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Loss of fungal symbionts 
and changes in pollinator 
availability caused by climate 
change will affect the distribution 
and survival chances 
of myco‑heterotrophic orchid 
species
Marta Kolanowska 

The first comprehensive species distribution models for orchid, its fungal symbionts and pollinator 
are presented. To evaluate impact of global warming on these organisms three different projections 
and four various climate change scenarios were analysed. The niche modelling was based on 
presence‑only records of Limodorum abortivum, two species of Russula and three insects pollinating 
orchid (Anthophora affinis, Bombus terrestris, Rhodanthidium septemdentatum). Two sets of orchid 
predictions were examined—the first one included only climatic data and the second one was based 
on climate data and data on future distribution of orchid fungal symbionts. Overall, a poleward range 
shift is predicted to occur as a result of climate change and apparently global warming will be favorable 
for L. abortivum and its potential geographical range will expand. However, due to the negative effect 
of global warming on fungal symbionts of L. abortivum, the actual extension of the suitable niches of 
the orchid will be much limited. Considering future possibility of cross‑pollination, the availability of 
A. affinis for L. abortivum will decrease and this bee will be available in the worst case scenarios only 
for 21% of orchid populations. On the other hand, the overlap of orchid and the buff‑tailed bumblebee 
will increase and as much as 86.5% of plant populations will be located within B. terrestris potential 
range. Also the availability of R. septemdentatum will be higher than currently observed in almost 
all analysed climate change projections. This study showed the importance of inclusion of ecological 
factors in species distribution models as the climate data itself are not enough to estimate the future 
distribution of plant species. Moreover, the availability of pollen vectors which is crucial for long‑term 
survival of orchid populations should be analysed in context of climate changes.

Climate is the most important factor determining species  distribution1. To understand how the conditions of 
our planet changed over time various research teams developed climate models (general circulation models, 
GCMs) describing  past2,  present3 and  future4 climatic Earth conditions. These GCMs became important tool 
in  biogeographic5–9,  phylogenetic10,11 and  ecological12–15 research. Species distribution models based on GCMs 
are also used in nature conservation planning and preventing invasive species  expansion16–19. Considering 
possible negative impact of climate change modification of temperature and precipitation patterns together 
with extreme weather events can alter geographical ranges of  species20, their ecological  interactions21, and the 
timing of biological events (phenology), which could fundamentally transform ecosystems and food  webs22.

Clearly, any environmental change is potentially more dangerous for specialized organisms characterized 
by narrow ecological tolerance and depending on numerous interspecific interactions. Due to the complex life 
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cycle Orchidaceae are among the most threatened plants in the global  scale23. According to the International 
Union for the Conservation of Nature (IUCN) almost half of the extinct orchid species are terrestrial herbaceous 
 perennials24. All Orchidaceae develop mycorrhizal symbioses with fungi in natural habitats that affect not only 
their seed germination, but also protocorm growth, and adult  nutrition25. Orchids interact with a more limited set 
of mycorrhizal fungi as compared to other mycorrhizal  plants25. Although many initial mycoheterotrophs develop 
into autotrophic mature plants, some orchids continue to obtain carbon from mycorrhizal fungi throughout 
their lifecycle (full mycoheterotrophy) or utilize both photosynthesis and mycoheterotrophy at maturity (partial 
mycoheterotrophy, mixotrophy)26,27. Generally, orchid flowers are adapted to promote cross-pollination and most 
species depend on pollen vectors for  reproduction28–31. Autogamy is not common in Orchidaceae and this mode 
of reproduction evolved only in about 5–20% of the family  representatives32–34.

One of the very interesting orchid species which is strongly associated with fungi not only during seed 
germination, but also as mature plant, and which is adapted to both cross-pollination and autogamy is Limodorum 
abortivum, also known as the Violet Limodore. This terrestrial plant does not produce any basal leaves and the 
upper, cauline ones are modified into sheathing bracts. Whitish-violet flowers of L. abortivum are arranged in 
a long racemose inflorescence. The Violet Limodore is a myco-heterotrophic plant and so far three species of 
Russula (R. brevipes, R. chloroides, R. delica) were found to be L. abortivum fungal symbionts compensating 
insufficient plant  CO2  fixation35. Flowers of L. abortivum are considered to be mostly  cleistogamous36, but some 
pollination events were recorded. So far three pollen vectors of the Violet Limodore were identified—two bee 
species (Anthophora biciliata and Rhodanthidium septemdentatum) and the buff-tailed bumblebee (Bombus 
terrestris)37. Limodorum abortivum is native to mainland Europe, western Asia and the Mediterranean area. 
According to the IUCN it is a species of Least  Concern38 but in numerous geographical areas it is considered to 
be endangered (Critically  Endangered39,40,  Endangered41,  Vulnerable42 or Near  Threatened43,44).

