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Abstract

In this paper, by using the notion of fuzzy points and equality algebras, the

notions of fuzzy point equality algebra, equality-subalgebra, and ideal were es-

tablished. Some characterizations of fuzzy subalgebras were provided by using

such concepts. We defined the concepts of (∈,∈) and (∈,∈ ∨ q)-fuzzy ideals of

equality algebras, discussed some properties, and found some equivalent defini-

tions of them. In addition, we investigated the relation between different kinds

of (α, β)-fuzzy subalgebras and (α, β)-fuzzy ideals on equality algebras. Also, by

using the notion of (∈,∈)-fuzzy ideal, we defined two equivalence relations on

equality algebras and we introduced an order on classes of X, and we proved

that the set of all classes of X by these order is a poset.
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1. Introduction

EQ-algebras were introduced by Novák et al [15]. Equality algebras were
introduced by Jenei [12] by removing the multiplication operation and as
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an extension of EQ-algebras. In [9, 13] the authors investigated the re-
lation between equality algebra and BCK-meet-semilattice. Dvurec̆enskij
et al. in [10] defined pseudo-equality algebra as an extention of equality
algebra and study some properties of it. Borzooei et al. [7] introduced
some types of filters of equality algebras and studied the relation between
them and moreover, they considered relations among equality algebras and
some of the other logical algebras such as residuated lattice, MTL-algebra,
BL-algebra, MV-algebra, and etc., in [19]. Since ideal theory is an im-
portant notion in logical algebras, Paad [16] introduced the notion of the
ideal in bounded equality algebras and showed that there is a reciprocal
correspondence between ideals and congruence relation.

Fuzzy sets were first introduced by Zadeh [18] and then studied by
many mathematicians. Some mathematicians tried to overcome its short-
comings by presenting various extensions of fuzzy sets, and some other
mathematicians studied fuzzy sets on various algebraic structures such
as logical algebraic structures, groups, and rings. In [8] the notion of
fuzzy ideal in bounded equality algebras is defined, and several proper-
ties are studied. Fuzzy ideal generated by a fuzzy set is established, and
a fuzzy ideal is made by using the collection of ideals. Characterizations
of fuzzy ideal were discussed. Conditions for a fuzzy ideal to attained its
infimum on all ideals are provided. Homomorphic image and preimage of
fuzzy ideal were considered. Quotient structures of equality algebra in-
duced by (fuzzy) ideal were studied. The idea of the quasi-coincidence of a
fuzzy point with a fuzzy set has played a very important role in generating
fuzzy subalgebras of BCK/BCI-algebras, called (α, β)-fuzzy subalgebras
of BCK/BCI-algebras, introduced by Jun [14]. Moreover, (∈,∈∨ q)-fuzzy
subalgebra is a useful generalization of a fuzzy subalgebra in BCK/BCI-
algebras. Many researchers applied the fuzzy structures on logical algebras
[2, 1, 3, 4, 5, 6, 11, 17]. Then studied point fuzzy on various algebraic struc-
tures, such as hoop, BCK/BCI-algebra, different kinds of hyperstructures,
and so on.

In this paper, by using the notion of fuzzy points and equality algebras,
the notions of fuzzy point equality algebra, equality-subalgebra, and ideal
are established. Some characterizations of fuzzy subalgebras are provided
by using such concepts. We define the concepts of (∈,∈) and (∈,∈ ∨ q)-
fuzzy ideals of equality algebras, discuss some properties, and find some
equivalent definitions of them. In addition, we investigate the relation be-
tween different kinds of (α, β)-fuzzy subalgebras and (α, β)-fuzzy ideals on
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equality algebras. Also, by using the notion of (∈,∈)-fuzzy ideal we define
two equivalence relations on equality algebras and we introduce an order on
classes of X, and we prove that the set of all classes of X by these order is
a poset.

2. Preliminaries

This section lists the known default contents that will be used later.

Definition 2.1 ([12]). By an equality algebra, we mean an algebraic struc-
ture (X,∧,∼, 1) satisfying the following conditions.

(E1) (X,∧, 1) is a commutative idempotent integral monoid,

(E2) The operation “∼” is commutative,

(E3) (∀a ∈ X)(a ∼ a = 1),

(E4) (∀a ∈ X)(a ∼ 1 = a),

(E5) (∀a, b, c ∈ X)(a ≤ b ≤ c ⇒ a ∼ c ≤ b ∼ c, a ∼ c ≤ a ∼ b),

(E6) (∀a, b, c ∈ X)(a ∼ b ≤ (a ∧ c) ∼ (b ∧ c)),

(E7) (∀a, b, c ∈ X)(a ∼ b ≤ (a ∼ c) ∼ (b ∼ c)),

where a ≤ b if and only if a ∧ b = a.

In an equality algebra (X,∧,∼, 1), we define two operations “→” and
“↔” on X as follows:

a → b := a ∼ (a ∧ b), (2.1)

a ↔ b := (a → b) ∧ (b → a). (2.2)

Proposition 2.2 ([12]). Let (X, ∧, ∼, 1) be an equality algebra. Then
for all a, b, c ∈ X, the following assertions are valid:
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a → b = 1 ⇔ a ≤ b, (2.3)

a → (b → c) = b → (a → c), (2.4)

1 → a = a, a → 1 = 1, a → a = 1, (2.5)

a ≤ b → c ⇔ b ≤ a → c, (2.6)

a ≤ b → a, (2.7)

a ≤ (a → b) → b, (2.8)

a → b ≤ (b → c) → (a → c), (2.9)

b ≤ a ⇒ a ↔ b = a → b = a ∼ b, (2.10)

a ∼ b ≤ a ↔ b ≤ a → b, (2.11)

a ≤ b ⇒
{

b → c ≤ a → c,
c → a ≤ c → b

(2.12)

An equality algebra (X, ∧, ∼, 1) is said to be bounded if there exists an
element 0 ∈ X such that 0 ≤ a for all a ∈ X. In a bounded equality algebra
(X, ∧, ∼, 1), we define the negation “¬” on X by ¬a = a → 0 = a ∼ 0 for
all a ∈ X.

Definition 2.3 ([16]). Let X be a bounded equality algebra. A subset A
of X is called an ideal of X if it satisfies:

(∀x, y ∈ X)(x ≤ y, y ∈ A ⇒ x ∈ A), (2.13)

¬x → y ∈ A, for all x, y ∈ A. (2.14)

Lemma 2.4 ([16]). Let X be a bounded equality algebra. A subset A of X
is an ideal of X if and only if it satisfies in the following conditions:

0 ∈ A, (2.15)

(∀x, y ∈ X)(¬(¬y → ¬x) ∈ A, y ∈ A ⇒ x ∈ A). (2.16)

Definition 2.5 ([16]). Let X be a bounded equality algebra and P be
an ideal of X. Then P is called a prime ideal of X if it satisfies for any
x, y ∈ X, ¬(x → y) ∈ P or ¬(y → x) ∈ P .

Let X be a non-empty set. The function λ : X −→ [0, 1] is called a
fuzzy set.

Let X and Y be sets and f : X → Y be a function. If µ is a fuzzy set
in X, then the image of µ under f is denoted by f(µ) and is defined as
follows:
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f(µ) : Y → [0, 1], y 7→

{
sup

x∈f−1(y)

µ(x) if f−1(y) ̸= ∅,

0 otherwise.

If ν is a fuzzy set in f(X), then the preimage of ν under f is denoted by
f−1(ν) and is defined by

f−1(ν) : X → [0, 1], x 7→ ν(f(x)).

