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Abstract

This paper gives a broad account of the various sequent-based proof formalisms
in the proof-theoretic literature. We consider formalisms for various modal and
tense logics, intuitionistic logic, conditional logics, and bunched logics. After
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$\forall wwRw$


$\Box \forma \rightarrow \forma $


$\forall w,u(wRu\imp uRw)$


$\forma \rightarrow \Box \neg \Box \neg \forma $


$\forall w,v,u(wRv\land vRu\imp wRu)$


$\Box \forma \rightarrow \Box \Box \forma $


$\forall w,v,u(wRv\land wRu\imp vRu)$


$\neg \Box \forma \rightarrow \Box \neg \Box \forma $


   S  (   CP   ) 


$\scalc $


$\phantom {\Gamma }$


   (  𝑖  𝑑  ) 


$\id $


$\Gamma ,p\sar p,\Delta $


$\phantom {\Gamma }$


   (    ⊥  𝑙   ) 


$\botl $


$\bot ,\Gamma \sar \Delta $


$\Gamma ,A,B\sar \Delta $


   (    ∧  𝑙   ) 


$\conl $


$\Gamma ,A\land B\sar \Delta $


$\Gamma \sar A,\Delta $


$\Gamma \sar B,\Delta $


   (    ∧  𝑟   ) 


$\conr $


$\Gamma \sar \forma \land \formb ,\Delta $


$\Gamma ,\forma \sar \Delta $


$\Gamma ,\formb \sar \Delta $


   (    ∨  𝑙   ) 


$\disl $


$\Gamma ,\forma \lor \formb \sar \Delta $


$\Gamma \sar \forma ,\formb ,\Delta $


   (    ∨  𝑟   ) 


$\disr $


$\Gamma \sar \forma \lor \formb ,\Delta $


$\Gamma \sar \forma ,\Delta $


$\Gamma ,\formb \sar \Delta $


$\rightarrow _l$


$\Gamma ,\forma \rightarrow \formb \sar \Delta $


$\Gamma ,\forma \sar \formb ,\Delta $


$\rightarrow _r$


$\Gamma \sar \forma \rightarrow \formb ,\Delta $


   S  (   CP   ) 


$\mathsf {S(CP)}$


   Γ  ⇒  Δ 


$\Gamma \sar \Delta $


   𝑤    𝑘  𝑙  


$wk_l$


$\Gamma ,A\sar \Delta $


$\Gamma \sar \Delta $


   𝑤    𝑘  𝑟  


$wk_r$


$\Gamma \sar \Delta ,A$


$\Gamma ,A,A\sar \Delta $


   𝑐    𝑟  𝑙  


$cr_l$


$\Gamma ,\forma \sar \Delta $


$\Gamma \sar A,A,\Delta $


   𝑐    𝑟  𝑟  


$cr_r$


$\Gamma \sar A,\Delta $


$\Gamma \sar \forma ,\Delta $


$\Gamma ,\forma \sar \Delta $


   (  𝑐  𝑢  𝑡  ) 


$\cut $


$\Gamma \sar \Delta $


$\scalc $


$\phantom {\Gamma }$


$\id $


$\Delta ,p,\dual p$


$A,\Delta $


$B,\Delta $


$\conr $


$\forma \land \formb ,\Delta $


$\forma ,\formb ,\Delta $


$\disr $


$\forma \lor \formb ,\Delta $


   S  (   IL   ) 


$\scalcint $


$\Gamma ,\forma \iimp \formb ,\formb \sar \Delta $


$\Gamma ,\forma \iimp \formb \sar \forma ,\Delta $


   (    ⊃  𝑙   ) 


$\iimpl $


$\Gamma ,\forma \iimp \formb \nsar \Delta $


$\Gamma ,\forma \sar \formb $


   (    ⊃  𝑟   ) 


$\iimpr $


$\Gamma \sar \forma \iimp \formb ,\Delta $


   H  (  S  5  ) 


$\hcalcsv $


   S  5 


$\logicsv $


$\phantom {\Gamma }$


$\id $


$G\mid \Gamma ,p\hsar p,\Delta $


$\phantom {\Gamma }$


$\botl $


$G\mid \Gamma ,\bot \hsar \Delta $


$G\mid \Gamma \hsar \Delta \mid \ \hsar \forma $


   (    ^^03  𝑟   ) 


$\boxr $


$G\mid \Gamma \hsar \Box \forma ,\Delta $


$G\mid \Gamma ,\Box \forma ,\forma \hsar \Delta $


   (    ^^03    𝑙  1    ) 


$\boxli $


$G\mid \Gamma ,\Box \forma \hsar \Delta $


$G\mid \Gamma ,\Box \forma \hsar \Delta \mid \Sigma ,\forma \sar \Pi $


   (    ^^03    𝑙  2    ) 


$\boxlii $


$G\mid \Gamma ,\Box \forma \hsar \Delta \mid \Sigma \sar \Pi $


    LBI  


$\relax \mathsf {LBI}$


           𝐴  ⇒  𝐴    


$\dfrac {}{\SEQ {\VPA }{\VPA }}$


   (   id   ) 


$(\PRN {id})$


             ∅        𝔪     ⇒      ⊤      𝔪       


$\dfrac {}{\SEQ {\BImnul }{\BImtop }}$


   (        ⊤      𝔪     r   ) 


$(\PRNR {\BImtop })$


             ∅        𝔞     ⇒      ⊤      𝔞       


$\dfrac {}{\SEQ {\BIanul }{\BIatop }}$


   (        ⊤      𝔞     r   ) 


$(\PRNR {\BIatop })$


           Γ  (  ⊥  )  ⇒  𝐴    


$\dfrac {}{\SEQ {\SG (\BIabot )}{\VPA }}$


   (    ⊥  l   ) 


$(\PRNL {\BIabot })$


         Γ  (    ∅        𝔪     )  ⇒  𝐴     Γ  (      ⊤      𝔪     )  ⇒  𝐴    


$\dfrac {\SEQ {\SG (\BImnul )}{\VPA }}{\SEQ {\SG (\BImtop )}{\VPA }}$


   (        ⊤      𝔪     l   ) 


$(\PRNL {\BImtop })$


       Γ  (    ∅        𝔞     )  ⇒  𝐴     Γ  (      ⊤      𝔞     )  ⇒  𝐴   


$\frac {\SEQ {\SG (\BIanul )}{\VPA }}{\SEQ {\SG (\BIatop )}{\VPA }}$


   (        ⊤      𝔞     l   ) 


$(\PRNL {\BIatop })$


           Γ  (  𝐵  )  ⇒  𝐴       Γ  (  𝐶  )  ⇒  𝐴      Γ  (  𝐵      ∨    𝐶  )  ⇒  𝐴    


$\dfrac {\SEQ {\SG (\VPB )}{\VPA }\quad \SEQ {\SG (\VPC )}{\VPA }}{\SEQ {\SG (\VPB \BIaor \VPC )}{\VPA }}$


   (        ∨    l   ) 


$(\PRNL {\BIaor })$


         Γ  ⇒    𝐴    i    ∈    {    1  ,  2    }       Γ  ⇒    𝐴  1       ∨      𝐴  2     


$\dfrac {\SEQ {\SG }{\VPA _{\mathrm {i}\, \in \, \ens {1,2}}}}{\SEQ {\SG }{\VPA _1\BIaor \VPA _2}}$


   (        ∨    r  i   ) 


$(\PRNR {\BIaor ^\mathrm {i}})$


           Δ  ⇒  𝐵       Γ  (  𝐶  )  ⇒  𝐴      Γ  (  𝐵      −    ∗    𝐶  ,  Δ  )  ⇒  𝐴    


$\dfrac {\SEQ {\SD }{\VPB }\quad \SEQ {\SG (\VPC )}{\VPA }}{\SEQ {\SG (\VPB \BImimp \VPC \BImsep \SD )}{\VPA }}$


   (        −    ∗    l   ) 


$(\PRNL {\BImimp })$


         Γ  ,  𝐴  ⇒  𝐵     Γ  ⇒  𝐴      −    ∗    𝐵    


$\dfrac {\SEQ {\SG \BImsep \VPA }{\VPB }}{\SEQ {\SG }{\VPA \BImimp \VPB }}$


   (        −    ∗    r   ) 


$(\PRNR {\BImimp })$


         Γ  (  𝐵  ,  𝐶  )  ⇒  𝐴     Γ  (  𝐵      ∗    𝐶  )  ⇒  𝐴    


$\dfrac {\SEQ {\SG (\VPB \BImsep \VPC )}{\VPA }}{\SEQ {\SG (\VPB \BImand \VPC )}{\VPA }}$


   (        ∗    l   ) 


$(\PRNL {\BImand })$


           Γ  ⇒  𝐴       Δ  ⇒  𝐵      Γ  ,  Δ  ⇒  𝐴      ∗    𝐵    


$\dfrac {\SEQ {\SG }{\VPA }\quad \SEQ {\SD }{\VPB }}{\SEQ {\SG \BImsep \SD }{\VPA \BImand \VPB }}$


   (        ∗    r   ) 


$(\PRNR {\BImand })$


           Δ  ⇒  𝐵       Γ  (  𝐶  )  ⇒  𝐴      Γ  (  𝐵      ⊃    𝐶  ;  Δ  )  ⇒  𝐴    


$\dfrac {\SEQ {\SD }{\VPB }\quad \SEQ {\SG (\VPC )}{\VPA }}{\SEQ {\SG (\VPB \BIaimp \VPC \BIasep \SD )}{\VPA }}$


   (        ⊃    l   ) 


$(\PRNL {\BIaimp })$


         Γ  ;  𝐴  ⇒  𝐵     Γ  ⇒  𝐴      ⊃    𝐵    


$\dfrac {\SEQ {\SG \BIasep \VPA }{\VPB }}{\SEQ {\SG }{\VPA \BIaimp \VPB }}$


   (        ⊃    r   ) 


$(\PRNR {\BIaimp })$


         Γ  (  𝐵  ;  𝐶  )  ⇒  𝐴     Γ  (  𝐵      ∧    𝐶  )  ⇒  𝐴    


$\dfrac {\SEQ {\SG (\VPB \BIasep \VPC )}{\VPA }}{\SEQ {\SG (\VPB \BIaand \VPC )}{\VPA }}$


   (        ∧    l   ) 


$(\PRNL {\BIaand })$


           Γ  ⇒  𝐴       Δ  ⇒  𝐵      Γ  ;  Δ  ⇒  𝐴      ∧    𝐵    


$\dfrac {\SEQ {\SG }{\VPA }\quad \SEQ {\SD }{\VPB }}{\SEQ {\SG \BIasep \SD }{\VPA \BIaand \VPB }}$


   (        ∧    r   ) 


$(\PRNR {\BIaand })$


         Γ  (    Δ  1   )  ⇒  𝐴     Γ  (    Δ  1   ;    Δ  2   )  ⇒  𝐴    


$\dfrac {\SEQ {\SG (\SD _1)}{\VPA }}{\SEQ {\SG (\SD _1\BIasep \SD _2)}{\VPA }}$


   (   WK   ) 


$(\PRN {WK})$


         Γ  (  Δ  ;  Δ  )  ⇒  𝐴     Γ  (  Δ  )  ⇒  𝐴    


$\dfrac {\SEQ {\SG (\SD \BIasep \SD )}{\VPA }}{\SEQ {\SG (\SD )}{\VPA }}$


   (   CR   ) 


$(\PRN {CR})$


         Γ  ⇒  𝐴     Δ  ⇒  𝐴    


$\dfrac {\SEQ {\SG }{\VPA }}{\SEQ {\SD }{\VPA }}$


   (    𝛤  ≡  𝛥   ) 


$(\PRN {\SG \BIequi \SD })$


           Δ  ⇒  𝐵       Γ  (  𝐵  )  ⇒  𝐴      Γ  (  Δ  )  ⇒  𝐴    


$\dfrac {\SEQ {\SD }{\VPB }\quad \SEQ {\SG (\VPB )}{\VPA }}{\SEQ {\SG (\SD )}{\VPA }}$


   (   CUT   ) 


$(\PRN {CUT})$


   N  (   Kt   ) 


$\ncalckt $


    Kt  


$\logickt $


$\phantom {\Gamma }$


$\id $


$\ns \{\Gamma ,p,\dual p\}$


$\ns \{\Gamma ,\forma ,\formb \}$


   (  ∨  ) 


$\disru $


$\ns \{\Gamma ,\forma \lor \formb \}$


$\ns \{\Gamma ,\forma \}$


$\ns \{\Gamma ,\formb \}$


   (  ∧  ) 