The aim of this study was to evaluate the importance of fungal symbionts presence in the future distribution 
of L. abortivum and to estimate fluctuations in the availability of orchid pollen vector under various climate 
change scenarios using ecological niche modelling.

Methods
List of localities. The database of records of L. abortivum, its fungal symbionts and pollinators was compiled 
based on data included in the public catalogue—Global Biodiversity Information Facility (GBIF). The initial 
datasets (Supplementary Annex 1) were verified and only records correctly georeferenced with a precision of 
at least 1 km were analysed further. Because previous  studies45,46 indicated that usage of a restricted area in 
ENM analysis is more reliable than modelling on a global scale, the area studied was limited to 23.42S-65.64ºN, 
13.96ºW-57.41ºE.

Spatial thinning was conducted using SDMtoolbox  2.3 for  ArcGIS47,48 to reduce the spatial bias of 
 sampling49–51. While geographic and environmental thinning are conceptually equivalent, as they use a distance 
measure to determine a filter  size52, they can lead to a disproportionate sampling in the environmental space. 
For that reason the additional factor, topography, was included in the spatial thinning process. The topographic 
heterogeneity of the study area was  calculated53 and divided into five classes. Localities were spatially filtered at 
5.0, 10.0, 15.0, 20.0 and 25.0 km in areas of high, medium high, medium, medium low and low heterogeneity, 
respectively. The final database of localities included 1074 records of L. abortivum, 19 of A. affinis, 1440 of B. 
terrestris, 103 of Rhodanthidium septemdentatum, 388 of R. chloroides, and 606 of R. delica (Fig. 1, Supplementary 
Annex 2).

Ecological niche modelling. Two models were used to estimate the effect of global warming on L. 
abortivum. The first was based exclusively on bioclimatic variables (bioclims) and the second included the 
modelled distributions of the fungal symbionts (bioclims + fungi).

MaxEnt v. 3.3.254,55 which is considered to be one of the best-performing niche modeling algorithm based 
on presence-only  data56,57 was used to produce the ecological niche model of the species studied. The algorithm 
selection was also motivated by the scarce information on distribution of studied organisms and lack of possibility 
of creating reliable pseudo-absence data. Due to this obstacle none of the existing presence-absence modelling 
methods could be  used58. For the analyses bioclimatic variables (bioclims) in 30 arc-seconds of interpolated 
climate surface downloaded from WorldClim v. 2.13 were used. Pearsons’ correlation coefficient was calculated 
using SDMtoolbox v. 2.3 for  ArcGIS47,48 and highly correlated bioclimatic variables (above 0.9; Supplementary 
Annex 3) were removed from the analyses (Table 1).

To evaluate the impact of global warming on the distribution of species studied predictions of the extent of 
the climatic niches of L. abortivum, its symbionts and pollinator in 2080–2100 were made. The models were 
compiled using climate projections for four Shared Socio-economic Pathways (SSPs): SSP1-2.6, SSP2-4.5, SSP3-
7.0 and SSP5-8.5. These trajectories were established to describe probable major global developments that would 
lead in the future to different challenges for mitigation and adaptation to climate  change59. The SSPs are based 
on narratives describing alternative socio-economic developments (sustainable development, regional rivalry, 
inequality, fossil-fueled development, middle-of-the-road development) with global warming in 2100 ranging 
from of 3.1ºC to 5.1ºC above pre-industrial  levels60,61. Three different simulations of future climate developed 
by Coupled Model Intercomparison Project Phase 6 (CNRM-CM6-1), Goddard Institute for Space Studies 
(GISS-E2-1), and Institute for Numerical Mathematics (INM-CM5) were used. While some Global Climate 
Models (GCMs) were proved to work better in specific geographical  regions62, the area in this study included 
whole Europe and north Africa, hence it was not possible to select one, best-performing simulation. For that 
reason the three aforementioned GCMs which significantly differ in the simulated maximum temperature and 
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precipitation within study area were used. This approach allows to present the broadest spectrum of possible 
changes in the distribution of studied organisms.