Definition 2.6. A fuzzy set λ in X is said to be a fuzzy ideal of X if for
any x, y ∈ X:

λ(0) ≥ λ(x), and λ(x) ≥ min{λ(¬(¬y → ¬x)), λ(y)}.

A fuzzy set λ in a set X of the form

λ(y) :=

{
t ∈ (0, 1] if y = x,
0 if y ̸= x,

is said to be a fuzzy point with support x and value t and is denoted by xt.
For a fuzzy point xt and a fuzzy set λ in a set X, we have the symbol

xtαλ, where α ∈ {∈, q,∈∨ q,∈∧ q}.
To say that xt ∈ λ (resp. xtqλ) means that λ(x) ≥ t (resp. λ(x)+t > 1),

and in this case, xt is said to belong to (resp. be quasi-coincident with) a
fuzzy set λ.

To say that xt ∈ ∨ q λ (resp. xt ∈ ∧ q λ) means that xt ∈ λ or xtqλ
(resp. xt ∈ λ and xtqλ).

If xtαλ is not established for α ∈ {∈, q}, it is written by xtαλ.

3. (∈,∈)-fuzzy sub-equality algebras

In this section, we define a sub-equality of an equality algebra X and in-
vestigate that intersection and union of family of sub-equality algebra of
X is a sub-equality algebra. Then, we investigate the properties of the
(∈,∈)-fuzzy sub-equality algebras.

Note. In what follows, let (X,∧,∼, 1) or X denote as an equality algebra
unless otherwise specified.

Definition 3.1. A sub-equality algebra of an equality algebra X is a non-
empty subset S of X, closed under the operations of X and equipped with
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the restriction to S at these operations. It means that a subset S of X
is called a sub-equality algebra of X if x ∼ y ∈ S and x ∧ y ∈ S, for all
x, y ∈ S.

Note. Note that every non-empty sub-equality algebra contains the ele-
ment 1.

Example 3.2. Let X = {0, a, b, c, d, 1} be a set with the following Hasse
diagram.

r
0
J
J






rb rZ
Z

d

rJJ cr

a

r1

Then (X,∧, 1) is a meet semilattice with top element 1. Define an operation
∼ on X by Table 1.

Table 1. Cayley table for the binary operation “∼”

∼ 0 a b c d 1
0 1 d c b a 0
a d 1 a d c a
b c a 1 0 d b
c b d 0 1 a c
d a c d a 1 d
1 0 a b c d 1

Then E = (X,∧,∼, 1) is a bounded equality algebra, and the implication
“→” is given by Table 2. Let S1 = {1, b}, S2 = {1, c}, S3 = {1, a, b} and
S4 = {1, a, c}. Clearly, S1, S2 and S3 are sub-equality algebras of X, but
S4 isn’t, since a ∼ c = d /∈ S4.

Proposition 3.3. Let {Xi | i ∈ I} be a family of sub-equality algebras
of X. Then

⋂
i∈I Xi is a sub-equality algebras of X.

In the following example, we show that the union of a family of sub-
equality algebras may not be a sub-equality algebra, in general.
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Table 2. Cayley table for the implication “→”

→ 0 a b c d 1
0 1 1 1 1 1 1
a d 1 a c c 1
b c 1 1 c c 1
c b a b 1 a 1
d a 1 a 1 1 1
1 0 a b c d 1

Example 3.4. Let X be the equality algebra as in Example 3.2. We show
that, S1 and S2 are two sub-equality algebras of X, but S = S1 ∪ S2 =
{b, c, 1} is not a sub-equality algebra of X, because b ∼ c = 0 /∈ S.

In the following proposition we investigate that under which condition,
the union of a family of sub-equality algebras is a sub-equality algebra.

Proposition 3.5. Let {Xi | i ∈ I} be a family of sub-equality algebra
of X. If for any i, j ∈ I, Xi ⊆ Xj or Xj ⊆ Xi, then

⋃
i∈I Xi is a sub-

equality algebra of X.

Proposition 3.6. Let S be a sub-equality algebra of X. Then for any
x, y ∈ S, x → y ∈ S.

In the following example, we show that the reverse of the above propo-
sition may not be true, in general.

Example 3.7. Let X be an equality algebra as in Example 3.2. Obviously,
S = {1, a, c} is closed under the operation →. But S is not a sub-equality
algebra of X, because a ∧ c = d /∈ S and a ∼ c = d /∈ S.

In the following proposition, we investigate that under which condition,
close under the operation → is equal with property of sub-equality algebra.

Proposition 3.8. Let X be bounded. If S is an ideal of X which is closed
under →, then S is a sub-equality algebra of X.

Proof: Suppose x, y ∈ S. Since x ∧ y ≤ x, S is an ideal of X and x ∈ S,
we have x ∧ y ∈ S. Also, by (2.11) x ∼ y ≤ x → y. Since by assumption,
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S is an ideal of X and x → y ∈ S, we get x ∼ y ∈ S. Thus, S is a
sub-equality algebra of X.

In the following example, we show that the ideal of equality algebra is
not close under the operation →.

Example 3.9. LetX = {0, a, b, 1} be a set with the following Hasse diagram.

rr rr
0

a b

1

�
�

A
A
�
�

A
A

We define a binary operation ∼ and→ onX by Tables 3 and 4, respectively.
Then X is an equality algebra. Clearly, S = {0, a} is an ideal of E , but it
isn’t close under the operation →, because a → 0 = b /∈ S.

Table 3. Cayley table for the binary operation “∼”

∼ 0 a b 1
0 1 b a 0
a b 1 b a
b a a 1 b
1 0 a b 1

Table 4. Cayley table for the binary operation “→”

→ 0 a b 1
0 1 1 1 1
a b 1 b 1
b a a 1 1
1 0 a b 1
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Definition 3.10. A fuzzy set λ in X is called an (∈,∈)-fuzzy sub-equality
algebra of X if the following assertion is valid.

(∀x, y ∈ X)(∀t, k ∈ [0, 1])

(
xt ∈ λ, yk ∈ λ ⇒

{
(x ∼ y)min{t,k} ∈ λ
(x ∧ y)min{t,k} ∈ λ)

)
.

(3.1)

Example 3.11. Let X be the equality algebra as in Example 3.9. Define a
fuzzy set λ in X as follows:

λ : X → [0, 1], x 7→


0.5 if x = 0,
0.4 if x = a,
0.4 if x = b,
0.8 if x = 1

Then λ is an (∈,∈)-fuzzy sub-equality algebra of X.

We consider characterizations of an (∈,∈)-fuzzy sub-equality algebra.

Theorem 3.12. A fuzzy set λ in X is an (∈,∈)-fuzzy sub-equality algebra
of X if and only if the following assertion is valid.

(∀x, y ∈ X)

(
λ(x ∼ y) ≥ min{λ(x), λ(y)}
λ(x ∧ y) ≥ min{λ(x), λ(y)}

)
. (3.2)

Proof: Assume that λ is an (∈,∈)-fuzzy sub-equality algebra of X. Note
that xλ(x) ∈ λ and yλ(y) ∈ λ for all x, y ∈ X. By (3.1), we have (x ∼
y)min{λ(x),λ(y)} ∈ λ and (x ∧ y)min{λ(x),λ(y)} ∈ λ. Then λ(x ∼ y) ≥
min{λ(x), λ(y)} and λ(x ∧ y) ≥ min{λ(x), λ(y)} for all x, y ∈ X.