$\conru $


$\ns \{\Gamma ,\forma \land \formb \}$


$\ns \{\Gamma ,\wnest {\forma }\}$


   (  ^^03  ) 


$\boxru $


$\ns \{\Gamma ,\Box \forma \}$


$\ns \{\dia \forma ,\wnest {\Gamma , \forma }\}$


   (    ^^06  1   ) 


$\diarui $


$\ns \{\dia \forma ,\wnest {\Gamma }\}$


$\ns \{\Gamma ,\forma ,\bnest {\Delta , \dia \forma }\}$


   (    ^^06  2   ) 


$\diaruii $


$\ns \{\Gamma ,\bnest {\Delta , \dia \forma }\}$


$\ns \{\Gamma ,\bnest {\forma }\}$


   (  ^^04  ) 


$\blboxru $


$\ns \{\Gamma ,\blbox \forma \}$


$\ns \{\bldia \forma ,\bnest {\Gamma , \forma }\}$


   (    ^^07  1   ) 


$\bldiarui $


$\ns \{\bldia \forma ,\bnest {\Gamma }\}$


$\ns \{\Gamma ,\forma ,\wnest {\Delta , \bldia \forma }\}$


   (    ^^07  2   ) 


$\bldiaruii $


$\ns \{\Gamma ,\wnest {\Delta , \bldia \forma }\}$


   N  (   IL   ) 


$\ncalcint $


$\phantom {\Gamma }$


$\id ^{\dag }$


$\ns \{\Gamma _{1},p\nsar \Delta _{1}\}_{w}\{\Gamma _{2}\nsar p,\Delta _{2}\}_{u}$


$\phantom {\Gamma }$


$\botl $


$\ns \{\Gamma ,\bot \nsar \Delta \}_{w}$


$\ns \{\Gamma ,\forma \nsar \Delta \}_{w}$


$\ns \{\Gamma ,\formb \nsar \Delta \}_{w}$


$\disl $


$\ns \{\Gamma ,\forma \lor \formb \nsar \Delta \}_{w}$


$\ns \{\Gamma \nsar \forma ,\formb ,\Delta \}_{w}$


$\disr $


$\ns \{\Gamma \nsar \forma \lor \formb ,\Delta \}_{w}$


$\ns \{\Gamma ,\forma ,\formb \nsar \Delta \}_{w}$


$\conl $


$\ns \{\Gamma ,\forma \land \formb \nsar \Delta \}_{w}$


$\ns \{\Gamma \nsar \forma ,\Delta \}_{w}$


$\ns \{\Gamma \nsar \formb ,\Delta \}_{w}$


$\conr $


$\ns \{\Gamma \nsar \forma \land \formb ,\Delta \}_{w}$


$\ns \{\Gamma _{1},\forma \iimp \formb \nsar \Delta _{1}\}_{w}\{\Gamma _{2},\formb \nsar \Delta _{2}\}_{u}\quad \ns \{\Gamma _{1},\forma \iimp \formb \nsar \Delta _{1}\}_{w}\{\Gamma _{2}\nsar \forma ,\Delta _{2}\}_{u}$


$\iimpl ^{\dag }$


$\ns \{\Gamma _{1},\forma \iimp \formb \nsar \Delta _{1}\}_{w}\{\Gamma _{2}\nsar \Delta _{2}\}_{u}$


$\ns \{\Gamma \nsar \Delta ,[\forma \nsar \formb ]_{u}\}_{w}$


$\iimpr $


$\ns \{\Gamma \nsar \Delta ,\forma \iimp \formb \}_{w}$


   † 


$\dag $


   𝑢 


$u$


   𝑤 


$w$


   L  (   Kt   ) 


$\lcalckt $


$\logickt $


$\phantom {\Gamma }$


$\id $


$\rel \lsar w:p,w:\overline {p},\Gamma $


$\rel \lsar w:\forma ,w:\formb ,\Gamma $


$\disru $


$\rel \lsar w:\forma \lor \formb ,\Gamma $


$\rel \lsar w:\forma ,\Gamma $


$\rel \lsar w:\formb ,\Gamma $


$\conru $


$\rel \lsar w:\forma \land \formb ,\Gamma $


$\rel ,wRu\lsar w:\Diamond \forma ,u:\forma ,\Gamma $


   (  ^^06  ) 


$\diaru $


$\rel ,wRu\lsar w:\Diamond \forma ,\Gamma $


$\rel ,uRw\lsar w:\bldia \forma ,u:\forma ,\Gamma $


   (  ^^07  ) 


$\bldiaru $


$\rel ,uRw\lsar w:\bldia \forma ,\Gamma $


$\rel ,wRu\lsar u:\forma ,\Gamma $


$\boxru $


$\rel \lsar w:\Box \forma ,\Gamma $


$\rel ,uRw\lsar u:\forma ,\Gamma $


$\blboxru $


$\rel \lsar w:\blbox \forma ,\Gamma $


$u$


$\boxru $


$\blboxru $


$\rel \lsar \Delta $


   (  𝑤    𝑘  𝑙   ) 


$\wkl $


$\rel ,wRu\lsar \Delta $


$\rel \lsar \Delta $


$\wkr $


$\rel \lsar w:\forma ,\Delta $


$\rel \lsar \Delta $


   (  𝑙  𝑠  ) 


$\lsub $


$\rel [w/u]\lsar \Delta [w/u]$


$\rel \lsar w:\forma ,w:\forma ,\Delta $


   (  𝑐  𝑡  𝑟  ) 


$\ctr $


$\rel \lsar w:\forma ,\Delta $


$\rel \lsar w:\forma ,\Delta $


$\rel \lsar w:\overline {\forma },\Delta $


$\cut $


$\rel \lsar \Delta $


   L  (    S  5   ) 


$\lcalcsv $


$\logicsv $


$\phantom {\Gamma }$


$\id $


$\Gamma ,w:p\hsar w:p,\Delta $


$\phantom {\Gamma }$


$\botl $


$\Gamma ,w:\bot \hsar \Delta $


$\Gamma \hsar w:\forma ,w:\formb ,\Delta $


$\disr $


$\Gamma \hsar w:\forma \lor \formb ,\Delta $


$\Gamma ,w:\forma \hsar \Delta $


$\Gamma ,w:\formb \hsar \Delta $


$\disl $


$\Gamma ,w:\forma \lor \formb \hsar \Delta $


$\Gamma ,w:\forma ,w:\formb \sar \Delta $


$\conl $


$\Gamma ,w:\forma \land \formb \sar \Delta $


$\Gamma \hsar w:\forma ,\Delta $


$\Gamma \hsar w:\formb ,\Delta $


$\conr $


$\Gamma \hsar w:\forma \land \formb ,\Delta $


$\Gamma \sar w:\forma ,\Delta $


$\Gamma ,w:\formb \sar \Delta $


   (    →  𝑙   ) 


$\impl $


$\Gamma ,w:\forma \rightarrow \formb \sar \Delta $


$\Gamma ,w:\forma \sar w:\formb ,\Delta $


   (    →  𝑟   ) 


$\impr $


$\Gamma \sar w:\forma \rightarrow \formb ,\Delta $


$\Gamma ,w:\Box \forma ,u:\forma \hsar \Delta $


$\boxl ^{\dag _{1}}$


$\Gamma ,w:\Box \forma \hsar \Delta $


$\Gamma \hsar u:\forma ,\Delta $


$\boxr ^{\dag _{2}}$


$\Gamma \hsar w:\Box \forma ,\Delta $


     †  1  


$\dag _{1}$


   𝑢  ∈   Lab   (  Γ  ,  Δ  ) 


$u \in \labset (\Gamma , \Delta )$


   (    ^^03  𝑙   ) 


$\boxl $


     †  2  


$\dag _{2}$


$u$


$\boxr $


   L  (   IL   ) 


$\lcalcint $


$\id $


$\rel ,w\leq u,\Gamma ,w:p\lsar u:p,\Delta $


$\botl $


$\rel ,\Gamma ,w:\bot \lsar \Delta $


   ℛ  ,  𝑤  ≤  𝑢  ,  Γ  ,  𝑢  ∶  𝐴  ⇒  𝑢  ∶  𝐵  ,  Δ 


$\rel , w \leq u, \Gamma , u :\forma \lsar u : \formb , \Delta $


$\iimpr $


   ℛ  ,  Γ  ⇒  𝑤  ∶  𝐴  ⊃  𝐵  ,  Δ 


$\rel , \Gamma \lsar w : \forma \iimp \formb , \Delta $


$\rel ,\Gamma ,w:\forma \lsar \Delta $


$\rel ,\Gamma ,w:\formb \lsar \Delta $


$\disl $


$\rel ,\Gamma ,w:\forma \lor \formb \lsar w:\Delta $


$\rel ,\Gamma \lsar w:\forma ,w:\formb ,\Delta $


$\disr $


$\rel ,\Gamma \lsar w:\forma \lor \formb ,\Delta $


$\rel ,\Gamma ,w:\forma ,w:\formb \lsar \Delta $


$\conl $


$\rel ,\Gamma ,w:\forma \land \formb \lsar \Delta $


$\rel ,\Gamma \lsar w:\forma ,\Delta $


$\rel ,\Gamma \lsar w:\formb ,\Delta $


$\conr $


$\rel ,\Gamma \lsar w:\forma \land \formb ,\Delta $


$\rel ,w\leq u,\Gamma ,w:\forma \iimp \formb ,u:\formb \lsar \Delta $


$\rel ,w\leq u,\Gamma ,w:\forma \iimp \formb \lsar u:\forma ,\Delta $


$\iimpl $


$\rel ,w\leq u,\Gamma ,w:\forma \iimp \formb \lsar \Delta $


$\rel ,w\leq w,\Gamma \lsar \Delta $


   (  𝑟  𝑒  𝑓  ) 


$\refl $


$\rel ,\Gamma \lsar \Delta $


$\rel ,w\leq u,u\leq v,w\leq v,\Gamma \lsar \Delta $


   (  𝑡  𝑟  𝑎  ) 


$\trans $


$\rel ,w\leq u,u\leq v,\Gamma \lsar \Delta $


$u$


$\iimpr $


$\lcalcint $


   (    𝑟    𝑖  𝑑    ) 


$\idpr $


$\rel ,\Gamma ,w:p\lsar u:p,\Delta $


$\rel ,\Gamma ,w:\forma \iimp \formb \lsar u:\forma ,\Delta $


$\rel ,\Gamma ,w:\forma \iimp \formb ,u:\formb \lsar \Delta $


   (    𝑝    ⊃  𝑙    ) 


$\iimplpr $


$\rel ,\Gamma ,w:\forma \iimp \formb \lsar \Delta $


   𝑤       ℛ   𝑢 


$w \rpath u$


   V 


$\VLe $


$x\in a,x:A,\Gamma \Rightarrow \Delta $


     ⊩  𝑙  ∃  


$\Vdash ^{\exists }_l$


$a\Vdash ^{\exists }A,\Gamma \Rightarrow \Delta $


$x\in a,\Gamma \Rightarrow \Delta ,x:A,a\Vdash ^{\exists }A$


$\Vdash ^{\exists }_r$


$x\in a,\Gamma \Rightarrow \Delta ,a\Vdash ^{\exists }A$


$a\in S(x),a\fe B,\Gamma \Rightarrow \Delta ,a\fe A$


     ≼  𝑟  


$\cless _r$


$\Gamma \Rightarrow \Delta ,x:A\cless B$


$a\in S(x),x:A\cless B,\Gamma \Rightarrow \Delta ,a\fe B$


$a\fe A,a\in S(x),x:A\cless B,\Gamma \Rightarrow \Delta $


$\cless _l$


$a\in S(x),x:A\cless B,\Gamma \Rightarrow \Delta $


$x\in a,a\subseteq b,x\in b,\Gamma \Rightarrow \Delta $


$\subseteq _l$


$x\in a,a\subseteq b,\Gamma \Rightarrow \Delta $


$a\subseteq b,a\in S(x),b\in S(x),\Gamma \Rightarrow \Delta $


$b\subseteq a,a\in S(x),b\in S(x),\Gamma \Rightarrow \Delta $


    nes  


$\Nes $


$a\in S(x),b\in S(x),\Gamma \Rightarrow \Delta $


   𝑥 


$x$


     ⊩  𝑙  ∃  


$\fe _l$


   𝑎 


$a$


$\cless _r$


$\VLe $


$\Gamma \Rightarrow \Delta ,\cblock {A}{B}$


     ≼  𝑟  i  


$\rulecpri $


$\Gamma \Rightarrow \Delta ,A\cless B$


$\Gamma ,A\cless B\Rightarrow \Delta ,\cblock {B,\Sigma }{C}$


$\Gamma ,A\cless B\Rightarrow \Delta ,\cblock {\Sigma }{A},\cblock {\Sigma }{C}$


$\rulecpli $


$\Gamma ,A\cless B\Rightarrow \Delta ,\cblock {\Sigma }{C}$


$\Gamma \Rightarrow \Delta ,\cblock {\Sigma _1,\Sigma _2}{A},\cblock {\Sigma _2}{B}$


