t for each x. (4.4.5)

Because De�nitions 4.9 and 4.11 explain how oriented numbers
should be added and multiplied by a scalar, the following equations
should hold for each x and u ∈ [0, 1]

(yx,t−ex,t(1−u), yx,t+ex,t(1−u))=

=(fC0x(u)+tfC1x(u), gC1x(u)+tgC1x(u))=

= (c0x+c1xt−(s0x+s1xt)(1−u), c0x+c1xt+(s0x+s1xt)(1−u)) ,

(4.4.6)

which comes down to the postulate that for each x and t = 1, 2, . . . , T

yx,t = c0x + c1xt, (4.4.7)

ex,t = s0x + s1xt. (4.4.8)

According to (4.4.7), the estimates of c0x and c1x can be obtained
using the standard least squares method (LS) which leads to the follo-
wing estimation formulas

ĉ1x =
t lnmx,t − t lnmx,t

t2 − t̄2
,

ĉ0x = lnmx,t − ĉ1xt̄,

(4.4.9)

where lnmx,t, t lnmx,t, t, t2 denote the respective arithmetic averages.

To �nd parameters s0x, s1x in (4.4.8), we can solve the following
optimization problem. Since ex,t are, by assumption, non-negative
numbers and the smallest value they can take is 0, we need to �nd
such values of ŝ0x, ŝ1x, that at a given x minimize the following sum
S(s0x, s1x) =

∑T
t=1 ex,t = Ts0x + s1x

∑T
t=1 t.
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The optimization problem can therefore be formulated as follows

minimize S(s0x, s1x) = Ts0x + s1x

T∑
t=1

t, (4.4.10)

subject to the constraints

s0x, s1x ≥ 0,

ĉ0x + ĉ1xt+ (s0x + s1xt) (1− u) ≥ lnmx,t,

ĉ0x + ĉ1xt− (s0x + s1xt) (1− u) ≤ lnmx,t.

(4.4.11)

Since higher values of u result in greater spreads s0x, s1x, it is
further assumed that u = 0.

Let us note that the optimization problem (4.4.10)�(4.4.11) is sim-
ilar to that proposed in [Koissi, Shapiro 2006]; the di�erence between
their approach and that introduced in this section lies in the calculation
of parameters ex,t. In our case, the values of ex,t are based on formula
(4.4.8), i.e. ex,t are estimated as

êx,t = ŝ0x + ŝ1xt, (4.4.12)

whereas in the Koissi�Shapiro approach ex,t are estimated from (4.4.3).

Figure 4.4 illustrates the (crisp) log-central death rates for some
age groups registered in Poland for females in time period 1958�2000
and the areas of fuzziness bounded by lines

f1x(t) = ĉ0x + ĉ1xt− êx,t,

f2x(t) = ĉ0x + ĉ1xt+ êx,t,

(4.4.13)

where ĉ1x, ĉ0x are given in (4.4.9) and êx,t are obtained from (4.4.12)
with ŝ0x, ŝ1x solving the minimization problem (4.4.10)�(4.4.11).

Note that areas of fuzziness are slightly wider for the younger age
groups, what is caused by higher variability of death rates for such
ages.
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Figure 4.4. Log-central death rates and areas of fuzziness

for x = 20, 40, 50, 60 years (females).

Source: Developed by the authors

The concept for determining switching time points introduced in
the previous chapter (Section 3.2) will be used here in the fuzzi�cation
procedure of log-central death rates. To take account of switching
points, the optimization problem (4.4.10)�(4.4.11) must be solved for
each sub-period (mortality regime), i.e. for each time interval between
two adjacent switchings.

The identi�cation of switching points allows parameters c0x, c1x,
s0x, s1x to be estimated separately for each sub-period determined by
switchings. For instance, if one switching point t∗ has been identi�ed,
the parameters c0x, c1x, c̃0x, c̃1x of two trend lines should be estimated

yx,t = c0x + c1xt, t = 1, 2, . . . , t∗ − 1, (4.4.14)

yx,t = c̃0x + c̃1xt, t = t∗, . . . , T, (4.4.15)

what leads to the estimation of two sets of parameters s0x, s1x and s̃0x,
s̃1x by solving problem (4.4.10)�(4.4.11) separately for each sub-period.

Fuzzi�cation of the input data is a necessary step in the estimation
of the mortality models presented in the next part of this book. In the
approach proposed here the algebra of oriented fuzzy numbers is em-
ployed, what makes the fuzzi�cation concept more understandable and
easy. Moreover, fuzzi�cation is performed separately for each mortality
regime, therefore fuzziness parameters are �exible and better adjusted
to the data.
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4.5. Parameters' estimation of the EFLC model

To estimate parameters of the mortality model (4.3.1), we shall
use the Diamond distances between the left and right sides of the
model, i.e. between elements ~Yx,t of the observation matrix and terms
~Ax ⊕ ( ~Bx ⊗ ~Kt).

The task requires the minimization of the sum of Diamond distances
(see De�nition 4.8) written as

I =
X∑
x=0

T∑
t=1

D2(~Yx,t, ~Ax ⊕ ( ~Bx ⊗ ~Kt)) =
X∑
x=0

T∑
t=1

dx,t, (4.5.1)

where

dx,t ≡D2(~Yx,t, ~Ax ⊕ ~Bx ⊗ ~Kt) =

=

∫ 1

0

[
fAx(u) + fBx⊗Kt(u)− fYx,t(u)

]2
du+

+

∫ 1

0

[
gAx(u) + gBx⊗Kt(u)− gYx,t(u)

]2
du.

(4.5.2)

The integrand functions are given by

[fAx(u) + fBx⊗Kt(u)− fYx,t(u)]2 = [(ax + bxkt − yx,t)+

−(sAx + sBxkt + sKtbx − ex,t)(1− u) + sBxsKt(1− u)2
]2
,

[gAx(u) + fBx⊗Kt(u)− gYx,t(u)]2 = [(ax + bxkt − yx,t)+

+(sAx + sBxkt + sKtbx − ex,t)(1− u) + sBxsKt(1− u)2
]2
.

(4.5.3)

Let us introduce the following notations

Ux,t=ax+bxkt−yx,t,

Vx,t=sAx+sBxkt+sKtbx−ex,t,

Wx,t=sBxsKt .

(4.5.4)
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Then, we have

[
fAx(u)+fBx⊗Kt(u)−fYx,t(u)

]2
=
[
Ux,t−Vx,t(1−u)+Wx,t(1−u)2

]2
,

[
gAx(u)+gBx⊗Kt(u)−gYx,t(u)

]2
=
[
Ux,t+Vx,t(1−u)+Wx,t(1−u)2

]2
.

(4.5.5)

By adding both expressions in (4.5.5) and then denoting the sum by
Ψx,t(u), we obtain

Ψx,t(u) = 2U2
x,t + 2(2Ux,tWx,t + V 2

x,t)(1− u)2 + 2W 2
x,t(1− u)4. (4.5.6)

The integral of Ψx,t(u) on interval [0, 1] leads to dx,t

dx,t ≡
∫ 1

0

Ψx,t(u)du =

=2U2
x,t+2(2Ux,tWx,t + V 2

x,t)

∫ 1

0

(1−u)2du+ 2W 2
x,t

∫ 1

0

(1−u)4du.

(4.5.7)

Since ∫ 1

0

(1− u)ndu =
1

n+ 1
, (4.5.8)

hence

dx,t = 2U2
x,t +

4

3
Ux,tWx,t +

2

3
V 2
x,t +

2

5
W 2
x,t. (4.5.9)

Given that the value of Wx,t is close to 0, we further assume that

dx,t ≈ 2U2
x,t +

2

3
V 2
x,t. (4.5.10)

Let us notice that expression (4.5.10) belongs to the minimized
functional (4.5.1) and depends on coe�cients ax, bx, kt, sAx , sBx , sKt .

Thus, the functional F to be minimized is given by the following
sum

F (ax, bx, kt, sAx , sBx , sKt) =
T∑
t=1

X∑
x=0

dx,t. (4.5.11)
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By setting the partial derivatives of F to zero, the following system
of normal equations is obtained

∑T
t=1(ax + bxkt − yx,t) = 0,

∑T
t=1

[
(ax+bxkt−yx,t)kt+ 1

3
(sBxkt+sKtbx−ex,t)sKt

]
=0,

∑X
x=0

[
(ax+bxkt−yx,t)bx+ 1

3
(sBxkt+sKtbx−ex,t)sBx

]
=0,

∑T
t=1(sAx + sBxkt + sKtbx − ex,t) = 0,

∑T
t=1(sAx + sBxkt + sKtbx − ex,t)kt = 0,

∑X
x=0(sAx + sBxkt + sKtbx − ex,t)bx = 0.

(4.5.12)

For full model identi�cation, we impose additional restrictions on
parameters bx and kt, the same as those we used for the Lee�Carter
model, i.e.

X∑
x=0

bx = 1,
T∑
t=1

kt = 0. (4.5.13)

We also assume that spreads sAx , sBx , sKt are non-negative, i.e.

∀x sAx , sBx ≥ 0, ∀t sKt ≥ 0. (4.5.14)

This set of normal equations can be solved numerically by means of
an iterative procedure. In addition to numerical solution of the normal
equations, there are also other minimizing algorithms, e.g. computer
routines available in several mathematical packages.

4.6. Final remarks

The EFLC model presented in the chapter sets the stage for presen-
ting other mortality models provided in the next part of the book. The
estimation results of the EFLC model are contained in Chapter 6.



Chapter 5

Mortality models based on modi�ed

fuzzy numbers and complex

functions

5.1. Introduction

The EFLC model and the concept of Oriented Fuzzy Numbers
(OFN) can be considered as a starting point to create what we called
here the algebra of Modi�ed Fuzzy Numbers (MFN). The main di�e-
rence between OFN and MFN lies in the de�nition of multiplication
as an operation within an abstract algebra.

The modi�ed fuzzy numbers will be used in the next section to
propose the modi�ed fuzzy Lee�Carter model MFLC. The last two
sections of the chapter provide mortality models CFLC and QVLC
based on the theory of complex functions.

5.2. Mortality model based on the algebra of

modi�ed fuzzy numbers

Let modi�ed fuzzy numbers MFN be de�ned by analogy to the
oriented fuzzy number OFN with the addition and multiplication ope-
rators ⊕,� for MFN are given in De�nition B.1 (Appendix B).

Then the Modi�ed Fuzzy Lee�Carter model (MFLC model) is de-
�ned as follows

Y̌x,t = Ǎx ⊕ (B̌x � Ǩt), x = 0, 1, . . . , X, t = 1, 2 . . . , T, (5.2.1)

where Ǎx, B̌x, Ǩt are modi�ed fuzzy numbers represented by ordered
pairs

Ǎx = (fAx , gAx), B̌x = (fBx , gBx), Ǩt = (fKt , gKt), (5.2.2)
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with functions fAx , gAx , fBx , gBx , fKt , gKt de�ned for u ∈ [0, 1] as

fAx(u) = ax − sAx(1− u), gAx(u) = ax + sAx(1− u),

fBx(u) = bx − sBx(1− u), gBx(u) = bx + sBx(1− u),

fKt(u) = kt − sKt(1− u), gKt(u) = kt + sKt(1− u).

(5.2.3)

Coe�cients ax, bx, kt and sAx , sBx , sKt are the unknown parameters.

For model identi�cation, we assume, as in the standard Lee�Carter
model, that

X∑
x=0

bx = 1,
T∑
t=1

kt = 0 (5.2.4)

and additionally

∀x sAx , sBx ≥ 0, ∀t sKt ≥ 0. (5.2.5)

We will also assume that log-central death rates are represented by
modi�ed fuzzy numbers Y̌x,t = (fYx,t , gYx,t) with

fYx,t(u) = yx,t − ex,t(1− u), gYx,t(u) = yx,t + ex,t(1− u), (5.2.6)

where yx,t = lnmx,t are (crisp) log-central death rates and �fuzziness
parameters� ex,t are obtained by means of the fuzzi�cation method.

By applying the de�nition of the addition and multiplication of
modi�ed fuzzy numbers (De�nition B.1, Appendix B), we obtain

B̌x � Ǩt = (fBx�Kt , gBx�Kt), (5.2.7)

where

fBx�Kt(u) = bxkt + sBxsKt(1− u)2,

gBx�Kt(u) = bxkt − sBxsKt(1− u)2.

(5.2.8)

and

Ǎx ⊕ (B̌x � Ǩt) = (fAx , gAx) + (fBx�Kt , gBx�Kt) =

= (fAx + fBx�Kt , gAx + gBx�Kt),

(5.2.9)
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where

fAx(u)+fBx�Kt(u) = ax+bxkt−sAx(1− u)+sBxsKt(1− u)2,

gAx(u)+gBx�Kt(u) = ax+bxkt+sAx(1− u)−sBxsKt(1− u)2.

(5.2.10)

The MFLC model can be then written as

Y̌x,t = Ǎx ⊕ (B̌x � Ǩt), x = 0, 1, . . . , X, t = 1, 2 . . . , T, (5.2.11)

where

Y̌x,t = (fYx,t , gYx,t), Ǎx⊕(B̌x�Ǩt)=(fAx⊕Bx�Kt , gAx⊕Bx�Kt) (5.2.12)

fYx,t(u) = yx,t − ex,t(1− u), gYx,t(u) = yx,t + ex,t(1− u), (5.2.13)

and

fAx⊕Bx�Kt(u) = ax + bxkt −
[
sAx(1− u)− sBxsKt(1− u)2

]
,

gAx⊕Bx�Kt(u) = ax + bxkt +
[
sAx(1− u)− sBxsKt(1− u)2

]
.

(5.2.14)

If sAx , sBx , sKt ≥ 0 and sAx−2sBxsKt ≥ 0, expression Ǎx⊕(B̌x�Ǩt)
is a fuzzy number with a membership function close to the membership
function of a triangular number with central value ax+bxkt and spread
expressed as

sAx − sBxsKt , x = 0, 1 . . . , X, t = 1, 2, . . . , T. (5.2.15)

Example 5.1. For the sake of illustration, let us take the following
parameter values of model (5.2.11): ax=3, bx=0.05, kt=−27, sAx =
0.15, sBx =0.01, sKt =4.

Figure 5.1 shows a modi�ed fuzzy number Ǎx ⊕ (B̌x � Ǩt) and its
corresponding symmetric fuzzy number resembling in shape a triangu-
lar number with a central value of 1.65 and a spread of 0.11.
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Figure 5.1. A fuzzy number Ǎx ⊕ (B̌x � Ǩt) (solid line)

and the corresponding symmetric fuzzy number (dashed line)

Source: Developed by the authors

5.3. Parameters' estimation of the MFLC model

To estimate the parameters of the MFLC model (5.2.11), we shall
use the Diamond distance between Ǎx ⊕ (B̌x � Ǩt) and Y̌x,t, i.e.

dx,t ≡ D2
(
Ǎx⊕(B̌x�Ǩt), Y̌x,t

)
, x=0, . . . , X, t=1, . . . , T. (5.3.1)

Parameters' estimation reduces the minimization of the following cri-
terion function

F (ax, bx, kt, sAx , sBx , sKt)=
X∑
x=0

T∑
t=1

dx,t. (5.3.2)

According to De�nition 4.8 of the Diamond distance, (5.3.1) can be
written as

dx,t =

∫ 1

0

[
fAx(u) + fBx�Kt(u)− fYx,t(u)

]2
du+

+

∫ 1

0

[
gAx(u) + gBx�Kt(u)− gYx,t(u)

]2
du.

(5.3.3)

To this end, we shall �rst transform the integrands starting with
the following expressions

fAx(u) + fBx�Kt(u)− fYx,t(u), gAx(u) + gBx�Kt(u)− gYx,t(u). (5.3.4)
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We have

fAx(u) + fBx�Kt(u)− fYx,t(u) =

= ax + ktbx − yx,t − (sAx − ex,t)(1− u) + sBxsKt(1− u)2,

(5.3.5)

where u ∈ [0, 1], yx,t = lnmx,t.

Analogously,

gAx(u) + gBx�Kt(u)− gYx,t(u) =

= ax + ktbx − yx,t + (sAx − ex,t)(1− u)− sBxsKt(1− u)2.

(5.3.6)

Let us have

Rx,t = ax + ktbx − yx,t, Sx,t = sAx − ex,t, Ux,t = sBxsKt . (5.3.7)

Then, we receive

fAx(u)+fBx�Kt(u)−fYx,t(u)=Rx,t −Sx,t(1−u)+Ux,t(1−u)2,

gAx(u)+gBx�Kt(u)−gYx,t(u)=Rx,t +Sx,t(1−u)−Ux,t(1−u)2.

(5.3.8)

By squaring both sides of equation (5.3.8) and then denoting the
squares of sums as Φx,t(u) and Ψx,t(u), we obtain

Φx,t(u) =R2
x,t − 2Rx,t

[
Sx,t(1− u)− Ux,t(1− u)2

]
+

+
[
Sx,t(1− u)− Ux,t(1− u)2

]2
,

(5.3.9)

Ψx,t(u) =R2
x,t + 2Rx,t

[
Sx,t(1− u)− Ux,t(1− u)2

]
+

+
[
Sx,t(1− u)− Ux,t(1− u)2

]2
.

(5.3.10)

The integral of Φx,t(u) + Ψx,t(u) which leads to the Diamond distance,
has the following form

dx,t =

∫ 1

0

[Φx,t(u) + Ψx,t(u)] du = 2R2
x,t+2S2

x,t

∫ 1

0

(1−u)2du+

= −4Sx,tUx,t

∫ 1

0

(1− u)3du+ 2U2
x,t

∫ 1

0

(1− u)4du.

(5.3.11)
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We will use now a general formula∫ 1

0

(1− u)ndu =

∫ 1

0

undu =
1

n+ 1
. (5.3.12)

In this way, we arrive at

dx,t = 2R2
x,t +

2

3
S2
x,t−Sx,tUx,t +

2

5
U2
x,t. (5.3.13)

Substituting expressions (5.3.7) for Rx,t, Sx,t, Ux,t in (5.3.13), we have

dx,t = 2(ax + ktbx − yx,t)2 +
2

3
(sAx + ex,t)

2 +

− sBxsKt (sAx − ex,t) +
2

5
s2
Bx
s2
Kt
.

(5.3.14)

Let us notice that dx,t belongs to the minimized sum (5.3.2) and
is a function of unknown parameters ax, bx, kt, sAx , sBx , sKt . It is as-
sumed, that log-central death rates lnmx,t are known and fuzziness
parameters ex,t are determined by using the data fuzzi�cation algo-
rithm (see the optimization problem (5.3.22)�(5.3.23) described below
in this section).

Note that the sets of parameters {ax, bx, kt} and {sAx , sBx , sKt}
can be estimated separately. Let us thus �rst consider estimation of
ax, bx, kt by solving the following optimization problem

minimize F1(ax, bx, kt)=
T∑
t=1

X∑
x=0

(ax + ktbx − yx,t)2, (5.3.15)

with respect to bx, kt, given constraints (5.2.4).

To estimate bx, kt we can select a non-linear optimization package
(e.g. one of the gradient algorithms available with the Matlab, or Excel
Solver) minimizing the sum (5.3.15) given constraints (5.2.4).

To see how bx, kt are related each other, let us transform the follo-
wing system of normal equations

∑T
t=1(ax + ktbx − yx,t) = 0, x = 0, 1, . . . , X,

∑T
t=1 kt(ax + ktbx − yx,t) = 0, x = 0, 1, . . . , X,

∑X
x=0 bx(ax + ktbx − yx,t) = 0, t = 1, 2, . . . , T.

(5.3.16)



189

We obtain

bx =

∑T
t=1 yx,tkt∑T
t=1 k

2
t

, x = 0, 1, . . . , X (5.3.17)

and

kt =

∑X
x=0 yx,tbx −

∑X
x=0 axbx∑X

x=0 b
2
x

, t = 1, 2, . . . , T. (5.3.18)

Moreover, from the �rst normal equation of (5.3.16) and from (5.2.4)
we have also

ax =
1

T

T∑
t=1

yx,t, x = 0, 1, . . . , X. (5.3.19)

Thus, parameters ax represent average levels of mortality for di�erent

ages x.
In estimating the other model's parameters, sAx , sBx , sKt , formula

(5.2.15) will be used, i.e. we assume that

ex,t = sAx − sBxsKt , x = 0, 1 . . . , X, t = 1, 2, . . . , T (5.3.20)

and the following criterion function will be de�ned

S(sAx , sBx , sKt) =
T∑
t=1

ex,t = TsAx − sBx

T∑
t=1

sKt , (5.3.21)

According to the fuzziness assumption, ex,t are non-negative num-
bers and the smallest value they can take is 0. Estimates of parameters
sAx , sBx , sKt will be then calculated by solving the optimization prob-
lem

minimize S(sAx , sBx , sKt) = TsAx − sBx

T∑
t=1

sKt , (5.3.22)

subject to the following restrictions

∀x ∀t sAx , sBx , sKt ≥ 0, sAx − 2sBxsKt ≥ 0,
T∑
t=1

sKt = C,

ax + bxkt + (sAx − sBxsKt) ≥ lnmx,t,

ax + bxkt − (sAx − sBxsKt) ≤ lnmx,t,

sKt = αt,

(5.3.23)
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where ax, bx, kt are replaced by their estimates and C is �xed and α is
a constant parameter.