Conversely, suppose λ satisfies the condition (3.2). Let x, y ∈ X and
t, k ∈ [0, 1] such that xt ∈ λ and yk ∈ λ. Then λ(x) ≥ t and λ(y) ≥ k,
which imply from (3.2) that

λ(x ∼ y) ≥ min{λ(x), λ(y)} ≥ min{t, k}
and

λ(x ∧ y) ≥ min{λ(x), λ(y)} ≥ min{t, k}.

Hence (x ∼ y)min{t,k} ∈ λ and (x ∧ y)min{t,k} ∈ λ. Therefore λ is an
(∈,∈)-fuzzy sub-equality algebra of X.
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Theorem 3.13. If a fuzzy set λ in X is an (∈,∈)-fuzzy sub-equality algebra
of X, then

(∀x, y ∈ X)(∀t, k ∈ [0, 1])
(
xt ∈ λ, yk ∈ λ ⇒ (x → y)min{t,k} ∈ λ

)
.

(3.3)

Proof: Assume that λ is an (∈,∈)-fuzzy sub-equality algebra of X. Let
x, y ∈ X and t, k ∈ [0, 1] be such that xt ∈ λ and yk ∈ λ. Then λ(x) ≥ t
and λ(y) ≥ k, which implies from (3.2) that

λ(x → y) = λ(x ∼ (x ∧ y))

≥ min{λ(x), λ(x ∧ y)}
≥ min{λ(x),min{λ(x), λ(y)}}
≥ min{λ(x), λ(y)}
≥ min{t, k}

Hence, (x → y)min{t,k} ∈ λ.

In the following example, we show that the converse of the above theo-
rem may not be true, in general.

Example 3.14. Let X be the equality algebra as in Example 3.9. Define a
fuzzy set λ in X as follows:

λ : X → [0, 1], x 7→


0.3 if x = 0,
0.4 if x = a,
0.4 if x = b,
0.8 if x = 1

Then λ is satisfies in (3.3). But, it isn’t an (∈,∈)-fuzzy sub-equality algebra
of X, since 0.3 = λ(a ∧ b) ≱ min{λ(a), λ(b)} = 0.4.

Theorem 3.15. If λ is a non-zero (∈,∈)-fuzzy sub-equality algebra of X,
then the set

X0 := {x ∈ X | λ(x) ̸= 0} (3.4)

is a sub-equality algebra of X.

Proof: Let x, y ∈ X0. Then λ(x) > 0 and λ(y) > 0. Note that xλ(x) ∈ λ
and yλ(y) ∈ λ. If λ(x ∼ y) = 0 or λ(x ∧ y) = 0, then λ(x ∼ y) =
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0 < min{λ(x), λ(y)} or λ(x ∧ y) = 0 < min{λ(x), λ(y)}, that is, (x ∼
y)min{λ(x),λ(y)}∈λ or (x∧y)min{λ(x),λ(y)}∈λ, which is a contradiction. Thus
λ(x ∼ y) ̸= 0 and λ(x∧y) ̸= 0. Hence x ∼ y ∈ X0 and x∧y ∈ X0. Therefore
X0 is a sub-equality algebra of X.

Definition 3.16. Let X be bounded. A fuzzy set λ in X is called an (∈,
∈)-fuzzy ideal of X if the following assertions are valid.

(∀x ∈ X)(∀t ∈ [0, 1])(xt ∈ λ ⇒ 0t ∈ λ), (3.5)

(∀x, y ∈ X)(∀t, k ∈ [0, 1])(xt ∈ λ, ¬(¬x → ¬y)k ∈ λ ⇒ ymin{t,k} ∈ λ).
(3.6)

Example 3.17. Let X be the equality algebra as in Example 3.9. Define a
fuzzy set λ in X by λ(0) = 0.8, λ(a) = 0.6 and λ(b) = λ(1) = 0.5. Then λ
is an (∈,∈)-fuzzy sub-equality algebra of X.

Theorem 3.18. The following are equivalent.

(i) A fuzzy set λ is a fuzzy ideal of X.

(ii) A fuzzy set λ is an (∈, ∈)-fuzzy ideal of X.

Proof: (i) ⇒ (ii): Let λ be a fuzzy ideal of X and xt ∈ λ. Then λ(x) ≥ t.
Since by Definition 2.6 λ(0) ≥ λ(x), for any x ∈ X, we have λ(0) ≥ λ(x) ≥ t
and so 0t ∈ λ. Now, suppose xt ∈ λ and ¬(¬x → ¬y)s ∈ λ. Then λ(x) ≥ t
and λ(¬(¬x → ¬y)) ≥ s. Since λ is a fuzzy ideal, we get

λ(y) ≥ min{λ(x), λ(¬(¬x → ¬y))} ≥ min{t, s},

Hence ymin{t,s}∈λ. Therefore, λ is an (∈, ∈)-fuzzy ideal of X.
(ii) ⇒ (i): Let λ be an (∈, ∈)-fuzzy ideal of X and λ(x) = t, for x ∈ X.
Then xt ∈ λ. By (3.5), 0t ∈ λ and so λ(0) ≥ t = λ(x). Hence, λ(0) ≥ λ(x).
Let x, y ∈ X such that λ(x) = t and λ(¬(¬x → ¬y)) = s. Then xt ∈ λ
and ¬(¬x → ¬y)s ∈ λ. By (3.6), we have ymin{t,s} ∈ λ and so, λ(y) ≥
min{t, s} = min{λ(x), λ(¬(¬x → ¬y))}.

Proposition 3.19. Let λ be an (∈, ∈)-fuzzy ideal of X. Then for all
x, y ∈ X, the following assertions are valid:

(1) ∀x ∈ X, λ(1) ≤ λ(x)

(2) ∀x, y ∈ X, λ(x → y) ≥ min{λ(x), λ(y)}

(3) ∀x, y ∈ X, if x ≤ y, then λ(x) ≥ λ(y)
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Proof: (1), (2) The proof is clear.
(3) Let x ≤ y. Then ¬y ≤ ¬x, so ¬(¬y → ¬x) = ¬1 = 0. Since λ is an (∈,
∈)-fuzzy ideal of X by Theorem 3.18 , we have

λ(x) ≥ min{λ(¬(¬y → ¬x)), λ(y)} = min{λ(0), λ(y)} = λ(y).

Thus λ is order reversing.

Proposition 3.20. If λ is a non-zero (∈, ∈)-fuzzy ideal of X, then X0 =
{x ∈ X|λ(x) ̸= 0} is an ideal of X.

Proof: Since λ is non-zero, there exists x ∈ X such that λ(x) ̸= 0 and
so X0 ̸= ∅. Suppose x ∈ X0. Then λ(x) > 0. By Theorem 3.18, λ(0) ≥
λ(x) > 0. Thus, 0 ∈ X0. Now, consider x,¬(¬x → ¬y) ∈ X0. Then by
Theorem 3.18, we have

λ(y) ≥ min{λ(x), λ(¬(¬x → ¬y))} > 0

Hence λ(y) > 0, and so y ∈ λ0. Therefore, X0 is an ideal of X.

In the following theorem, we investigate that under which condition,
the converse of Theorem 3.13 is true, in general.

Theorem 3.21. Let X be bounded and a fuzzy set λ in X be an (∈,∈)-fuzzy
ideal of X. If the following assertion is valid,

(∀x, y ∈ X)(∀t, k ∈ [0, 1])
(
xt ∈ λ, yk ∈ λ ⇒ (x → y)min{t,k} ∈ λ

)
,

(3.7)

then, the fuzzy set λ in X is an (∈,∈)-fuzzy sub-equality algebra of X.