$\Gamma \Rightarrow \Delta ,\cblock {\Sigma _1}{A},\cblock {\Sigma _1,\Sigma _2}{B}$


   (     com   i   ) 


$(\comi )$


$\Gamma \Rightarrow \Delta ,\cblock {\Sigma _1}{A},\cblock {\Sigma _2}{B}$


$A\Rightarrow \Sigma $


    jump  


$\jumpi $


$\Gamma \Rightarrow \Delta ,\cblock {\Sigma }{A}$


     ℐ  V  i  


$\calci {\VLe }$


   G  3  V 


$\lcalcv $


       {               �    (    ≼  𝑟  i   )            }     𝑥  ,    𝑎  ¯                       �    (    ≼  𝑟   )           


$\left \{ \begin {matrix} \infer [(\rulecpri )]{\Gamma \Rightarrow \Delta , A\cless B }{ \deduce {\Gamma \Rightarrow \Delta , \cblock {A}{B} }{\mathcal {D}_1} } \end {matrix} \right \} ^{x,\bar {a}} \leadsto \quad \begin {matrix} \infer [(\Rcless )] {t(\Gamma \Rightarrow \Delta , A\cless B )^{x,\bar {a}} }{ \deduce { t(\Gamma \Rightarrow \Delta , \cblock {A}{B})^{x,\bar {a}\, b} }{\{ \mathcal {D}_1\}^{x,\bar {a} \, b} } } \end {matrix}$


       {               �    (     com   i   )            }     𝑥  ,    𝑎  ¯     𝑏    𝑐   


$\left \{ \begin {matrix} \infer [(\comi )]{\Gamma \Rightarrow \Delta , \cblock {\Sigma _1}{A}, \cblock {\Sigma _1}{B} }{ \deduce {\Gamma \Rightarrow \Delta , \cblock {\Sigma _1, \Sigma _2}{A}, \cblock {\Sigma _2}{B}}{\mathcal {D}_1} & \deduce {\Gamma \Rightarrow \Delta , \cblock {\Sigma }{A}, \cblock {\Sigma ,\Pi }{B}}{\mathcal {D}_2} } \end {matrix} \right \} ^{x,\bar {a} \, b\, c}$


     


$\leadsto $


                �    (   nes   )           


$\begin {matrix} \infer [(\Nes )] {t(\Gamma \Rightarrow \Delta , \cblock {\Sigma _1}{A}, \cblock {\Sigma _1}{B})^{x,\bar {a}\, b\, c} }{ \infer [(\Mon )]{ b \subseteq c, b \fe A, c\fe B,t(\Gamma )^{x,\bar {a}} \Rightarrow t(\Delta )^{x,\bar {a}}, b \fe \Sigma _1, c\fe \Sigma _2 }{\infer [\wk ]{b \subseteq c, b \fe A, c\fe B, t(\Gamma )^{x,\bar {a} } \Rightarrow t(\Delta )^{x,\bar {a}}, b \fe \Sigma _1, b \fe \Sigma _2, c\fe \Sigma _2}{ \deduce {t(\Gamma \Rightarrow \Delta , \cblock {\Sigma _1, \Sigma _2}{A}, \cblock {\Sigma _2}{B})^{x, \bar {a} \, b \, c} }{ \{ \mathcal {D}_1 \}^{x, \bar {a} \, b \, c} } } } & \mathcal {E} } \end {matrix}$


   ℰ 


$\mathcal {E}$


   𝑐  ⊆  𝑏  ,  𝑏    ⊩  ∃   𝐴  ,  𝑐    ⊩  ∃   𝐵  ,  𝑡  (  Γ    )    𝑥  ,    𝑎  ¯     ⇒  𝑡  (  Δ    )    𝑥  ,    𝑎  ¯     ,  𝑏    ⊩  ∃     Σ  1   ,  𝑐    ⊩  ∃     Σ  2  


$c\subseteq b, b \fe A, c\fe B, t(\Gamma )^{x,\bar {a}} \Rightarrow t(\Delta )^{x,\bar {a}}, b \fe \Sigma _1, c\fe \Sigma _2$


$(\comi )$


$\mathcal {E}$


   (   nes   ) 


$(\Nes )$


       {               �    (   jump   )            }     𝑥  ,    𝑎  ¯     𝑏   


$\left \{ \begin {matrix} \infer [(\jumpi )]{\Gamma \Rightarrow \Delta , \cblock {\Sigma }{A}}{ \deduce {x:\Sigma \Rightarrow x:A }{\mathcal {D}_1} } \end {matrix} \right \} ^{x,\bar {a}\, b}$


$\leadsto $


                �    (    ⊩  𝑙  ∃   )           


$\begin {matrix} \infer [(\fe _l)] {t(\Gamma \Rightarrow \Delta , \cblock {\Sigma }{A})^{x,\bar {a}\, b } }{ \infer [{(\fe _r)}\!\times \!n]{y \in b, b\in S(x), y :A, t(\Gamma )^{x,\bar {a}} \Rightarrow t(\Delta )^{x,\bar {a}}, b \fe \Sigma }{ \infer [\wk ]{ y \in b, b\in S(x), y :A, t(\Gamma )^{x,\bar {a}} \Rightarrow t(\Delta )^{x,\bar {a}}, y:\Sigma , b\fe \Sigma }{ \deduce {t(x:\Sigma \Rightarrow x:A)^{x\, [x/y]} }{t\{\mathcal {D}_1\}^{x \, [x/y]} } } } } \end {matrix}$


    GBI  


$\relax \mathsf {GBI}$


           Γ  ,    𝜛  ⩽  ℓ   ⇒  𝐴  ∶  ℓ  ,  Δ    


$\dfrac {}{\SEQ {\SG ,\LEQL {\abotL }{\labl }}{\lf {\labl }{\VPA },\SD }}$


   (    ⊥  r   ) 


$(\PRNR {\BIabot })$


           Γ  ,  𝐴  ∶  ℓ  ⇒  𝐴  ∶  ℓ  ,  Δ    


$\dfrac {}{\SEQ {\SG ,\lf {\labl }{\VPA }}{\lf {\labl }{\VPA },\SD }}$


$(\PRN {id})$


           Γ  ,    m  ⩽  ℓ   ⇒      ⊤      𝔪     ∶  ℓ  ,  Δ    


$\dfrac {}{\SEQ {\SG ,\LEQL {\mneuL }{\labl }}{\lf {\labl }{\BImtop },\SD }}$


$(\PRNR {\BImtop })$


         Γ  ,    𝜛  ⩽  ℓ   ⇒  Δ     Γ  ,  ⊥  ∶  ℓ  ⇒  Δ    


$\dfrac {\SEQ {\SG ,\LEQL {\abotL }{\labl }}{\SD }}{\SEQ {\SG ,\lf {\labl }{\BIabot }}{\SD }}$


$(\PRNL {\BIabot })$


         Γ  ,    m  ⩽  ℓ   ⇒  Δ     Γ  ,      ⊤      𝔪     ∶  ℓ  ⇒  Δ    


$\dfrac {\SEQ {\SG ,\LEQL {\mneuL }{\labl }}{\SD }}{\SEQ {\SG ,\lf {\labl }{\BImtop }}{\SD }}$


$(\PRNL {\BImtop })$


       Γ  ,    a  ⩽  ℓ   ⇒  Δ     Γ  ,      ⊤      𝔞     ∶  ℓ  ⇒  Δ   


$\frac {\SEQ {\SG ,\LEQL {\aneuL }{\labl }}{\SD }}{\SEQ {\SG ,\lf {\labl }{\BIatop }}{\SD }}$


$(\PRNL {\BIatop })$


           Γ      Γ  ,    a  ⩽  ℓ   ⇒      ⊤      𝔞     ∶  ℓ  ,  Δ    


$\dfrac {\phantom {\Gamma }}{\SEQ {\SG ,\LEQL {\aneuL }{\labl }}{\lf {\labl }{\BIatop },\SD }}$


$(\PRNR {\BIatop })$


             𝔞  (  ℓ  ,    ℓ  1   )  ⩽    ℓ  2    ,  Γ  ,  𝐴      ⊃    𝐵  ∶  ℓ  ⇒  𝐴  ∶    ℓ  1   ,  Δ         𝔞  (  ℓ  ,    ℓ  1   )  ⩽    ℓ  2    ,  Γ  ,  𝐴      ⊃    𝐵  ∶  ℓ  ,  𝐵  ∶    ℓ  2   ⇒  Δ        𝔞  (  ℓ  ,    ℓ  1   )  ⩽    ℓ  2    ,  Γ  ,  𝐴      ⊃    𝐵  ∶  ℓ  ⇒  Δ    


$\dfrac {\SEQ {\LEQL {\ADDL {\labl }{\labl _1}}{\labl _2},\SG ,\lf {\labl }{\VPA \BIaimp \VPB }}{\lf {\labl _1}{\VPA },\SD }\quad \SEQ {\LEQL {\ADDL {\labl }{\labl _1}}{\labl _2},\SG ,\lf {\labl }{\VPA \BIaimp \VPB },\lf {\labl _2}{\VPB }}{\SD }}{ \SEQ {\LEQL {\ADDL {\labl }{\labl _1}}{\labl _2},\SG ,\lf {\labl }{\VPA \BIaimp \VPB }}{\SD }}$


$(\PRNL {\BIaimp })$


             𝔪  (  ℓ  ,    ℓ  1   )  ⩽    ℓ  2    ,  Γ  ,  𝐴      −    ∗    𝐵  ∶  ℓ  ⇒  𝐴  ∶    ℓ  1   ,  Δ         𝔪  (  ℓ  ,    ℓ  1   )  ⩽    ℓ  2    ,  Γ  ,  𝐴      −    ∗    𝐵  ∶  ℓ  ,  𝐵  ∶    ℓ  2   ⇒  Δ        𝔪  (  ℓ  ,    ℓ  1   )  ⩽    ℓ  2    ,  Γ  ,  𝐴      −    ∗    𝐵  ∶  ℓ  ⇒  Δ    


$\dfrac {\SEQ {\LEQL {\MULL {\labl }{\labl _1}}{\labl _2},\SG ,\lf {\labl }{\VPA \BImimp \VPB }}{\lf {\labl _1}{\VPA },\SD }\quad \SEQ {\LEQL {\MULL {\labl }{\labl _1}}{\labl _2},\SG ,\lf {\labl }{\VPA \BImimp \VPB },\lf {\labl _2}{\VPB }}{\SD }}{\SEQ {\LEQL {\MULL {\labl }{\labl _1}}{\labl _2},\SG ,\lf {\labl }{\VPA \BImimp \VPB }}{\SD }}$


$(\PRNL {\BImimp })$


           𝔞  (  ℓ  ,    ℓ  1   )  ⩽    ℓ  2    ,  Γ  ,  𝐴  ∶    ℓ  1   ⇒  𝐵  ∶    ℓ  2   ,  Δ     Γ  ⇒  𝐴      ⊃    𝐵  ∶  ℓ  ,  Δ    


$\dfrac {\SEQ {\LEQL {\ADDL {\labl }{\labl _1}}{\labl _2},\SG ,\lf {\labl _1}{\VPA }}{\lf {\labl _2}{\VPB },\SD }}{\SEQ {\SG }{\lf {\labl }{\VPA \BIaimp \VPB },\SD }}$


$(\PRNR {\BIaimp })$


           𝔪  (  ℓ  ,    ℓ  1   )  ⩽    ℓ  2    ,  Γ  ,  𝐴  ∶    ℓ  1   ⇒  𝐵  ∶    ℓ  2   ,  Δ     Γ  ⇒  𝐴      −    ∗    𝐵  ∶  ℓ  ,  Δ    


$\dfrac {\SEQ {\LEQL {\MULL {\labl }{\labl _1}}{\labl _2},\SG ,\lf {\labl _1}{\VPA }}{\lf {\labl _2}{\VPB },\SD }}{\SEQ {\SG }{\lf {\labl }{\VPA \BImimp \VPB },\SD }}$


$(\PRNR {\BImimp })$


           𝔞  (    ℓ  1   ,    ℓ  2   )  ⩽  ℓ   ,  Γ  ,  𝐴  ∶    ℓ  1   ,  𝐵  ∶    ℓ  2   ⇒  Δ     Γ  ,  𝐴      ∧    𝐵  ∶  ℓ  ⇒  Δ    