In all analyses the maximum number of iterations was set to 10,000 and convergence threshold to 0.00001. The 
neutral regularization multiplier value and auto features were utilized. The random test partition and background 
subset for each run was applied using 30% of the samples as test points. The run was performed as a bootstrap 
with 100 replicates, and the output was set to logistic. All analyses of GIS data were carried out using ArcGis v. 
10.8 (Esri, Redlands, CA, USA). To prevent extrapolations outside the environmental range of the training data 
the “fade by clamping” function in MaxEnt was  used63–65. The evaluation of the created models was made using 
the area under the curve (AUC)66 and True Skill Statistic (TSS)67. Both metrics are frequently used measure of 
model performance as they are independent of  prevalence68.

SDMtoolbox v. 2.3 for  ArcGIS47,48 was used to calculate changes in the distribution of suitable niches of L. 
abortivum caused by global warming. For this operation created models (for present-time and future) were 
converted into binary rasters in Goode homolosine projection. The max kappa value was used as presence 
threshold and used to compare the extent and location of suitable niches of studied species between present-time 
and future models. To calculate max kappa value a phyloclim package for R was  used69.

Figure 1.  Localities of analysed species used in ENM analyses. (a) Limorodum abortivum, (b) pollinators, (c) 
fungal symbionts. Maps generated by the author in  ArcGIS47,48.
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Results
Models evaluation and limiting factors. The model performance indexes (AUC and TSS) are presented 
in Table 2 together with Max Kappa value which was used as a presence threshold. The AUC values of 0.875–
0.971 indicate high reliability of the models, however, the TSS for Anthophora affinis and Bombus terrestris 
received lower scores and these models should be taken with caution.

The results of the jackknife test of variable importance in both sets of models created for L. abortivum showed 
that variable with highest gain when used in isolation is bio1, which therefore appears to have the most useful 
information by itself. The same variable appears to have the most information that isn’t present in the other 
variables as it reduces the gain the most when it is omitted is bio1 (Fig. 2). Other important bioclimatic factors 
influencing distribution of L. abortivum are bio9, bio4, and bio7. As indicated in the jackknife test, the presence 
of the two Russula species is more important than bio3, bio14, bio2, bio8 and bio15.

Impact of climate change on orchid symbionts. The future of Russula chloroides is uncertain (Table 3, 
Supplementary Annex 4). While in almost all climate change scenarios projected by CNRM and GISS this fungi 
will face serious suitable niche loss (13–61%), the INM prediction is more favorable and predicts even 95% 
expansion of the current fungus range, especially in the northern part of its geographical range.

Russula delica will lose suitable niches in all predicted climate change scenarios (Table 3, Supplementary 
Annex 4). According to CNRM projections the potential range of this fungi will be reduced for 39–68%. Similar 
result was obtained in GISS projection (39–54%) but in the INM forecast the loss will be lower (9–26%). The 
most significant niche loss will be observed in southern ad central part of the fungus range.

Impact of climate change on orchid. According to models created based on bioclimatic data only, 
the potential range of L. abortivum will expand in most predicted climate change scenarios except of SSP5-8.5 
(CNRM and GISS projections) and SSP3-7.0 (GISS projection) (Table 3, Supplementary Annex 5). However, 

Table 1.  Bioclimatic variables. Layers used in ENM analyses marked with ‘ + ”.

Code Description ENM

bio1 Annual mean temperature  + 

bio2 Mean diurnal range [mean of monthly (max temp—min temp)]  + 

bio3 Isothermality (bio2/bio7) (× 100)  + 

bio4 Temperature seasonality (standard deviation × 100)  + 

bio5 Max temperature of warmest month

bio6 Min temperature of coldest month

bio7 Temperature annual range (bio5-bio6)  + 

bio8 Mean temperature of wettest quarter  + 

bio9 Mean temperature of driest quarter  + 

bio10 Mean temperature of warmest quarter

bio11 Mean temperature of coldest quarter

bio12 Annual precipitation  + 

bio13 Precipitation of wettest month

bio14 Precipitation of driest month  + 

bio15 Precipitation seasonality (coefficient of variation)  + 

bio16 Precipitation of wettest quarter

bio17 Precipitation of driest quarter

bio18 Precipitation of warmest quarter  + 

bio19 Precipitation of coldest quarter  + 

Table 2.  Modelling performance indexes.