Proof: Let xt ∈ λ and yk ∈ λ. Since for any x, y ∈ X, by (2.11) x ∼ y ≤
x → y and λ in X is an (∈,∈)-fuzzy ideal, by Proposition 3.19(3), we have

λ(x ∼ y) ≥ λ(x → y) ≥ min{λ(x), λ(y)} ≥ min{t, k}

Thus (x ∼ y)min{t,k} ∈ λ. Also, we know that x ∧ y ≤ x, y. Then
λ(x), λ(y) ≤ λ(x ∧ y), by Proposition 3.19(3). Hence, min{t, k} ≤
min{λ(x), λ(y)} ≤ λ(x ∧ y) and so, (x ∧ y)min{t,k} ∈ λ. Therefore, S is an
(∈,∈)-fuzzy sub-equality algebra of X
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Given a fuzzy set λ in X, we consider the set

U(λ; t) := {x ∈ X | λ(x) ≥ t}, (3.8)

which is called an ∈-level set of λ (related to t).

Theorem 3.22. A fuzzy set λ in X is an (∈,∈)-fuzzy sub-equality algebra
of X if and only if the non-empty ∈-level set U(λ; t) of λ is a sub-equality
algebra of X for all t ∈ [0, 1].

Proof: Let λ be a fuzzy set in X such that U(λ; t) is a non-empty sub-
equality algebra of X for all t ∈ [0, 1]. Let x, y ∈ X and t, k ∈ [0, 1]
be such that xt ∈ λ and yk ∈ λ. Then λ(x) ≥ t and λ(y) ≥ k, and so
x, y ∈ U(λ; min{t, k}). By hypothesis, we have x ∼ y ∈ U(λ; min{t, k}) and
x ∧ y ∈ U(λ; min{t, k}). Then (x ∼ y)min{t,k} ∈ λ and (x ∧ y)min{t,k} ∈ λ.
Therefore λ is an (∈,∈)-fuzzy sub-equality algebra of X.

Conversely, assume that λ is an (∈,∈)-fuzzy sub-equality algebra of X.
Let x, y ∈ U(λ; t) for all t ∈ [0, 1]. Then λ(x) ≥ t and λ(y) ≥ t, that is,
xt ∈ λ and yt ∈ λ. By (3.1) we have (x ∼ y)t ∈ λ and (x ∧ y)t ∈ λ. Then
x ∼ y ∈ U(λ; t) and x∧y ∈ U(λ; t). Therefore U(λ; t) of λ is a sub-equality
algebra of X for all t ∈ [0, 1].

Corollary 3.23. Consider a fuzzy set λ in X is an (∈,∈)-fuzzy sub-
equality algebra of X. Then λ is closed under the operation → if and only
if the non-empty ∈-level set U(λ; t) of λ is closed under the operation →.

Proof: Let a fuzzy set λ in X be an (∈,∈)-fuzzy sub-equality algebra of
X. For any x, y ∈ U(λ; t), λ(x), λ(y) ≥ t and we get λ(x → y) = λ(x ∼
(x ∧ y)) ≥ min{λ(x), λ(y)} ≥ t. Hence x → y ∈ U(λ; t).
Conversely, suppose U(λ; t) is closed under the operation →. Let x, y ∈ X
and t, k ∈ [0, 1] be such that xt ∈ λ and yk ∈ λ. Then λ(x) ≥ t and
λ(y) ≥ k, and so λ(x), λ(y) ≥ min{t, k}. Thus x, y ∈ U(λ; min{t, k}).
Since U(λ; t) is closed under →, we get x → y ∈ U(λ; min{t, k}). Hence
λ(x → y) ≥ min{t, k}.

Theorem 3.24. Let λ be an (∈,∈)-fuzzy sub-equality algebra of X. Then
the following are equivalent.

(i) λ is an (∈,∈)-fuzzy ideal of X.

(ii) The nonempty set U(λ; t) is an ideal of X.
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Proof: (i) ⇒ (ii): Let λ be an (∈, ∈)-fuzzy ideal of X such that x ∈
U(λ; t). Then λ(x) ≥ t. By (i), since xt ∈ λ, we have 0t ∈ λ and so λ(0) ≥ t.
Hence, 0 ∈ U(λ; t). Now, suppose x,¬(¬x → ¬y) ∈ U(λ; t). Then λ(x) ≥ t
and λ(¬(¬x → ¬y)) ≥ t and so xt ∈ λ and ¬(¬x → ¬y)t ∈ λ. By (i), we
have yt ∈ λ and so λ(y) ≥ t. Thus, y ∈ U(λ; t). Therefore U(λ; t) is an
ideal of X.
(ii) ⇒ (i): Let xt ∈ λ. Then λ(x) ≥ t and so x ∈ U(λ; t). By (ii), 0 ∈
U(λ; t) and so λ(0) ≥ t. Hence 0t ∈ λ. Suppose xt ∈ λ and ¬(¬x → ¬y)k ∈
λ. Then x,¬(¬x → ¬y) ∈ U(λ; min{t, k}). By (ii), y ∈ U(λ; min{t, k}).
Hence ymin{t,k} ∈ λ. Therefore, λ is an (∈, ∈)-fuzzy ideal of X.

Theorem 3.25. Let S be an ideal of X. For any t ∈ [0, 1], there exists an
(∈,∈)-fuzzy ideal λ of X such that U(λ; t) = S.

Proof: Let t ∈ [0, 1] and λ : X −→ [0, 1] is defined by λ(x) = t, for any
x ∈ S and λ(x) = 0, otherwise. By definition, clearly U(λ; t) = S. So it
is enough to prove that λ is an (∈, ∈)-fuzzy ideal of X. Let x ∈ X. Then
λ(x) = 0 or λ(x) = t. Since S is an ideal of X, we have 0 ∈ S and so
λ(0) = t. Hence, λ(0) ≥ λ(x), for any x ∈ X.
Now, suppose xt ∈ λ and ¬(¬x → ¬y)k ∈ λ. Then, we have the following
cases:

Case 1: If λ(x) = λ(¬(¬x → ¬y)) = t. Then x,¬(¬x → ¬y) ∈ S. Since
S is an ideal of X, we have y ∈ S and so λ(y) = t. Hence,
λ(y) ≥ min{λ(x), λ(¬(¬x → ¬y))}.

Case 2: If λ(x) = t and λ(¬(¬x → ¬y)) = 0. Then x ∈ S and ¬(¬x →
¬y) /∈ S. Then λ(y) = 0 or λ(y) = t and in both case λ(y) ≥
min{λ(x), λ(¬(¬x → ¬y))} = 0.

Case 3: If λ(x) = 0 and λ(¬(¬x → ¬y)) = t, then similar to Case 2,
λ(y) ≥ min{λ(x), λ(¬(¬x → ¬y))}.

Case 4: If λ(x) = λ(¬(¬x → ¬y)) = 0, then x,¬(¬x → ¬y) /∈ S. Clearly,

λ(y) ≥ min{λ(x), λ(¬(¬x → ¬y))} = 0.

Therefore, λ is an (∈, ∈)-fuzzy ideal of X.