Solving the optimization problem (5.3.22)�(5.3.23) allows estimating
parameters sAx , sBx , sKt , and makes it possible to calculate fuzziness
parameters ex,t from (5.3.20).

5.4. Mortality model based on complex functions

In the last part of this chapter, oriented fuzzy numbers (OFN) will
be represented by means of complex functions.

Let us consider a fuzzy triangular symmetric number A = (a, sA)
with central value and spread a, sA, respectively. In keeping with
what [Kosi«ski et al. 2003, Kosi«ski, Prokopowicz 2004] proposed, the
variable can be presented as an oriented fuzzy number ~A = (fA, gA),
where

fA(u) = a− sA(1− u), gA(u) = a+ sA(1− u), u ∈ [0, 1]. (5.4.1)

The OFN algebra can be easily transformed into a complex algebra
using a complex form of ~A = (fA, gA), i.e.

A(u) = fA(u) + igA(u), u ∈ [0, 1], (5.4.2)

or a shortened form
A = fA + igA, (5.4.3)

where i =
√
−1 is an imaginary unit.

To be able to use the Gelfand�Mazur theorem (Section 4.2) that
guarantees isometric isomorphism, we opted for the algebra of complex
numbers C(T ) with T being a Hausdor� compact space, e.g. a closed
interval [0, 1] or a Cartesian product of such intervals (Appendix B).
We shall now apply a multiplication procedure appropriate for the
complex numbers and use complex functions on interval [0, 1] as the
representation of fuzzy numbers.

In the OFN algebra, the left- and right-hand side of model (4.3.1),
i.e. ~Yx,t = ~Ax ⊕ ( ~Bx ⊗ ~Kt), are expressed by oriented fuzzy numbers
~Yx,t = (fYx,t , gYx,t), ~Ax = (fAx , gAx), ~Bx = (fBx , gBx), ~Kt = (fKt , gKt), (see
Chapter 4) which were related to symmetric triangular fuzzy numbers
with central values yx,t, ax, bx, kt and spreads ex,t, sAx , sBx , sKt , respec-
tively.
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Functions de�ning particular numbers are written as follows

fYx,t(u) = yx,t − ex,t(1− u), gYx,t(u) = yx,t + ex,t(1− u),

fAx(u) = ax − sAx(1− u), gAx(u) = ax + sAx(1− u),

fBx(u) = bx − sBx(1− u), gBx(u) = bx + sBx(1− u),

fKt(u) = kt − sKt(1− u), gKt(u) = kt + sKt(1− u).

(5.4.4)

We assume that the values of yx,t = lnmx,t are known and that
fuzziness parameters ex,t were determined by using a fuzzi�cation al-
gorithm (i.e. the fuzzi�cation method with switchings). The unknown
model's parameters are coe�cients ax, bx, kt, sAx , sBx , sKt .

The discussion in this section focuses on the proposal to genera-
lize the mortality model (4.3.1) by replacing oriented fuzzy numbers
with complex functions. Therefore, we propose the Complex-Function
Lee�Carter model (CFLC model) of the following form

Yx,t(u) = Ax(u)+Bx(u)Kt(u), x = 0, 1, . . . , X, t = 1, . . . , T, (5.4.5)

where Yx,t(u), Ax(u), Bx(u), Kt(u) for u ∈ [0, 1] are complex functions
expressed as

Yx,t(u) = fYx,t(u) + igYx,t(u),

Ax(u) = fAx(u) + igAx(u),

Bx(u) = fBx(u) + igBx(u),

Kt(u) = fKt(u) + igKt(u),

(5.4.6)

i =
√
−1 is an imaginary unit and the functions on the right-hand side

of (5.4.6) are de�ned in (5.4.4). The unknown model's parameters are
coe�cients ax, bx, kt and sAx , sBx , sKt .

Product Bx(u)Kt(u) on the right-hand side of (5.4.5) is obtained
by multiplying complex numbers

Bx(u)Kt(u) = (fBx(u) + igBx(u)) (fKt(u) + igKt(u))=

= [fBx(u)fKt(u)−gBx(u)gKt(u)]+i[fBx(u)gKt(u)+gBx(u)fKt(u)].

(5.4.7)
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To obtain Ax(u) +Bx(u)Kt(u) let us �rst calculate the elements in
the brackets in (5.4.7). We have

fBx(u)fKt(u) = bxkt+sBxsKt(1−u)2−(bxsKt +ktsBx) (1−u),

gBx(u)gKt(u) = bxkt+sBxsKt(1−u)2+(bxsKt +ktsBx) (1−u).

(5.4.8)

By subtracting the respective sides, we obtain the �rst element of the
real part of expression Bx(u)Kt(u)

fBx(u)fKt(u)−gBx(u)gKt(u)=− (2bxsKt + 2ktsBx) (1−u). (5.4.9)

The �rst element of the real part of complex function Ax(u) has the
following form

fAx(u) = ax − sAx(1− u) (5.4.10)

and the formula de�ning the real part of complex function Ax(u) +
Bx(u)Kt(u) is

fAx+BxKt(u) =fAx(u) + [fBx(u)fKt(u)− gBx(u)gKt(u)] =

= ax − (sAx + 2bxsKt + 2ktsBx) (1− u).

(5.4.11)

A similar approach is employed to calculate the imaginary part of
Ax(u)+Bx(u)Kt(u). Namely, �rst the imaginary part of the expression
on the right hand side of (5.4.7) is determined, i.e.

gBx(u)fKt(u) + fBx(u)gKt(u). (5.4.12)

We have

gBx(u)fKt(u) = bxkt−sBxsKt(1−u)2−(bxsKt−ktsBx) (1−u),

fBx(u)gKt(u) = bxkt−sBxsKt(1−u)2+(bxsKt−ktsBx) (1−u).

(5.4.13)

Having added the respective sides, we obtain

gBx(u)fKt(u) + fBx(u)gKt(u) = 2bxkt − 2sBxsKt(1− u)2. (5.4.14)

Then, by adding gAx(u), i.e.

gAx(u) = ax + sAx(1− u), (5.4.15)
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the following imaginary part of the complex functionAx(u)+Bx(u)Kt(u)
is obtained
gAx+BxKt(u) =gAx(u) + [gBx(u)fKt(u) + fBx(u)gKt(u)] =

= ax + 2bxkt + sAx(1− u)− 2sBxsKt(1− u)2.

(5.4.16)

Hence, formula (5.4.11) represents the real part of complex function
Ax(u) +Bx(u)Kt(u), and formula (5.4.16) its imaginary part.

5.5. Parameters' estimation of the CFLC model

Let us observe that complex functions Yx,t(u), Ax(u), Bx(u), Kt(u)
can be viewed as elements of the space of complex functions integrable
with the square of the module.

In estimating the parameters of model (5.4.5) our interest focuses
on minimizing the distance between Ax(u) + Bx(u)Kt(u) and Yx,t(u).
To achieve this, we shall use a metrics L2 given by

‖(Ax+BxKt)−Yx,t‖L2 =

∫ 1

0

|(Ax(u)+Bx(u)Kt(u)−Yx,t(u)|2du, (5.5.1)

where |z|2 is the square of the module of complex function z, i.e. the
sum of squares of the real and imaginary parts of z.

The sum of distances between Yx,t(u) and Ax(u) +Bx(u)Kt(u) for
x = 0, 1, . . . , X, t = 1, 2, . . . , T will be taken as a criterion function, the
minimization of which allows the unknown model's parameters to be
estimated. The criterion function is given by

F (ax, bx, kt,sAx , sBx , sKt) =
X∑
x=0

T∑
t=1

‖(Ax+BxKt)−Yx,t‖L2 =

=
X∑
x=0

T∑
t=1

∫ 1

0

|(Ax(u)+Bx(u)Kt(u)−Yx,t(u)|2du.

(5.5.2)

The real part of expression Ax(u) +Bx(u)Kt(u)− Yx,t(u) is as follows

fAx(u)+fBx(u)fKt(u)− fYx,t(u) =

=fAx(u) + [fBxKt(u)− gBx(u)gKt(u)]− fYx,t(u) =

=(ax − yx,t)− (sAx + 2ktsBx + 2bxsKt − ex,t)(1− u)

(5.5.3)
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and the imaginary part of Ax(u) +Bx(u)Kt(u)− Yx,t(u) is given by

gAx(u)+gBxKt(u)− gYx,t(u) =

=gAx(u)+[gBx(u)fKt(u) + fBx(u)gKt(u)]− gYx,t(u) =

=(ax−yx,t+2bxkt)+(sAx−ex,t)(1−u)−2sBxsKt(1−u)2.

(5.5.4)

To calculate the distance (5.5.1), the squares of expressions on the
right-hand sides of (5.5.3) and (5.5.4) must be calculated, and next
the integral of their sum. Then the criterion function (5.5.2) can be
minimized with respect to unknown parameters ax, bx, kt, sAx , sBx , sKt

by analogy to the optimization problem (5.3.15).

In the next section, we shall put forward more advanced modi�-
cations to the complex mortality model. The proposal presented in
this section outlines the transition from a mortality model utilizing
the algebra of oriented fuzzy numbers OFN to a model constructed in
the framework of the quaternion algebra, which will be presented in
the next section.

5.6. Quaternion-valued mortality model

The notion of a quaternion was introduced in 1843 by William
Hamilton, an Irish mathematician, who attempted to generalize the
complex algebra. The quaternion space is denoted by H as a tribute
to the creator of quaternion theory. The basic terms and elements of
the quaternion algebra are explained in Appendix B.

The Quaternion-Valued Lee�Carter model (QVLC model), will be
de�ned by analogy to (4.3.1) or (5.4.5), i.e. as

Ỹx,t = Ãx + B̃xK̃t, (5.6.1)

where Ỹx,t, Ãx, B̃x, K̃t are the pairs of complex functions

Ỹx,t=(fYx,t , gYx,t), Ãx=(fAx , gAx),

B̃x=(fBx , gBx), K̃t=(fKt , gKt).

(5.6.2)
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The ordered pairs of complex functions (5.6.2) are called quater-
nions (De�nition B.6, Appendix B). Using the same symbols as in the
case of the OFN algebra, functions in (5.6.2) can be written as

fYx,t(u) = yx,t − i(1− u)ex,t, gYx,t(u) = yx,t + i(1− u)ex,t,

fAx(u) = ax − i(1− u)sAx , gAx(u) = ax + i(1− u)sAx ,

fBx(u) = bx − i(1− u)sBx , gBx(u) = bx + i(1− u)sBx ,

fKt(u) = kt − i(1− u)sKt , gKt(u) = kt + i(1− u)sKt ,

(5.6.3)

where u ∈ [0, 1] and yx,t = lnmx,t.

Parameters ex,t as well as sAx , sBx , sKt are determined by fuzzi-
fying the log-central death rates. Thus, the unknown parameters
of the QVLC model are only ax, bx, kt. By analogy to the standard
Lee�Carter model, the following restrictions are also imposed

X∑
x=0

bx = 1,
T∑
t=1

kt = 0. (5.6.4)

A look at terms in (5.6.3) shows that functions fYx,t , fAx , fBx , fKt

correspond to conjugate functions ḡYx,t , ḡAx , ḡBx , ḡKt written as

ḡYx,t(u) = yx,t − i(1− u)ex,t,

ḡAx(u) = ax − i(1− u)sAx ,

ḡBx(u) = bx − i(1− u)sBx ,

ḡKt(u) = kt − i(1− u)sKt .

(5.6.5)

Hence,

Ỹx,t=(ḡYx,t , gYx,t), Ãx=(ḡAx , gAx),

B̃x=(ḡBx , gBx), K̃t=(ḡKt , gKt).

(5.6.6)
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In the matrix notation, Ãx(u) for u ∈ [0, 1] is written as

Ãx(u) =

[
ḡAx(u) gAx(u)
−ḡAx(u) gAx(u)

]
. (5.6.7)

Analogously,

B̃x(u) =

[
ḡBx(u) gBx(u)
−ḡBx(u) gBx(u)

]
(5.6.8)

and

K̃t(u) =

[
ḡKt(u) gKt(u)
−ḡKt(u) gKt(u)

]
. (5.6.9)

The transformation of quaternion matrices Ãx, B̃x, K̃t leads us to

Ãx(u) =

[
ḡAx(u) gAx(u)
−ḡAx(u) gAx(u)

]
=

=

[
ax − isAx(1− u) ax + isAx(1− u)
−ax + isAx(1− u) ax + isAx(1− u)

]
=

=

[
ax ax
−ax ax

]
+ i(1− u)

[
−sAx sAx

sAx sAx

]
.

(5.6.10)

Analogously,

B̃x(u) =

[
ḡBx(u) gBx(u)
−ḡBx(u) gBx(u)

]
=

=

[
bx − isBx(1− u) bx + isBx(1− u)
−bx + isBx(1− u) bx + isBx(1− u)

]
=

=

[
bx bx
−bx bx

]
+ i(1− u)

[
−sBx sBx

sBx sBx

]
,

(5.6.11)
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and

K̃t(u) =

[
ḡKt(u) gKt(u)
−ḡKt(u) gKt(u)

]
=

=

[
kt − isKt(1− u) kt + isKt(1− u)
−kt + isKt(1− u) kt + isKt(1− u)

]
=

=

[
kt kt
−kt kt

]
+ i(1− u)

[
−sKt sKt

sKt sKt

]
.

(5.6.12)

By applying the quaternion multiplication formula (De�nition B.6,
Appendix B) we obtain

B̃x(u)K̃t(u) =

=

[
bx bx
−bx bx

][
kt kt
−kt kt

]
−(1−u)2

[
−sBx sBx

sBx sBx

][
−sKt sKt

sKt sKt

]
+

+i

{
(1−u)

[
bx bx
−bx bx

][
−sKt sKt

sKt sKt

]
+(1−u)

[
−sBx sBx

sBx sBx

][
kt kt
−kt kt

]}
.

(5.6.13)

The multiplication of particular matrices in (5.6.13) gives the following[
bx bx
−bx bx

][
kt kt
−kt kt

]
=bxkt

[
1 1
−1 1

][
1 1
−1 1

]
=2bxkt

[
0 1
−1 0

]
(5.6.14)

[
−sBx sBx

sBx sBx

][
−sKt sKt

sKt sKt

]
=sBxsKt

[
−1 1

1 1

][
−1 1

1 1

]
=

=2sBxsKt

[
1 0
0 1

]
.

(5.6.15)

[
bx bx
−bx bx

][
−sKt sKt

sKt sKt

]
=bxsKt

[
1 1
−1 1

][
−1 1

1 1

]
=

=2bxsKt

[
0 1
1 0

]
,

(5.6.16)
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[
−sBx sBx

sBx sBx

][
kt kt
−kt kt

]
=sBxkt

[
−1 1
1 1

][
1 1
−1 1

]
=

= 2sBxkt

[
−1 0
0 1

]
.

(5.6.17)

Hence, we have

B̃x(u)K̃t(u) = 2bxkt

[
0 1
−1 0

]
− 2(1− u)2sBxsKt

[
1 0
0 1

]
+

+ 2i(1− u)

{
bxsKt

[
0 1
1 0

]
+ ktsBx

[
−1 0
0 1

]}
.

(5.6.18)

Quaternion Ãx(u) has the form

Ãx(u) =

[
ax − isAx(1− u) ax + isAx(1− u)
−ax + isAx(1− u) ax + isAx(1− u)

]
=

= ax

[
1 1
−1 1

]
+ i(1− u)sAx

[
−1 1

1 1

]
.

(5.6.19)

The adding of quaternion Ãx(u) to B̃x(u)K̃t(u) leads to a di�erent
form of the right-hand side of the model (5.6.1)

Ãx(u) + B̃x(u)K̃t(u) =

= ax

[
1 1
−1 1

]
+2bxkt

[
0 1
−1 0

]
−2(1− u)2sBxsKt

[
1 0
0 1

]
+

+ i(1−u)

{
sAx

[
−1 1

1 1

]
+2bxsKt

[
0 1
1 0

]
+ 2ktsBx

[
−1 0

0 1

]}
.

(5.6.20)

By analogy, log-central death rates yx,t = lnmx,t can be trans-
formed into quaternions Ỹx,t by adopting matrix notation

Ỹx,t(u) =

[
ḡYx,t(u) gYx,t(u)
−ḡYx,t(u) gYx,t(u)

]
, (5.6.21)
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where

ḡYx,t(u) = yx,t − iex,t(1− u), gYx,t(u) = yx,t + iex,t(1− u). (5.6.22)

Equivalently, we can write the above as

Ỹx,t(u) =

[
yx,t − iex,t(1− u) yx,t + iex,t(1− u)
−yx,t + iex,t(1− u) yx,t + iex,t(1− u)

]
. (5.6.23)

5.7. Parameters' estimation of the QVLC model

The parameters of the QVLC model (5.6.1) will be estimated using
expression (5.6.20). To this end, the following norm will be introduced
for the quaternion space H

||F ||2L2 =

∫ 1

0

||F (u)||2Hdu, (5.7.1)

where || · ||2H under the integral is the square of the norm of an element
in space H (De�nition B.10, Appendix B).

Hence, to estimate the model's parameters, the following functional
will be employed

F (ax, bx, kt, sAx , sBx , sKt)=
X∑
x=0

T∑
t=1

||Ỹx,t−
(
Ãx+B̃xK̃t

)
||2L2 . (5.7.2)

The quaternion norm in space H can be determined using only
terms from the �rst row of the complex matrix representing a given
quaternion. For quaternion Ãx(u) + B̃x(u)K̃t(u), complex functions
fAx+BxKt(u) and gAx+BxKt(u) are as follows

fAx+BxKt(u) = ax−2(1− u)2sBxsKt−i(1−u)(sAx + 2ktsBx),

gAx+BxKt(u) = ax+2bxkt+i(1−u)(sAx +2bxsKt).

(5.7.3)

The terms will be used to estimate the distance between the left-hand
and right-hand sides of (5.6.1), i.e. between Ỹx,t and Ãx + B̃xK̃t.

We already know that Ãx(u) + B̃x(u)K̃t(u)is represented by two
complex functions (5.7.3). Similarly, quaternion Ỹx,t(u) is de�ned by
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two complex functions (5.6.22). Therefore, Ỹx,t−(Ãx+B̃xK̃t) can be
de�ned by the following two functions

φ(u)= ḡYx,t(u)− fAx+BxKt(u) =

=yx,t−ax+2(1−u)2sBxsKt +i(1−u)(sAx−ex,t+2ktsBx),

ψ(u)=gYx,t(u)− gAx+BxKt(u) =

=yx,t−ax−2bxkt−i(1−u)(sAx−ex,t + 2bxsKt).

(5.7.4)

The formula for the squared norm of quaternion Ỹx,t−(Ãx+B̃xK̃t) in
space H is

||Ỹx,t − (Ãx + B̃xK̃t)||2H = |φ(u)|2 + |ψ(u)|2. (5.7.5)

The squared modules on the right-hand side of (5.7.5) can be trans-
formed to

|φ(u)|2 =
[
yx,t − ax + 2(1− u)2sBxsKt

]2
+

+(1− u)2(sAx − ex,t + 2ktsBx)2 =

= (yx,t−ax)2 + 4(1−u)2sBxsKt (yx,t−ax) +

+4(1− u)4s2
Bx
s2
Kt

+ (1−u)2(sAx − ex,t + 2ktsBx)2,

|ψ(u)|2 = (yx,t − ax − 2bxkt)
2 + (1−u)2(sAx−ex,t + 2bxsKt)

2.