Species AUC (Standard Deviation) TSS MaxKappa

Anthophora affinis 0.933 (SD = 0.024) 0.493 0.325

Bombus terrestris 0.875 (SD = 0.003) 0.589 0.365

Rhodanthidium septemdentatum 0.971 (SD = 0.006) 0.833 0.437

Limodorum abortivum (bioclims only) 0.927 (SD = 0.001) 0.775 0.434

Limodorum abortivum (bioclims + fungi) 0.931 (SD = 0.002) 0.794 0.439

Russula chloroides 0.935 (SD = 0.004) 0.716 0.407

Russula delica 0.916 (SD = 0.004) 0.659 0.385
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due to the predicted loss of suitable niches by its fungal symbionts, the models based on both bioclimatic data 
and distribution models of fungi, the extent of range expansion will be lower in all climate change scenarios. 
Moreover, according to the GISS projections the orchid will lose 3–38% of currently suitable niches (Table 3). 
The most significant niche loss will be observed in the southern part of the orchid range and expansion to the 
north and north-east direction is predicted (Fig. 3).

Impact of climate change on orchid pollinators. As mentioned before, models of Anthophora affinis 
and Bombus terrestris received lower scores of TSS than expected (but relatively high AUC scores), however, the 
models of these insects created for the present time are consistent with the known geographical ranges of species 
studies and should be discussed as reliable ones. Anthophora affinis will lose suitable niches in the southern part 

Figure 2.  The results of the jackknife test of variable importance. (A) bioclims only based models, (B) models 
created based on combined bioclims and fungi data). Values shown are averages over replicate runs.
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Species Projection
Climate change 
scenario Range expansion

Presence in both 
models Range contraction Range change

Anthophora affinis

CNRM

SSP1− 2.6 279,518 2,779,019 815,857 − 14.92%

SSP2− 4.5 192,563.4 2,070,964 1,523,912 − 37.03%

SSP3− 7.0 250,202.9 1,784,592 1,810,284 − 43.40%

SSP5− 8.5 155,892.2 1,155,075 2,439,801 − 63.53%

GISS

SSP1− 2.6 208,082.3 2,933,467 661,408.3 − 12.61%

SSP2− 4.5 264,008.8 2,519,905 1,074,970 − 22.56%

SSP3− 7.0 343,036.3 2,374,333 1,220,542 − 24.41%

SSP5− 8.5 516,552.4 1,988,731 1,606,144 − 30.31%

INM

SSP1− 2.6 156,570.2 2,877,723 717,152.9 − 15.59%

SSP2− 4.5 353,081.8 2,522,645 1,072,231 − 20.00%

SSP3− 7.0 507,263.4 2,024,208 1,570,667 − 29.58%

SSP5− 8.5 476,558.6 1,748,092 1,846,783 − 38.12%

Bombus terrestris

CNRM

SSP1− 2.6 622,823.6 2,204,510.9 409,965.5  + 8.14%

SSP2− 4.5 560,580.5 2,117,955.3 496,521.1  + 2.45%

SSP3− 7.0 616,961.9 1,879,861.9 734,614.5 − 4.50%

SSP5− 8.5 320,540.7 1,624,149.9 990,326.5 − 25.62%

GISS

SSP1− 2.6 232,739.1 1,879,680.1 734,796.3 − 19.20%

SSP2− 4.5 293,651.7 1,912,140.4 702,336.0 − 15.63%

SSP3− 7.0 357,476.0 1,661,400.3 953,076.1 − 22.78%

SSP5− 8.5 579,565.6 1,535,831.1 1,078,645.3 − 19.09%

INM

SSP1− 2.6 477,841.3 2,211,971.1 402,505.3  + 2.88%

SSP2− 4.5 1,060,683.8 2,152,690.5 461,785.9  + 22.91%

SSP3− 7.0 1,500,250.3 2,013,134.4 601,342.0  + 34.38%

SSP5− 8.5 1,365,375.6 1,666,230.7 948,245.7  + 15.95%

Rhodanthidium 
septemdentatum

CNRM

SSP1− 2.6 530,540.2 299,808.2 44,081.9  + 141.46%

SSP2− 4.5 760,736.5 243,027.1 100,863.0  + 191.88%

SSP3− 7.0 912,158.2 253,616.0 90,274.1  + 239.00%

SSP5− 8.5 1,310,151.8 225,719.0 118,171.1  + 346.62%

GISS

SSP1− 2.6 170,376.9 289,163.9 54,726.2  + 33.63%

SSP2− 4.5 278,313.1 310,156.1 33,734.0  + 71.12%

SSP3− 7.0 284,091.0 298,375.1 45,515.0  + 69.38%

SSP5− 8.5 238,784.8 243,875.0 100,015.1  + 40.35%

INM

SSP1− 2.6 201,087.7 289,077.9 54,812.2  + 42.54%

SSP2− 4.5 631,617.2 334,429.7 9460.4  + 180.92%

SSP3− 7.0 742,313.3 317,899.1 25,991.0  + 208.30%

SSP5− 8.5 651,638.1 288,194.8 55,695.3 173.29%

Limodorum 
abortivum 
(bioclims)