Definition 3.26. Let X be bounded. A fuzzy set λ in X is called a fuzzy
prime ideal of X if the following assertions are valid.
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(∀x ∈ X)(λ(0) ≥ λ(x)) (3.9)

(∀x, y ∈ X)

 λ(¬(x → y)) ≥ min{λ(x), λ(y)}
or
λ(¬(y → x)) ≥ min{λ(y), λ(x)}

(3.10)

Example 3.27. Let X = {0, a, b, c, 1} be a set with the following Hasse
diagram.

rr
r rr

0

c

a b

1

�
�

A
A
�
�

A
A

Then (X,∧, 1) is a commutative idempotent integral monoid. We define
a binary operation ∼ on X by Table 5. Then (X,∧,∼, 1) is an equality

Table 5. Cayley table for the implication “∼”

∼ 0 a b c 1
0 1 0 0 0 0
a 0 1 b a c
b 0 b 1 c a
c 0 a c 1 b
1 0 c a b 1

algebra, and the implication “→” is given by Table 6. We define a fuzzy
set λ in X as follows:

λ : X → [0, 1], x 7→


0.7 if x = 0,
0.6 if x = c,
0.5 if x = a,
0.3 if x ∈ {b, 1}.

Then λ is a fuzzy prime ideal of X.
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Table 6. Cayley table for the implication “→”

→ 0 a b c 1
0 1 1 1 1 1
a 0 1 1 1 1
b 0 b 1 b 1
c 0 a a 1 1
1 0 c a b 1

Definition 3.28. Let X be bounded. A fuzzy set λ in X is called an (∈,
∈)-fuzzy prime ideal of X if the following assertions are valid.

(∀x, y ∈ X)(∀t, k ∈ [0, 1])

xt ∈ λ, yk ∈ λ ⇒

 ¬(x → y)min{t,k} ∈ λ
or
¬(y → x)min{t,k} ∈ λ

.

(3.11)

Example 3.29. LetX be an equality algebra in as Example 3.27. Obviously,
λ is an (∈, ∈)-fuzzy prime ideal of X.

Theorem 3.30. Let X be bounded. Then, λ is a fuzzy prime ideal of X if
and only if U(λ; t) is a prime ideal of X.

Proof: Let x ∈ U(λ; t). Then λ(x) ≥ t. Since λ is a fuzzy prime ideal of
X, we have λ(0) ≥ λ(x) ≥ t. Thus, 0 ∈ U(λ; t). Suppose x, y ∈ U(λ; t).
Then λ(x), λ(y) ≥ t. Since λ(¬(x → y)) ≥ min{λ(x), λ(y)} ≥ t or λ(¬(y →
x)) ≥ t, we have ¬(x → y) ∈ U(λ; t) or ¬(y → x) ∈ U(λ; t). Hence U(λ; t)
is a prime ideal of X.
Conversely, assume λ(x) = t. Then λ(x) ≥ t and so x ∈ U(λ; t). Since
U(λ; t) is a prime ideal of X, 0 ∈ U(λ; t). Thus λ(0) ≥ t = λ(x). Suppose
xt ∈ λ and yk ∈ λ. Then x, y ∈ U(λ; min{t, k}). Since U(λ; min{t, k})
is a prime ideal, we have ¬(x → y) ∈ U(λ; min{t, k}) or ¬(y → x) ∈
U(λ; min{t, k}). Hence ¬(x → y)min{t,k} ∈ λ or ¬(y → x)min{t,k} ∈ λ, so λ
is a fuzzy prime ideal of X.

Theorem 3.31. A fuzzy set λ in X is an (∈,∈)-fuzzy prime ideal of X if
and only if λ is a fuzzy prime ideal.

Proof: The proof is similar to the proof of Theorem 3.18.
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Theorem 3.32. Let λ in X be an (∈,∈)-fuzzy ideal on X. Define the
relation

x ≡λ y ⇐⇒ ¬(¬x → ¬y)λ(0) ∈ λ and ¬(¬y → ¬x)λ(0) ∈ λ,

for any x, y ∈ X. Then ≡λ is an equivalence relation on X

Proof: Let x, y, z ∈ X. Clearly, the relation ≡λ is reflexive and symmet-
ric. Suppose x ≡λ y and y ≡λ z. Then ¬(¬x → ¬y)λ(0) ∈ λ,¬(¬y →
¬x)λ(0) ∈ λ,¬(¬y → ¬z)λ(0) ∈ λ and ¬(¬z → ¬y)λ(0) ∈ λ. Thus by (2.9)
and (2.12) we have

¬y → ¬z ≤ (¬x → ¬y) → (¬x → ¬z) ≤ ¬¬(¬x → ¬y) → ¬¬(¬x → ¬z),

and so,
¬(¬¬(¬x → ¬y) → ¬¬(¬x → ¬z)) ≤ ¬(¬y → ¬z).

Since λ is an (∈,∈)-fuzzy ideal of X, by Proposition 3.19(3), we get

λ(0) = λ(¬(¬y → ¬z))
≤ λ(¬(¬¬(¬x → ¬y) → ¬¬(¬x → ¬z)))
≤ λ(0).

Hence (¬(¬¬(¬x → ¬y) → ¬¬(¬x → ¬z)))λ(0) ∈ λ. In addition by
assumption and Theorem 3.18, we have

λ(¬(¬x → ¬z)) ≥ min{λ(¬(¬¬(¬x → ¬y) → ¬¬(¬x → ¬z))),
λ(¬(¬x → ¬y))}

= min{λ(0), λ(0)} = λ(0)

Hence ¬(¬x → ¬z)λ(0) ∈ λ. By similar way, ¬(¬z → ¬x)λ(0) ∈ λ, and so
≡λ(0) is transitive. Therefore, ≡λ(0) is an equivalence relation on X.

Note. Denote by [x]λ the set {y ∈ X|x ≡λ y} and X
≡λ

the set {[x]λ|x ∈ X}.

Proposition 3.33. Let λ in X be an (∈,∈)-fuzzy ideal on X. Then [0] =
{x ∈ X|λ(x) = λ(0)} and [1] = {x ∈ X|λ(¬x) = λ(0)}.



212  M. Aaly Kologani, M. Mohseni Takallo, Y. B. Jun, R. A. Borzooei

Proof: Let λ be an (∈,∈)-fuzzy ideal on X. Then [0] = {x ∈ X|x ≡λ(0)

0} = {x ∈ X|λ(¬(¬x → ¬0)) = λ(0) and λ(¬(¬0 → ¬x)) = λ(0)} = {x ∈
X|λ(¬¬x) = λ(0)}. Since x ≤ ¬¬x and λ is an (∈,∈)-fuzzy ideal of X, by
Proposition 3.19(3), λ(0) = λ(¬¬x) ≤ λ(x) ≤ λ(0). Hence, λ(x) = λ(0).
So [0] = {x ∈ X|λ(¬¬x) = λ(0)} = {x ∈ X|λ(x) = λ(0)}. The proof of
other case is similar.

Proposition 3.34. Let λ be an (∈,∈)-fuzzy ideal of X. Define

[x] ≤ [y] ⇐⇒ ¬(¬x → ¬y)λ(0) ∈ λ,

for any [x], [y] ∈ X
≡λ(0)

. Then ( X
≡λ(0)

,≤) is a poset.

Proof: Let [x], [y] ∈ X
≡λ(0)

. Obviously, ≤ is reflexive. Suppose [x] ≤ [y]

and [y] ≤ [x]. Then ¬(¬x → ¬y)λ(0) ∈ λ and ¬(¬y → ¬x)λ(0) ∈ λ. Thus
x ≡λ(0) y and so [x] = [y]. Assume that [x] ≤ [y] and [y] ≤ [z] for any
x, y, z ∈ X. Then ¬(¬x → ¬y)λ(0) ∈ λ and ¬(¬y → ¬z)λ(0) ∈ λ. By
similar to the proof of Theorem 3.32, we have

λ(¬(¬y → ¬z)) ≤ λ(¬(¬¬(¬x → ¬y) → ¬¬(¬x → ¬z))).