(5.7.6)

The norm (5.7.1) of the quaternion Ỹx,t − (Ãx + B̃xK̃t) can be then
written as

||Ỹx,t − (Ãx + B̃xK̃t)||2L2 =

∫ 1

0

|φ(u)|2du+

∫ 1

0

|ψ(u)|2du, (5.7.7)
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and both integrals on the right-hand side of (5.7.7) are equal, respec-
tively,∫ 1

0

|φ(u)|2du =(yx,t−ax)2+4sBxsKt (yx,t−ax)
∫ 1

0

(1−u)2du+

+ 4s2
Bx
s2
Kt

∫ 1

0

(1−u)4du+(sAx−ex,t+2ktsBx)
2

∫ 1

0

(1−u)2du =

=(yx,t−ax)2+
4

3
sBxsKt(yx,t−ax)+

4

5
s2
Bx
s2
Kt

+
1

3
(sAx−ex,t+2ktsBx)

2

(5.7.8)

and∫ 1

0

|ψ(u)|2du=(yx,t−ax−2bxkt)
2+

∫ 1

0

(1−u)2(sAx−ex,t+2bxsKt)
2du

= (yx,t−ax−2bxkt)
2 +

1

3
(sAx−ex,t+2bxsKt)

2.

(5.7.9)

Let us have

dx,t≡||Ỹx,t−(Ãx+B̃xK̃t)||2L2 =

∫ 1

0

|φ(u)|2du+

∫ 1

0

|ψ(u)|2du=

= (yx,t−ax)2+
4

3
sBxsKt (yx,t−ax)+

1

3
(sAx−ex,t+2ktsBx)2+

+ (yx,t − ax−2bxkt)
2 +

1

3
(sAx−ex,t + 2bxsKt)

2+
4

5
s2
Bx
s2
Kt
.

(5.7.10)

Hence, functional (5.7.2) used for estimating the model's parame-
ters can be written as

F (ax, bx, kt, sAx , sBx , sKt) =
X∑
x=0

T∑
t=1

dx,t. (5.7.11)

It is also assumed that the values of log-central death rates yx,t =
lnmx,t are known and coe�cients ex,t are derived by means of the
switching fuzzi�cation method described in Section 4.4 (Chapter 4).
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The general concept for estimating parameters of the quaternion
model requires the selection of a non-linear optimization algorithm
available in several mathematical packages, to minimize (5.7.11) given
restrictions (5.6.4).

To see how parameters ax, bx, kt are related each other, let us derive
the system of normal equations. We have

∑T
t=1

[
(yx,t−ax) + 2

3
sBxsKt +(yx,t−ax−2bxkt)

]
= 0,

∑T
t=1

[
kt(yx,t−ax−2bxkt)− 1

3
sKt(sAx− ex,t+2bxsKt)

]
=0,

∑X
x=0

[
bx(yx,t−ax−2bxkt)− 1

3
sBx(sAx− ex,t+2ktsBx)

]
=0.

(5.7.12)

From equations (5.7.12) we have

ax =
1

T

T∑
t=1

yx,t +
1

3
sBx

1

T

T∑
t=1

sKt = ȳx +
1

3
sBx s̄Kt , (5.7.13)

bx =

∑T
t=1 kt(yx,t − ax)−

1
3

∑T
t=1 sKt(sAx − ex,t)

2
∑T

t=1 k
2
t + 2

3

∑T
t=1 s

2
Kt

, (5.7.14)

kt =

∑X
x=0 bx(yx,t − ax)−

1
3

∑X
x=0 sBx(sAx − ex,t)

2
∑X

x=0 b
2
x + 2

3

∑X
x=0 s

2
Bx

. (5.7.15)

The set of normal equations (5.7.12) can be solved numerically by
means of an iterative procedure.

5.8. Final remarks

The mortality models proposed in this chapter are based on the
same approach as that used to build the Extended Fuzzy Lee�Carter
model (EFLC) utilizing the algebra of modi�ed fuzzy number, complex
functions or quaternions.

The parameters of the fuzzy model (MFLC) and complex models
(CFLC and QVLC) are estimated by fuzzifying log-central mortality
rates and optimizing some non-linear criterion functions.

The next chapter presents for illustration some real data-based es-
timates obtained with some of the models proposed in this book, as
well as comparative analysis of prediction accuracy of the models.



Chapter 6

Models' estimation and evaluation

based on the real data

6.1. Introduction

To illustrate the theoretical discussions in previous chapters pre-
senting the proposals of new models, the following classes of mortality
models will be estimated: DLCH (3.3.11), DGOBHM (3.6.16)�(3.6.19),
MFLC (5.2.11)�(5.2.14) and QVLC (5.6.1)�(5.6.3).

In the estimation, real data will be used and the ex-post forecasting
errors will be compared with the errors yielded by the SLC model
(1.5.2) and, occasionally, with the errors of the DDLC (1.6.12), DGOB
(1.9.26)�(1.9.27) and DMMP (1.10.18)�(1.10.19) models.

The following analysis utilizes the age-speci�c death rates for males
and females in Poland from years 1958�2014. Data were sourced from
the Human Mortality Database (www.mortality.org) and the GUS
database (stat.gov.pl). The 2001�2014 death rates were only used to
evaluate the models' forecasting properties (were excluded from esti-
mations).

In the case of the MFLC and QVLC models, switching points were
used to fuzzify the input data, before the estimation procedure was em-
ployed. The switchings were identi�ed using the JL test, the theoretical
foundations of which are presented in Chapter 3, Section 3.2.

For the hybrid models DLCH, DGOBH, two common switchings
were adopted. They were determined from the data contained in Ta-
ble 6.1 by observing the most frequent switchings. The period under
consideration 1958�2000 was assumed to have two common switchings
1966 and 1991, meaning that the parameters of the hybrid models were
estimated separately for three sub-periods, i.e. I0 = [1958, 1966), I1 =
[1966, 1991) and I2 = [1991, 2000]. Parameters' estimates obtained for
the last sub-period were next used to assess the ex-post prediction
accuracy of the hybrid models.
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6.2. Results of switching points' identi�cation for

the mortality data of Poland

Table 6.1. Switching points (years)

Males Females

x m year x m year
0 33 1991 0 36 1994
4 29 1987 1 16 1974
11 12 1970 23 8 1966
15 37 1995 24 8 1966
17 30 1988 25 8 1966
20 6 1964 27 8 1966
26 33 1991 29 8 1966
27 37 1995 30 11 1969
31 32 1990 35 36 1994
33 33 1991 40 33 1991
35 33 1991 41 34 1992
37 33 1991 42 9 1967
38 33 1991 43 7 1965
38 33 1991 60 33 1991
40 34 1992 61 34 1992
41 33 1991 62 33 1991
42 33 1991 66 33 1991
43 33 1991 67 33 1991
44 33 1991 68 35 1993
45 33 1991 69 33 1991
46 33 1991 70 32 1990
47 33 1991 71 33 1991
50 33 1991 72 37 1995
51 33 1991 73 35 1993
52 33 1991 74 36 1994
53 33 1991 75 37 1995
54 33 1991 86 27 1985
55 33 1991 88 37 1995
56 33 1991 89 37 1995
57 33 1991 90 34 1992
58 34 1992
59 33 1991
61 33 1991
62 33 1991
63 33 1991
64 33 1991
67 33 1991
93 26 1984
99 9 1967

Source: Own calculations.
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Table 6.1 shows the results of the JL test obtained for the age-speci-
�c death rates for males and females noted in Poland in the calendar
years 1958�2000. Switching years were selected using as the criterion
statistically signi�cant switching points at the 0.05 level. Each age
group was assigned one such point.

6.3. Estimation results

6.3.1. The DLCH model

Figures 6.1�6.8 show estimates ax, bx, kt, σ2
x of the parameters of

the DLCH model, which were obtained with the age-speci�c mortality
rates for Poland from the years 1958�2000. To make the estimation
resluts easier to present, the estimates are plotted as graphs.

Curves illustrated in Figures 6.1 and 6.2 show the average log-cen-
tral age-speci�c rates of mortality (for males and females), plotted
separately for each of the mortality regimes I0, I1, I2. All the curves
exhibit a typical �bath tube� shape, i.e. with high values around the
infant ages, followed by minimal rates at the childhood ages, higher
accidental mortality at young adulthood ages and increasing mortality
at adulthood and old ages with nearly constant rate of increase. The
�accident hump� at adolescence stands for higher mortality rates due to
accidental deaths caused by augmented risk-taking behaviour as well
as increased suicide rates. Note that the observed humps, both for
males and females, are more demonstrable in the last time period I2.

The arrangement of curves in Figures 6.3 and 6.4 shows that in some
age groups of males, death rates are markedly more sensitive to tem-
poral changes in mortality than in the case of women. Especially, sig-
ni�cant di�erences are observed for the time period I1 = [1965, 1990),
what can be explained by the health crisis of the 1970s and 1980s in
Poland.

Figures 6.5 and 6.6 indicate that in the period of analysis the trend
of mortality was generally declining, with the decline being faster in
the subpopulation of women, except for the period I1, when the general
mortality trend for males was rising. The estimated functions κ(t, l)
obtained with the DLCH model di�er signi�cantly from estimates of
parameters κt obtained with the SLC model, therefore the latter are
also plotted for comparison.
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Figure 6.1. Estimates ax, x = 0, 1, . . . , 100

obtained with the DLCH model for sub-periods I0, I1, I2 (males)

Source: Developed by the authors

Figure 6.2. Estimates ax, x = 0, 1, . . . , 100

obtained with the DLCH model for sub-periods I0, I1, I2 (females)

Source: Developed by the authors
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Figure 6.3. Estimates bx, x = 0, 1, . . . , 100

obtained with the DLCH model for sub-periods I0, I1, I2 (males)

Source: Developed by the authors

Figure 6.4. Estimates bx, x = 0, 1, . . . , 100

obtained with the DLCH model for sub-periods I0, I1, I2 (females)

Source: Developed by the authors



208

Figure 6.5. Estimated functions κ(t, l) obtained with model DLCH

for sub-periods I0, I1, I2 and estimates kt obtained with model SLC (males)

Source: Developed by the authors

Figure 6.6. Estimated functions κ(t, l) obtained with model DLCH

for sub-periods I0, I1, I2 and estimates kt obtained with model SLC (females)

Source: Developed by the authors

Parameters σ2
x represent volatility of mortality rates and are illus-

trated in Figures 6.7 and 6.8.
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Figure 6.7. Estimates σ2
x, x = 0, 1, . . . , 100

obtained with the DLCH model for sub-periods I0, I1, I2 (males)

Source: Developed by the authors

Figure 6.8. Estimates σ2
x, x = 0, 1, . . . , 100

obtained with the DLCH model for sub-periods I0, I1, I2 (females)

Source: Developed by the authors
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The forecasting accuracy of models DLCH and SLC were com-
pared using ex-post errors measured for each year in the time period
2001�2014 that was omitted from the parameters' estimation.

To estimate error sizes two types of measures were used: a mean
squared error MSE and a mean absolute deviation MAD. In the case
of the DLCH model they are given by the following formulas

MSE
(DLCH)
t =

√√√√ 1

101

100∑
x=0

[lnmx,t+1(l)−(lnmx,t(l)+bx(l)d(l))]2,

MAD
(DLCH)
t =

1

101

100∑
x=0

|lnmx,t+1(l)− (lnmx,t(l) + bx(l)d(l))|.

(6.3.1)

In the case of the SLC model MSE and MAD take the form, respec-
tively,

MSE
(SLC)
t =

√√√√ 1

101

100∑
x=0

[lnmx,t − (ax + bxkt)]
2,

MAD
(SLC)
t =

1

101

100∑
x=0

|lnmx,t − (ax + bxkt)| ,

(6.3.2)

Error measures obtained with both these measures for models SLC
and DLCH are shown in Tables 6.2 i 6.3.

The data in Tables 6.2 and 6.3 lead to a conclusion that the DLCH
model has better forecasting properties, particularly regarding the sub-
population of males.

Columns 3 and 5 show that the mean errors (measured by means of
MSE andMAD) with respect to to the predicted log-central age-speci-
�c mortality rates are mostly better to those obtained with the SLC
model (columns 2 and 4).
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Table 6.2. Ex-post comparisons of MSE values

for models SLC and DLCH

Year
Males Females

SLC DLCH SLC DLCH
2001 0.197 0.096 0.098 0.110
2002 0.204 0.101 0.122 0.132
2003 0.215 0.093 0.122 0.120
2004 0.223 0.105 0.132 0.135
2005 0.230 0.119 0.146 0.186
2006 0.232 0.143 0.152 0.190
2007 0.238 0.167 0.172 0.193
2008 0.257 0.182 0.174 0.201
2009 0.281 0.170 0.191 0.245
2010 0.330 0.170 0.190 0.226
2011 0.341 0.203 0.218 0.251
2012 0.373 0.218 0.215 0.247
2013 0.406 0.226 0.246 0.286
2014 0.469 0.225 0.273 0.301
Source: Own calculations.

Table 6.3. Ex-post comparisons of MAD values
for models SLC and DLCH

Year
Males Females

SLC DLCH SLC DLCH
2001 0.182 0.072 0.083 0.071
2002 0.185 0.076 0.107 0.087
2003 0.195 0.064 0.109 0.082
2004 0.206 0.078 0.117 0.094
2005 0.214 0.090 0.129 0.124
2006 0.214 0.105 0.130 0.130
2007 0.219 0.123 0.152 0.128
2008 0.234 0.133 0.156 0.140
2009 0.250 0.125 0.170 0.166
2010 0.302 0.126 0.167 0.168
2011 0.307 0.148 0.191 0.188
2012 0.335 0.153 0.185 0.182
2013 0.359 0.163 0.221 0.207
2014 0.430 0.168 0.245 0.221
Source: Own calculations.

6.3.2. The DGOBHM model

Figures 6.9�6.18 show the estimates of αx(l), lnµx(0, l) = lnx0(l),
βx(l), γx(l) (l = 0, 1, 2) obtained with the DGOBH moment model
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for males and females and for mortality regimes I0, I1, I2, using the
iterative estimation procedure described in Section 3.6.5.

Figure 6.9. Estimates of αx, x = 0, 1, . . . , 100

obtained with the DGOBHM model for sub-periods I0, I1, I2 (males)

Source: Developed by the authors

Figure 6.10. Estimates of αx, x = 0, 1, . . . , 100

obtained with the DGOBHM model for sub-periods I0, I1, I2 (females)

Source: Developed by the authors
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Figure 6.11. Estimates of lnµx0, x = 0, 1, . . . , 100

obtained with the DGOBHM model for sub-periods I0, I1, I2 (males)

Source: Developed by the authors

Figure 6.12. Estimates of lnµx0, x = 0, 1, . . . , 100

obtained with the DGOBHM model for sub-periods I0, I1, I2 (females)

Source: Developed by the authors
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Figure 6.13. Estimates of βx, γx, x = 0, 1, . . . , 90

obtained with the DGOBHM model for sub-period I0 (males)

Source: Developed by the authors

Figure 6.14. Estimates of βx, γx, x = 0, 1, . . . , 90

obtained with the DGOBHM model for sub-period I0 (females)

Source: Developed by the authors
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Figure 6.15. Estimates of βx, γx, x = 0, 1, . . . , 90

obtained with the DGOBHM model for sub-period I1 (males)

Source: Developed by the authors

Figure 6.16. Estimates of βx, γx, x = 0, 1, . . . , 90

obtained with the DGOBHM model for sub-period I1 (females)

Source: Developed by the authors
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Figure 6.17. Estimates of βx, γx, x = 0, 1, . . . , 90

obtained with the DGOBHM model for sub-period I2 (males)

Source: Developed by the authors

Figure 6.18. Estimates of βx, γx, x = 0, 1, . . . , 90

obtained with the DGOBHM model for sub-period I2 (females)

Source: Developed by the authors
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The models' parameters were estimated using the 1958�2000 data.
Additionally, in the case of the DGOBHMmodel three sub-periods I0 =
[1958, 1966), I1 = [1966, 1991), I2 = [1991, 2000] were considered and
separate sets of estimates for each sub-period were obtained. Estimates
for the last sub-period I2 were next used to predict log-central mortality
rates for each of the calendar years in the period 2001�2014.

To draw a comparison between prediction accuracy of the DGOBH
moment model and some discrete non-hybrid models, i.e. the Giaco-
metti�Ortobelli�Bertocchi model DGOB, the discrete modi�ed Milev-
sky�Promislow model DMMP, as well as the discrete dynamic Lee�Car-
ter model DDLC, ex-post forecasting errors were calculated for each of
the models with respect to each year in the period 2001�2014 that was
excluded from the estimation procedure.

To this end, theMSE andMAD measures for the respective hybrid
and non-hybrid models were de�ned in a similar manner as for the
DLCH and SLC models (see (6.3.1) or (6.3.2)).

From the data in Tables 6.4 and 6.5 it follows that the DGOBH
moment model is more accurate in prediction than the two non-hybrid
models DGOB, DMMP and seems to be comparable with the DDLC
model in terms of ex-post forecasting errors MSE and MAD.

Table 6.4. Ex-post comparison of MSE values
for models: DGOBHM, DGOB, DMMP and DDLC

Year
Males Females

DGOBHM DGOB DMMP DDLC DGOBHM DGOB DMMP DDLC

2001 0.096 0.121 0.142 0.015 0.078 0.108 0.094 0.020
2002 0.090 0.138 0.119 0.100 0.099 0.139 0.103 0.109
2003 0.080 0.152 0.126 0.107 0.088 0.148 0.114 0.125
2004 0.089 0.178 0.137 0.102 0.099 0.152 0.122 0.110
2005 0.097 0.193 0.139 0.107 0.147 0.170 0.126 0.116
2006 0.115 0.194 0.135 0.111 0.147 0.173 0.132 0.154
2007 0.139 0.210 0.139 0.122 0.150 0.178 0.151 0.149
2008 0.141 0.231 0.154 0.129 0.153 0.180 0.155 0.155
2009 0.139 0.255 0.167 0.142 0.198 0.200 0.155 0.156
2010 0.155 0.306 0.206 0.147 0.175 0.227 0.197 0.183
2011 0.159 0.319 0.195 0.178 0.200 0.244 0.204 0.167
2012 0.179 0.350 0.214 0.197 0.195 0.254 0.216 0.193
2013 0.189 0.384 0.225 0.222 0.227 0.269 0.227 0.185
2014 0.201 0.451 0.289 0.247 0.239 0.288 0.243 0.215
Source: Own calculations.
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Table 6.5. Ex-post comparison of MAD values
for models: DGOBHM, DGOB, DMMP and DDLC

Year
Males Females

DGOBHM DGOB DMMP DDLC DGOBHM DGOB DMMP DDLC
2001 0.076 0.105 0.013 0.010 0.056 0.091 0.085 0.016
2002 0.071 0.126 0.107 0.079 0.076 0.121 0.090 0.069
2003 0.057 0.140 0.140 0.088 0.068 0.131 0.099 0.087
2004 0.063 0.160 0.120 0.079 0.076 0.136 0.107 0.082
2005 0.070 0.174 0.126 0.087 0.108 0.149 0.106 0.090
2006 0.083 0.179 0.122 0.093 0.107 0.150 0.111 0.110
2007 0.098 0.193 0.124 0.103 0.106 0.153 0.127 0.110
2008 0.102 0.208 0.140 0.108 0.115 0.159 0.132 0.117
2009 0.093 0.229 0.153 0.121 0.137 0.172 0.125 0.122
2010 0.100 0.288 0.191 0.123 0.136 0.207 0.180 0.139
2011 0.109 0.277 0.181 0.157 0.156 0.218 0.170 0.140
2012 0.116 0.317 0.200 0.175 0.150 0.228 0.186 0.158
2013 0.121 0.344 0.213 0.198 0.171 0.239 0.191 0.155
2014 0.131 0.413 0.268 0.219 0.184 0.254 0.209 0.176
Source: Own calculations.

The amount of discrepancies between the theoretical and actual
log-central death rates is illustrated in Figures 6.19 and 6.20.

Figure 6.19. Empirical and theoretical log-central mortality rates

obtained with the DGOBH and DGOB models (males)

Source: Developed by the authors
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Figure 6.20. Empirical and theoretical log-central mortality rates

obtained with the DGOBH and DGOB models (females)

Source: Developed by the authors

Both �gures show the empirical log-central age-speci�c mortality
rates for males and females aged x = 20 and x = 40 years in period
1958�2014 (dots) as well as the adjusted logarithms of mortality rates
for the same time period and for the same age groups (dashed lines).
Forecasts obtained from the DGOBHM and DGOB models for years
2001�2014 are marked by solid and dashed lines, respectively.