CNRM

SSP1− 2.6 1,246,955 693,793 550,088.1  + 56.02%

SSP2− 4.5 978,619.7 482,490.7 761,390.5  + 17.46%

SSP3− 7.0 1,318,454 306,845.5 937,035.7  + 30.66%

SSP5− 8.5 884,978.1 65,674.99 1,178,206 − 23.57%

GISS

SSP1− 2.6 728,576.9 668,385 575,496.2  + 12.31%

SSP2− 4.5 680,843.9 555,791.1 688,090 − 0.58%

SSP3− 7.0 787,641.9 335,094.2 908,786.9 − 9.74%

SSP5− 8.5 772,494.2 111,590.3 1,132,291 − 28.93%

INM

SSP1− 2.6 886,027.2 845,698.2 398,183  + 39.22%

SSP2− 4.5 1,572,576 678,898.3 564,982.9  + 81.00%

SSP3− 7.0 1,942,943 408,769.6 835,111.5  + 89.06%

SSP5− 8.5 1,851,315 266,499.2 977,381.9  + 70.26%

Continued
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of its geographical range according to all conducted analyses (Table 3, Supplementary Annex 6). The expansion 
of current range is expected to occur mostly in Central Europe. In CNRM forecast the range will contract by 
14–63%, in GISS 12–30% and in INM by 15–38%. The currently observed overlap of the potential range of 
Anthophora affinis and L. abortivum is about 67% but in almost all predictions it will decrease as a result of 
climate change (Table 4, Fig. 4).

The future of Bombus terrestris is uncertain. According to CNRM and INM projections the climate changes 
will be generally favorable for this pollinator which will expand its geographical range in almost all analysed 
climate change scenarios (Table 3, Supplementary Annex 6), except of CNRM SSP5-8.5 and SSP3-7.0 predictions 
On the other hand, the GISS projection predicts the significant loss (19–22%) of suitable niches in all scenarios 
of global warming (Table 3). Overall, the contraction is expected to occur in south and south-eastern part of the 
insect geographical range. The new niches should be available for the bumblebee in northern and north-western 
edges of the current range. The overlap of orchid and B. terrestris ranges will be much higher than currently 
observed (Table 4, Fig. 4) and this pollinator will be available for almost all populations of L. abortivum.

Climate change will be very favorable for Rhodanthidium septemdentatum according to CNRM and INM 
projections (except of INM SSP1-2.6 scenario). In these predictions the insect will much expand its potential 
range (Table 3, Supplementary Annex 6). However, as the analyses conducted using GISS projections indicated 
future loss of suitable niches of orchid pollinator (33–71%). This bee is currently available for approximately 
23% of orchid populations. The overlap of orchid and R. septemdentatum potential ranges will be similar to or 

Table 3.  Changes in the coverage of suitable niches of L. abortivum, its fungal symbionts and pollinator.

Species Projection
Climate change 
scenario Range expansion

Presence in both 
models Range contraction Range change

Limodorum 
abortivum 
(bioclims + fungi)