From ¬(¬y → ¬z)λ(0) ∈ λ, we get ¬(¬¬(¬x → ¬y) → ¬¬(¬x → ¬z))λ(0) ∈
λ, and so by Theorem 3.18, we have

λ(¬(¬x → ¬z)) ≥ min{λ(¬(¬¬(¬x → ¬y) → ¬¬(¬x → ¬z)),
λ(¬(¬x → ¬y))}

= min{λ(0), λ(0)}
= λ(0).

Hence ¬(¬x → ¬z)λ(0) ∈ λ and so [x] ≤ [z]. Therefore, ( X
≡λ(0)

,≤) is a

poset.

Theorem 3.35. Let λ be an (∈,∈)-fuzzy ideal of X. Define

x ∼λ y ⇐⇒ ¬(x → y)λ(0) ∈ λ and ¬(y → x)λ(0) ∈ λ

Then for any x, y ∈ X, ∼λ is an equivalence relation on X.
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Proof: Let λ be an (∈,∈)-fuzzy ideal of X. Clearly the relation ∼λ is a
reflexive and symetric relation on X. Suppose x, y, z ∈ X such that x ∼λ y
and y ∼λ z. Then ¬(x → y)λ(0) ∈ λ,¬(y → x)λ(0) ∈ λ,¬(y → z)λ(0) ∈
λ and ¬(z → y)λ(0) ∈ λ. Then by (2.11) and (2.9) we have,

x → y ≤ (y → z) → (x → z) ≤ ¬(x → z) → ¬(y → z).

Thus ¬(¬(x → z) → ¬(y → z)) ≤ ¬(x → y). Since λ is an (∈,∈)-
fuzzy ideal of X, by Proposition 3.19(3), we get λ(0) = λ(¬(x → y)) ≤
λ(¬(¬(x → z) → ¬(y → z))) ≤ λ(0). Hence ¬(¬(x → z) → ¬(y →
z))λ(0) ∈ λ. Since

¬(¬(x → z) → ¬(y → z)) = ¬(¬(x → z) → ¬¬¬(y → z))

= ¬(¬¬(y → z) → ¬¬(x → z)),

by Theorem 3.18, we have ¬(¬¬(y → z) → ¬¬(x → z))λ(0) ∈ λ and ¬(y →
z)λ(0) ∈ λ, we get ¬(x → z)λ(0) ∈ λ. By similar way, ¬(z → x)λ(0) ∈ λ,
and so x ∼λ z. Therefore ∼λ is an equivalence relation on X.

Also, similar to Proposition 3.34, we can define an order ≤ on X as
follows:

[x] ≤ [y] ⇐⇒ ¬(x −→ y)λ(0) ∈ λ,

and prove that (X∼ ,≤) is a poset.

4. (∈,∈∨ q)-fuzzy sub-equality algebra

In this section, we define an (∈,∈ ∨ q)-fuzzy sub-equality of an equality
algebra X and investigate that the properties of the (∈,∈∨ q)-fuzzy sub-
equality algebras.

Definition 4.1. A fuzzy set λ inX is called an (∈,∈∨ q)-fuzzy sub-equality
algebra of X if the following assertion is valid.

(∀x, y ∈ X)(∀t, k ∈ [0, 1])

(
xt ∈ λ, yk ∈ λ ⇒

{
(x ∼ y)min{t,k} ∈∨ q λ
(x ∧ y)min{t,k} ∈∨ q λ

)
.

(4.1)
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Example 4.2. Consider the equality algebra (X,∼,∧, 1) which is described
in Example 3.9. Define a fuzzy set λ in X as follows:

λ : X → [0, 1], x 7→


0.8 if x = 1,
0.3 if x = a,
0.71 if x = 0,
0.73 if x = b.

Then λ is an (∈,∈∨ q)-fuzzy sub-equality algebra of X.

Note. Every (∈,∈)-fuzzy sub-equality algebra is an (∈,∈ ∨ q)-fuzzy sub-
equality algebra.

The converse of Note 4 is not true in general as seen in the following
example.

Example 4.3. The (∈,∈ ∨ q)-fuzzy sub-equality algebra µ in Example 4.2
is not an (∈,∈)-fuzzy sub-equality algebra of X since

0.3 = λ(a) = λ(b ∼ 0) ≱ min{λ(b), λ(0)} = 0.7

We consider characterizations of (∈,∈∨ q)-fuzzy sub-equality algebra.

Theorem 4.4. A fuzzy set λ in X is an (∈,∈∨ q)-fuzzy sub-equality algebra
of X if and only if the following assertion is valid.

(∀x, y ∈ X)

(
λ(x ∼ y) ≥ min{λ(x), λ(y), 0.5}
λ(x ∧ y) ≥ min{λ(x), λ(y), 0.5}

)
. (4.2)

Proof: Assume λ is an (∈,∈ ∨ q)-fuzzy sub-equality algebra of X and
x, y ∈ X. Suppose min{λ(x), λ(y)} < 0.5. If λ(x ∼ y) < min{λ(x), λ(y)},
then λ(x ∼ y) < t ≤ min{λ(x), λ(y)} for some t ∈ [0, 0.5), since t ≤
min{λ(x), λ(y)} < 0.5. It follows that xt ∈ λ and yt ∈ λ. By assumption,
(x ∼ y) ∈∨ qλ and so λ(x ∼ y) ≥ t or λ(x ∼ y) + t > 1. If λ(x ∼ y) ≥ t,
then is a contradiction, since λ(x ∼ y) < t. If λ(x ∼ y) + t > 1, then
λ(x ∼ y) > 1 − t > 0.5, is contradiction, since λ(x ∼ y) < 0.5. Hence,
λ(x ∼ y) ≥ min{λ(x), λ(y)}, and so (x ∼ y)t ∈ ∨ qλ. By the similar
discussion, we get λ(x∧ y) ≥ min{λ(x), λ(y)} whenever min{λ(x), λ(y)} <
0.5. Assume that min{λ(x), λ(y)} ≥ 0.5. Then x0.5 ∈ λ and y0.5 ∈ λ.
It follows from (4.1) that (x ∼ y)0.5 = (x ∼ y)min{0.5,0.5} ∈ ∨ q λ and
(x ∧ y)0.5 = (x ∧ y)min{0.5,0.5} ∈ ∨ q λ. Thus λ(x ∼ y) ≥ 0.5 and λ(x ∧
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y) ≥ 0.5. Consequently, λ(x ∼ y) ≥ min{λ(x), λ(y), 0.5} and λ(x ∧ y) ≥
min{λ(x), λ(y), 0.5}.

Conversely, suppose λ satisfies the condition (4.2). Let x, y ∈ X and
t, k ∈ [0, 1] be such that xt ∈ λ and yk ∈ λ. Then λ(x) ≥ t and
λ(y) ≥ k. If λ(x ∼ y) < min{t, k}, then min{λ(x), λ(y)} ≥ 0.5 because if
min{λ(x), λ(y)} < 0.5, then

λ(x ∼ y) ≥ min{λ(x), λ(y), 0.5} ≥ min{λ(x), λ(y)} ≥ min{t, k}

which is a contradiction. Hence, λ(x ∼ y) ≥ 0.5. Similarly, if λ(x ∧ y) <
min{t, k}, then min{λ(x), λ(y)} ≥ 0.5. It follows that

λ(x ∼ y) + min{t, k} > 2λ(x ∼ y) ≥ 2min{λ(x), λ(y), 0.5} ≥ 1

and

λ(x ∧ y) + min{t, k} > 2λ(x ∧ y) ≥ 2min{λ(x), λ(y), 0.5} = 1.