As can be seen, the di�erences between empirical values and values
predicted by both models tend to grow as the forecast horizon in-
creases. This means that rather than analyzing single trajectories, the
con�dence areas (or at least areas of fuzziness) should be determined
for the forecasted characteristics. This functionality is available, for
instance, with mortality models based on fuzzy numbers or complex
functions. Some estimates obtained with such models are presented in
the next sections.

6.3.3. The MFLC model

Let us consider a modi�ed fuzzy Lee�Carter model MFLC, devel-
oped on the properties of modi�ed fuzzy numbers (see Chapter 4). The
age-speci�c mortality rates were fuzzi�ed taking account of the model's
switching points determining mortality regimes.
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Figures 6.21�6.26 illustrate the estimates of parameters ax, bx, kt,
and the estimates of fuzziness parameters sAx , sBx , sKt yielded by the
MFLC model for men and women. Coe�cients ax, bx, kt have the same
interpretation as in the SLC or DLCH models (see Section 1.5.3 or
Section 6.3.1).

In the case under consideration, we also have estimates sAx , sBx , sKt ,
which allow the areas of fuzziness to be determined for ax, bx, kt. In
Figures 6.21�6.26 the areas are delimited by dashed lines.

The values of sAx−sBxsKt can also be treated as the fuzziness of the
forecasted logarithms of age-speci�c death rates generated by model,
since modi�ed fuzzy numbers Ǎx, B̌x, Ǩt correspond to the symmetric
triangular numbers. Operations performed on these numbers according
to (5.2.11) generate modi�ed fuzzy numbers Ǎx⊕ (B̌x� Ǩt), which are
equivalent to symmetric triangular fuzzy numbers resembling them in
shape, with central values and spreads equal, respectively,

ax + bxkt, sAx − sBxsKt , (6.3.3)

given sAx − 2sBxsKt ≥ 0.

Figure 6.21. Estimates of ax, x = 0, 1, . . . , 100 and the area of fuzziness

obtained with the MFLC model (males)

Source: Developed by the authors
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Figure 6.22. Estimates of ax, x = 0, 1, . . . , 100 and the area of fuzziness

obtained with the MFLC model (females)

Source: Developed by the authors

Figure 6.23. Estimates of bx, x = 0, 1, . . . , 100 and the area of fuzziness

obtained with the MFLC model (males)

Source: Developed by the authors
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Figure 6.24. Estimates of bx, x = 0, 1, . . . , 100 and the area of fuzziness

obtained with the MFLC model (females)

Source: Developed by the authors

Figure 6.25. Estimates of kt, t = 1958, . . . , 2000 and the area of fuzziness

obtained with the MFLC model (males)

Source: Developed by the authors
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Figure 6.26. Estimates of kt, t = 1958, . . . , 2000 and the area of fuzziness

obtained with the MFLC model (females)

Source: Developed by the authors

Figure 6.27. Empirical and predicted logarithms of mortality rates

for the age group x = 25 years and the areas of fuzziness

Source: Developed by the authors
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In Figure 6.27 the logarithms of empirical and predicted death rates
(for males and females) are shown together with the areas of fuzziness
for selected age group. In this case, as before, the estimation period is
1958�2000 and the period of ex-post forecast spans the years 2001�2014.

The values obtained with formula ax + bxkt are the central values
of symmetric fuzzy numbers representing predicted fuzzy log-central
mortality rates in the MFLC model. Thus, Figure 6.27 shows both the
central values of predicted rates and their areas of fuzziness determined
by curves arising from the following equations

f1x(t) = ax + bxkt − (sAx − sBxsKt),

f2x(t) = ax + bxkt + (sAx − sBxsKt).

(6.3.4)

To determine kt and sKt in (6.3.4) for the forecast period 2001�2014,
a random walk model with a drift was adopted for both indicators
(analogous to formula (1.5.8)).

Let us note that the areas of fuzziness in Figure 6.27 contain both
the predicted values and most of empirical observations, also in the
forecast period.

As values predicted by the MFLC model correspond to the triangu-
lar symmetric fuzzy numbers, their central values were used to measure
errors with MAD and MSE de�ned similarly as in (6.3.1) or (6.3.2).

Table 6.6. Ex-post comparison of MSE values

for the SLC and MFLC models

Year
Males Females

SLC MFLC SLC MFLC
2001 0.197 0.186 0.098 0.098
2002 0.204 0.194 0.122 0.121
2003 0.215 0.202 0.122 0.122
2004 0.223 0.209 0.132 0.132
2005 0.230 0.214 0.146 0.146
2006 0.232 0.220 0.152 0.151
2007 0.238 0.223 0.172 0.171
2008 0.257 0.240 0.174 0.173
2009 0.281 0.262 0.191 0.190
2010 0.330 0.308 0.190 0.190
2011 0.341 0.321 0.218 0.217
2012 0.373 0.351 0.215 0.215
2013 0.406 0.383 0.246 0.246
2014 0.469 0.442 0.273 0.272
Source: Own calculations.
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Table 6.7. Ex-post comparison of MAD values
for the SLC and MFLC models

Year
Males Females

SLC MFLC SLC MFLC
2001 0.182 0.171 0.083 0.082
2002 0.185 0.175 0.107 0.107
2003 0.195 0.181 0.109 0.109
2004 0.206 0.191 0.117 0.116
2005 0.214 0.197 0.129 0.128
2006 0.214 0.203 0.130 0.129
2007 0.219 0.208 0.152 0.152
2008 0.234 0.219 0.156 0.156
2009 0.250 0.232 0.170 0.168
2010 0.302 0.281 0.167 0.166
2011 0.307 0.288 0.191 0.191
2012 0.335 0.318 0.185 0.185
2013 0.359 0.341 0.221 0.220
2014 0.430 0.410 0.245 0.245
Source: Own calculations.

It follows from the data in Tables 6.6 and 6.7 that the MFLC model
generates smaller forecast errors than the SLC model. This model also
allows assessing the uncertainty of the obtained estimates, i.e. the
age-speci�c log-central mortality rates, since it can be used relatively
easily to determine the areas of fuzziness.

6.3.4. The QVLC model

The estimation results for the quaternion model QVLC will be pre-
sented by plotting the estimates of ax, bx, kt and sAx , sBx , sKt , as it was
done in the previous section. The ex-post prediction errors obtained
with MSE and MAD will be tabulated.

The algebra considered within the quaternion model was deve-
loped from the algebra of oriented fuzzy numbers by presenting orien-
ted fuzzy numbers ~A = (f, g) as pairs of complex functions Ã(u) =
(fA(u), gA(u)) for u ∈ [0, 1], fA(u)=a−isA(1−u), gA(u)=a+isA(1−u),
and by adopting the de�nition of multiplication dedicated to quater-
nions (De�nition B.6, Appendix B).

Since the OFN algebra satis�es the Gelfand�Mazur assumption,
it is isometrically isomorphic with the algebra of complex numbers.
Therefore, sAx , sBx , sKt will be interpreted as the measures of fuzziness
of respective model's parameters (see the MFLC model). They are used
to mark the areas of fuzziness in Figures 6.28�6.33.
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Figure 6.28. Estimates of ax, x = 0, 1, . . . , 100

and the area of fuzziness for the QVLC model (males)

Source: Developed by the authors

Figure 6.29. Estimates of ax, x = 0, 1, . . . , 100

and the area of fuzziness for the QVLC model (females)

Source: Developed by the authors
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Figure 6.30. Estimates of bx, x = 0, 1, . . . , 100

and the area of fuzziness for the QVLC model (males)

Source: Developed by the authors

Figure 6.31. Estimates of bx, x = 0, 1, . . . , 100

and the area of fuzziness for the QVLC model (females)

Source: Developed by the authors



228

Figure 6.32. Estimates of kt, t = 1958, . . . , 2000

and the area of fuzziness for the QVLC model (males)

Source: Developed by the authors

Figure 6.33. Estimates of kt, t = 1958, . . . , 2000

and the area of fuzziness for the QVLC model (females)

Source: Developed by the authors
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The MSE and MAD values for the QVLC model, juxtaposed in
Tables 6.8 and 6.9 with the MSE and MAD values for the SLC model,
are de�ned by analogy to (6.3.2) or (6.3.1).

Table 6.8. Ex-post comparison of MSE values

for the SLC and QVLC models

Year
Males Females

SLC QVLC SLC QVLC
2001 0.197 0.214 0.098 0.225
2002 0.204 0.207 0.122 0.240
2003 0.215 0.231 0.122 0.273
2004 0.223 0.250 0.132 0.289
2005 0.230 0.263 0.146 0.269
2006 0.232 0.247 0.152 0.282
2007 0.238 0.263 0.172 0.299
2008 0.257 0.273 0.174 0.314
2009 0.281 0.304 0.191 0.296
2010 0.330 0.355 0.190 0.376
2011 0.341 0.342 0.218 0.381
2012 0.373 0.368 0.215 0.415
2013 0.406 0.396 0.246 0.413
2014 0.469 0.476 0.273 0.424
Source: Own calculations.

Table 6.9. Ex-post comparison of MAD values
for the SLC and QVLC models

Year
Males Females

SLC QVLC SLC QVLC
2001 0.182 0.159 0.083 0.199
2002 0.185 0.158 0.107 0.215
2003 0.195 0.173 0.109 0.238
2004 0.206 0.185 0.117 0.255
2005 0.214 0.192 0.129 0.247
2006 0.214 0.187 0.130 0.257
2007 0.219 0.191 0.152 0.264
2008 0.234 0.205 0.156 0.282
2009 0.250 0.228 0.170 0.269
2010 0.302 0.277 0.167 0.353
2011 0.307 0.283 0.191 0.351
2012 0.335 0.308 0.185 0.379
2013 0.359 0.333 0.221 0.377
2014 0.430 0.402 0.245 0.397
Source: Own calculations.

The data in Tables 6.8, 6.9 show that the prediction accuracy of
the quaternion model is comparable with the SLC model for males and
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slightly worse then the SLC model for females. The quaternion model
is capable of generating, like the MFLC model, areas of fuzziness of
the model's parameters and consequently is useful for identifying the
areas of fuzziness relating to the log-central mortality rates.

6.4. Final remarks

The recapitulation of the results of estimation and evaluation of the
proposed mortality models is an opportunity to highlight their strong
and weak points.

The advantage of the dynamic hybrid Lee�Carter model lies in its
forecasting capabilities. The mortality forecasts it produces result in
smaller or comparable prediction errors in relation to the standard
Lee�Carter model. The next step of research shall be focused on con-
�dence intervals for the predicted mortality rates.

In terms of forecasting properties, models utilizing fuzzy numbers
and complex functions are similar to the standard Lee�Carter model.
What makes them superior to it, however, is that they allow the areas
of fuzziness of the estimated parameters to be determined, and conse-
quently the areas of fuzziness for predicted mortality rates. Another
advantage of the models is that the areas of fuzziness can be identi�ed
without employing any sophisticated methodology.

The above results encourage the authors to continue their work on
developing the family of models combining the discovered capabilities
of the hybrid systems and the fuzzy and complex models. The models
will be analyzed more in detail in the authors' successive publications
on mortality modeling.



Appendix A

Elements of the analysis of stochastic

processes and stochastic equations

A.1. Basic de�nitions of stochastic processes

This appendix provides a review of the necessary information about
stochastic processes. Information about the probability calculus has
been omitted, because it is readily available in academic textbooks.
The appendix has been prepared based on the material from the books
[Lipcer, Sziriajew 1981, Sobczyk 1996, Socha 1993, Socha 2008].

The theory of stochastic processes is developed as the generalization
of the concept of random variables. In the case of a random variable,
each elementary event is assigned a number. For many real processes
(physical, biological, economic, demographic etc.), this model is insuf-
�cient, as in most cases it is not a number that describes an elementary
event, but rather a trajectory. This leads to the following de�nition of
a stochastic process.

De�nition A.1. Let (Ω,F ,P) be a probabilistic space and R+ =
[0,∞). The family X = {ξ(t, ω)}, t ∈ R+, ω ∈ Ω of random va-
riables ξt = ξt(ω) is called a (real) stochastic process with continuous
time. When time parameter t belongs to a set of natural numbers
N = {1, 2, ...}, family X = {ξ(t, ω)}, t ∈ N, ω ∈ Ω is called a random
sequence or stochastic process with discrete time. A stochastic process
with complex outcomes is de�ned in the same manner.

For given ω ∈ Ω, a function of time ξ(t, ·) will be called a trajectory
or a realization corresponding with an elementary event ω. We shall

use notation ξ(t, ω) for processes with continuous time and ξt(ω) for
processes with discrete time, i.e. ξt(ω) = ξ(t, ω), for t ∈ N. Sometimes,
for the sake of convenience, elementary event ω will be omitted from



232

the notation of the processes, i.e. ξ(t) = ξ(t, ω) for t ∈ R+ or ξt =
ξ(t, ω) for t ∈ N, but this should not lead to misunderstandings. The
stochastic processes will be denoted by small letters, e.g. x1, x2, y1, y2.

For given moments t = t1, t2, ..., tn the stochastic process ξ(t) be-
comes a �nite number of random variables ξ(t1), ..., ξ(tn) characterized
by joint probability distribution

Ft1,...,tn(x1, ..., xn) = P{ξ(t1) < x1, ..., ξ(tn) < xn}, (A.1.1)

or, for continuous processes, by joint probability density

g(t1, x1, ..., tn, xn), (A.1.2)

or by characteristic function

Φ(Θ1, t1, ...,Θn, tn) = E

[
exp

{
n∑
j=1

iΘjξ(tj)

}]
. (A.1.3)

A natural generalization of a total characteristic function is the
following characteristic functional

Φ(Θ(t)) = E

[
exp

{
i

∫
R+

Θ(t)ξ(t)dt

}]
, (A.1.4)

where function Θ(t) belongs to a class of functions for which integra-
tion on the right-hand side of (A.1.4) is well de�ned.

The transition from formula (A.1.4) to (A.1.3) is e�ected by sub-
stituting

Θ(t) =
∑
j

Θjδ(t− tj), (A.1.5)

where δ(t) is the Dirac distribution.

As in the case of other random variables, moments and cumulants
for random processes are determined by di�erentiating the respective
characteristic functional

Φ(Θ(t)) = Φ(Θ(t)) = 1 + i
n∑
j=1

Θj(t)E[xj(t)]+

+
i2

2!

n∑
j=1

n∑
k=1

Θj(t)Θk(t)E[xj(t)xk(t)] + . . .

(A.1.6)
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For common density g(t1, x1, ..., tn, xn), the higher order mixed mo-
ments are of the form

E[xp11 (t1) . . . xpnn (tn)] =

=

∫ +∞

−∞
...

∫ +∞

−∞
[xp11 (t1) . . . xpnn (tn)]g(x1, t1, ..., xn, tn)dx1...dxn.

(A.1.7)

Based on the various de�nitions of convergence of random varia-
bles, several de�nitions of the continuity of stochastic process can be
formulated.

De�nition A.2. Stochastic process ξ(t), t ∈ R+ is called continuous
almost everywhere, if

P{ω : lim
t→s

ξ(t, ω) = ξ(s, ω) = 0} = 1. (A.1.8)

De�nition A.3. Stochastic process ξ(t), t ∈ R+, is called continuous
in probability, if

∀ε > 0 lim
t→s

P{|ξ(t, ω)− ξ(s, ω)| > ε} = 0. (A.1.9)

A.1.1. Second-order processes

Because of its applications, of special importance is the class of
second-order processes with complex values, i.e. with restricted second
moments

E[|x(t, ω)|2] <∞, t ∈ R+. (A.1.10)

The values characterizing the second-order processes are the auto-corre-
lation function and the auto-covariance function, which are respectively
de�ned as

Rxx(t1, t2) = E[x(t1) x(t2)] (A.1.11)

and

Kxx(t1, t2) = E[(x(t1)− E[x(t1)]) (x(t2)− E[x(t2)])], (A.1.12)

Expressions (A.1.11) and (A.1.12) are sometimes succinctly called the
correlation and covariance functions and are written as Rx(t1, t2) and
Kx(t1, t2) or R(t1, t2) and K(t1, t2); the upper dash represents a com-
plex conjugate.
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For t1 = t2 = t,

Kxx(t, t) = E[(x(t)− E[x(t)])2] = σ2
x(t), (A.1.13)

where σx(t) is a process standard deviation x(t).

For two dissimilar processes x(t), y(t), the cross-correlation func-
tions and the cross-covariance functions are respectively introduced

Rxy(t1, t2) = E[x(t1) y(t2)], (A.1.14)

Kxy(t1, t2) = E[(x(t1)− E[x(t1)]) (y(t2)− E[y(t2)])]. (A.1.15)

For a vector process x(t) with complex values, the matrix correlation
functions and the matrix covariance functions are de�ned as follows

Rxx(t1, t2) = E[x(t1) x∗(t2)], (A.1.16)

Kxx(t1, t2) = E[(x(t1)− E[x(t1)]) (x(t2)− E[x(t2)])∗], (A.1.17)

where the asterisk denotes feedback and transposition.

The matrix cross-correlation function and the matrix cross-cova-
riance function are de�ned similarly

Rxy(t1, t2) = E[x(t1) y∗(t2)], (A.1.18)

Kxy(t1, t2) = E[(x(t1)− E[x(t1)]) (y(t2)− E[y(t2)])∗]. (A.1.19)

For the second-order processes continuity is de�ned in the mean
square sense.

De�nition A.4. A stochastic second-order process x(t), t ∈ R+ is
called continuous in the mean square sense at point t, if

l.i.m
∆t→0

(x(s+∆t, ω)−(x(s, ω))=

= lim
∆t→0

E[|x(s+∆t, ω)−x(s, ω)|2]=0,

(A.1.20)

where l.i.m denotes a limit in the mean square sense.

In examining continuity in the mean square sense, the following
theorem can be of assistance.

Theorem A.1. A necessary and su�cient condition for continuity in
the mean square sense of process x(t) is the existence of an autocorre-
lation function Rx(t1, t2) continuous over set {(t1, t2) : t1 = t2}.
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For p-order processes, continuity is de�ned as below.

De�nition A.5. A p-order stochastic process x(t), t ∈ R+ is called
continuous at points in the sense of the p-th moment, 0 < p <∞, if

lim
t→s

E[|x(t, ω)− x(s, ω)|p] = 0. (A.1.21)

In the special case, i.e. for p = 2, it is called continuous in the mean
square sense.

A.1.2. Stationary processes

Stationary processes are a broad class of stochastic processes where
probabilistic processes depend not on the present value of variable t,
but on the di�erence t− s.

De�nition A.6. Stochastic process x(t), t ∈ R+ is called weakly
stationary or stationary in the broad sense, if for any ∆ ∈ R and any
t, s ∈ R+ the following relationships take place

E[|x(t)|2] <∞,

E[x(t)] = E[x(t+ ∆, ω)],

E[x(t+ ∆) x(s+ ∆)] = E[x(t) x(s)],

(A.1.22)

i.e. if the �rst and second moments do not change with the shift of
variable t. For the sake of simpli�cation, the word �weakly� will be
mostly omitted, which should not lead to misunderstandings.

An immediate conclusion from this de�nition is that the mean value
and variance are constant in time and that the correlation and cova-
riance functions only depend on the di�erence t2 − t1, i.e.

E[x(t)] = mx = const, (A.1.23)

E
[
(x(t)− E[x(t)])2

]
= σ2

x = const, (A.1.24)

Rx(t1, t2) = Rx(t2 − t1) = Rx(τ), (A.1.25)

Kx(t1, t2) = Kx(t2 − t1) = Kx(τ), (A.1.26)

where t1 = t, t2 = t+ τ .
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A.1.3. Gaussian processes

Gaussian processes (normal) constitute a very important class of
stochastic processes because of their wide applications. The literature
provides several de�nitions of a Gaussian process. We shall present
one of them.

De�nition A.7. A vector stochastic process x(t), x ∈ Rr, t ∈ R+ is
called Gaussian (or normal), if for any natural n ∈ N and any subset
{t1, ..., tn}, ti ∈ R+, n ≥ 1 vector random variables x(t1), ...,x(tn) have
joint Gaussian distribution, i.e. their characteristic function for any
real vectors Θ1, ...,Θn is

Φ(Θ1, t1, ...,Θn, tn) = E

[
exp

{
n∑
j=1

iΘT
j x(tj)

}]
=

= exp

{
n∑
j=1

iΘT
j m(tj)−

1

2

n∑
j=1

n∑
k=1

iΘT
j K(tj, tk)Θk

}
,

(A.1.27)

where m(t) and K(t1, t2) are, respectively, a vector of mean values
(a mean) and a covariance matrix of a vector process x(t), t ∈ R+,
Θ=[ΘT

1, ...,Θ
T
n ]T, m=[mT

1 , ...,m
T
n ]T , K=[K(t1, t2)].