$\dfrac {\SEQ {\LEQL {\ADDL {\labl _1}{\labl _2}}{\labl },\SG ,\lf {\labl _1}{\VPA },\lf {\labl _2}{\VPB }}{\SD }}{\SEQ {\SG ,\lf {\labl }{\VPA \BIaand \VPB }}{\SD }}$


$(\PRNL {\BIaand })$


           𝔪  (    ℓ  1   ,    ℓ  2   )  ⩽  ℓ   ,  Γ  ,  𝐴  ∶    ℓ  1   ,  𝐵  ∶    ℓ  2   ⇒  Δ     Γ  ,  𝐴      ∗    𝐵  ∶  ℓ  ⇒  Δ    


$\dfrac {\SEQ {\LEQL {\MULL {\labl _1}{\labl _2}}{\labl },\SG ,\lf {\labl _1}{\VPA },\lf {\labl _2}{\VPB }}{\SD }}{\SEQ {\SG ,\lf {\labl }{\VPA \BImand \VPB }}{\SD }}$


$(\PRNL {\BImand })$


             𝔞  (    ℓ  1   ,    ℓ  2   )  ⩽  ℓ   ,  Γ  ⇒  𝐴  ∶    ℓ  1   ,  Δ         𝔞  (    ℓ  1   ,    ℓ  2   )  ⩽  ℓ   ,  Γ  ⇒  𝐵  ∶    ℓ  2   ,  Δ        𝔞  (    ℓ  1   ,    ℓ  2   )  ⩽  ℓ   ,  Γ  ⇒  𝐴      ∧    𝐵  ∶  ℓ  ,  Δ    


$\dfrac {\SEQ {\LEQL {\ADDL {\labl _1}{\labl _2}}{\labl },\SG }{\lf {\labl _1}{\VPA },\SD }\quad \SEQ {\LEQL {\ADDL {\labl _1}{\labl _2}}{\labl },\SG }{\lf {\labl _2}{\VPB },\SD }}{\SEQ {\LEQL {\ADDL {\labl _1}{\labl _2}}{\labl },\SG }{\lf {\labl }{\VPA \BIaand \VPB },\SD }}$


$(\PRNR {\BIaand })$


             𝔪  (    ℓ  1   ,    ℓ  2   )  ⩽  ℓ   ,  Γ  ⇒  𝐴      ∗    𝐵  ∶  ℓ  ,  𝐴  ∶    ℓ  1   ,  Δ         𝔪  (    ℓ  1   ,    ℓ  2   )  ⩽  ℓ   ,  Γ  ⇒  𝐴      ∗    𝐵  ∶  ℓ  ,  𝐵  ∶    ℓ  2   ,  Δ        𝔪  (    ℓ  1   ,    ℓ  2   )  ⩽  ℓ   ,  Γ  ⇒  𝐴      ∗    𝐵  ∶  ℓ  ,  Δ    


$\dfrac {\SEQ {\LEQL {\MULL {\labl _1}{\labl _2}}{\labl },\SG }{\lf {\labl }{\VPA \BImand \VPB },\lf {\labl _1}{\VPA },\SD }\quad \SEQ {\LEQL {\MULL {\labl _1}{\labl _2}}{\labl },\SG }{\lf {\labl }{\VPA \BImand \VPB },\lf {\labl _2}{\VPB },\SD }}{\SEQ {\LEQL {\MULL {\labl _1}{\labl _2}}{\labl },\SG }{\lf {\labl }{\VPA \BImand \VPB },\SD }}$


$(\PRNR {\BImand })$


           Γ  ,  𝐴  ∶  ℓ  ⇒  Δ       Γ  ,  𝐵  ∶  ℓ  ⇒  Δ      Γ  ,  𝐴      ∨    𝐵  ∶  ℓ  ⇒  Δ    


$\dfrac {\SEQ {\SG ,\lf {\labl }{\VPA }}{\SD }\quad \SEQ {\SG ,\lf {\labl }{\VPB }}{\SD }}{\SEQ {\SG ,\lf {\labl }{\VPA \BIaor \VPB }}{\SD }}$


$(\PRNL {\BIaor })$


         Γ  ⇒    𝐴    i    ∈    {    1  ,  2    }    ∶  ℓ  ,  Δ     Γ  ⇒    𝐴  1       ∨      𝐴  2   ∶  ℓ  ,  Δ    


$\dfrac {\SEQ {\SG }{\lf {\labl }{\VPA _{\mathrm {i}\,\in \,\ens {1,2}}},\SD }}{\SEQ {\SG }{\lf {\labl }{\VPA _1\BIaor \VPA _2},\SD }}$


$(\PRNR {\BIaor ^\mathrm {i}})$


     ℓ  1  


$\labl _1$


     ℓ  2  


$\labl _2$


         ∗    L  


$\relax \mathrm {\BImand _L}$


         ∧    L  


$\relax \mathrm {\BIaand _L}$


         −    ∗    R  


$\relax \mathrm {\BImimp _R}$


         ⊃    R  


$\relax \mathrm {\BIaimp _R}$


$\relax \mathsf {GBI}$


           ℓ  ⩽  ℓ   ,  Γ  ⇒  Δ     Γ  ⇒  Δ    


$\dfrac {\SEQ {\LEQL {\labl }{\labl },\SG }{\SD }}{\SEQ {\SG }{\SD }}$


   (  R  ) 


$(\PRN {R})$


             ℓ  0   ⩽  ℓ   ,      ℓ  0   ⩽    ℓ  1    ,      ℓ  1   ⩽  ℓ   ,  Γ  ⇒  Δ         ℓ  0   ⩽    ℓ  1    ,      ℓ  1   ⩽  ℓ   ,  Γ  ⇒  Δ    


$\dfrac {\SEQ {\LEQL {\labl _0}{\labl },\LEQL {\labl _0}{\labl _1},\LEQL {\labl _1}{\labl },\SG }{\SD }}{\SEQ {\LEQL {\labl _0}{\labl _1},\LEQL {\labl _1}{\labl },\SG }{\SD }}$


   (  T  ) 


$(\PRN {T})$


           𝔞  (  ℓ  ,  ℓ  )  ⩽  ℓ   ,  Γ  ⇒  Δ     Γ  ⇒  Δ    


$\dfrac {\SEQ {\LEQL {\ADDL {\labl }{\labl }}{\labl },\SG }{\SD }}{\SEQ {\SG }{\SD }}$


   (    I  𝔞   ) 


$(\PRN {I_{\addL }})$


           𝔯  (  ℓ  ,  r  )  ⩽  ℓ   ,  Γ  ⇒  Δ     Γ  ⇒  Δ    


$\dfrac {\SEQ {\LEQL {\RONL {\labl }{\rneuL }}{\labl },\SG }{\SD }}{\SEQ {\SG }{\SD }}$


   (    U  𝔯  1   ) 


$(\PRN {U^1_{\ronL }})$


           𝔯  (  r  ,  ℓ  )  ⩽  ℓ   ,  Γ  ⇒  Δ     Γ  ⇒  Δ    


$\dfrac {\SEQ {\LEQL {\RONL {\rneuL }{\labl }}{\labl },\SG }{\SD }}{\SEQ {\SG }{\SD }}$


   (    U  𝔯  2   ) 


$(\PRN {U^2_{\ronL }})$


           𝔯  (    ℓ  2   ,    ℓ  1   )  ⩽  ℓ   ,  Γ  ⇒  Δ       𝔯  (    ℓ  1   ,    ℓ  2   )  ⩽  ℓ   ,  Γ  ⇒  Δ    


$\dfrac {\SEQ {\LEQL {\RONL {\labl _2}{\labl _1}}{\labl },\SG }{\SD }}{\SEQ {\LEQL {\RONL {\labl _1}{\labl _2}}{\labl },\SG }{\SD }}$


   (    E  𝔯   ) 


$(\PRN {E_{\ronL }})$


           𝔯  (    ℓ  3   ,    ℓ  2   )  ⩽    ℓ  0    ,    𝔯  (    ℓ  4   ,    ℓ  0   )  ⩽  ℓ   ,  Γ  ⇒  Δ       𝔯  (    ℓ  4   ,    ℓ  3   )  ⩽    ℓ  1    ,    𝔯  (    ℓ  1   ,    ℓ  2   )  ⩽  ℓ   ,  Γ  ⇒  Δ    


$\dfrac {\SEQ {\LEQL {\RONL {\labl _3}{\labl _2}}{\labl _0},\LEQL {\RONL {\labl _4}{\labl _0}}{\labl },\SG }{\SD }}{\SEQ {\LEQL {\RONL {\labl _4}{\labl _3}}{\labl _1},\LEQL {\RONL {\labl _1}{\labl _2}}{\labl },\SG }{\SD }}$


   (    A  𝔯  1   ) 


$(\PRN {A^1_{\ronL }})$


           𝔯  (    ℓ  1   ,    ℓ  4   )  ⩽    ℓ  0    ,    𝔯  (    ℓ  0   ,    ℓ  3   )  ⩽  ℓ   ,  Γ  ⇒  Δ       𝔯  (    ℓ  4   ,    ℓ  3   )  ⩽    ℓ  2    ,    𝔯  (    ℓ  1   ,    ℓ  2   )  ⩽  ℓ   ,  Γ  ⇒  Δ    


$\dfrac {\SEQ {\LEQL {\RONL {\labl _1}{\labl _4}}{\labl _0},\LEQL {\RONL {\labl _0}{\labl _3}}{\labl },\SG }{\SD }}{\SEQ {\LEQL {\RONL {\labl _4}{\labl _3}}{\labl _2},\LEQL {\RONL {\labl _1}{\labl _2}}{\labl },\SG }{\SD }}$


   (    A  𝔯  2   ) 


$(\PRN {A^2_{\ronL }})$


             ℓ  𝑖   ⩽  ℓ   ,    𝔞  (    ℓ  1   ,    ℓ  2   )  ⩽  ℓ   ,  Γ  ⇒  Δ       𝔞  (    ℓ  1   ,    ℓ  2   )  ⩽  ℓ   ,  Γ  ⇒  Δ    


$\dfrac {\SEQ {\LEQL {\labl _i}{\labl },\LEQL {\ADDL {\labl _1}{\labl _2}}{\labl },\SG }{\SD }}{\SEQ {\LEQL {\ADDL {\labl _1}{\labl _2}}{\labl },\SG }{\SD }}$


   (    P  𝔞  i   ) 


$(\PRN {P^i_{\addL }})$


             ℓ  𝑖   ⩽  ℓ   ,    𝔪  (    ℓ  1   ,    ℓ  2   )  ⩽  ℓ   ,  Γ  ⇒  Δ       𝔪  (    ℓ  1   ,    ℓ  2   )  ⩽  ℓ   ,  Γ  ⇒  Δ    


$\dfrac {\SEQ {\LEQL {\labl _i}{\labl },\LEQL {\MULL {\labl _1}{\labl _2}}{\labl },\SG }{\SD }}{\SEQ {\LEQL {\MULL {\labl _1}{\labl _2}}{\labl },\SG }{\SD }}$


   (    P  𝔪  i   ) 


$(\PRN {P^i_{\mulL }})$


           𝔯  (    ℓ  0   ,    ℓ  2   )  ⩽  ℓ   ,      ℓ  0   ⩽    ℓ  1    ,    𝔯  (    ℓ  1   ,    ℓ  2   )  ⩽  ℓ   ,  Γ  ⇒  Δ         ℓ  0   ⩽    ℓ  1    ,    𝔯  (    ℓ  1   ,    ℓ  2   )  ⩽  ℓ   ,  Γ  ⇒  Δ    


$\dfrac {\SEQ {\LEQL {\RONL {\labl _0}{\labl _2}}{\labl },\LEQL {\labl _0}{\labl _1},\LEQL {\RONL {\labl _1}{\labl _2}}{\labl },\SG }{\SD }}{\SEQ {\LEQL {\labl _0}{\labl _1},\LEQL {\RONL {\labl _1}{\labl _2}}{\labl },\SG }{\SD }}$


   (    C  𝔯  1   ) 


$(\PRN {C^1_{\ronL }})$


           ℓ  ⩽    ℓ  1    ,  Γ  ,  𝐴  ∶    ℓ  1   ⇒  Δ       ℓ  ⩽    ℓ  1    ,  Γ  ,  𝐴  ∶  ℓ  ⇒  Δ    


$\dfrac {\SEQ {\LEQL {\labl }{\labl _1},\SG ,\lf {\labl _1}{\VPA }}{\SD }}{\SEQ {\LEQL {\labl }{\labl _1},\SG ,\lf {\labl }{\VPA }}{\SD }}$