CNRM

SSP1− 2.6 851,992.4 483,900.5 632,816.8  + 19.63%

SSP2− 4.5 1,021,670 407,822.2 708,895.1  + 28.01%

SSP3− 7.0 1,031,478 203,470.4 913,247  + 10.59%

SSP5− 8.5 1,141,051 110,654.2 1,006,063  + 12.09%

GISS

SSP1− 2.6 513,868.2 574,625.1 542,092.2 − 2.53%

SSP2− 4.5 555,482.8 527,938.3 588,779.1 − 2.98%

SSP3− 7.0 575,675.8 448,638.4 668,078.9 − 8.27%

SSP5− 8.5 615,150.2 82,391.95 1,034,325 − 37.54%

INM

SSP1− 2.6 653,807.5 550,928.5 565,788.8  + 7.88%

SSP2− 4.5 798,948.5 565,330.1 551,387.2  + 22.17%

SSP3− 7.0 1,389,914 372,812.3 743,905  + 57.85%

SSP5− 8.5 1,330,285 142,509.1 974,208.2  + 31.89%

Russula chloroides

CNRM

SSP1− 2.6 28,833.18 9262.088 59,616.51 − 44.69%

SSP2− 4.5 20,173.5 6115.358 62,763.24 − 61.83%

SSP3− 7.0 52,421.31 7092.678 61,785.92 − 13.60%

SSP5− 8.5 26,807.45 2685.01 66,193.59 − 57.18%

GISS

SSP1− 2.6 26,861.33 15,798.01 53,080.59 − 38.07%

SSP2− 4.5 24,881.25 10,306.76 58,571.84 − 48.91%

SSP3− 7.0 31,675.34 10,913.65 57,964.94 − 38.17%

SSP5− 8.5 62,357.64 13,451.24 55,427.35  + 10.06%

INM

SSP1− 2.6 57,607.24 19,241.83 49,636.77  + 11.57%

SSP2− 4.5 119,863.1 14,768.31 54,110.29  + 95.46%

SSP3− 7.0 98,714.54 4414.402 64,464.19  + 49.73%

SSP5− 8.5 129,533.8 2564.529 66,314.07  + 91.78%

Russula delica

CNRM

SSP1− 2.6 109,330.4 728,655.5 667,200.4 − 39.97%

SSP2− 4.5 102,616.3 582,407 813,448.9 − 50.92%

SSP3− 7.0 78,888.27 602,142.7 793,713.1 − 51.21%

SSP5− 8.5 88,032.12 354,875.6 1,040,980 − 68.27%

GISS

SSP1− 2.6 109,883.4 739,569.2 656,286.7 − 39.14%

SSP2− 4.5 95,549.85 649,878.8 745,977.1 − 46.60%

SSP3− 7.0 98,376.29 536,237.3 859,618.6 − 54.54%

SSP5− 8.5 112,648.5 627,051.7 768,804.2 − 47.01%

INM

SSP1− 2.6 172,404.9 935,860.8 459,995.1 − 20.60%

SSP2− 4.5 320,886.4 948,731.3 447,124.6 − 9.04%

SSP3− 7.0 262,300.4 804,372.4 591,483.5 − 23.58%

SSP5− 8.5 189,722.8 842,703.4 553,152.5 − 26.04%
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higher than currently observed in almost all CNRM and INM projections. On the contrary, the availability of 
pollen vector will be reduced in GISS simulations (Table 4, Fig. 4).

Discussion
Importance of ecological factors in species distribution models. This study showed the importance 
of ecological factor in species distribution models. Even though according to the jackknife test, the geographical 
range of L. abortivum is shaped mainly by climatic factors, the incorporation of symbiotic fungi models in the 
analyses significantly modified the predicted distribution of orchid under future climate change.

While all Orchidaceae require mycorrhizal symbioses during the seed germination as their seeds lack 
endosperms and contain limited storage  reserves25, some species were found to keep receiving carbon 
from mycorrhizal fungi even after initiation of  photosynthesis70,71. As indicated in previous  research72 the 
photosynthetic rates of the Violet Limodore are very low and the carbon assimilation activity is insufficient to 
support the energy requirements of adult plants.

So far little is known on the impact of global warming on plant endophytes, primarily because most symbionts 
remain  unidentified73. While molecular studies allowed to isolate and genetically characterize fungi from orchid 
roots, leaves and  stems74–77, the actual composition of orchid fungal symbionts is still poorly explored and most 
of taxa found in plant tissues have been assigned only to family or genus  rank78–81. The lack of species-level 
identification of orchid symbionts excludes possibility of any reliable broad-scale analyses of the importance of 
fungi on the Orchidaceae distribution.

As any research aimed at estimating possible impact of climate change on complex relationships between 
plant, fungi and insects, this study has some limitations. So far the analyses of L. abortivum symbionts were 
geographically limited and further investigations are required to evaluate the actual variation of fungal symbionts 
of this orchid. It is possible that not only Russulaceae can compensate insufficient plant  CO2 fixation. Moreover, 
Girlanda et al.35 identified three species of Russulaceae as symbionts of L. abortivum. Two of them were included 
in ENM analyses for this study. The third one, Russula brevipes is widespread in North America and only recently 
was reported outside its native range. It is not sure if this fungus will actually spread in Eurasia to serve as a 

Figure 3.  Changes in the orchid distribution according to the combined (bioclims + fungi) models. (a) SSP1-2.6 
scenario, (b) SSP2-4.5 scenario, (c) SSP3-7.0 scenario, (d) SSP5-8.5 scenario. Legend: -1—range expansion, 0—
no occurrence, 1—present, 2—range contraction. Maps generated by the author in  ArcGIS47,48.
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long-term symbiont for L. abortivum. Also, due to the small number of records of this fungus in the non-native 
areas, at this point it is not possible to evaluate its current or future potential range in Eurasia.