If covariance matrix K(ti, tj), i, j = 1, ..., n is non-singular, the joint
probability density of vector variables x(t1),...,x(tn) is of the form

gG(x1,t1, ...,xn,tn)=

= [(2π)n
2|K|]−

1
2 exp

{
−1

2
(u−mx)

TK−1(u−mx)

}
,

(A.1.28)

where u = [xT1 , ...,x
T
n ]T , mx = [mT

1 , ...,m
T
n ]T , and |K| is the determi-

nant of an n2 × n2 block covariance matrix written as K = [K(ti, tj)],
i, j = 1, ..., n.

In the special case, when the elements of the matrix are one di-
mensional, i.e. [K(ti, tj)] = K(ti, tj), the covariance matrix K is of the
form

K =


K(t1, t1) K(t1, t2) . . . K(t1, tn)

...
...

. . .
...

K(tn, t1) K(tn, t2) . . . K(tn, tn)

. (A.1.29)



237

A.1.4. Markov processes

Let us discuss now a broad class of stochastic processes in which
�the future� does not depend on �the past� if �the present� is known.
We will start with presenting a general de�nition of such a process.

De�nition A.8. A vector stochastic r-dimensional process ξ(t), t ∈
R+, is called a Markov process, if for n ∈ N and any values of parameter
tm∈R+, m= 1, ..., n, where t0 < t1 < ... < tn and for any real vectors
x1, ...,xn ∈ Rr, the following relationship takes place

P{ξ(tn) < xn| ξ(tn−1) = xn−1, ..., ξ(t1) = x1} =

= P{ξ(tn) < xn| ξ(tn−1) = xn−1},
(A.1.30)

i.e. the conditional distribution of ξ(tn), for the given values of ξ(t0),
ξ(t1), ..., ξ(tn−1), only depends on the process value at the previous
moment, meaning that it does not depend on all values that process
ξ(t) took until tn−1, i.e. it only depends on ξ(tn−1).

Let us introduce notations

P(s,x; t,B) = P{ξ(t) ∈ B| ξ(s) = x}, s ≤ t, (A.1.31)

F (s,x; t,y) = P{ξ(t) < y| ξ(s) = x}, (A.1.32)

where B ∈ Br, Br is the σ-algebra of Borel sets in Rr.

Functions P(s,x; t,B) and F (s,x; t,y) are called a transition pro-
bability function, or brie�y a transition function related to Markov
process ξ(t).

Markov processes are analyzed using homogeneity properties.

De�nition A.9. Markov process ξ(t), t ∈ R+ is called homogeneous
(in terms of time), if for any s, t ∈ R+, s < t, the transition function
only depends on the di�erence between time arguments t− s = τ , i.e.

P(s,x; t,B) = P(x, τ,B), (A.1.33)

F (s,x; t,y) = F (x, τ,y). (A.1.34)

An important class of the Markov processes is continuous-time pro-
cesses and continuous state space processes.
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De�nition A.10. A vector Markov process ξ(t), t ∈ R+ with values
in Rr is an r-dimensional di�usion process if its transition function
F (s,x; t,y) for each t ∈ R+ and each ε > 0 satis�es the following
conditions
(i)

lim
∆t→0

1

∆t

∫
|y−x|≥ε

dyF (t,x; t+ ∆t,y) = 0, (A.1.35)

(ii) there is some vector function A(x, t), for which

lim
∆t→0

1

∆t

∫
|y−x|<ε

(y − x) dyF (t,x; t+ ∆t,y) = A(x, t), (A.1.36)

(iii) here is some vector function σ(x, t), for which

lim
∆t→0

1

∆t

∫
|y−x|<ε

(y − x)(y − x)TdyF (t,x; t+ ∆t,y) =

= σ(x, t)σT (x, t) = B(x, t) > 0,

(A.1.37)

where | · | is the Euclidean norm in Rr and convergence under con-
ditions given by (A.1.36), (A.1.37) is monotonous because of x, and
dyF (t,x; t+ ∆t,y) is a di�erential of function F with respect to y.

Functions A(x, t) and B(x, t) are called a drift vector and a di�u-
sion matrix, respectively.

When A(x, t) and B(x, t) are known, a transition function density
can be determined for a di�usion process.

A.1.5. Processes with independent increments

A particularly importance case of Markov processes are processes
with independent increments.

De�nition A.11. A stochastic process ξ(t), t ∈ R+, is called a process
with independent increments, if for any ti ∈ R+, such as t0<t1<...<tn,
random variables representing the increments of process ξ(t), i.e. ξ(t0),
ξ(t1)− ξ(t0), . . . , ξ(tn)− ξ(tn−1) are independent.

De�nition A.12. A stochastic process ξ(t), t ≥ 0, ξ(0) = 0 de�ned
on the probabilistic space (Ω,F ,P) is called a process with increments
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independent of the past, if for any t,s∈R+, 0≤s≤ t<∞, random varia-
bles representing the increments of process ξ(t), i.e. ξ(t) − ξ(s) are
independent of F .

De�nition A.13. A stochastic process ξ(t), t ∈ R+ with independent
increments is called a process with stationary independent increments,
if its increments ξ(t1)−ξ(t0),..., ξ(tn)−ξ(tn−1) only depend on di�eren-
ces t1 − t0, ..., tn − tn−1, respectively.

Among processes with independent increments the Wiener, Poisson
and Lévy processes are particularly important. Let us discuss the
Wiener process more in detail.

De�nition A.14. A stochastic process ξ(t, ω), t ∈ R+ de�ned on
probabilistic space (Ω,F ,P) is called a Wiener process or a Brownian
motion, if:
(i) P{ξ(0, ω) = 0} = 1,
(ii) ξ(t, ω) is a process with stationary increments independent of the

past,
(iii) increments ξ(t, ω)− ξ(s, ω) have Gaussian distribution for which

E[ξ(t, ω)− ξ(s, ω)] = 0, (A.1.38)

E[(ξ(t, ω)− ξ(s, ω))2] = σ2|t− s|, σ2 = const > 0, (A.1.39)

(iv) for almost all ω ∈ Ω realizations ξ(t, ω) are continuous with re-
spect to t ∈ R+.
Some authors used properties (i)�(iii) to de�ne a Wiener process,

arguing that a Wiener process ξ(t, ω) de�ned in this way has a modi-
�cation the realizations of which are continuous almost everywhere.

For σ2 = 1 process ξ(t, ω) is called a standard Wiener process. The
existence of such a process results from the proposition presented by
Lipcer and Shiryaev [Lipcer, Sziriajew 1981].

Let η1, η2, ... be a sequence of Gaussian random variables with the
mean values equal zero and unit variances and let φ1(t), φ2(t), ..., t ∈
[0, T ] be any complete and orthogonal sequence in L2[0, T ]. Then the
following theorem takes place.

Theorem A.2. For each t ∈ [0, T ], the following series

ξ(t, ω) =
∞∑
j=1

ηj(ω)

∫ t

0

φj(s)ds, (A.1.40)
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is convergent almost everywhere and de�nes a Wiener process over
interval [0, T ].

From the de�nition of a standard Wiener process the following
properties of the process can be derived

E[ξ(t)] = 0, (A.1.41)

K(s, t) = E[ξ(s)ξ(t)] = min(s, t), (A.1.42)

P{ξ(t) ≤ x} =
1√
2πt

∫ x

−∞
exp

{
− y2

2t

}
dy, (A.1.43)

E[|ξ(t)|] =

√
2t

π
, (A.1.44)

E[(ξ(t+ ∆t)−ξ(t))2p]=
1√

2π∆t

∫ +∞

−∞
z2pexp

{
− z2

2∆t

}
dz=

= (2n− 1)!! (∆t)p.

(A.1.45)

It follows that almost all realizations of the Wiener process are
continuous. Moreover, the Wiener process can be demonstrated to have
an important property given by the following theorem.

Theorem A.3. Even though almost all realizations of the Wiener
process are continuous, they are not di�erentiable for all t ≥ 0 and on
each �nite interval they have in�nite oscillations.

De�nition A.15. A stochastic process ξ(t) is called an r-dimensional
Wiener process ξ(t) = [ξ1(t), . . . , ξr(t)]

T , if each of its components ξi(t),
i = 1, . . . , r is a scalar Wiener process and, additionally, all ξi(t) are
mutually independent processes.

A.1.6. White noise

The fundamental mathematical tool for analyzing stochastic dy-
namic systems (comparable with imaginary unit i =

√
−1 in electrical

engineering) is an abstract stochastic process called white noise.
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The literature, particularly the technical literature, o�ers several
de�nitions of white noise. The de�nition given below has been derived
from [Sobczyk 1996].

Let D(T ) be a space of test functions, i.e. all in�nitely di�erentiable
functions φ : T → R1 vanishing identically outside a �nite closed
interval. The topology for this space is the same as in the regular
Schwartz distribution spaces, meaning thatD(T ) is a topological vector
space. Let H be a Hilbert space of all P -equivalent random variables
de�ned on (Ω,F ,P) with a �nite second moment.

De�nition A.16. Continuous linear projection Φ : D(T ) → H is
called a generalized stochastic process on set T . The value of genera-
lized stochastic process Φ in φ is denoted as {φ, Φ} or Φ(φ).

The advantage of a generalized stochastic process is that it always
has a derivative, which is also a generalized stochastic process. The
de�nition is the following.

De�nition A.17. Derivative Φ̇ of generalized process Φ with respect
to t (a generalized derivative in space D(T )) is given by the following
relationship

{φ, Φ̇} = {dφ
dt
, Φ} for all φ ∈ D(T ). (A.1.46)

By applying the de�nition of a generalized derivative of the Wiener
processes, the compound Poisson process and α-stable Lévy process,
new generalized stochastic processes can be obtained.

Gaussian white noise

De�nition A.18. A generalized derivative of the Wiener process w(t),
t∈ [0,∞) denoted as ηw(t) = ẇ(t) = dw(t)

dt
, i.e.

{φ, η} = {φ, ξ̇} = − {dφ
dt
, ξ} for all φ ∈ D(T ), (A.1.47)

is called Gaussian white noise.

Equality (A.1.47) can be also written as

dξ(t) = η(t)dt. (A.1.48)
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Without going in details, it is possible to demonstrate that for each
φ ∈ D(T ) integral of {φ, η} is a Gaussian random variable and that
for each �nite number of functions φ1, ..., φn ∈ D(T ) random variables
{φi, η}, 1 ≤ i ≤ n have a joint Gaussian distribution. Moreover, the
expected value of η(t) is

E[η(t)] = 0 (A.1.49)

and the covariance function is given by the Dirac distribution

Kηη(t1, t2) = cδ(t2 − t1) = cδ(τ), c = const, c > 0, (A.1.50)

From the last equality it directly follows that the variance of Gaus-
sian white noise is in�nite Kηη(t, t) = δ(0) =∞ and the power spectral
density function of a process is a constant function equal to c, i.e.

Sξξ(λ) = c. (A.1.51)

Property (A.1.50) con�rms the �physical infeasibility� of such a pro-
cess, whereas property (A.1.51) explains the origin of the term �white
noise�, which has been coined by analogy to �white light� made up of
electromagnetic waves (colours) of all frequencies.

A.2. Di�erential and integral calculus of stochastic

processes

A.2.1. Integrating and di�erentiating in the mean square
sense

While discussing the second-order processes we presented a de�ni-
tion of the continuity of a stochastic process in the mean square sense.
Di�erentiability and integrability in the mean square sense are de�ned
likewise.

De�nition A.19 (di�erentiating in the mean square sense). A deriva-
tive in the mean square sense of stochastic process x(t) is de�ned by

d

dt
x(t) = ẋ(t) = l.i.m.

∆t→0

x(t+ ∆t)− x(t)

∆t
. (A.2.1)

Theorem A.4. A necessary and su�cient condition of di�erentiability
(the existence of a derivative) in the mean square sense of process x(t) is
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the existence a second derivative of autocorrelation function ∂2Rx(t1,t2)
∂t1∂t2

limited and continuous on set {(t1, t2) : t1 = t2}.

De�nition A.20 (integrating in the mean square sense). Let f(t) be
a complex function on set [a, b] and let {Tn} be a sequence of divisions
of interval [a, b], i.e.

Tn = {a = t
(n)
0 < t

(n)
1 < ... < t(n)

n = b},

lim
n→+∞

max
1≤i≤n

(t
(n)
i − t

(n)
i−1) = 0.

(A.2.2)

We shall de�ne integral in the mean square sense on interval [a, b]
as a limit of the Riemann sums∫ b

a

f(t)x(t)dt = l.i.m
n→+∞

n−1∑
i=0

f(t′in)x(t′in)(t
(n)
i+1 − t

(n)
i ), (A.2.3)

where t′in is any sequence satisfying the following inequalities

t
(n)
i ≤ t′in ≤ t

(n)
i+1. (A.2.4)

Theorem A.5. An integral in the mean square sense
∫ b
a
f(t)x(t)dt

exists if and only if there is an ordinary �nite double Riemann integral∫ b

a

∫ b

a

f(t1)f(t2)R(t1, t2)dt1dt2. (A.2.5)

The averaging procedure is commutative with respect to di�eren-
tiation and integration in the mean square sense, i.e.

dE[x(t)]

dt
= E

[
dx(t)

dt

]
, (A.2.6)

E

[∫ b

a

f(t)x(t)dt

]
=

∫ b

a

f(t)E[x(t)]dt. (A.2.7)

The above property holds true for any linear operation L, i.e. if
Lt is a linear operator transforming second-order process x(t) into
second-order process y(t), i.e.

y(t) = Lt[x(t)], (A.2.8)
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then
E[y(t)] = Lt[E[x(t)]]. (A.2.9)

Moreover, the autocorrelation function of process y(t) is given by the
following relationship

Ryy(t1, t2) = Lt1Lt2Rxx(t1, t2). (A.2.10)

In the special case of Lt = L

Ryy(t1, t2) = L2Rxx(t1, t2). (A.2.11)

A.2.2. Stochastic integrals with respect to di�usion
processes

In the analysis of stochastic processes, both the construction of in-
tegrals with respect to stochastic processes and the di�erentiation rules
are di�erent from those de�ned for the deterministic functions. Let us
refer here only to the basic de�nitions and theorems, starting with
the historically earliest stochastic integrals with respect to di�usion
processes called the Itô and Stratonovich integrals.

De�nition A.21. The Itô stochastic integral of non-anticipating func-
tion (Ft-measurable) f(x(t), t) on interval [0, T ] with respect to some
di�usion process x(t) is a mean-square limit of the Riemann sum, i.e.∫ T

0

f((x(t), t)dx(t) = l.i.m
∆t→0

N∑
i=0

f(x(ti), ti)[x(ti+1)− x(ti)], (A.2.12)

where

E
[∫ T

0
f 2((x(t), t)dt

]
<∞, 0= t1<...<tN+1 =T,∆t = max

i
(ti+1−ti)

and the limit does not depend on the way how the points ti are selected.

Unlike a mean-square stochastic integral given by (A.2.3), the value
of the stochastic integral of non-anticipating function f(x(t), t) on in-
terval [0, T ] with respect to di�usion process x(t) depends on the selec-
tion of intermediate points t′i, for which the values of functions f(x(t), t)
in the Riemann sums are determined, meaning that interval [ti, ti+1]
is treated as some convex set and that any value t′i from this interval
can be presented as a combination of convex points ti and ti+1, i.e. as
t′i = βti+(1−β)ti+1, and the value of function f(x(t), t) in this interval
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as f(βx(ti) + (1− β)x(ti+1), βti + (1− β)ti+1), where β is a real para-
meter 0 ≤ β ≤ 1. Then, the formula de�ning the stochastic integral of
non-anticipating function f(x(t), t) (Ft-measurable) on interval [0, T ]
with respect to di�usion process x(t) is de�ned as the Itô stochastic
integral, in which equality (A.2.12) is replaced by∫ T

0

f(x(t), t)dβx(t) =

l.i.m
∆t→0

N∑
i=0

f(βx(ti)+(1−β)x(ti+1), βti+(1−β)ti+1)[x(ti+1)−x(ti)].

(A.2.13)

This general de�nition of a stochastic integral takes account of two
special cases β = 1 and β = 1

2
, which are called, respectively, the Itô

stochastic integral and the Stratonovich stochastic integral. The mu-
tual relationship between these integrals is described by the following
theorem.

Theorem A.6. If x(t), t ∈ [0,T ] is a di�usion process f(x(t),t) is
a non-linear non-anticipating function on interval [0, T ] that has con-
tinuous derivatives because of both arguments and

E

[∫ T

0

f 2(x(t), t)dt

]
<∞, (A.2.14)

then the equality occurs∫ T

0

f(x(t), t)dβx(t) =

∫ T

0

f(x(t), t)dx(t)+

+(1− β)

∫ T

0

∂f

∂x
(x(t), t)B(x(t), t)dt,

(A.2.15)

whereB(x(t), t) is a di�usion coe�cient de�ned by relationship (A.1.37),
0 ≤ β ≤ 1.

The de�nitions of the stochastic integral and Theorem A.6 can be
extended to vector processes.

De�nition A.22. Let x(t) be an r-dimensional di�usion process for
t ∈ [0, T ], where drift vector A(x, t), di�usion matrix B(x, t) and the
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�rst derivatives ∂B(x, t)/∂xj, j = 1, . . . , r are continuous with respect
to both arguments. Let f(x, t) be a non-linear, non-anticipating func-
tion of values in Rr, continuous with respect to x and satisfying the
following conditions for t∈ [0, T ]

(i) there exist partial derivatives ∂f(x,t)
∂xj

j = 1, . . . , r,

(ii)
∫ T

0
E[|fT (x(s), s)A(x(s), s)|]ds <∞,

(iii)
∫ T

0
E[|fT (x(s), s)B(x(s), s)f(x(s), s)|]ds <∞,

then the stochastic vector integral is de�ned by formula∫ T

0

fT(x(s), s)dβx(t) =

l.i.m
∆t→0

N−1∑
i=0

fT(βx(ti)+(1−β)x(ti+1), βti+(1−β)ti+1)[x(ti+1)−x(ti)],

(A.2.16)

where ∆t = max[ti+1 − ti], 0 = t0 < ... < tN = T .

As in the case of the scalar function, the Itô and Stratonovich
stochastic integrals are de�ned for β = 1 (the Itô vector integral) and
for β = 1

2
(the Stratonovich vector integral).

Stratonovich has demonstrated that the mutual relationship be-
tween the Itô and Stratonovich vector stochastic integrals written, re-
spectively, as

II =

∫ T

0

fT (x(s), s)d1x(t), IS =

∫ T

0

fT (x(s), s)d 1
2
x(t), (A.2.17)

is the following

IS = II +
1

2

r∑
j=1

r∑
k=1

∫ T

0

∂fj
∂xk

(x(t), t)bjk(x(t), t)dt, (A.2.18)

where bjk(x(t), t) are the elements of di�usion process matrix x(t).

A.2.3. Itô's formula for di�usion processes

Let us present now the formula for di�erentiating the vector func-
tion of a di�usion process.

Let x(t) be an n-dimensional stochastic process given for t∈ [0, T ],
i.e. x(t) = [x1(t), ..., xn(t)]T with a stochastic di�erential

dx(t) = a(t, ω)dt+ σ(t, ω)dw(t), (A.2.19)
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where ξ(t) is r-dimensional Wiener process for t ∈ [0, T ].

Vector a(t, ω) = [a1(t, ω), . . . , an(t, ω)]T as well as matrix σ(t, ω) =
[σij(t, ω)], i= 1, . . . , n, j= 1, . . . , r consist of non-linear, non-anticipa-
ting functions satisfying the following conditions

P

{∫ T

0

|ai(t, ω)|dt <∞
}

= 1, i = 1, ..., n,

P

{∫ T

0

|σ2
ij(t, ω)|dt <∞

}
= 1, i = 1, ..., n, j = 1, ..., r.

(A.2.20)

The exact di�erential of some non-linear function of many variables
f(x(t), t) is then determined according to the following theorem.