   (    K  l   ) 


$(\PRNL {K})$


           𝔯  (    ℓ  1   ,    ℓ  0   )  ⩽  ℓ   ,      ℓ  0   ⩽    ℓ  2    ,    𝔯  (    ℓ  1   ,    ℓ  2   )  ⩽  ℓ   ,  Γ  ⇒  Δ         ℓ  0   ⩽    ℓ  2    ,    𝔯  (    ℓ  1   ,    ℓ  2   )  ⩽  ℓ   ,  Γ  ⇒  Δ    


$\dfrac {\SEQ {\LEQL {\RONL {\labl _1}{\labl _0}}{\labl },\LEQL {\labl _0}{\labl _2},\LEQL {\RONL {\labl _1}{\labl _2}}{\labl },\SG }{\SD }}{\SEQ {\LEQL {\labl _0}{\labl _2},\LEQL {\RONL {\labl _1}{\labl _2}}{\labl },\SG }{\SD }}$


   (    C  𝔯  2   ) 


$(\PRN {C^2_{\ronL }})$


             ℓ  1   ⩽  ℓ   ,  Γ  ⇒  𝐴  ∶    ℓ  1   ,  Δ         ℓ  1   ⩽  ℓ   ,  Γ  ⇒  𝐴  ∶  ℓ  ,  Δ    


$\dfrac {\SEQ {\LEQL {\labl _1}{\labl },\SG }{\lf {\labl _1}{\VPA },\SD }}{\SEQ {\LEQL {\labl _1}{\labl },\SG }{\lf {\labl }{\VPA },\SD }}$


   (    K  r   ) 


$(\PRNR {K})$


           Γ  0   ⇒  Δ       Γ  0   ,    Γ  1   ⇒  Δ    


$\dfrac {\SEQ {\SG _0}{\SD }}{\SEQ {\SG _0,\SG _1}{\SD }}$


   (    W  l   ) 


$(\PRNL {W})$


         Γ  ⇒    Δ  0      Γ  ⇒    Δ  0   ,    Δ  1     


$\dfrac {\SEQ {\SG }{\SD _0}}{\SEQ {\SG }{\SD _0,\SD _1}}$


   (    W  r   ) 


$(\PRNR {W})$


           Γ  0   ,    Γ  1   ,    Γ  1   ⇒  Δ       Γ  0   ,    Γ  1   ⇒  Δ    


$\dfrac {\SEQ {\SG _0,\SG _1,\SG _1}{\SD }}{\SEQ {\SG _0,\SG _1}{\SD }}$


   (    C  l   ) 


$(\PRNL {C})$


         Γ  ⇒    Δ  0   ,    Δ  1   ,    Δ  1      Γ  ⇒    Δ  0   ,    Δ  1     


$\dfrac {\SEQ {\SG }{\SD _0,\SD _1,\SD _1}}{\SEQ {\SG }{\SD _0,\SD _1}}$


   (    C  r   ) 


$(\PRNR {C})$


   𝑖    ∈    {    1  ,  2    } 


$i\,\in \,\ens {1,2}$


   𝔯    ∈    {    𝔪  ,  𝔞    } 


$\ronL \,\in \,\ens {\mulL ,\addL }$


     ℓ  0  


$\labl _0$


     A  𝔯  i  


$\relax \mathrm {A^i_{\ronL }}$


     ℓ    3  −  𝑖   


$\labl _{3-i}$


     P  𝔪  i  


$\relax \mathrm {P^i_{\mulL }}$


   {    m  ,  𝜛    } 


$\ens { \mneuL , \abotL }$


   ℓ 


$\labl $


   R 


$\relax \mathrm {R}$


     I  𝔞  


$\relax \mathrm {I_{\addL }}$


     ℓ  1   ,    ℓ  2  


$\labl _1,\labl _2$


     P  𝔞  i  


$\relax \mathrm {P^{i}_{\addL }}$


     ℓ  𝑖  


$\labl _i$


$\relax \mathrm {P^i_{\mulL }}$


   Γ 


$\SG $


   Δ 


$\SD $


   {    m  ,  a  ,  𝜛    } 


$\ens { \mneuL , \aneuL , \abotL }$


$\relax \mathsf {GBI}$


   (  (  𝑝      −    ∗    (  𝑞      ⊃    𝑟  )      ∧    𝑝      −    ∗    𝑞  )      ∗    𝑝  )      −    ∗    𝑟 


$((\VPP \BImimp (\VPQ \BIaimp \VPR ) \BIaand \VPP \BImimp \VPQ ) \BImand \VPP ) \BImimp \VPR $


                    ℓ  4   ∶  𝑝        ⇒      ℓ  4   ∶  𝑝  


$\inserttext $


$\inserttext $


    id  


$\relax \mathrm {id}$


$\inserttext $


$\inserttext $


$\relax \mathrm {id}$


$\inserttext $


$\inserttext $


$\relax \mathrm {id}$


$\inserttext $


$\inserttext $


$\relax \mathrm {id}$


$\inserttext $


     K  r  


$\relax \mathrm {K_\mathit {r}}$


$\inserttext $


         ⊃    l  


$\relax \mathrm {\BIaimp _\mathit {l}}$


$\inserttext $


$\relax \mathrm {I_{\addL }}$


$\inserttext $


     P  𝔪  


$\relax \mathrm {P_{\mulL }}$


$\inserttext $


     C  𝔪  


$\relax \mathrm {C_{\mulL }}$


$\inserttext $


         −    ∗    l  


$\relax \mathrm {\BImimp _\mathit {l}}$


$\inserttext $


$\relax \mathrm {\BImimp _\mathit {l}}$


$\inserttext $


$\relax \mathrm {C_{\mulL }}$


$\inserttext $


     P  𝔞  


$\relax \mathrm {P_{\addL }}$


$\inserttext $


         ∧    l  


$\relax \mathrm {\BIaand _\mathit {l}}$


$\inserttext $


         ∗    l  


$\relax \mathrm {\BImand _\mathit {l}}$


$\inserttext $


         −    ∗    r  


$\relax \mathrm {\BImimp _\mathit {r}}$


       


$\tex_vcenter:D {\box_use:c {\__ebproof_box:N \l__ebproof_a_box }}$


   𝑀  ,  𝑤  ⊧  𝐴  >  𝐵 


$M, w \models A > B$


   𝛼  ∈  𝑆  (  𝑤  ) 


$\alpha \in S(w)$


   𝛼      ⊧   ∃   𝐴 


$\alpha \not \modele A$


$\alpha \in S(w)$


   𝛼    ⊧  ∃   𝐴 


$\alpha \modele A$


   𝛼    ⊧  ∀   𝐴  →  𝐵 


$\alpha \modela A \to B$


   𝑝  ∨  ¬  𝑝 


$p\lor \lnot p$


   ¬  ¬  𝑝  ⊃  𝑝 


$\lnot \lnot p \iimp p$


     ℒ  𝐼  


$\langint $


\begin {eqnarray}\if@eqnstar \else \ifx \\\@currentHref \\\else \hyper@makecurrent {equation}\mathopen {\Hy@raisedlink {\hyper@anchorstart {\@currentHref }\hyper@anchorend }}\fi \fi  \label {eq:lang:imp} \forma &::=& p \ | \ \bot \ | \ \forma \lor \forma \ | \ \forma \land \forma \ | \ \forma \imp \forma \\ \label {eq:lang:and-or} \forma &::=& p \ | \ \overline {p} \ | \ \forma \lor \forma \ | \ \forma \land \forma \
\end {eqnarray}


    Prop   ∶  =  {  𝑝  ,  𝑞  ,  𝑟  ,  …  } 


$\Prop := \{p, q, r, \ldots \}$


   ¬  𝐴 


$\neg \forma $


   𝐴  →  ⊥ 


$\forma \imp \bot $


   ⊤ 


$\top $


   ¬  ⊥ 


$\neg \bot $


     ⋅  ‾  


$\dual {\cdot }$


       𝐴  ∨  𝐵   ‾   ∶  =    𝐴  ‾   ∧    𝐵  ‾  


$\dual {\forma \lor \formb } := \dual {\forma } \land \dual {\formb }$


       𝐴  ∧  𝐵   ‾   ∶  =    𝐴  ‾   ∨    𝐵  ‾  


$\dual {\forma \land \formb } := \dual {\forma } \lor \dual {\formb }$


   𝐴  →  𝐵 


$\forma \imp \formb $


     𝐴  ‾   ∨  𝐵 


$\dual \forma \lor \formb $


   ⊃ 


$\iimp $


$\iimp $


   𝐴  ∶  ∶  =  𝑝    |    ⊥    |    𝐴  ∨  𝐴    |    𝐴  ∧  𝐴    |    𝐴  ⊃  𝐴 


\begin {equation*}\forma ::= p \ | \ \bot \ | \ \forma \lor \forma \ | \ \forma \land \forma \ | \ \forma \iimp \forma \end {equation*}


   𝑝 


$p$


    Prop  


$\Prop $


   ¬  𝐴  ∶  =  𝐴  ⊃  ⊥ 


$\lnot A := A \iimp \bot $


   ∧ 


$\land $


   ∨ 


$\lor $


   𝐹  ∶  =  (  𝑊  ,  ≤  ) 


$F := (W,\leq )$


   𝑊 


$W$


   ≤    ⊆  𝑊  ×  𝑊 


$\leq \ \subseteq W \times W$


   𝑀  =  (  𝐹  ,  𝑉  ) 


$M = (F,V)$


   𝐹 


$F$


   𝑉  ∶   Prop   →    2  𝑊  


$V : \Prop \to 2^{W}$


   𝑤  ∈  𝑉  (  𝑝  ) 


$w \in V(p)$


   𝑤  ≤  𝑢 


$w \leq u$


   𝑢  ∈  𝑉  (  𝑝  ) 


$u \in V(p)$


   𝑀  =  (  𝑊  ,  ≤  ,  𝑉  ) 


$M = (W,\leq ,V)$


   ⊧ 


$\models $


   ⊥ 


$\bot $


$\lor $


$\land $


   → 


$\imp $


   𝑀  ,  𝑤  ⊧  𝐴  ⊃  𝐵 


$M, w \models \forma \iimp \formb $


   𝑢  ∈  𝑊 


$u\in W$


$w \leq u$


   𝑀  ,  𝑢  ⊧  𝐴 


$M,u\models \forma $


   𝑀  ,  𝑢  ⊧  𝐵 


$M,u\models \formb $


   𝐴  ∈    ℒ  𝐼  


$\forma \in \langint $


   𝑀 


$M$


   𝑀  ⊧  𝐴 


$M \models \forma $


    IL  


$\logicint $


$\logicint $


   S  4 


$\logicsiv $


    BI  


$\relax \mathsf {BI}$


$\relax \mathsf {BI}$


    Fm  


$\Fm $


   𝐴  ∶  ∶  =  𝑝  ∣            ⊤      𝔪     ∣  𝐴      ∗    𝐴  ∣  𝐴      −    ∗    𝐴   ⏟    multiplicatives    ∣            ⊤      𝔞     ∣  ⊥  ∣  𝐴      ∧    𝐴  ∣  𝐴      ∨    𝐴  ∣  𝐴      ⊃    𝐴   ⏟    additives   


\begin {equation*}\VPA ::= \VPP \mpipe \underbrace {\BImtop \mpipe \VPA \BImand \VPA \mpipe \VPA \BImimp \VPA }_{\text {multiplicatives}} \mpipe \underbrace {\BIatop \mpipe \BIabot \mpipe \VPA \BIaand \VPA \mpipe \VPA \BIaor \VPA \mpipe \VPA \BIaimp \VPA }_{\text {additives}}\end {equation*}


$p$


$\Prop $


$\relax \mathsf {BI}$


$\relax \mathsf {BI}$


   ⊗ 


$\mulS $


   ⊑ 


$\leqS $


$\mulS $


   𝑅 


$R$


   𝑤  ⊗    𝑤  ′   ⊑  𝑢 


$\LEQS {\MULS {\wldm }{\wldm '}}{\wldn }$


   𝑅  𝑤    𝑤  ′   𝑢 


$R\wldm \wldm '\wldn $


   ⊕ 


$\addS $


       ∧   


$\BIaand $


   𝑀  =  (  𝑀  ,  ⊗  ,  1  ,  ⊕  ,  0  ,  ∞  ,  ⊑  ) 


$\krm =(\Wld ,\mulS ,\neuS ,\addS ,\topS ,\absS ,\leqS )$


   (  𝑀  ,  ⊗  ,  1  ) 