Hence (x ∼ y)min{t,k}qλ and (x∧y)min{t,k}qλ, and so (x ∼ y)min{t,k} ∈∨ qλ
and (x ∧ y)min{t,k} ∈∨ qλ. Therefore, λ is an (∈,∈∨ q)-fuzzy sub-equality
algebra of X.

Theorem 4.5. If a fuzzy set λ in X is an (∈,∈ ∨ q)-fuzzy sub-equality
algebra of X, then the following assertion is valid.

(∀x, y ∈ X)(∀t, k ∈ [0, 1])
(
xt ∈ λ, yk ∈ λ ⇒ (x → y)min{t,k} ∈∨ q λ

)
.

(4.3)

Proof: Assume λ is an (∈,∈ ∨ q)-fuzzy sub-equality algebra of X. Let
x, y ∈ X and t, k ∈ [0, 1] be such that xt ∈ λ and yk ∈ λ. Then λ(x) ≥ t
and λ(y) ≥ k, thus by Theorem 3.13, we have (x → y)min{t,k} ∈ λ. Hence,
(x → y)min{t,k} ∈∨ q λ.

In the following example, we show that the converse of the above theo-
rem may not be true, in general.

Example 4.6. According to Example 3.14, we have 0.3 = λ(a∧ b) = λ(0) ⩾̸
min{λ(a), λ(b)} = 0.4, also λ(a∧ b) +min{λ(a), λ(b)} ⩾̸ 1. Hence, λ is not
an (∈,∈∨ q)-fuzzy sub-equality.

Theorem 4.7. A fuzzy set λ in X is an (∈,∈∨ q)-fuzzy sub-equality algebra
of X if and only if the non-empty ∈-level set U(λ; t) of λ is a sub-equality
algebra of X for all t ∈ (0, 0.5].



216  M. Aaly Kologani, M. Mohseni Takallo, Y. B. Jun, R. A. Borzooei

Proof: Assume that λ is an (∈,∈∨ q)-fuzzy sub-equality algebra ofX. Let
x, y ∈ U(λ; t) for t ∈ (0, 0.5]. Then λ(x) ≥ t and λ(y) ≥ t. It follows from
Theorem 4.4 that λ(x ∼ y) ≥ min{λ(x), λ(y), 0.5} ≥ min{t, 0.5} = t and
λ(x ∧ y) ≥ min{λ(x), λ(y), 0.5} ≥ min{t, 0.5} = t. Hence x ∼ y ∈ U(λ; t)
and x ∧ y ∈ U(λ; t). Therefore, U(λ; t) is a sub-equality algebra of X.

Conversely, suppose the non-empty ∈-level set U(λ; t) of λ is a sub-
equality algebra of X for all t ∈ (0, 0.5]. If there exists x, y ∈ X such that
λ(x ∼ y) < min{λ(x), λ(y), 0.5} or λ(x ∧ y) < min{λ(x), λ(y), 0.5}, then
λ(x ∼ y) < t ≤ min{λ(x), λ(y), 0.5} or λ(x ∧ y) < t ≤ min{λ(x), λ(y), 0.5}
for some t ∈ (0, 1]. Hence t ≤ 0.5 and x, y ∈ U(λ; t), and by assumption
x ∼ y ∈ U(λ; t) and x ∧ y ∈ U(λ; t), and so λ(x ∼ y) ≥ t and λ(x ∧ y) ≥ t
which is a contradiction. Hence, λ(x ∼ y) ≥ min{λ(x), λ(y), 0.5} and
λ(x ∧ y) ≥ min{λ(x), λ(y), 0.5}. Therefore, by Theorem 4.4, λ is an (∈,∈
∨ q)-fuzzy sub-equality algebra of X.

We provide a condition for an (∈,∈∨ q)-fuzzy sub-equality algebra to
be an (∈,∈)-fuzzy sub-equality algebra.

Theorem 4.8. If an (∈,∈∨ q)-fuzzy sub-equality algebra λ of X satisfies
the condition

(∀x ∈ X)(λ(x) < 0.5), (4.4)

then λ is an (∈,∈)-fuzzy sub-equality algebra of X.

Proof: Let x, y ∈ X and t, k ∈ [0, 1] be such that xt ∈ λ and yk ∈ λ.
Then λ(x) ≥ t and λ(y) ≥ k. By assumption, (4.4), and Theorem 4.4, we
have

λ(x ∼ y) ≥ min{λ(x), λ(y), 0.5} = min{λ(x), λ(y)} ≥ min{t, k}

and

λ(x ∧ y) ≥ min{λ(x), λ(y), 0.5} = min{λ(x), λ(y)} ≥ min{t, k}.

Hence (x ∼ y)min{t,k} ∈ λ and (x ∧ y)min{t,k} ∈ λ. Therefore λ is an
(∈,∈)-fuzzy sub-equality algebra of X.

Proposition 4.9. If λ is a non-zero (∈,∈∨ q)-fuzzy sub-equality algebra
of X, then λ(1) > 0.

Proof: Assume that λ(1) = 0. Since λ is non-zero, there exists x ∈ X
such that λ(x) = t ̸= 0, and so for any t ∈ (0, 1], xt ∈ λ. Then λ(x ∼ x) =
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λ(1) = 0 and λ(x ∼ x) + t = λ(1) + t = t ≤ 1, that is, (x ∼ x)t∈λ and
(x ∼ x)t q λ. Thus (x ∼ x)t ∈∨ q λ, which is a contradiction. Therefore
λ(1) > 0.

Corollary 4.10. If λ is a non-zero (∈,∈)-fuzzy sub-equality algebra of X,
then λ(1) > 0.

Theorem 4.11. For any sub-equality algebra S of X and t ∈ [0, 0.5), there
exists an (∈,∈∨ q)-fuzzy sub-equality algebra λ of X such that U(λ; t) = S.

Proof: Let λ be a fuzzy set in X defined by

λ : X → [0, 1], x 7→
{

t if x ∈ S,
0 otherwise,

(4.5)

where t ∈ [0, 0.5). Obviously, U(λ; t) = S. Suppose that λ(x ∼ y) <
min{λ(x), λ(y), 0.5} or λ(x ∧ y) < min{λ(x), λ(y), 0.5} for some x, y ∈
X. Since |Im(λ)| = 2, it follows that λ(x ∼ y) = 0 or λ(x ∧ y) = 0,
and min{λ(x), λ(y), 0.5} = t. Since t < 0.5, we have λ(x) = t = λ(y)
and so x, y ∈ S. Then x ∼ y ∈ S and x ∧ y ∈ S, which imply that
λ(x ∼ y) = t and λ(x ∧ y) = t, which is a contradiction, and so λ(x ∼
y) ≥ min{λ(x), λ(y), 0.5} and λ(x ∧ y) ≥ min{λ(x), λ(y), 0.5}. Hence, by
Theorem 4.4, we know that λ is an (∈,∈ ∨ q)-fuzzy sub-equality algebra
of X.

For any fuzzy set λ in X and t ∈ [0, 1], we consider the following sets
and we call then q-level set and ∈∨ q-level set, respectively.

λt
q := {x ∈ X | xt q λ} and λt

∈∨ q := {x ∈ X | xt ∈∨ qλ}

Clearly, λt
∈∨ q = λt

∈ ∪ λt
q.