Theorem A.7. Let f(t, y1, ..., yn, ) be continuous and have continu-
ous derivatives ∂f/∂t, ∂f/∂yi, ∂2f/∂yi∂yj, i, j = 1, ..., n. Stochastic
process f(t, x1(t), ..., xn(t)) has a stochastic di�erential of the form

df(t, x1(t), . . . , xn(t))=

=

[
∂f

∂t
(t, x1(t), . . . , xn(t))+

n∑
i=1

∂f

∂yi
(t, x1(t), . . . , xn(t))+

+
1

2

n∑
i=1

n∑
j=1

∂2f

∂yi∂yj
(t, x1(t), . . . , xn(t))

r∑
k=1

σik(t, ω)σjk(t, ω)

]
dt+

+
n∑
i=1

r∑
k=1

∂f

∂yi
(t, x1(t), ..., xn(t))σik(t, ω)dwk.

(A.2.21)

In the special case when r = n and function f(x(t), t) is a quadratic
form, i.e.

f(x(t), t) = xT (t)H(t)x(t), (A.2.22)

where H(t) is a deterministic matrix, x(t) is a di�usion process with
di�erential given by

dx(t) = a(t)dt+ σ(t)dξ(t). (A.2.23)
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Thus,

d(xT (t)H(t)x(t)) =
[
xT (t)H(t)a(t) + aT (t)H(t)x(t)+

+xT (t)
dH(t)

dt
x(t) + tr(σ(t)σT (t)H(t))

]
dt+

+ [xT (t)H(t)σ(t) + σT (t)H(t)x(t)]dw(t),

(A.2.24)

where tr(A) is a trace of matrix A, i.e. if A=[aij], i, j=1, . . . , n; then

tr(A) =
n∑
i=1

aii. (A.2.25)

Assuming that H(t) is a unitary matrix independent of t, i.e. H(t)=I,
then

d(|x(t)|2)=

[
xTa(t)+aT (t)x(t)+

r∑
i=1

σ2
ii(t)

]
dt+

+[xTσ(t) + σT (t)x(t)]dw(t).

(A.2.26)

A.2.4. The Itô and Stratonovich stochastic di�erential
equations for di�usion processes

Let us consider the Itô di�erential stochastic vector equation

dx(t) = F(t,x)dt+
m∑
k=1

Gk(t,x)dwk(t), x(t0) = x0, (A.2.27)

where F,Gk : [0, T ]×Rn → Rn are non-linear deterministic vector
functions F=[F1, . . . , Fn]T , Gk=[σik], i=1, . . . , n, k=1, . . . ,m, wk are
the standard independent Wiener processes measurable with respect
to a non-decreasing family of σ-algebras =t, t ∈ [0, T ].

Let as denote by (CT ,BT ) a measurable space of functions x̄ =
(x(t), t∈ [0, T ]) continuous on [0, T ] with σ-algebra BT = σ(x : x(s), s ≤
T ). Let us similarly denote Bt = σ(x : x(s), s ≤ t). Let Fi(t,x)
and σik(t,x) be non-anticipating functionals, i.e. Bt-measurable for all
t∈ [0, T ].
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De�nition A.23. Stochastic process x(t), t ∈ [0, T ], continuous with
probability 1, is called a robust solution or a solution of a stochastic dif-
ferential process (A.2.27) with F0-measurable initial condition x(t0) =
x0, if for all t∈ [0, T ] vector random variables x(t) are Ft-measurable
and

P

{∫ T

0

|F(t,x)|dt <∞
}

= 1, (A.2.28)

P

{
m∑
k=1

∫ T

0

|Gk(t,x)|2dt <∞

}
= 1, (A.2.29)

(|.| is a Euclidean norm) and with probability 1 for t ∈ [0, T ] we have

x(t) = x0 +

∫ t

0

F(s,x)ds+

∫ t

0

m∑
k=1

Gk(s,x)dwk(s). (A.2.30)

De�nition A.24. A stochastic di�erential equation (A.2.27) has a uni-
que strong solution, if for any of its robust solutions x(t), x̃(t), t ∈ [0, T ]
the following relationship occurs

P

{
sup
t∈[0,T ]

|x(t)− x̃(t)| > 0

}
= 0. (A.2.31)

Let us present the simplest theorem on the existence and uniqueness
of solutions.

Theorem A.8. Let the coordinates of vectors F(x, t) and Gk(x, t),
k = 1, ...,m be non-anticipating functionals x̄ ∈ CT , t ∈ [0, 1] satisfying
the Lipschitz condition

|Fi(t, x̄)− Fi(t, ȳ)|2 + |σik(t, x̄)− σik(t, ȳ)|2 ≤

≤ L1

∫ t

0

|x(s)− y(s)|2dK(s) + L2|x(t)− y(t)|2
(A.2.32)

and a growth condition

F 2
i (t, x̄)+(σik)

2(t, x̄)≤L1

∫ t

0

(1+|x(s)|2)dK(s)+L2(1+(x(t))2, (A.2.33)

for all i=1, . . . , n, k=1, . . . ,m, where L1>0 and L2>0 are constants,
K(s) is a non-decreasing right continuous function, 0≤K(s)≤ 1 and
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x̄, ȳ ∈ CT . Let initial condition x0 = x0(ω) be F0-measurable random
vector variable, such as

P{
n∑
i=1

|x0i| <∞} = 1. (A.2.34)

In this case, equation (A.2.27) has unique strong solution x(t), measu-
rable with respect to Ft, t ∈ [0, 1].

If we assume that there is a function V (t,x) that has continuous
and limited derivatives of �rst order with respect to t and of second
order with respect to the coordinates of vector x for t ∈ [0, T ] and
x ∈ Rn, which is denoted by V ∈ C2 then, from Theorem A.7 it
follows that

V (t,x(t))−V (s,x(s))=

=

∫ t

s

L(V (u,x(u))du+

∫ t

s

M∑
k=1

∂V

∂x
Gk(u,x(u))dwk(u),

(A.2.35)

where the operator L(.) is de�ned depending on the de�nition of the
stochastic integral on the right-hand side of equation (A.2.30). This
means that if the stochastic integral is an Itô integral, then stochas-
tic equation (A.2.27) is called the Itô stochastic equation, but if the
stochastic integral is a Stratonovich integral, then equation (A.2.27) is
called the Stratonovich stochastic equation. For simplicity, the equa-
tions will be called the Itô equation and the Stochanovich equation,
respectively. The same correspondence of terms is maintained both for
di�erentials dIwk, dSwk and for operators LI , LS.

Because of equations (A.2.21), (A.2.30) and (A.2.35) it follows that
the Itô and Stratonovich operators are de�ned as follows

LI(.) =
∂

∂t
+ FT (t,x)

∂

∂x
+

1

2

m∑
k=1

〈
∂

∂x
, Gk(t,x)

〉2

, (A.2.36)

LS(.)=
∂

∂t
+

(
F(t,x)

∂

∂x
+

1

2

m∑
k=1

∂Gk(t,x)

∂x
Gk(t,x)

)T
∂

∂x
+

+
1

2

m∑
k=1

〈
∂

∂x
, Gk(t,x)

〉2

.

(A.2.37)
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where 〈x,y〉 denotes a scalar product of vectors x and y.

Stochastic di�erential equation (A.2.27) is equivalent in the �Stra-
tonovich sense� to the following Itô equation

dx=

[
F(t,x)+

1

2

m∑
k=1

∂Gk(t,x)

∂x
Gk(t,x)

]
dt+

m∑
k=1

Gk(t,x)dwk(t). (A.2.38)

This means that all results obtained for the Itô equations can be
used to analyse the Stratonovich equations. It needs to be stressed
that when functions Gk are not dependent on vector x, then Itô and
Stratonovich equations are identical.

Because in this book the Itô equations are used the most frequently,
for simplicity we shall use the following notation LI(.) = L(.).

Given that linear systems are particularly important for modeling
dynamic systems, let us present a theorem on the existence of strong
solutions of a linear vector stochastic di�erential equation.

Theorem A.9. Let the elements of vector function

A0(t) = [a1
0(t), ..., an0 (t)]T (A.2.39)

and matrix

A = [aij], Gk = [σik0], i, j = 1, ..., n, k = 1, ...,m (A.2.40)

be measurable (deterministic) functions of variable t ∈ [0, 1] satisfying
the following conditions∫ 1

0

|ai0(t)|dt <∞,
∫ 1

0

|aij(t)|dt <∞,
∫ 1

0

|(σik0)2(t)|dt <∞. (A.2.41)

Then the vector stochastic di�erential equation

dx = [A0(t)+A(t)x(t)]dt+
M∑
k=1

Gk0(t) dwk(t), x(t0) = x0, (A.2.42)

where ξk(t) are independent Wiener processes measurable with respect
to Ft, t ∈ [0, 1], has an unique strong solution given by an integral
formula

x(t)=Φ(t, 0)

[
x(t0)+

∫ t

0

Φ−1(s, 0)A0(s)ds+

+

∫ t

0

m∑
k=1

Φ−1(s, 0)Gk0(s)dwk(s)

]
,

(A.2.43)
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where Φ(t, 0) is n× n fundamental matrix

Φ(t, 0) = I +

∫ t

0

A(s)Φ(s, 0)ds, (A.2.44)

and I is n× n identity matrix.

Solution (A.2.43) can be extended for any t ∈ [0, T ], assuming that
the elements of vector A0 and matrices A,Gk are measurable limited
functions for t ∈ [0, T ].

Physical interpretation of the Stratonovich equation

Di�erential equations with stochastic parameters are frequently
used for modeling real processes, e.g. physical, chemical, biological,
technical or economic. An example of such an equation is the scalar
Langevin equation

dx(t)

dt
= F (t, x(t)) +G(t, x(t))ẇ(t), (A.2.45)

where F (t, x) and G(t, x) are non-linear scalar functions, and ẇ(t) is
a Gaussian white noise.

Because white noise is an abstract notion and in the real world
only coloured noise or non-stationary noise occurs, the following prob-
lem is encountered. Let us consider a family of di�erential equations
(A.2.45), where process ẇ(t) has been replaced by a sequence of sta-
tionary wideband Gaussian processes (i.e. processes for which power
spectral density has a �wide range�) {ηn(t)}, n = 1, 2, ... and let us
assume that sequence {ηn(t)} converges in some sense to the Gaussian
white noise (for instance, as n grows the band length of the power
spectral density of process {ηn(t)} also grows). Let us assume that for
each n process ηn(t) has regular realizations. Then, the appropriate
sequence {xn(t)} is a solution of this family of di�erential equations

dxn(t)

dt
= F (t, xn(t)) +G(t, xn(t))ηn(t). (A.2.46)

Let us assume that sequence {xn(t)} converges to a process x̃(t).
Two questions arise then: what is the nature of process x̃(t) and how
does it relate to process x(t), solving the corresponding Itô stochastic
di�erential equation

dx(t) = F (t, x(t))dt+G(t, x(t))dIw(t). (A.2.47)
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Wong and Zakai have demonstrated that the sequence of solutions
{xn(t)} converges to the solution of the corresponding Stratonovich
equation

dx(t) = F (t, x(t))dt+G(t, x(t))dSw(t) (A.2.48)

or the equivalent Itô equation

dx(t) =

[
F (t, x(t))+

1

2

∂G

∂x
(t, x(t))G(t, x(t))

]
dt+

+G(t, x(t))dw(t).

(A.2.49)

This important �nding has been generalized for the multidimensional
case by [Papanicolau, Kohler 1974].

A.3. Moment equations for linear stochastic

dynamic systems

The determination of the moments of solutions (system responses)
in linear dynamic stochastic systems is one of the problems faced in the
stochastic analysis. In this section, we shall discuss the basic methods
used to solve linear vector stochastic di�erential equations and the
methods for determining their moments.

A.3.1. Linear systems with additive excitation

Let us consider a linear vector stochastic di�erential equation with
additive excitation

dx(t) = [A0(t)+A(t)x(t)]dt+
m∑
k=1

Gk0(t)dwk(t), x(t0) = x0, (A.3.1)

where
x(t) = [x1(t), ..., xn(t)]T ,

A0(t) = [a1
0(t), ..., an0 (t)]T ,

A(t) = [aij(t)],

Gk0(t) = [σ1
k0(t), ..., σnk0(t)]T are n-dimensional vectors,
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wk(t) are independent standard Wiener processes, i, j = 1,...,n,
k = 1, ...,m,

x0 = [x01, ..., x0n]T is an initial condition, i.e. a vector random
variable independent of wk(t), k = 1, ...,m,

ai0, aij and σik0 are limited, measurable deterministic functions of
t ∈ R+.

The solution (strong) is given by the relationship

x(t) = Ψ(t, t0)x(t0)+

∫ t

t0

Ψ(t, s)A0(s)ds+

+

∫ t

t0

Ψ(t, s)
m∑
k=1

Gk0(s)dwk(s),

(A.3.2)

where Ψ(t, t0) is the n× n fundamental matrix of homogeneous equa-
tion

dx(t)

dt
= A(t)x(t), x(t0) = x0. (A.3.3)

In particular, when A is a constant matrix, then

Ψ(t, t0) = Ψ(t− t0) = exp {A(t− t0)} =
∞∑
l=0

1

l!
Al(t− t0)l (A.3.4)

and relationship (A.3.2) is reduced to

x(t) = exp {A(t− t0)}x0 +

∫ t

t0

exp {A(t− s)}A0(s)ds+

+

∫ t

t0

exp {A(t− s)}
m∑
k=1

Gk0(s)dξ(s).

(A.3.5)

Using the Itô formula and an averaging procedure, we obtain equa-
tions for the mean values and second-order moments

dm(t)

dt
= A0(t) + A(t)m(t), m(t0) = m0, (A.3.6)

dΓ(t)

dt
=m(t)AT

0 (t)+A0(t)mT (t)+Γ(t)AT (t)+A(t)Γ(t), (A.3.7)
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+
m∑
k=1

Gk0(t)GT
k0(t) Γ(t0)=Γ0, (A.3.8)

where

m(t) = E[x(t)], Γ(t) = E[x(t)xT (t)],

m0 = E[x(t0)], Γ0 = E[x(t0)xT (t0)].

(A.3.9)

A.3.2. Linear systems with additive and parametric
excitation

Let us start by solving two simple examples of scalar linear stochas-
tic di�erential equations.

Homogeneous case. Let us consider the Itô scalar linear homoge-
neous stochastic equation

dx(t) = a(t)x(t)dt+ σ(t)x(t)dw(t), x(t0) = x0, (A.3.10)

where t ∈ [t0,∞), a(t) and σ(t) are non-linear functions of variable t
and initial condition x0 is a random variable independent of standard
Wiener process w(t).

Using the Itô formula, we can demonstrate that the solution of
equation (A.3.10) is a stochastic process

x(t) = ψ(t, t0)x0, (A.3.11)

where

ψ(t, t0) = exp

{∫ t

t0

[
a(s)− σ2(s)

2

]
ds+

∫ t

t0

σ(s)dw(s)

}
, (A.3.12)

the p-th moment of which is of the form

E[xp(t)]=E[xp0] exp

{
p

∫ t

t0

[
a(s)−σ

2(s)

2

]
ds+

p2

2

∫ t

t0

σ2(s)ds

}
. (A.3.13)

Heterogeneous case. Let us consider the Itô linear scalar heteroge-
neous stochastic equation

dx(t) = [a(t)x(t)+b(t)]dt+[σ(t)x(t)+q(t)]dw(t), x(t0) = x0, (A.3.14)
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where t ∈ [t0,∞), b(t) and q(t) are non-linear functions of time and all
other notations are the same as in (A.3.10).

Let us introduce a new variable

z(t) = x(t)ψ−1(t, t0), (A.3.15)

where ψ(t, t0) is given by relationship (A.3.12). Using the Itô formula,
we obtain the equation for process z(t)

dz(t) = {[b(t)− q(t)σ(t)]dt+ q(t)dξ(t)}ψ−1(t, t0). (A.3.16)

By integrating equation (A.3.16) and introducing a transform inverse
to (A.3.15), we arrive at the following solution

x(t) = ψ(t, t0){x(t0) +

∫ t

t0

ψ−1(s, t0)[b(s)− q(s)σ(s)]ds+

+

∫ t

t0

ψ−1(s, t0)q(s)dw(s)}.
(A.3.17)

Unlike the homogeneous case, it is more convenient to �nd a dif-
ferential equation for the p-th moment rather than to average the p-th
power of (A.3.17) (p > 0). Therefore, by applying, again, the Itô
formula to function xp for p > 0, using equation (A.3.14) and then
averaging the obtained result, we arrive at

dE[xp(t)]

dt
=E[xp(t)]

[
pa(t) +

p(p−1)

2
σ2(t)

]
+

+ E[xp−1(t)][pb(t) + p(p−1)q(t)σ(t)]+

+ E[xp−2(t)]
p(p−1)

2
q2(t), E[xp(t0)]=E[xp0].

(A.3.18)

Unfortunately, in the general case of a linear vector stochastic dif-
ferential equation with parametric excitation (the noise coe�cients are
dependent on the state vector) it is not possible to �nd an analytical
solution. This possibility is only available in the case of a linear vec-
tor stochastic di�erential equation with additive excitation (the noise
coe�cients are independent of the state vector). For the vector case,
we shall consider equations of the �rst- and second-order moments.
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Let us consider the Itô linear vector stochastic equation with addi-
tive and parametric excitation

dx(t) = [A0(t) + A(t)x(t)]dt+

+
m∑
k=1

[Gk0(t) + Gk(t)x(t)]dwk(t),

x(t0) = x0,

(A.3.19)

where
x(t) = [x1(t), ..., xn(t)]T ,

A0(t) = [a1
0(t), ..., an0 (t)]T ,

Gk0(t) = [σ1
k0(t), ..., σnk0(t)]T are n-dimensional vectors,

A(t) = [aij(t)], i, j = 1, ..., n,

Gk(t) = [σikj(t)] are n× n matrices,

wk(t), k = 1, ...,m are independent standard Wiener processes,

x0 = [x01, ..., x0n]T is an initial condition,

ai0, aij, σ
i
k0 are limited measurable deterministic functions of varia-

ble t ∈ R+.

For simplicity, let us assume that x0 = [x01, ..., x0n]T is a vector
random variable independent of wk(t), k = 1, 2, . . . ,m. Using the Itô
formula and an averaging procedure, we obtain equations for mean
values and second-order moments

dm(t)

dt
= A0(t) + A(t)m(t), m(t0) = m0, (A.3.20)

dΓ(t)

dt
=m(t)AT

0 (t)+A0(t)mT (t)+Γ(t)AT (t)+

+A(t)Γ(t) +
m∑
k=1

[Gk0(t)GT
k0(t)+ Gk(t)m(t)Gk0(t)+

+ Gk0(t)mT (t)GT
k (t) + Gk(t)Γ(t)GT

k (t)],

Γ(t0) = Γ0,

(A.3.21)
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where

m(t) = E[x(t)], Γ(t) = E[x(t)xT (t)],

m0 = E[x(t0)], Γ0 = E[x(t0)xT (t0)].

(A.3.22)

Equations (A.3.20) and (A.3.21) for the coordinates are of the form

dmi(t)

dt
= ai0(t) +

n∑
j=1

aij(t)mj(t), mi(t0) = mi0 (A.3.23)

and

dΓij(t)

dt
= ai0(t)mj(t)+ aj0(t)mi(t)+

+
n∑
l=1

[ail(t)Γlj(t)+ajl(t)Γli(t)]+

+
m∑
k=1

n∑
α=1

[σikα(t)σ
j
k0(t)mα(t) +σjkα(t)σ

i
k0(t)mα(t)]+

+
m∑
k=1

σik0(t)σ
j
k0(t) +

m∑
k=1

n∑
α=1

n∑
β=1

σikα(t)σjkα(t),

Γαβ(t), Γij(t0) = Γij0, i, j = 1, . . . , n,

(A.3.24)

where

mi(t)=E[xi(t)],Γij(t)=E[xi(t)xj(t)],

mi0 =E[xi(t0)],Γij0 =E[xi(t0)xj(t0)].