$(\Wld , \mulS , \neuS )$


   (  𝑀  ,  ⊕  ,  0  ) 


$(\Wld , \addS , \topS )$


$\leqS $


   𝑀 


$\Wld $


   𝑤  ∈  𝑀 


$\wldm \in \Wld $


   𝑤  ⊑  ∞ 


$\LEQS {\wldm }{\absS }$


   ∞  ⊑  ∞  ⊗  𝑤 


$\LEQS {\absS }{\MULS {\absS }{\wldm }}$


   𝑤  ,  𝑢  ∈  𝑀 


$\wldm , \wldn \in \Wld $


   𝑤  ⊑  𝑤  ⊕  𝑢 


$\LEQS {\wldm }{\ADDS {\wldm }{\wldn }}$


   𝑤  ⊕  𝑤  ⊑  𝑤 


$\LEQS {\ADDS {\wldm }{\wldm }}{\wldm }$


    if    𝑤  ⊑  𝑢    and      𝑤  ′   ⊑    𝑢  ′    , then    𝑤  ⊗    𝑤  ′   ⊑  𝑢  ⊗    𝑢  ′     and    𝑤  ⊕    𝑤  ′   ⊑  𝑢  ⊕    𝑢  ′  


$\text {if } \LEQS {\wldm }{\wldn } \text { and } \LEQS {\wldm '}{\wldn '} \text {, then } \LEQS {\MULS {\wldm }{\wldm '}}{\MULS {\wldn }{\wldn '}} \text { and } \LEQS {\ADDS {\wldm }{\wldm '}}{\ADDS {\wldn }{\wldn '}}$


   ∞ 


$\absS $


   0 


$\topS $


$\addS $


   𝑀 


$\krm $


$\krm $


   [  −    ]     ∶   Fm   ⟶    2  𝑀  


$\kri {-}: \Fm \longrightarrow 2^{\Wld }$


   ∀    𝑝  ∈   Prop  


$\forall \,\VPP \in \Prop $


   ∞  ∈  [  𝑝    ]    


$\absS \in \kri {\VPP }$


   ∀    𝑤  ,  𝑢  ∈  𝑀 


$\forall \,\wldm , \wldn \in \Wld $


   𝑤  ∈  [  𝑝    ]    


$\wldm \in \pki {\VPP }$


   𝑤  ⊑  𝑢 


$\LEQS {\wldm }{\wldn }$


   𝑢  ∈  [  𝑝    ]    


$\wldn \in \kri {\VPP }$


   𝒦  =  (  𝑀  ,    ⊧     ,  [  −    ]     ) 


$\km = (\krm , \frc , \kri {-})$


$\krm $


   [  −    ]    


$\kri {-}$


     ⊧    


$\frc $


   𝑀  ,  𝑤    ⊧     𝑝 


$\CSM {\krm ,\wldm }{\VPP }$


   𝑤  ∈  [  𝑝    ]    


$\wldm \in \kri {\VPP }$


   𝑀  ,  𝑤    ⊧     ⊥ 


$\CSM {\krm ,\wldm }{\BIabot }$


   ∞  ⊑  𝑤 


$\LEQS {\absS }{\wldm }$


   𝑀  ,  𝑤    ⊧         ⊤      𝔞    


$\CSM {\krm ,\wldm }{\BIatop }$


   0  ⊑  𝑤 


$\LEQS {\topS }{\wldm }$


   𝑀  ,  𝑤    ⊧         ⊤      𝔪    


$\CSM {\krm ,\wldm }{\BImtop }$


   1  ⊑  𝑤 


$\LEQS {\neuS }{\wldm }$


   𝑀  ,  𝑤    ⊧     𝐴      ∗    𝐵 


$\CSM {\krm ,\wldm }{\VPA \BImand \VPB }$


   𝑢  ,    𝑢  ′  


$\wldn , \wldn '$


$\Wld $


   𝑢  ⊗    𝑢  ′   ⊑  𝑤 


$\LEQS {\MULS {\wldn }{\wldn '}}{\wldm }$


   𝑀  ,  𝑢    ⊧     𝐴 


$\CSM {\krm ,\wldn }{\VPA }$


   𝑀  ,    𝑢  ′     ⊧     𝐵 


$\CSM {\krm ,\wldn '}{\VPB }$


   𝑀  ,  𝑤    ⊧     𝐴      ∧    𝐵 


$\CSM {\krm ,\wldm }{\VPA \BIaand \VPB }$


$\wldn , \wldn '$


$\Wld $


   𝑢  ⊕    𝑢  ′   ⊑  𝑤 


$\LEQS {\ADDS {\wldn }{\wldn '}}{\wldm }$


$\CSM {\krm ,\wldn }{\VPA }$


$\CSM {\krm ,\wldn '}{\VPB }$


   𝑀  ,  𝑤    ⊧     𝐴      −    ∗    𝐵 


$\CSM {\krm ,\wldm }{\VPA \BImimp \VPB }$


$\wldn , \wldn '$


$\Wld $


$\CSM {\krm ,\wldn }{\VPA }$


   𝑤  ⊗  𝑢  ⊑    𝑢  ′  


$\LEQS {\MULS {\wldm }{\wldn }}{\wldn '}$


$\CSM {\krm ,\wldn '}{\VPB }$


   𝑀  ,  𝑤    ⊧     𝐴      ⊃    𝐵 


$\CSM {\krm ,\wldm }{\VPA \BIaimp \VPB }$


$\wldn , \wldn '$


$\Wld $


$\CSM {\krm ,\wldn }{\VPA }$


   𝑤  ⊕  𝑢  ⊑    𝑢  ′  


$\LEQS {\ADDS {\wldm }{\wldn }}{\wldn '}$


$\CSM {\krm ,\wldn '}{\VPB }$


   𝑀  ,  𝑤    ⊧     𝐴      ∨    𝐵 


$\CSM {\krm ,\wldm }{\VPA \BIaor \VPB }$


   𝑀  ,  𝑤    ⊧     𝐴 


$\CSM {\krm ,\wldm }{\VPA }$


   𝑀  ,  𝑤    ⊧     𝐵 


$\CSM {\krm ,\wldm }{\VPB }$


   𝐴 


$\VPA $


   𝑀  ,  1    ⊧     𝐴 


$\CSM {\krm ,\neuS }{\VPA }$


    dmKRS  


$\relax \mathsf {dmKRS}$


    smKRS  


$\relax \mathsf {smKRS}$


$\relax \mathsf {smKRS}$


$\relax \mathsf {dmKRS}$


$\addS $


$\CSM {\krm ,\wldm }{\BIatop }$


$\CSM {\krm ,\wldm }{\VPA \BIaand \VPB }$


$\CSM {\krm ,\wldm }{\VPA }$


$\CSM {\krm ,\wldm }{\VPB }$


$\CSM {\krm ,\wldm }{\VPA \BIaimp \VPB }$


   𝑢 


$\wldn $


$\Wld $


$\LEQS {\wldm }{\wldn }$


$\CSM {\krm ,\wldn }{\VPA }$


   𝑀  ,  𝑢    ⊧     𝐵 


$\CSM {\krm ,\wldn }{\VPB }$


$\relax \mathsf {smKRS}$


   𝐴      ∧    𝐵 


$\VPA \BIaand \VPB $


$\VPA $


   𝐵 


$\VPB $


   𝑤 


$\wldm $


     𝑀  ,  𝑤    ⊧     𝐴      ∧    𝐵   ) 


$\CSM {\krm ,\wldm }{\VPA \BIaand \VPB })$


   𝐴      ∗    𝐵 


$\VPA \BImand \VPB $


$\wldm $


$\wldn $


     𝑢  ′  


$\wldn '$


$\VPA $


$\VPB $


$\relax \mathsf {BI}$


$\relax \mathsf {dmKRS}$


$\addS $


$\mulS $


$\relax \mathsf {dmKRS}$


$\relax \mathsf {BI}$


$\Gamma \sar \Delta $


   Γ 


$\Gamma $


   Δ 


$\Delta $


$\Gamma $


$\Delta $


$\Gamma \sar \Delta $


   Γ  =    𝐴  1   ,  …  ,    𝐴  𝑚  


$\Gamma = A_1,\ldots , A_m$


   Δ  =    𝐵  1   ,  …  ,    𝐵  𝑛  


$\Delta = B_1,\ldots , B_n$


   𝜏  (  Γ  ⇒  Δ  )  ∶  =  (    𝐴  1   ∧  ⋯  ∧    𝐴  𝑚   )  →  (    𝐵  1   ∨  ⋯  ∨    𝐵  𝑛   ) 


\begin {equation*}\tau (\Gamma \sar \Delta ) := (A_1 \land \cdots \land A_m) \rightarrow (B_1 \lor \cdots \lor B_n)\end {equation*}


   𝑚  =  0 


$m=0$


$\top $


   𝑛  =  0 


$n =0$


$\bot $


$\id $


$\botl $


$\scalc $


   𝒟 


$\deriv $


   𝑆 


$\gseq $


$\deriv $


$\gseq $


$\deriv $


$\gseq $


$\gseq $


$\deriv $


$\gseq $


   𝐴  →  𝐵 


$A \rightarrow B$


$\impl $


   𝐴 


$A$


   𝐵 


$B$


$\scalc $


$wk_l$


$wk_r$


$cr_l$


$cr_r$


$\cut $


$\cut $


$\cut $


$\scalc $


$\scalc $


   Γ  ⇒  𝐴  ,  Δ 


$\Gamma \sar A, \Delta $


   (    ¬  𝑙   ) 


$\negl $


   Γ  ,  ¬  𝐴  ⇒  Δ 


$\Gamma , \neg A \sar \Delta $


   Γ  ,  𝐴  ⇒  Δ 


$\Gamma , A \sar \Delta $


   (    ¬  𝑟   ) 


$\negr $


   Γ  ⇒  ¬  𝐴  ,  Δ 


$\Gamma \sar \neg A, \Delta $


$\scalc $


$\scalc $


   Δ  =    𝐵  1   ∨  ⋯  ∨    𝐵  𝑛  


$\Delta = B_1 \lor \cdots \lor B_n$


   𝜏  (  Δ  )  ∶  =    𝐵  1   ∨  ⋯  ∨    𝐵  𝑛  


$\tau (\Delta ) := B_1 \lor \cdots \lor B_n$


$\scalc $


$\scalc $


$\gseq $


   𝒫 


$\prf $


$\cut $


$\scalc $


$\deriv $


$\deriv $


$\scalc $


$\Gamma \sar \Delta $


$\deriv $


   Γ  ∩  Δ  =  ∅ 


$\Gamma \cap \Delta = \emptyset $


   𝑉  (  𝑝  )  =  t 


$V(p) = \textbf {t}$


   𝑝  ∈  Γ 


$p\in \Gamma $


$\deriv $


$\mathsf {S(CP)}$


    CoNP  


$\conp $


$\scalc $


$\scalcint $


$\impl $


$\impr $


$\scalc $


$\iimpl $


$\iimpr $


$\mathsf {S(CP)}$


$\Gamma \sar \Delta $


   |  Δ  |  ≤  1 


$|\Delta | \leq 1$


$\scalcint $


$\cut $


$\scalcint $


     ⊃  𝑙  


$\iimp _l$


     ⊃  𝑟  


$\iimp _r$


$\logicsv $


     Γ  1   ⇒    Δ  1   ∣  ⋯  ∣    Γ  𝑛   ⇒    Δ  𝑛  


$\Gamma _1 \hsar \Delta _1 \mid \cdots \mid \Gamma _n \hsar \Delta _n$


     Γ  𝑖   ⇒    Δ  𝑖  


$\Gamma _i \hsar \Delta _i$


   ∣ 


$\mid $


$\mid $


   𝐺 


$G$


   𝐻 


$H$


   … 


$\ldots $


$\hcalcsv $


$\logicsv $


$\logicsv $


$\logicsv $


$\hcalcsv $


$\disl $


$\disr $


$\conl $


$\conr $


$\impl $


$\impr $


   S  (   CL   ) 


$\mathsf {S(CL)}$


$\impl $


$\impr $


$G\mid \Gamma \sar \forma ,\Delta $


$G\mid \Gamma ,\formb \sar \Delta $


$\impl $


$G\mid \Gamma ,\forma \rightarrow \formb \sar \Delta $


$G\mid \Gamma ,\forma \sar \formb ,\Delta $


$\impr $


$G\mid \Gamma \sar \forma \rightarrow \formb ,\Delta $


$\hcalcsv $


$\id $


$\botl $


$\hcalcsv $


   (  𝑖  𝑤  ) 


$(iw)$


   (  𝑖  𝑐  ) 