Theorem 4.12. A fuzzy set λ in X is an (∈,∈∨ q)-fuzzy sub-equality alge-
bra of X if and only if λt

∈∨ q is a sub-equality algebra of X for all t ∈ [0, 1].

Proof: Assume that λ is an (∈,∈ ∨ q)-fuzzy sub-equality algebra of X.
Let x, y ∈ λt

∈∨ q for t ∈ [0, 1]. Then xt ∈∨ qλ and yt ∈∨ qλ, i.e., λ(x) ≥ t
or λ(x) + t > 1, and λ(y) ≥ t or λ(y) + t > 1. It follows from (4.2) that
λ(x ∼ y) ≥ min{t, 0.5} and λ(x ∧ y) ≥ min{t, 0.5}. In fact, if λ(x ∼
y) < min{t, 0.5} or λ(x ∧ y) < min{t, 0.5}, then xt ∈∨ q λ or yt ∈∨ q λ, a
contradiction. If t ≤ 0.5, then λ(x ∼ y) ≥ min{t, 0.5} = t and λ(x ∧ y) ≥
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min{t, 0.5} = t. Hence x ∼ y ∈ U(λ; t) ⊆ λt
∈∨ q and x∧ y ∈ U(λ; t) ⊆ λt

∈∨ q.
If t > 0.5, then λ(x ∼ y) ≥ min{t, 0.5} = 0.5 and λ(x ∧ y) ≥ min{t, 0.5} =
0.5. Hence λ(x ∼ y) + t > 0.5 + 0.5 = 1 and λ(x ∧ y) + t > 0.5 + 0.5 = 1,
that is, (x ∼ y)t q λ and (x∧ y)t q λ. It follows that x ∼ y ∈ λt

q ⊆ λt
∈∨ q and

x ∧ y ∈ λt
q ⊆ λt

∈∨ q. Therefore λt
∈∨ q is a sub-equality algebra of X for all

t ∈ (0, 1].
Conversely, let λ be a fuzzy set in X and t ∈ [0, 1] such that λt

∈∨ q is a
sub-equality algebra of X. Suppose that λ(x ∼ y) < min{λ(x), λ(y), 0.5}
or λ(x ∧ y) < min{λ(x), λ(y), 0.5} for some x, y ∈ X. Then λ(x ∼ y) <
k < min{λ(x), λ(y), 0.5} or λ(x ∧ y) < k < min{λ(x), λ(y), 0.5} for some
k ∈ (0, 0.5). Hence x, y ∈ U(λ; k) ⊆ λk

∈∨ q, and so x ∼ y ∈ λk
∈∨ q and

x ∧ y ∈ λk
∈∨ q. Thus λ(x ∼ y) ≥ k or λ(x ∼ y) + k > 1, and λ(x ∧ y) ≥

k or λ(x ∧ y) + k > 1. This is a contradiction, and therefore λ(x ∼
y) ≥ min{λ(x), λ(y), 0.5} and λ(x ∧ y) ≥ min{λ(x), λ(y), 0.5} for all x, y ∈
X. Consequently, λ is an (∈,∈ ∨ q)-fuzzy sub-equality algebra of X by
Theorem 4.4.

Theorem 4.13. If λ is an (∈,∈∨ q)-fuzzy sub-equality algebra of X, then
the q-set λt

q is a sub-equality algebra of X for all t ∈ (0.5, 1].

Proof: Let x, y ∈ λt
q for t ∈ (0.5, 1]. Then λ(x) + t > 1 and λ(y) + t > 1,

and so λ(x) > 1 − t, and λ(y) > 1 − t. By assumption, we have (x ∼
y)1−t ∈∨ qλ and (x ∧ y)1−t ∈∨ qλ. Thus, by Theorem 4.4 that

λ(x ∼ y) ≥ min{λ(x), λ(y), 0.5} > min{1− t, 0.5},

since t ∈ (0.5, 1], we have 1 − t ∈ [0, 0.5) and so 1 − t < 0.5. Thus,
λ(x ∼ y) ≥ min{1 − t, 0.5} = 1 − t and so λ(x ∼ y) + t > 1. Hence
x ∼ y ∈ λt

q. Similarly, we have x ∧ y ∈ λt
q.

Theorem 4.14. Let f : X → Y be a homomorphism of equality algebras. If
λ and µ are (∈,∈∨ q)-fuzzy sub-equality algebras of X and Y , respectively,
then

(1) f−1(µ) is an (∈,∈∨ q)-fuzzy sub-equality algebra of X.

(2) If f is onto and λ satisfies the condition

(∀T ⊆ X)(∃x0 ∈ T )

(
λ(x0) = sup

x∈T
λ(x)

)
, (4.6)

then f(λ) is an (∈,∈∨ q)-fuzzy sub-equality algebra of Y .
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Proof: (1) Let x, y ∈ X and t, k ∈ [0, 1] be such that xt ∈ f−1(µ) and
yk ∈ f−1(µ). Then (f(x))t ∈ µ and (f(y))k ∈ µ. Since µ is an (∈,∈∨ q)-
fuzzy sub-equality algebra of Y , we have

(f(x ∼ y))min{t,k} = (f(x) ∼ f(y))min{t,k} ∈∨ q µ

and

(f(x ∧ y))min{t,k} = (f(x) ∧ f(y))min{t,k} ∈∨ q µ.

Hence (x ∼ y)min{t,k} ∈∨ q f−1(µ) and (x∧ y)min{t,k} ∈∨ q f−1(µ). There-
fore, f−1(µ) is an (∈,∈∨ q)-fuzzy sub-equality algebra of X.

(2) Let a, b ∈ Y and t, k ∈ [0, 1] be such that at ∈ f(λ) and bk ∈ f(λ).
Then (f(λ))(a) ≥ t and (f(λ))(b) ≥ k. Using the condition (4.6), there
exist x ∈ f−1(a) and y ∈ f−1(b) such that

λ(x) = sup
z∈f−1(a)

λ(z) and λ(y) = sup
w∈f−1(b)

λ(w).

Then xt ∈ λ and yk ∈ λ, which imply that (x ∼ y)min{t,k} ∈ ∨ q λ and
(x ∧ y)min{t,k} ∈ ∨ q λ, since λ is an (∈,∈ ∨ q)-fuzzy sub-equality algebra
of X. Now, x ∼ y ∈ f−1(a ∼ b) and x ∧ y ∈ f−1(a ∧ b), and so (f(λ))(a ∼
b) ≥ λ(x ∼ y) and (f(λ))(a ∧ b) ≥ λ(x ∧ y). Hence,

(f(λ))(a ∼ b) ≥ min{t, k} or (f(λ))(a ∼ b) + min{t, k} > 1

and

(f(λ))(a ∧ b) ≥ min{t, k} or (f(λ))(a ∧ b) + min{t, k} > 1,

that is, (a ∼ b)min{t,k} ∈∨ q f(λ) and (a ∧ b)min{t,k} ∈∨ q f(λ). Therefore,
f(λ) is an (∈,∈∨ q)-fuzzy sub-equality algebra of Y .

5. Conclusion

Our aim was to define the concepts of an (∈,∈)-fuzzy sub-equality algebra,
an (∈,∈∨ q)-fuzzy sub-equality algebra and we discussed some properties
and found some equivalent definitions of them. Then, we discussed char-
acterizations of an (∈,∈)-fuzzy sub-equality algebra and an (∈,∈ ∨ q)-fu-
zzy sub-equality algebra. Also, we found relations between an (∈,∈)-fuzzy
sub-equality algebra and an (∈,∈∨ q)-fuzzy sub-equality algebra.
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