(A.3.25)

Let us notice that the obtained moment equations are closed, i.e.
there are no moments on the right-hand side that would be of higher
order than the moments on the left-hand side and the second-order
moments only depend on variable t.
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A.4. Methods of discretization of stochastic

di�erential equations

Given that analytical solutions are only known for few stochastic
solutions, it is necessary to work out methods approximating equation
solutions, especially the numerical methods. The main idea underlying
these methods consists in replacing the stochastic di�erential equation
with its discrete representation, which is some di�erence equation. In
the special case, the Itô scalar stochastic equation

dx(t) = F (x(t), t)dt+
m∑
k=1

Gk(x(t), t)dwk(t), x(t0) = x0 (A.4.1)

is replaced by an appropriate discrete di�erence equation

xi+1 = xi + Fi∆ti +
m∑
k=1

Gki∆wki , i = 0, 1, ... (A.4.2)

In the case of the Stratonovich scalar stochastic di�erential equation

dx(t) = F (x(t), t)dt+
m∑
k=1

Gk(x(t), t)dw∗k(t), x(t0) = x0, (A.4.3)

its discrete-time representation is written as

xi+1 = xi +

[
Fi +

1

2

m∑
k=1

(
∂Gk

∂x

)
i

Gki

]
∆ti +

m∑
k=1

Gki∆wki , (A.4.4)

where i = 0, 1, ..., dwk(t) and dw∗k(t), k = 1, 2, ..,m are stochastic
di�erentials of standard Wiener processes in the Itô and Stratonovich
sense, respectively.

xi = x(ti), Fi = F (x(ti), ti), Gi = G(x(ti), ti),

(
∂Gk

∂x

)
i

=
∂Gk(x(t), t)

∂x |x=xi
, ∆ti = ti+1 − ti,

t0<t1<...<tN =T, ∆wki =w(ti+1)−w(ti), i=0, 1, ...

(A.4.5)
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In estimating the parameters of mortality models represented by
multidimensional stochastic di�erential equations containing one Wie-
ner process it is convenient to use only the two simplest methods of
discretization, i.e. the Milstein method

xji+1 =xji + F j
i ∆t+Gj

i∆w +
1

2

(
n∑
l=1

Gl
i

∂Gj
i

∂xl

){
(∆w)2 −∆

}
, (A.4.6)

or the Euler method

xji+1 = xji + F j
i ∆t+Gj

i∆w, (A.4.7)

where j = 1, ...n, i = 0, 1, ..., x = [x1, ..., xn]T is a state vector and
the coordinates of the drift and di�usion vectors F = [F 1, ..., F n]T ,
G = [G1, ..., Gn]T are non-linear functions of the state vector.



Appendix B

Elements of the algebra of modi�ed

fuzzy and complex numbers

B.1. Modi�ed fuzzy numbers

The algebra of modi�ed fuzzy numbers (MFN) is constructed along
the same lines as the algebra of oriented fuzzy numbers (OFN) pro-
posed by [Kosi«ski et al. 2003, Kosi«ski, Prokopowicz 2004].

The representation of a fuzzy number is a pair of continuous func-
tions (fA, gA). The di�erence between MFN and OFN lies in the di�e-
rently de�ned multiplication of their elements. Whereas in the algebra
of OFN predecessors and successors are multiplied by each other

~A⊗ ~B = (fAfB, gAgB), (B.1.1)

for ~A = (fA, gA), ~B = (fB, gB), in the algebra of MFN elements Ǎ =
(fA, gA) and B̌ = (fB, gB) are multiplied as follows

Ǎ� B̌ =

(
1

2
(fAfB + gAgB),

1

2
(fAgB + gAfB)

)
. (B.1.2)

De�niction B.1. The term �a modi�ed fuzzy number Ǎ� will apply
to each ordered pair of continuous functions

Ǎ = (f, g), (B.1.3)

where f, g : [0, 1] → R satisfy axioms (i)�(iii), de�ning the equality,
sum and product of modi�ed fuzzy numbers:
(i) Modi�ed fuzzy numbers Ǎ = (fA, gA) and B̌ = (fB, gB) are equal

if and only if fA(u) = fB(u) and gA(u) = gB(u) for each u ∈ [0, 1].
(ii) A sum of modi�ed fuzzy numbers Ǎ= (fA,gA) and B̌= (fB,gB) is

a modi�ed fuzzy number Ǎ⊕ B̌ of the form

Ǎ⊕ B̌ = (fA, gA)⊕ (fB, gB) = (fA + fB, gA + gB). (B.1.4)
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(iii) A product of modi�ed fuzzy numbers Ǎ = (fA, gA) and B̌ =
(fB, gB) is a modi�ed fuzzy number Ǎ� B̃ of the form

Ǎ� B̌=(fA, gA)� (fB, gB)=

=

(
1

2
(fAfB+gAgB),

1

2
(fAgB+gAfB)

)
.

(B.1.5)

De�nition B.2. Č = (fC , gC) is obtained by multiplying a modi�ed
fuzzy number Ǎ = (fA, gA) by scalar d, which is symbolically written
as Č = dÃ, if

fC(u) = dfA(u), gC(u) = dgA(u). (B.1.6)

In the algebra of MFN, De�nition B.1 describes the product of
modi�ed fuzzy numbers. In the algebra of CFN (Complex-Valued Fuzzy
Numbers), the product is de�ned as

A�B = (fA, gA)� (fB, gB) = (fAfB − gAgB, fAgB + gAfB). (B.1.7)

Let us now consider the algebra of GFN (Generalized Fuzzy Num-
bers) that generalizes the multiplication of elements by introducing
numerical coe�cients α, β, γ, δ ∈ R. In the algebra of GFN, multipli-
cation is de�ned as

(fA, gA)� (fB, gB)=(αfAfB+βgAgB, γfAgB+δgAfB). (B.1.8)

In the special case, when

α = β = γ = δ =
1

2
, (B.1.9)

(B.1.5) is obtained and

α = γ = δ = 1, β = −1 (B.1.10)

leads to (B.1.7).

Example B.1. Let Ǎ = (fA, gA) and B̌ = (fB, gB), where

fA(u) = a− sA(1− u), gA(u) = a+ sA(1− u),

fB(u) = b− sB(1− u), gB(u) = b+ sB(1− u), u ∈ [0, 1].

(B.1.11)
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From

(fA, gA)⊕ (fB, gB) = (fA(u) + fB(u), gA(u) + gB(u)), (B.1.12)

we have

fA(u) + fB(u) = a+ b− (sA + sB)(1− u),

gA(u) + gB(u) = a+ b+ (sA + sB)(1− u), u ∈ [0, 1].

(B.1.13)

The result of algebraic multiplication for Ǎ, B̌ being MFN's is written
as

(Ǎ� B̌)(u) = (ab+ sAsB(1− u)2, ab− sAsB(1− u)2), (B.1.14)

and for A,B being CFN's we have

(A�B)(u) = (−2(asB + bsA)(1− u), 2ab− 2sAsB(1− u)2). (B.1.15)

It is essential that for each algebra the null element and the unity
element be identi�ed.

In the algebra of oriented fuzzy numbers, the null element is de-
noted as ~O = (0, 0), where 0(u) = 0 for each u ∈ [0, 1] and the unity
element is written as ~I = (1, 1), so that for each ~A there is

~A⊗~I = ~I⊗ ~A. (B.1.16)

Let us �rst determine the general form of the null element (fO, gO)
in the algebra of GFN's. From the de�nition of the null element it
follows that there should be

(fA, fB)⊕ (fO, gO) = (fA, fB). (B.1.17)

Hence, we have

(fA, gA)⊕ (fO, gO) = (fA + fO, gA + gO). (B.1.18)

(B.1.17) implies equality

(fA + fO, gA + gO) = (fA, gA), (B.1.19)
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so

fA(u)+fO(u) = fA(u), gA(u)+gO(u) = gA(u), u ∈ [0, 1]. (B.1.20)

For u ∈ [0, 1] we have fO(u) = 0, gO(u) = 0, i.e. the null element is
(0, 0).

The same procedure is applied to �nd the general form of the unity
element (fI, gI) in the algebra of GFN's, where multiplication is per-
formed according to formula (B.1.8). Thus, the following condition
should be satis�ed

(fA, fB)� (fI, gI) = (fI, gI)� (fA, fB) = (fA, fB). (B.1.21)

We have

(fA, fB)� (fI, gI) = (αfAfI + βgAgI, γfAgI + δgAfI). (B.1.22)

(B.1.21) implies that the following equality exists

(αfAfI + βgAgI, γfAgI + δgAfI) = (fA, gA), (B.1.23)

i.e. for each u ∈ [0, 1] we have

αfA(u)fI(u) + βgA(u)gI(u) = fA(u) (B.1.24)

and
γfA(u)gI(u) + δgA(u)fI(u) = gA(u). (B.1.25)

The above equalities can be written as a matrix[
αfA(u) βgA(u)
δgA(u) γfA(u)

] [
fI(u)
gI(u)

]
=

[
fA(u)
gA(u)

]
. (B.1.26)

Let us denote the left hand side of matrix (B.1.26) as G(u), i.e.

G(u) =

[
αfA(u) βgA(u)
δgA(u) γfA(u)

]
. (B.1.27)

Let us now consider the inverse of the matrix G(u) for u ∈ [0, 1].
The condition of matrix inversion is de�ned as

det [G(u)] 6= 0. (B.1.28)
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We have
det [G(u)] = αγf 2

A(u)− βδg2
A(u). (B.1.29)

Hence, matrix G(u) is invertible for αγf 2
A(u) 6= βδg2

A(u).

From (B.1.10) we obtain for the algebra of MFN's αγ = 1
4
, βδ = 1

4
,

so (B.1.29) should be written as

det [G(u)] =
1

4
(f 2
A(u)− g2

A(u)). (B.1.30)

In the case of the algebra of CFN's, we have αγ = 1, βδ = −1 and
(B.1.29) is written as

det [G(u)] = f 2
A(u) + g2

A(u). (B.1.31)

Let us �nd matrix D(u) of the cofactors of matrix (B.1.27). We have

D(u) =

[
γfA(u) −δgA(u)
−βgA(u) αfA(u)

]
, (B.1.32)

the transposition of which results in a matrix DT (u)

DT (u) =

[
γfA(u) βgA(u)
−δgA(u) αfA(u)

]
. (B.1.33)

Thereby, the inverse matrix G−1(u) has the following form

G−1(u) =
1

det [G(u)]

[
γfA(u) −βgA(u)
−δgA(u) αfA(u)

]
=

=


γfA(u)

αγf2A(u)−βδg2A(u)
− βgA(u)

αγf2A(u)−βδg2A(u)

− δgA(u)

αγf2A(u)−βδg2A(u)

αfA(u)

αγf2A(u)−βδg2A(u)

.
(B.1.34)

The matrix equation (B.1.26) can now be written as

G(u)

[
fI(u)
gI(u)

]
=

[
fA(u)
gA(u)

]
, (B.1.35)
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and after multiplying (B.1.35) from the left side by G−1(u) we arrive
at [

fI(u)
gI(u)

]
=G−1(u)

[
fA(u)
gA(u)

]
=

=


γfA(u)

αγf2A(u)−βδg2A(u)
− βgA(u)

αγf2A(u)−βδg2A(u)

− δgA(u)

αγf2A(u)−βδg2A(u)

αfA(u)

αγf2A(u)−βδg2A(u)


fA(u)

gA(u)

=

=


γf2A(u)

αγf2A(u)−βδg2A(u)
− βg2A(u)

αγf2A(u)−βδg2A(u)

− δfA(u)gA(u)

αγf2A(u)−βδg2A(u)
+ αfA(u)gA(u)

αγf2A(u)−βδg2A(u)

.

(B.1.36)

Let us notice that in the algebra of GFN's the right-hand side reduces
to 

f2A(u)

f2A(u)+g2A(u)
+

g2A(u)

f2A(u)+g2A(u)

− fA(u)gA(u)

f2A(u)+g2A(u)
+ fA(u)gA(u)

f2A(u)+g2A(u)

 =

1

0

, (B.1.37)

whereas for the algebra of MFN's we have
1
2
f2A(u)

1
4

(f2A(u)−g2A(u))
−

1
2
g2A(u)

1
4

(f2A(u)−g2A(u))

−
1
2
fA(u)gA(u)

1
4

(f2A(u)−g2A(u))
+

1
2
fA(u)gA(u)

1
4

(f2A(u)−g2A(u))

 =

2

0

. (B.1.38)

Let us verify, whether elements I = (1, 0) and Ǐ = (2, 0) are unity
in the algebra of CFN's and MFN's, respectively.

For CFN, we have

A� I = (fA, gA)� (1, 0) =

= (fA · 1− gA · 0, gA · 1 + fA · 0) = (fA, gA) = A

(B.1.39)

and

I� A = (1 · fA − 0 · gA, 1 · gA + 0 · fA) = (fA, gA) = A, (B.1.40)

so element I = (1, 0) is unity in the algebra of CFN's.
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By running similar calculations for the MFN numbers, we obtain

Ǎ� Ǐ = (fA, gA)� (2, 0)=

= (
1

2
(fA · 2 + gA · 0),

1

2
(gA · 2 + fA · 0))=(fA, gA)= Ǎ

(B.1.41)

and

Ǐ� Ǎ = (2, 0)� (fA, gA)=

= (
1

2
(2 · fA + 0 · gA),

1

2
(2 · gA + 0 · fA))=(fA, gA)= Ǎ,

(B.1.42)

which indicates that element Ǐ = (2, 0) is unity in the algebra of MFN's.

Since the algebras of OFN's and CFN's have essentially di�erent
unity elements, inverse elements to each non-zero elements are di�erent
too.

In the OFN algebra, an inverse element to a given element ~A, i.e.
an element for which

~A⊗ ~A−1 = ~A−1 ⊗ ~A = ~I, (B.1.43)

is given by the formula

~A−1 =

(
1

f
,

1

g

)
. (B.1.44)

This means that if any value of f(u), g(u) for some u ∈ [0, 1] is zero,
an inverse element to ~A does not to exist.

In the case of the algebra of CFN's, the null and unity elements
are written as O = (0, 0) and I = (1, 0), respectively, where 0(u) = 0,
I(u) = 1 for each u ∈ [0, 1]. Moreover, for any A 6= (0, 0) we have

A−1 =

(
f

f 2 + g2
,− g

f 2 + g2

)
, (B.1.45)

so

A� A−1 =

(
f 2

f 2+g2
+

g2

f 2+g2
,− fg

f 2+g2
+

fg

f 2+g2

)
=(1, 0)=I. (B.1.46)
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As we can see, in the algebra of CFN's an inverse element does
not exist only for A = (0, 0). This fact is meaningful because Gelfand
and Mazur used it as the main assumption of their theorem stating
that each Banach complex algebra with the unit element, in which
every non-zero element is inversible, is isometrically isomorphic with
the algebra of complex numbers. Accordingly, there exists an isomor-
phic projection of these algebras onto each other and the distances
between given elements are equal, which essentially ful�lls the notion of
�isometry�. The last fact is important for selecting appropriate metrics
enabling the parameters of a new mortality model to be determined.

B.2. Complex numbers and complex functions

The content of this section is based on [Sierpi«ski 1968, Chapter
VI] and two monographs [Sakai 1971] and [�elazko 1968].

Let us use A as a symbol representing any linear algebra for �eld
of complex numbers C.

When a new operation termed involution (hereafter denoted by ∗) is
introduced into algebra A the algebra is called the Banach ∗�algebra.
If that algebra's norm ful�lls condition ‖A∗A‖ = ‖A‖2, the algebra
is called the C∗�algebra. More Banach algebras of this kind can be
created, but only some of them are interesting to us. Of special im-
portance is the C(T )�algebra. Other speci�c cases of Banach algebras
will be denoted by Ai (i = 1, 2, ...).

B.2.1. The Banach C∗�algebra

Let A be a linear algebra on the �eld of complex numbers C. This
means that each element A ∈ A is assigned a real number ‖A‖ called
the norm of element A, which meets the following conditions

(1) ||A|| ≥ 0,

(2) ||A|| = 0, if and only if A = 0,

(3) ||A+B|| ≤ ||A||+ ||B||,
(4) ||αA|| = |α| · ||A||, α ∈ C,
(5) Space A is a complete space in the norm || · ||.

De�nition B.3. Projection A→ A∗ of algebra A onto itself is called
involution, if
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(i) (A∗)∗ = A,

(ii) (A+B)∗ = A∗ +B∗,

(iii) (AB)∗ = B∗A∗,

(iv) (αA)∗ = αA∗, α ∈ C.
The Banach algebra with involution is called the Banach ∗-algebra.

De�nition B.4. The Banach algebra A is termed the C∗�algebra, if
it ful�lls the following condition

||A∗A|| = ||A||2 for each A ∈ A. (B.2.1)

B.2.2. The Banach C(T )�algebra

Let T be a compact Hausdor� space. An example of this space
can be interval [0, 1] on the real line or the Cartesian product of n
intervals [0, 1]. Let C(T ) denote the algebra of continuous and complex
functions in T .
De�nition B.5. A norm in the Banach C(T ) space is de�ned as

||A|| = max
τ∈T
|A(τ)| (B.2.2)

and involution ∗ is written as

A∗(τ) = Ā(τ) for each τ ∈ T . (B.2.3)

Since

(A∗A)(τ) = A∗(τ)A(τ) = Ā(τ)A(τ) = |A(τ)|2 (B.2.4)

and
|A∗A(τ)| = |A(τ)|2, (B.2.5)

therefore C(T ) is the C∗�algebra.

Let us consider a space of all pairs ~A = (f, g) of oriented fuzzy
numbers. Each oriented fuzzy number ~A = (f, g) can be treated as
a complex function and by using the following representation

A = f + ig (B.2.6)

or
A(u) = f(u) + ig(u), u ∈ [0, 1], (B.2.7)
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where i =
√
−1 is an imaginary unit.

The space A1 is a Banach space, if the norm of element A ∈ A1 is
de�ned as

||A|| = max
u∈[0,1]

|A(u)|, (B.2.8)

where |A(u)| is a module of the complex number A(u) = f(u) + ig(u),
i.e.

|A(u)|2 = f 2(u) + g2(u), u ∈ [0, 1]. (B.2.9)

Example B.2. Let ~A be an oriented fuzzy number corresponding to
a symmetric triangular fuzzy number with central value a and spread
s. An oriented fuzzy number ~A is written as

~A = (f, g), (B.2.10)

where

f(u) = a− s(1− u),

g(u)a+ s(1− u).

(B.2.11)

Squaring of both equalities leads to

f 2(u) = a2 + (1− u)2s2 − 2a(1− u)s, u ∈ [0, 1],

g2(u) = a2 + (1− u)2s2 + 2a(1− u)s, u ∈ [0, 1].

(B.2.12)

Thus, we have

f 2(u) + g2(u) = 2a2 + 2(1− u)2s2. (B.2.13)

Let us denote

F (u) = |A(u)|2 = 2a2 + 2(1− u)2s2. (B.2.14)

To determine the norm of element A we need to �nd the maximum of
the function

F (u) = |A(u)|2. (B.2.15)

In this case, F (u) is of the form

F (u) = 2a2 + 2(1− u)2s2, u ∈ [0, 1]. (B.2.16)
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Assume that a = 1.7494 and s = 0.0411. Hence, for u ∈ [0, 1] we
obtain

f(u) = 1.7494− 0.0411(1− u),

g(u) = 1.7494 + 0.0411(1− u).

(B.2.17)

The complex functions (f(u), g(u)) and F (u) are plotted in Figures
B.1 and B.2, respectively.

Figure B.1. Complex function (f(u), g(u)) for a = 1.7494, s = 0.0411

Source: Developed by the authors

Figure B.2. Function F (u) for a = 1.7494, s = 0.0411

Source: Developed by the authors

Example B.3. Let ~A be an oriented fuzzy number corresponding to
a symmetric Gaussian fuzzy number with parameters a and s. The
membership function µA(x) has the form

µA(x) = e−(x−a
s )

2

. (B.2.18)
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By taking logarithms on both sides, we obtain

lnµA(x) = −
(
x− a
s

)2

. (B.2.19)

Hence,
x− a
s

= ±
√
− lnµA(x). (B.2.20)

Let us have µA(x) = u and

x(u) = f(u) for x < a,

x(u) = g(u) for x ≥ a.

(B.2.21)

Then

f(u) = a± s
√
− lnu. (B.2.22)

The de�nition of function f(u) leads to condition f(u) < a, so

f(u) = a− s
√
− lnu for f(u) < a. (B.2.23)

Analogously, for function g we have

g(u) = a+ s
√
− lnu for g(u) ≥ a. (B.2.24)

By squaring both equalities and using the addition method, we arrive
at

f 2(u) + g2(u) = 2a2 − 2s2 lnu. (B.2.25)

Let us denote

F (u) = |A(u)|2 = 2a2 − 2s2 lnu. (B.2.26)

To determine the norm of element A, the maximum of function F (u)
should be found. Let a = 1.7494, s = 0.0411. Figures B.3 and B.4
illustrate the complex function (f(u), g(u)) and function F (u), respec-
tively.
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Figure B.3. Complex function (f(u), g(u)) for a = 1.7494, s = 0.0411

Source: Developed by the authors

Figure B.4. Function F (u) for a = 1.7494, s = 0.0411

Source: Developed by the authors

Example B.4. Let ~A be an oriented fuzzy number corresponding to
a non-symmetric Gaussian fuzzy number. The membership function
µA(x) is written as

µA(x) =

e
−
(

x−a
sL

)2

for x < a,

e
−
(

x−a
sR

)2

for x ≥ a.
(B.2.27)

Let us have
µA(x) = u, (B.2.28)

x(u) = f(u) for x < a,

x(u) = g(u) for x ≥ a.