$(ic)$


$G\hh \Gamma \hsar \Delta $


$(iw)$


$G\hh \Gamma ,\Sigma \hsar \Pi ,\Delta $


$G\mid \Gamma ,\Sigma ,\Sigma \hsar \Pi ,\Pi ,\Delta $


$(ic)$


$G\mid \Gamma ,\Sigma \hsar \Pi ,\Delta $


   (  𝑒  𝑤  ) 


$(ew)$


   (  𝑒  𝑐  ) 


$(ec)$


$G$


$(ew)$


$G\hh \Gamma \hsar \Delta $


$G\mid \Gamma \hsar \Delta \mid \Gamma \hsar \Delta $


$(ec)$


$G\mid \Gamma \hsar \Delta $


$\hcalcsv $


$\logickt $


   𝐴  ,  𝐵 


$A,B$


   𝐷 


$D$


$A,B$


$D$


$\leadsto $


   𝐶 


$C$


$\Rightarrow $


   𝐸  ,  𝐹 


$E,F$


$C$


$\Rightarrow $


$E,F,\Box G$


$G$


$A,B$


$C$


$D$


$E,F$


$G$


$G$


   ^^03 


$\Box $


   /    / 


$\sslash $


   𝐴  ,  𝐵  ⇒  𝐷      /    /     𝐶  ⇒  𝐸  ,  𝐹      /    /     ∅  ⇒  𝐺    𝐴  ,  𝐵  ⇒  𝐷      /    /     𝐶  ⇒  𝐸  ,  𝐹  ,  ^^03  𝐺 


\begin {equation*}A,B \sar D \sslash C \sar E, F \sslash \emptyset \sar G \qquad A,B \sar D \sslash C \sar E, F, \Box G\end {equation*}


$\logickt $


   (  ^^03  ) 


$(\Box )$


   K 


$\logick $


   |  Γ  | 


$|\Gamma |$


   (    ^^03  𝑙   ) 


$(\Box _{l})$


   (    ^^03  𝑟   ) 


$(\Box _{r})$


$\logick $


$\Gamma \sar A$


$(\Box )$


$\Sigma ,\Box \Gamma \sar \Box A,\Delta $


$\leadsto $


$\Sigma ,\Box \Gamma \sar \Box A,\Delta \sslash \Gamma \sar A$


$(\Box _{l})\times |\Gamma |$


$\Sigma ,\Box \Gamma \sar \Box A,\Delta \sslash \emptyset \sar A$


$(\Box _{r})$


$\Sigma ,\Box \Gamma \sar \Box A,\Delta $


$(\Box )$


$\sslash $


   ∣ 


$\hh $


$\logickt $


   Γ  ⇒  Δ 


$\relax {\SG \Rightarrow \SD }$


$\SG $


$\SD $


$\relax \mathsf {BI}$


$\relax \mathsf {BI}$


   ; 


$\BIasep $


   , 


$\BImsep $


   Γ  ∶  ∶  =  𝐴  ∣    ∅        𝔞     ∣  Γ  ;  Γ  ∣    ∅        𝔪     ∣  Γ  ,  Γ 


\begin {equation*}\SG ::= \VPA \mpipe \BIanul \mpipe \SG \BIasep \SG \mpipe \BImnul \mpipe \SG \BImsep \SG \end {equation*}


   Γ  (  Δ  ) 


$\SG (\SD )$


$\SG $


$\SD $


   ≡ 


$\BIequi $


$\BIasep $


$\BImsep $


     ∅        𝔞    


$\BIanul $


     ∅        𝔪    


$\BImnul $


$\SG $


     𝛷  Γ  


$\mathrm {\Phi }_{\SG }$


$\SG $


$\BImnul $


       ⊤      𝔪    


$\BImtop $


$\BIanul $


       ⊤      𝔞    


$\BIatop $


$\BImsep $


       ∗   


$\BImand $


$\BIasep $


$\BIaand $


$\relax \mathsf {BI}$


$\relax \mathsf {LBI}$


$\relax \mathsf {LBI}$


       ⊃   


$\BIaimp $


       −    ∗   


$\BImimp $


$\BIasep $


$\BImsep $


       Γ  ;  𝐴  ⇒  𝐵     Γ  ⇒  𝐴      ⊃    𝐵      (        ⊃    r   )           Γ  ,  𝐴  ⇒  𝐵     Γ  ⇒  𝐴      −    ∗    𝐵      (        −    ∗    r   )  


\begin {equation*}\dfrac {\SEQ {\SG \BIasep \VPA }{\VPB }}{\SEQ {\SG }{\VPA \BIaimp \VPB }} {\footnotesize (\PRNR {\BIaimp })} \qquad \qquad \dfrac {\SEQ {\SG \BImsep \VPA }{\VPB }}{\SEQ {\SG }{\VPA \BImimp \VPB }} {\footnotesize (\PRNR {\BImimp })}\end {equation*}


$\BIasep $


$\BIaand $


$\BImsep $


$\BImand $


$\BIasep $


$\BImsep $


$\relax \mathsf {LBI}$


   Γ  ⇒  𝐶 


$\SEQ {\SG }{\VPC }$


$\SG $


   𝐶 


$\VPC $


$\VPC $


    LBI  


$\LBI $


     ∅        𝔪     ⇒  𝐶 


$\SEQ {\BImnul }{\VPC }$


$\relax \mathsf {LBI}$


$\relax \mathsf {LBI}$


    CUT  


$\relax \mathrm {CUT}$


$\relax \mathsf {LBI}$


    CR  


$\relax \mathrm {CR}$


$\relax \mathsf {LBI}$


   (  (  𝑝      −    ∗    (  𝑞      ⊃    𝑟  )      ∧    𝑝      −    ∗    𝑞  )      ∗    𝑝  )      −    ∗    𝑟 


$((\VPP \BImimp (\VPQ \BIaimp \VPR )\BIaand \VPP \BImimp \VPQ )\BImand \VPP )\BImimp \VPR $


$(\PRN {id})$


   𝑝  ⇒  𝑝 


$\SEQ {\VPP }{\VPP }$


$(\PRN {id})$


$\SEQ {\VPP }{\VPP }$


$(\PRN {id})$


   𝑞  ⇒  𝑞 


$\SEQ {\VPQ }{\VPQ }$


$(\PRN {id})$


   𝑟  ;  𝑞  ⇒  𝑟 


$\SEQ {\VPR \BIasep \VPQ }{\VPR }$


$(\PRNL {\BIaimp })$


   𝑞      ⊃    𝑟  ;  𝑞  ⇒  𝑟 


$\SEQ {\VPQ \BIaimp \VPR \BIasep \VPQ }{\VPR }$


$(\PRNL {\BImimp })$


   𝑞      ⊃    𝑟  ;  (  𝑝      −    ∗    𝑞  ,  𝑝  )  ⇒  𝑟 


$\SEQ {\VPQ \BIaimp \VPR \BIasep (\VPP \BImimp \VPQ \BImsep \VPP )}{\VPR }$


$(\PRNL {\BImimp })$


   (  𝑝      −    ∗    (  𝑞      ⊃    𝑟  )  ,  𝑝  )  ;  (  𝑝      −    ∗    𝑞  ,  𝑝  )  ⇒  𝑟 


$\SEQ {(\VPP \BImimp (\VPQ \BIaimp \VPR ) \BImsep \VPP ) \BIasep (\VPP \BImimp \VPQ \BImsep \VPP )}{\VPR }$


$(\PRN {WK})$


   (  𝑝      −    ∗    (  𝑞      ⊃    𝑟  )  ,  𝑝  )  ;  (  (  𝑝      −    ∗    (  𝑞      ⊃    𝑟  )  ;  𝑝      −    ∗    𝑞  )  ,  𝑝  )  ⇒  𝑟 


$\SEQ {(\VPP \BImimp (\VPQ \BIaimp \VPR ) \BImsep \VPP ) \BIasep ((\VPP \BImimp (\VPQ \BIaimp \VPR ) \BIasep \VPP \BImimp \VPQ ) \BImsep \VPP )}{\VPR }$


$(\PRN {WK})$


   (  (  𝑝      −    ∗    (  𝑞      ⊃    𝑟  )  ;  𝑝      −    ∗    𝑞  )  ,  𝑝  )  ;  (  (  𝑝      −    ∗    (  𝑞      ⊃    𝑟  )  ;  𝑝      −    ∗    𝑞  )  ,  𝑝  )  ⇒  𝑟 


$\SEQ {((\VPP \BImimp (\VPQ \BIaimp \VPR ) \BIasep \VPP \BImimp \VPQ ) \BImsep \VPP ) \BIasep ((\VPP \BImimp (\VPQ \BIaimp \VPR ) \BIasep \VPP \BImimp \VPQ ) \BImsep \VPP )}{\VPR }$


$(\PRN {CR})$


   (  𝑝      −    ∗    (  𝑞      ⊃    𝑟  )  ;  𝑝      −    ∗    𝑞  )  ,  𝑝  ⇒  𝑟 


$\SEQ {(\VPP \BImimp (\VPQ \BIaimp \VPR )\BIasep \VPP \BImimp \VPQ )\BImsep \VPP }{\VPR }$


$(\PRNR {\BIaand })$


   (  (  𝑝      −    ∗    (  𝑞      ⊃    𝑟  )      ∧    𝑝      −    ∗    𝑞  )  ,  𝑝  )  ⇒  𝑟 


$\SEQ {((\VPP \BImimp (\VPQ \BIaimp \VPR )\BIaand \VPP \BImimp \VPQ )\BImsep \VPP )}{\VPR }$


   (  ≡  ) 


$(\PRN {\BIequi })$


     ∅        𝔪     ,  (  (  𝑝      −    ∗    (  𝑞      ⊃    𝑟  )      ∧    𝑝      −    ∗    𝑞  )  ,  𝑝  )  ⇒  𝑟 


$\SEQ {\BImnul \BImsep ((\VPP \BImimp (\VPQ \BIaimp \VPR )\BIaand \VPP \BImimp \VPQ )\BImsep \VPP )}{\VPR }$


$(\PRNL {\BImand })$


     ∅        𝔪     ,  (  (  𝑝      −    ∗    (  𝑞      ⊃    𝑟  )      ∧    𝑝      −    ∗    𝑞  )      ∗    𝑝  )  ⇒  𝑟 


$\SEQ {\BImnul \BImsep ((\VPP \BImimp (\VPQ \BIaimp \VPR )\BIaand \VPP \BImimp \VPQ )\BImand \VPP )}{\VPR }$


$(\PRNR {\BImimp })$


     ∅        𝔪     ⇒  (  (  𝑝      −    ∗    (  𝑞      ⊃    𝑟  )      ∧    𝑝      −    ∗    𝑞  )      ∗    𝑝  )      −    ∗    𝑟 


$\SEQ {\BImnul }{((\VPP \BImimp (\VPQ \BIaimp \VPR )\BIaand \VPP \BImimp \VPQ )\BImand \VPP )\BImimp \VPR }$


$\logickt $


   Σ  ∶  ∶  =  𝐴    |    ∅    |    Σ  ,  Σ    |    ∘  [  Σ  ]    |    •  [  Σ  ] 


\begin {equation*}\ns ::= A \ | \ \emptyset \ | \ \ns , \ns \ | \ \wnest {\ns } \ | \ \bnest {\ns }\end {equation*}


   𝐴  ∈    ℒ  𝑀  


$A \in \langmod $


   ∅ 


$\emptyset $


     Σ  1   =  𝑝  ,  ^^06  𝑞 


$\ns _{1} = p, \dia q$


     Σ  2   =  ^^04  𝑝  ,  ∘  [  𝑝  ,  •  [  𝑞  ]  ] 


$\ns _{2} = \blbox p, \wnest {p, \bnest {q}}$


     Σ  3   =  𝑝  ∧  𝑟  ,  ∘  [  ∅  ,  ∘  [  ^^06  𝑞  ,  𝑝  ]  ,  •  [  ¬  𝑞  ∨  𝑞  ]  ]  ,  ∘  [  ¬  𝑞  ] 


$\ns _{3} = p \land r, \wnest {\emptyset , \wnest {\dia q, p}, \bnest {\neg q \lor q}}, \wnest {\neg q}$