Noteworthy, Russula representatives are ectomycorrhizal fungi and their occurrence is strictly related with the 
presence of host plants. R. delica seems to have broad spectrum of potential hosts and it was reported growing 
with both conifers (Pseudotsuga menziesii) and broadleaved trees (Corylus, Fagus, Quercus, Tilia)82. On the other 
hand, R. chloroides favours habitats with oak trees, although it was sometimes reported growing under other 
broadleaf trees (Carpinus, Crataegus) and conifer trees (Abies alba)83,84.

Uncertainty of climate models. As global warming became one of the most important threats to 
biodiversity and ecosystems functioning, numerous mathematical models of future climate changes scenarios 
has been produced to describe possible impact of human on Earth temperature and  precipitations85. Clearly, 
the usefulness of any climate model is tested by the conformity of its output to a given set of known conditions. 
For that reason, the actual trustworthiness of any models presenting future climate is impossible to assess. In 
this study three different simulations of climatic conditions were used to produce the most reliable prediction of 
changes in the distribution of suitable niches of species studied.

Table 4.  Availability of pollinator in L. abortivum geographical range.

Species Projection Climate change scenario Overlap of orchid and pollinator range

Anthophora affinis

Present time 67.29%

CNRM

SSP1-2.6 48.22%

SSP2-4.5 37.31%

SSP3-7.0 25.92%

SSP5-8.5 21.99%

GISS

SSP1-2.6 67.14%

SSP2-4.5 60.12%

SSP3-7.0 65.27%

SSP5-8.5 56.41%

INM

SSP1-2.6 59.29%

SSP2-4.5 71.14%

SSP3-7.0 43.43%

SSP5-8.5 36.35%

Bombus terrestris

Present time 54.96%

CNRM

SSP1-2.6 73.87%

SSP2-4.5 76.29%

SSP3-7.0 78.02%

SSP5-8.5 70.70%

GISS

SSP1-2.6 69.90%

SSP2-4.5 74.16%

SSP3-7.0 72.93%

SSP5-8.5 84.43%

INM

SSP1-2.6 70.57%

SSP2-4.5 76.64%

SSP3-7.0 86.55%

SSP5-8.5 84.35%

Rhodanthidium septemdentatum

Present time 22.98%

CNRM

SSP1-2.6 22.79%

SSP2-4.5 33.28%

SSP3-7.0 33.49%

SSP5-8.5 49.29%

GISS

SSP1-2.6 22.38%

SSP2-4.5 23.28%

SSP3-7.0 18.24%

SSP5-8.5 6.51%

INM

SSP1-2.6 20.17%

SSP2-4.5 32.29%

SSP3-7.0 23.59%

SSP5-8.5 20.88%
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Noteworthy, earlier models created for L. abortivum86 based on formerly recognized climate change scenarios 
(A1b, A2a and B2a) indicated loss of orchid suitable niches. In the present study habitat loss was predicted only 
in GISS simulation of future climate change while both CNRM and INM projections forecasted expansion 
of orchid geographical range. While most areas currently occupied by the orchid will not be suitable for this 
species in the future, all created models predicted migration of L. abortivum to the higher latitudes and loss of 
suitable niches in the southern part of species geographical range. The same scheme of poleward range shift as 
a response to the global warming was already predicted to occur in other  plant87 and  animal88,89 species. Evans 
and  Jacquemyn90 suggested that terrestrial Orchidaceae with a wide distribution will be more capable of shifting 
their distributions under global warming than species with a restricted geographical range. While obviously 
species with broader environmental tolerance have higher survival chances than more specialized taxa, the 
fragility of ecological interactions can further affect persistence of widely distributed organisms. Studies on future 
distribution of European orchids are rather scarce and while some taxa (Nigritella nigra91, Pseudorchis albida92) 
are predicted to lose their suitable niches across their ranges, others are expected to experience a poleward range 
shift (some Orchis93, Ophrys insectifera94, some Epipactis90). Noteworthy, none of the previous research considered 
the importance of mycorrhizal fungi on Orchidaceae distribution and most of the published analyses ignored 
also the future availability of orchid pollen vectors.