(B.2.29)
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Proceeding in the same way as in examples B.1 i B.2, we obtain

f(u) = a− sL
√
− lnu for f(u) < a,

g(u) = a+ sR
√
− lnu for f(u) ≥ a

(B.2.30)

and

F (u) = 2a2 + 2(sR − sL)
√
− lnu− 2(s2

R + s2
L) lnu. (B.2.31)

Figures B.5 and B.6 show complex function (f(u), g(u)) and func-
tion F (u) plotted for a = 1.7494, sL = 0.05, sR = 0.03.

Figure B.5. Complex function (f(u), g(u)) for a = 1.7494, sL = 0.05, sR = 0.03

Source: Developed by the authors

Figure B.6. Function F (u) for a = 1.7494, sL = 0.05, sR = 0.03

Source: Developed by the authors
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B.2.3. The quaternion space

De�nition B.6. A quaternion is an ordered pair of complex numbers
Ã = (φ, ψ) that ful�lls the following axioms

(i) (φ, ψ) = (f, g) ⇔ φ = f, ψ = g,

(ii) (φ, ψ) + (f, g) = (φ+ f, ψ + g),

(iii) (φ, ψ)(f, g) = (φf − ψḡ, φg + ψf̄),

(iv) α(φ, ψ) = (αφ, αψ), α ∈ R.

Let H be a space of quaternions and let us assume that the space
has a base of two elements 1 and j. Each quaternion Ã ∈ H can
therefore be explicitly written as

Ã = φ+ jψ. (B.2.32)

A quaternion can also be presented as an algebraic sum, a complex
matrix and a real matrix.

There are three types of operations that are de�ned in the quater-
nion space H: adding, multiplying quaternions by complex numbers
and multiplying quaternions.

From axiom (iv) it follows that for α ∈ R and Ã = φ+ jψ there is

α(φ, ψ) = (αφ, αψ) = αφ+ jαψ. (B.2.33)

For φ, ψ ∈ C of the form

φ = a+ ib, ψ = c+ id, (B.2.34)

an element Ã ∈ H can be expressed as

Ã = φ+ jψ = (a+ ib) + j(c+ id) = a+ ib+ jc+ ijd. (B.2.35)

Let k = ij, then we obtain

Ã = a+ ib+ jc+ kd. (B.2.36)

Consequently, a pair of two complex numbers (φ, ψ) can be explicitly
written as an algebraic sum, i.e.

Ã = a+ ib+ jc+ kd. (B.2.37)
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Note that H = R4 means that every quaternion can be explicitly
determined by four numbers a, b, c, d (hence its name).

The multiplication of the elements of base i, j, k in the space H can
be presented as

i2 = j2 = k2 = ijk = −1 (B.2.38)

ij = k, ji = k, jk = i, kj = i, ki = j, ik = j. (B.2.39)

According to axiom (iii), the formula for multiplying two quaternions
Ã = (φ, ψ) and B̃ = (f, g) is the following

ÃB̃ = (φ, ψ)(f, g) = (φf − ψḡ, φg + ψf̄). (B.2.40)

Let Ã = (i, 0) and B̃ = (0, 1). Then

ÃB̃ = (i, 0)(0, 1) = (i · 0− 0 · 1̄, i · 1 + 0 · 0̄) = (0, i) (B.2.41)

B̃Ã = (0, 1)(i, 0) = (0 · i− 1 · 0̄, 0 · 0 + 1 · ī) = (0,−i), (B.2.42)

i.e. ÃB̃ 6= B̃Ã, meaning that the multiplication of quaternions is not
commutative.

De�nition B.7. Let us de�ne a conjugate quaternion for any given
Ã ∈ H

Ã∗ = φ− jψ. (B.2.43)

It follows from the above that the conjugation of quaternions is invo-
lution in H, so it satis�es the following conditions

(i) (Ã∗)∗ = Ã, for each Ã ∈ H,
(ii) (ÃB̃)∗ = B̃∗Ã∗, for Ã, B̃ ∈ H,
(iii) (Ã+ B̃)∗ = Ã∗ + B̃∗,

(iv) for λ ∈ R and Ã ∈ H, (λÃ)∗ = λÃ∗,

(v) for λ ∈ C and Ã ∈ H, (λÃ)∗ = Ã∗λ̄.

The quaternion Ã = (φ, ψ), φ, ψ ∈ C can be presented not only as
an algebraic sum, but also as a complex matrix

Ã =

[
φ ψ
−ψ̄ φ̄

]
, φ, ψ ∈ C. (B.2.44)

That there is isomorphism between quaternions represented by
a complex matrix and an algebraic sum can be demonstrated by intro-
ducing the following base in the space R4

1 =

[
1 0
0 1

]
, i =

[
i 0
0 −i

]
, j =

[
0 1
−1 0

]
, k =

[
0 i
i 0

]
. (B.2.45)
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Starting out from the algebraic version of quaternion Ã and utilizing
the properties of operations on matrices and complex numbers, we
successively obtain

Ã = a · 1 + b · i + c · j + d · k =

= a

[
1 0
0 1

]
+ b

[
i 0
0 −i

]
+ c

[
0 1
−1 0

]
+ d

[
0 i
i 0

]
=

(B.2.46)

=

[
a 0
0 a

]
+

[
bi 0
0 −bi

]
+

[
0 c
−c 0

]
+

[
0 di
di 0

]
=

=

[
a+ bi 0

0 a− bi

]
+

[
0 c+ di

−c+ di 0

]
=

=

[
φ 0
0 φ̄

]
+

[
0 ψ
−ψ̄ 0

]
=

[
φ ψ
−ψ̄ φ̄

]
.

(B.2.47)

Conjugation for quaternions represented by the matrices is written as[
φ ψ
−ψ̄ φ̄

]
=

[
φ̄ −ψ
ψ̄ φ

]
(B.2.48)

and for quaternions represented by an algebraic sum as

¯̃A = a · 1 + b · i + c · j + d · k = a · 1− b · i− c · j− d · k, (B.2.49)

whereas for a pair of complex numbers as

(φ, ψ) = (φ̄,−ψ). (B.2.50)

Conjugation is also denoted by an asterisk; then ¯̃A is replaced by Ã∗.

A quaternion represented by a real matrix can also be written as
a b −d −c
−b a −c d
d c a b
c −d −b a

, a, b, c, d ∈ R. (B.2.51)
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Let us consider a general form of a complex matrix representing
a quaternion Ã ∈ H

Ã =

[
φ ψ
−ψ̄ φ̄

]
. (B.2.52)

De�nition B.8. A fuzzy quaternion is the quaternion

Ã(u) = (φ(u), φ̄(u)), u ∈ [0, 1], (B.2.53)

corresponding to a fuzzy number A.

The complex function φ(u) has two parts: the real part is repre-
sented by the central value of the fuzzy number and the imaginary part
is represented by its membership function.

De�nition B.9. A triangular, symmetric fuzzy quaternion is a quater-
nion Ã corresponding to a triangular, symmetric fuzzy number A =
(a, sA), where a is the central value and sA is the spread of the fuzzy
number (see e.g. Figure 4.2). The complex matrix of a triangular,
symmetric fuzzy quaternion has the following form

Ã =

 a− isA(1− u) a+ isA(1− u)

−a+ isA(1− u) a+ isA(1− u)

. (B.2.54)

De�nition B.10. The square root of the product of quaternion Ã
and its conjugation Ã∗ is called the norm of element Ã. It is denoted
by ||Ã|| and written as

||Ã||H =
√
ÃÃ∗ =

√
|φ|2 + |ψ|2. (B.2.55)

Quaternion function Ã(·) : [0, 1]→ C can be written as

Ã(u) =

 φ(u) ψ(u)

−ψ̄(u) φ̄(u)

, φ(u), ψ(u) ∈ C, u ∈ [0, 1]. (B.2.56)
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Based on the de�nition of the determinant of complex 2 × 2 square
matrix, we can write

det Ã(u) = det

 φ(u) ψ(u)

−ψ̄(u) φ̄(u)

 =

= φ(u)φ̄(u) + ψ(u)ψ̄(u) = |φ(u)|2 + |ψ(u)|2 = ‖Ã‖2
H,

(B.2.57)

for the algebraic sum

det Ã = det(a · 1 + b · i + c · j + d · k) = a2 + b2 + c2 + d2, (B.2.58)

and for a pair of complex numbers

det Ã(u) = det(φ(u), ψ(u)) = |φ(u)|2 + |ψ(u)|2. (B.2.59)

The matrix of algebraic cofactors of matrix Ã(u) has the form

D(u) =

 φ̄(u) ψ̄(u)

−ψ(u) φ(u)

, (B.2.60)

and transposition turns D(u) into

DT (u) =

φ̄(u) −ψ(u)

ψ̄(u) φ(u)

. (B.2.61)

Since
det Ã(u) = ‖Ã(u)‖2

H, (B.2.62)

the inverse matrix Ã−1(u) has the form

Ã−1(u) =
1

‖Ã(u)‖2
H

φ̄(u) −ψ(u)

ψ̄(u) φ(u)

 =

=
1

‖Ã(u)‖2
H

 φ(u) ψ(u)

−ψ̄(u) φ̄(u)

 =
1

‖Ã(u)‖2
H
Ã(u).

(B.2.63)
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With the notion of the norm and conjugation of a quaternion, it is
possible to de�ne an inverse element to a non-zero quaternion Ã of the
form

Ã−1(u) =
1

||Ã||2H
Ã(u), u ∈ [0, 1] (B.2.64)

or
Ã−1(u) =

1

||Ã||2H
Ã∗(u), u ∈ [0, 1]. (B.2.65)

Element Ã can have only one inverse element. If two inverse elements
B̃1 and B̃2 existed, we would have

B̃1Ã = ÃB̃1 = I (B.2.66)

and
B̃2Ã = ÃB̃2 = I. (B.2.67)

Taking product B̃2B̃1Ã, we have

B̃2B̃1Ã = B̃2

(
B̃1Ã

)
= B̃2I = B̃2. (B.2.68)

On the other hand, the same product B̃2B̃1Ã can be written as

B̃2B̃1Ã = B̃2ÃB̃1 = (B̃2Ã)B̃1 = IB̃1 = B̃1. (B.2.69)

From the above it follows that since there must be B̃2 = B̃1, the
quaternion space H has the property that each non-zero quaternion
Ã has only one inverse element, which is also called an invertible or
regular quaternion. The statement is the founding assumption of the
Gelfand�Mazur theorem.

Because of the Gelfand�Mazur theorem, the Banach algebra in
which each non-zero element is invertible is isometrically isomorphic
with the Banach algebra of complex numbers. Hence, the quaternion
algebra is such an algebra.

Let us demonstrate now that if quaternions Ã, B̃ are invertible, the
product ÃB̃ is invertible too and

(ÃB̃)−1 = B̃−1Ã−1. (B.2.70)

Let Ã(u) and B̃(u), u ∈ [0, 1] be non-zero quaternions. Let us have

C̃−1(u) =
[
Ã(u)B̃(u)

]−1

=
1

‖Ã(u)B̃(u)‖2

[
Ã(u)B̃(u)

]∗
. (B.2.71)
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Since the quaternion algebra H is the C∗�algebra, we obtain

(Ã(u)B̃(u))∗ = B̃∗(u)Ã∗(u). (B.2.72)

From the de�nitions of a quaternion norm (B.2.55) and (B.2.72) it
follows that

‖Ã(u)B̃(u)‖2=
[
Ã(u)B̃(u)

][
Ã(u)B̃(u)

]∗
=

= Ã(u)B̃(u)B̃∗(u)Ã∗(u) = Ã(u)‖B̃(u)‖2Ã∗(u)=

= Ã(u)Ã∗(u)‖B̃(u)‖2=‖Ã(u)‖2‖B̃(u)‖2.

(B.2.73)

Thus, we receive

‖Ã(u)B̃(u)‖2 = ‖Ã(u)‖2‖B̃(u)‖2. (B.2.74)

Therefore, based on (B.2.72) and (B.2.74) we can rewrite (B.2.71) as

C̃−1(u)=
1

‖Ã(u)B̃(u)‖2

[
Ã(u)B̃(u)

]∗
=

=
1

‖Ã(u)‖2‖B̃(u)‖2
B̃∗(u)Ã∗(u) =

=
1

‖B̃(u)‖2
B̃∗(u)

1

‖Ã(u)‖2
Ã∗(u) = B̃−1(u)Ã−1(u),

(B.2.75)

i.e. [
Ã(u)B̃(u)

]−1

= B̃−1(u)Ã−1(u), (B.2.76)

which was to be proved.

De�nition B.11. The unitary space U(H) is a vector space over the
quaternion space H containing formula

(Ã, B̃)→ 〈Ã, B̃〉 ∈ C, Ã, B̃ ∈ H, (B.2.77)

ful�lling the conditions
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1o. 〈Ã, B̃〉 = 〈B̃, Ã〉,
2o. 〈Ã+ B̃, C̃〉 = 〈Ã, C̃〉+ 〈B̃, C̃〉,
3o. 〈aÃ, B̃〉 = a〈Ã, B̃〉, a ∈ C,
4o. 〈Ã, Ã〉 > 0 for Ã 6= O and if 〈Ã, Ã〉 = 0 ⇒ Ã = O.

The complex number 〈Ã, B̃〉 is then called a scalar product of ele-
ments Ã, B̃ ∈ H and conditions 1o − 4o are called the axioms of the
scalar product ([Kolodziej 1970], p. 62).

De�nition B.10 establishes the notion of a norm in space H. Accor-
ding to [Mlak 1970], the norm expresses the scalar product by means
of the following formula

〈Ã, B̃〉 =
1

4

{
‖Ã+B̃‖2+i‖Ã+iB̃‖2−‖Ã−B̃‖2−i‖Ã−iB̃‖2

}
, (B.2.78)

where Ã, B̃ ∈ H and H is the quaternion space.

To better understand how the norm of the elements of space H and
the scalar product induced by the norm of space H are related to each
other, we shall test the formula (B.2.78).

Using the scalar product axioms, we successively obtain

‖Ã+ B̃‖2 = 〈Ã+ B̃, Ã+ B̃〉 = 〈Ã, Ã+ B̃〉+ 〈B̃, Ã+ B̃〉 =

= 〈Ã, Ã〉+ 〈Ã, B̃〉+ 〈B̃, Ã〉+ 〈B̃, B̃〉 =

=‖Ã‖2 + 〈Ã, B̃〉+ 〈B̃, Ã〉+ ‖B̃‖2.

(B.2.79)

Analogously, we have

‖Ã− B̃‖2 = 〈Ã− B̃, Ã− B̃〉 = 〈Ã, Ã− B̃〉 − 〈B̃, Ã− B̃〉 =

= 〈Ã, Ã〉 − 〈Ã, B̃〉 − 〈B̃, Ã〉+ 〈B̃, B̃〉 =

=‖Ã‖2 − 〈Ã, B̃〉 − 〈B̃, Ã〉+ ‖B̃‖2.

(B.2.80)

By subtracting (B.2.80) from (B.2.79), we get

‖Ã+B̃‖2 − ‖Ã− B̃‖2 = 2〈Ã, B̃〉+ 2〈B̃, Ã〉. (B.2.81)
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The same procedure is applied to the other terms of (B.2.78). We have

‖Ã+ iB̃‖2 = 〈Ã+iB̃, Ã+iB̃〉 = 〈Ã, Ã+iB̃〉+i〈B̃, Ã+iB̃〉 =

= 〈Ã, Ã〉+ 〈Ã, iB̃〉+ i〈B̃, Ã〉+ i〈B̃, iB̃〉 =

=‖Ã‖2 + ī〈Ã, B̃〉+ i〈B̃, Ã〉+ īi‖B̃‖2.

(B.2.82)

By multiplying ‖Ã+ iB̃‖ by i, we obtain

i‖Ã+ iB̃‖2 = i‖Ã‖2 − ii〈Ã, B̃〉+ ii〈B̃, Ã〉+ i‖B̃‖2 =

= i‖Ã‖2 + 〈Ã, B̃〉 − 〈B̃, Ã〉+ i‖B̃‖2.

(B.2.83)

After substituting −i for i, there is

−i‖Ã− iB̃‖2 =− i‖Ã‖2+〈Ã, B̃〉−〈B̃, Ã〉−i‖B̃‖2. (B.2.84)

From the sum of (B.2.83) and (B.2.84) we arrive at

i‖Ã+iB̃‖2−i‖Ã−iB̃‖2 = i‖Ã‖2+〈Ã, B̃〉−〈B̃, Ã〉+i‖B̃‖2 +

−i‖Ã‖2 + 〈Ã, B̃〉 − 〈B̃, Ã〉 − i‖B̃‖2 =

=2〈Ã, B̃〉 − 2〈B̃, Ã〉.

(B.2.85)

Finally, the sum of (B.2.81) and (B.2.85) leads to

‖Ã+ B̃‖2−‖Ã−B̃‖2 +i‖Ã+iB̃‖2−i‖Ã−iB̃‖2 =

=2〈Ã, B̃〉+ 2〈B̃, Ã〉+ 2〈Ã, B̃〉 − 2〈B̃, Ã〉 =

=4〈Ã, B̃〉.

(B.2.86)

In this way, the formula for a scalar product in the unitary space is
derived.
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in a quaternion space, 199

oriented fuzzy numbers
addition and multiplication, 167,

168
Diamond distance, 167
division, 168
example, 167
linear space, 171
membership function, 166
multiplication by a scalar, 167
part down, 165
part up, 165
product, 167
properties, 169, 170, 173
subtraction, 169
vs triangular fuzzy number, 166

quaternion, 195, 197, 198
quaternion-valued Lee�Carter model,

194
data fuzzi�cation, 201
optimization problem, 201
parameters' estimation, 199

random sample, 42, 51, 58, 62, 68,
72, 100, 101, 111, 120, 125,
134

self-adaptive test, 98
critical values, 100
switching points, 100
test statistics, 99

stochastic di�erential equation, 251
discretization method, 259
� Euler, 260

� Milstein, 260
solution
� existence and uniqueness,
249

� non-stationary, 113
� strong, 249

stochastic integral
averaging procedure, 254
Itô integral, 245
Stratonovich integral, 245
vector integral, 246
with respect to di�usion pro-

cesses, 244
stochastic model

di�erential vector equation, 80
dynamic hybrid, 80, 85, 93
� example, 88, 89
� homogeneous, 84
� switching process, 84
� switchings, 80, 95

static hybrid, 78
� input process, 78
� output process, 78
� switching rule, 78

stochastic process, 231
conditions of di�erentiability,

242
continuity, 233, 234
continuous almost everywhere,

233
continuous in probability, 233
di�erentiability, 242
Dirac distribution, 242
Gaussian, 236
generalized derivative, 241
higher order mixed moments,

233
independent increments, 238,

239
integrability, 242
Markov, 237
Ornstein�Uhlenbeck, 59, 69, 131
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second-order, 233
standard Wiener, 49, 53, 56,

59, 69, 73, 74, 84, 109, 112,
121, 143, 239, 240

stationary, 235
� in broad sense, 235

trajectory, 231
with continuous time, 231
with discrete time, 231

Stratonovich
operator, 250
stochastic di�erential equation,

253
stochastic integral, 248

SVD
eigenvectors, 40
orthogonal matrix, 39, 40
singular values, 39, 40
singular vectors, 40
weighted, 39

switchings, 79, 83, 98
arbitrary, 78
dependent on the data, 78
identi�cation, 95, 100, 204
random, 78

Vasi£ek model, 53
discrete, 55
discrete hybrid, 113
discrete modi�ed, 57
discrete modi�ed hybrid, 116
hybrid, 111
� moment equations, 112, 114
� stationary solution, 112
� stochastic di�erential equa-
tion, 111

modi�ed, 56
� stochastic di�erential equa-
tion, 56

modi�ed hybrid, 115
� moment equations, 116, 117

� stochastic di�erential equa-
tion, 115

parameters' estimation, 57, 58,
118�120

stochastic di�erential equation,
53
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