While it is generally accepted that climatic factors play the primary role in shaping biodiversity at broad 
scales, there are numerous other abiotic variables which can affect species occurrence. Scientists still explore 
the importance of  topography95, physico-chemical properties of  soil96–98, and the substrate  thickness99 on the 
plant  distribution100. Unfortunately, at this moment there are no tools which could be used to predict changes of 
these variables in response to climate change and hence these factors cannot be included in the niche modelling.

Another obstacle in broad scale modelling of species distribution is lack of data and unequal sampling 
throughout the geographical range of the species. The availability of precise location data remains limited, 
especially when dealing with rare or poorly recognized  species49,101,102. Moreover, species records are often 
constrained by the variety of their sources and spatial biases caused by unequal sampling  efforts103 and by 
uneven field  accessibility104. The adequacy of sample bias correction methods remains  uncertain105 and field 
validation is still considered to be the best standard practice to assess models’  reliability106. Unfortunately, field 
validation is sometimes impossible to use, especially in geographically extensive scale  studies105. In this study 
some geographical regions also seemed to be inadequately sampled and for that reason the spatial filtering on 
various scales of topographic heterogeneity was conducted to reduce sampling bias. The general consistence of 
the models created for the present time with the known geographical range of studied species suggest reliability of 
conducted analyses, also for species which received lower scores of TSS tests (but relatively high AUC test scores).

Future availability of pollinators. Flowers of the Violet Limodore are most often cleistogamous 
(pollination takes place inside the flower bud), but insect pollination is more beneficial for the long-term 
survival of L. abortivum populations by increasing their genetic diversity. So far very few studies on the impact 
of global warming on orchid distribution incorporated also the analyses of future availability of pollen vectors 
for plant  populations107–109. This study indicated that the climate change can be favorable for orchid not only by 
direct expansion of the niches suitable for the plant occurrence, but also in increasing pollinators availability as 
a result of insects range shifts.

In this study two species of solitary bees were included in the analyses. According to created models A. 
affinis will lose numerous suitable niches while R. septemdentatum will expand its geographical range. However, 
as indicated in previous  studies110, for solitary bees, responses to climate change will be related to biological 
processes occurring prior to emergence. Among possible consequences of global warming accelerated 
 development111, reduced energy  reserves112,113, increased  mortality114, advanced  emergence115, and reduced 
post-emergence  lifespan116 are expected to occur.

Figure 4.  Presence of pollinator within L. abortivum range. Areas of overlap between pollinator and orchid 
range marked with green, areas suitable only for an orchid occurrence marked in sand yellow. (a) present time, 
(b) SSP1-2.6 scenario, (c) SSP2-4.5 scenario, (d) SSP3-7.0 scenario, (e) SSP5-8.5 scenario. Maps generated by the 
author in  ArcGIS47,48.
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While according to available data the main flight period of both studied bee species, A. biciliata and R. 
septemdentatum, is rather short and is susceptible for climate change, the buff-tailed bumblebee is relatively 
resistant to climate warming. According to the published study  results117 advances in mid-date of the main 
flight period over the 35-year period was 13 days for B. terrestris and the duration of the main flight period was 
reduced by about 7 days. The models presented in this study do not consider possibility of incompatibility of 
orchid flowering time and its pollinator phenology. This dangerous phenomena which can disturb pollen transfer 
and plant reproductive success was already detected in European and Australian  orchids118,119. The possible mis-
match of orchid flowering time and insect activity period can further limit the possibility of cross-pollination 
of L. abortivum.

Conclusions
To conclude, the incorporation of ecological relationships, e.g. fungal symbionts, pollen vectors, is crucial 
to produce more accurate distribution models of plant species. Moreover, due to the discrepancies between 
projections of future climatic conditions, various predictions and climate change scenarios should be analysed to 
uncover all possible changes in the studied species potential geographical range. The maps presented in this study 
can be useful for establishing conservation actions on L. abortivum. The priority in creating new conservation 
areas should be given to the regions which will be suitable for the occurrence of the orchid, its symbionts 
and pollinators in the future. Without doubt, more effort should be made to identify orchid symbionts and 
incorporate geographical distribution records of fungi into public databases to allow more efficient geographical 
analyses of plant-fungi relationships.

Data availability
All relevant data are presented in the manuscript and supplementary files.
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