    ��  


$\boxed {p \land r}$


    ��  


$\boxed {\emptyset }$


    ��  


$\boxed {\neg q}$


    ��  


$\boxed {\dia q,p}$


    ��  


$\boxed {\neg q \lor q}$


   ∘ 


$\circ $


$\circ $


$\circ $


   • 


$\bullet $


    ��  


$\boxed {\blbox p}$


    ��  


$\boxed {p}$


    ��  


$\boxed {q}$


$\circ $


$\bullet $


    ��  


$\boxed {p, \dia q}$


$\logickt $


$\ncalckt $


   Σ  {  Γ  } 


$\ns \{\Gamma \}$


$\ns \{\Gamma \}$


$\Gamma $


   Σ 


$\ns $


     Σ  2  


$\ns _{2}$


     Σ  2   {  𝑝  ,  •  [  𝑞  ]  } 


$\ns _{2}\{p,\bnest {q}\}$


     Σ  3  


$\ns _{3}$


     Σ  3   {  ¬  𝑞  } 


$\ns _{3}\{\neg q\}$


$\ns $


   Σ  {    Γ  1   }  {    Γ  2   }  ⋯  {    Γ  𝑛   } 


$\ns \{\Gamma _{1}\}\{\Gamma _{2}\} \cdots \{\Gamma _{n}\}$


$\ns _{2}$


     Σ  2   {  𝑝  }  {  𝑞  } 


$\ns _{2}\{p\}\{q\}$


$\ns _{3}$


     Σ  3   {  𝑝  ∧  𝑟  }  {  ∘  [  ^^06  𝑞  ,  𝑝  ]  } 


$\ns _{3}\{p \land r\}\{\wnest {\dia q, p}\}$


$\id $


$\ncalckt $


$p$


   ¬  𝑝 


$\neg p$


$\disru $


   𝐴  ,  𝐵 


$A, B$


   𝐴  ∨  𝐵 


$A \lor B$


$\boxru $


   ∘  [  𝐴  ] 


$\wnest {A}$


   ^^03  𝐴 


$\Box A$


   K 


$\mathsf {K}$


$\ncalckt $


$\id $


   ^^06  (  𝑝  ∧  ¬  𝑞  )  ,  ^^06  ¬  𝑝  ,  ∘  [  𝑝  ,  ¬  𝑝  ,  𝑞  ] 


$\dia (p \land \neg q), \dia \neg p, \wnest {p, \neg p,q}$


$\id $


   ^^06  (  𝑝  ∧  ¬  𝑞  )  ,  ^^06  ¬  𝑝  ,  ∘  [  ¬  𝑞  ,  ¬  𝑝  ,  𝑞  ] 


$\dia (p \land \neg q), \dia \neg p, \wnest {\neg q, \neg p,q}$


$\conru $


   ^^06  (  𝑝  ∧  ¬  𝑞  )  ,  ^^06  ¬  𝑝  ,  ∘  [  𝑝  ∧  ¬  𝑞  ,  ¬  𝑝  ,  𝑞  ] 


$\dia (p \land \neg q), \dia \neg p, \wnest {p \land \neg q, \neg p,q}$


   (  ^^06  )  ×  2 


$\diaru \times 2$


   ^^06  (  𝑝  ∧  ¬  𝑞  )  ,  ^^06  ¬  𝑝  ,  ∘  [  𝑞  ] 


$\dia (p \land \neg q), \dia \neg p, \wnest {q}$


$\boxru $


   ^^06  (  𝑝  ∧  ¬  𝑞  )  ,  ^^06  ¬  𝑝  ,  ^^03  𝑞 


$\dia (p \land \neg q), \dia \neg p, \Box q$


   (  ∨  )  ×  2 


$\disru \times 2$


   ^^06  (  𝑝  ∧  ¬  𝑞  )  ∨  ^^06  ¬  𝑝  ∨  ^^03  𝑞 


$\dia (p \land \neg q) \lor \dia \neg p \lor \Box q$


$\ncalcint $


$\iimpl $


$\id $


$\ncalcint $


$\ncalcint $


   Σ  ∶  ∶  =  Γ  ⇒  Γ    |    Σ  ,  [  Σ    ]  𝑤     Γ  ∶  ∶  =  𝐴    |    ∅    |    Γ  ,  Γ 


\begin {equation*}\ns ::= \Gamma \nsar \Gamma \ | \ \ns , [\ns ]_{w} \qquad \Gamma ::= A \ | \ \emptyset \ | \ \Gamma , \Gamma \end {equation*}


   𝐴  ∈    ℒ  𝐼  


$A \in \langint $


$w$


$w$


$u$


   𝑣 


$v$


$\ldots $


$\emptyset $


$\ncalcint $


$\id $


$\iimpl $


$w$


$u$


$\id $


$\iimpl $


$u$


$w$


$\ns $


   0 


$0$


$w$


$u$


$\ncalcint $


$\iimpl $


   𝑝  ⊃  𝑞 


$p \iimp q$


$w$


   𝑞 


$q$


   [  𝑝  ⇒  𝑞    ]  𝑢  


$[p \nsar q]_{u}$


$p$


$[p \nsar q]_{u}$


$\iimpl $


$\id $


$u$


$u$


$0$


$\id $


   ⇒  [  𝑝  ⊃  𝑞  ⇒  [  𝑝  ,  𝑞  ⇒  𝑞    ]  𝑢     ]  𝑤  


$\nsar [p \iimp q \nsar [p, q \nsar q]_{u}]_{w}$


$\id $


   ⇒  [  𝑝  ⊃  𝑞  ⇒  [  𝑝  ⇒  𝑝  ,  𝑞    ]  𝑢     ]  𝑤  


$\nsar [p \iimp q \nsar [p \nsar p, q]_{u}]_{w}$


$\iimpl $


   ⇒  [  𝑝  ⊃  𝑞  ⇒  [  𝑝  ⇒  𝑞    ]  𝑢     ]  𝑤  


$\nsar [p \iimp q \nsar [p \nsar q]_{u}]_{w}$


$\iimpr $


   ⇒  [  𝑝  ⊃  𝑞  ⇒  𝑝  ⊃  𝑞    ]  𝑤  


$\nsar [p \iimp q \nsar p \iimp q]_{w}$


$\iimpr $


   ⇒  (  𝑝  ⊃  𝑞  )  ⊃  (  𝑝  ⊃  𝑞  ) 


$\nsar (p \iimp q) \iimp (p \iimp q)$


$\ncalcint $


   , 


$,$


   ⇒ 


$\seq $


   𝑋 


$X$


   𝑋  ∶  ∶  =  𝐴    |    𝐼    |    ∗  𝑋    |    •  𝑋    |    (  𝑋  ∘  𝑋  ) 


\begin {equation*}X ::= A \ | \ I \ | \ {\ast }X \ | \ {\bullet } X \ | \ (X \circ X)\end {equation*}


$A$


     ℒ  𝑇  


$\langten $


$X$


   𝑌 


$Y$


   𝑍 


$Z$


$\ldots $


   𝑋  ⇒  𝑌 


$X \dsar Y$


         •  (    𝐴  1   ∘  ∗    𝐴  2   )  ∘  •    𝐴  3   ∘    𝐴  4    ⏟     𝐴  𝑛  𝑡  𝑒  𝑐  𝑒  𝑑  𝑒  𝑛  𝑡    ⇒          𝐴  5   ∘  •  (  ∗    𝐴  6   ∘  ∗    𝐴  7   )  ∘  •    𝐴  8    ⏟     𝐶  𝑜  𝑛  𝑠  𝑒  𝑞  𝑢  𝑒  𝑛  𝑡   


$\underbrace {\bullet (\forma _{1} \circ \ast \forma _{2}) \circ \bullet \forma _{3} \circ \forma _{4}}_{Antecedent} \dsar \underbrace {\forma _{5} \circ \bullet (\ast \forma _{6} \circ \ast \forma _{7}) \circ \bullet \forma _{8}}_{Consequent}$


    ��  


$\boxed {A_{4}}$


    ��  


$\boxed {A_{1} \circ \ast A_{2}}$


    ��  


$\boxed {A_{3}}$


    ��  


$\boxed {A_{5}}$


    ��  


$\boxed {\ast A_{6} \circ \ast A_{7}}$


    ��  


$\boxed {A_{8}}$


$\bullet $


   ^^07 


$\bldia $


$\Box $


   ^^07  𝐴  →  𝐵 


$\bldia A \rightarrow B$


   𝐴  →  ^^03  𝐵 


$A \rightarrow \Box B$


   •  𝐴  ⇒  𝐵 


$\bullet A \dsar B$


   𝐴  ⇒  •  𝐵 


$A \dsar \bullet B$


   •  𝑋  ⇒  𝑌 


$\bullet X \dsar Y$


   (  •  ) 


$(\bullet )$


   𝑋  ⇒  •  𝑌 


$X \dsar \bullet Y$


$\ncalckt $


   (  𝑟    𝑓  ) 


$\rf $


   (  𝑟  𝑝  ) 


$\rp $


$\diarui $


$\diaruii $


$\bldiarui $


$\bldiaruii $


$\diaru $


$\bldiaru $


   D  (   Kt   ) 


$\dcalckt $


$\logickt $


$\dcalckt $


$\Gamma ,\wnest {\Delta }$


$\rf $


$\bnest {\Gamma },\Delta $


$\Gamma ,\bnest {\Delta }$


$\rp $


$\wnest {\Gamma },\Delta $


$\Gamma ,\dia A,\wnest {\Delta , A}$


$\diaru $


$\Gamma ,\dia A,\wnest {\Delta }$


$\Gamma ,\bldia A,\bnest {\Delta , A}$


$\bldiaru $


$\Gamma ,\bldia A,\bnest {\Delta }$


$\rf $


$\rp $


$(\bullet )$


   ^^04  ¬  𝐴  ∨  𝐵 


$\blbox \neg A \lor B$


   ¬  𝐴  ∨  ^^03  𝐵 


$\neg A \lor \Box B$


         𝑤  𝑅  𝑢  ,  𝑢  𝑅  𝑣  ,  𝑣  𝑅  𝑤  ,  𝑧  𝑅  𝑧   ⏟    Relational Atoms    ,        𝑤  ∶  𝐴  ,  𝑢  ∶  𝐵  ,  𝑣  ∶  𝐶   ⏟    Labeled Formulae      ⇒        𝑢  ∶  𝐷  ,  𝑧  ∶  𝐸  ,  𝑧  ∶  𝐹   ⏟    Labeled Formulae   


\begin {equation*}\underbrace {wRu, uRv, vRw, zRz}_{\text {Relational Atoms}}, \underbrace {w : A, u : B, v : C}_{\text {Labeled Formulae}} \ \lsar \underbrace {u : D, z : E, z : F}_{\text {Labeled Formulae}}\end {equation*}


     𝑤   ��   


$\overset {\boxed {A \lsar \emptyset }}{w}$


     𝑢   ��   


$\overset {\boxed {B \lsar D}}{u}$


     𝑣   ��   


$\overset {\boxed {C \lsar \emptyset }}{v}$


     𝑧   ��   


$\overset {\boxed {\emptyset \lsar E, F}}{z}$


$\logickt $


   ℛ  ⇒  Γ 


$\rel \lsar \Gamma $


   ℛ 


$\rel $


   𝑤  𝑅  𝑢 


$wRu$


$\Gamma $


   𝑤  ∶  𝐴 


$w : \forma $


   𝐴  ∈    ℒ  𝑇  


$\forma \in \langten $


$\lcalckt $


$\id $


$\boxru $


$\blboxru $


$u$


$\logickt $


$\logicsiv $


$\logicsv $


$\logickt $


$\lcalckt $


   (  𝑠  𝑒  𝑟  ) 


$(ser)$


$\logicsiv $


$\lcalckt $


   (  𝑟  𝑒  𝑓  ) 


$(ref)$


   (  𝑡  𝑟  𝑎  ) 


$(tra)$


$\rel ,wRu\lsar \Gamma $


$(ser)$


$u$


$\rel \lsar \Gamma $


$\rel ,wRw\lsar \Gamma $


$(ref)$


$\rel \lsar \Gamma $


   ℛ  ,  𝑤  𝑅  𝑢  ,  𝑢  𝑅  𝑣  ,  𝑤  𝑅  𝑣  ⇒  Γ 


$\rel , wRu, uRv, wRv \lsar \Gamma $


$(tra)$


   ℛ  ,  𝑤  𝑅  𝑢  ,  𝑢  𝑅  𝑣  ⇒  Γ 


$\rel , wRu, uRv \lsar \Gamma $


     𝐴  𝑖  


$\forma _{i}$


     𝐵    𝑗  ,  𝑘   


$\formb _{j,k}$


   ∀    𝑥  1   ,  …  ,    𝑥  𝑡   (    𝐴  1   ∧  ⋯  ∧    𝐴  𝑛   →  ∃    𝑦  1   ,  …  ,    𝑦  𝑠   (    ⋁    𝑗  =  1   𝑚     ⋀    𝑘  =  1     𝑙  𝑗      𝐵    1  ,  𝑘    )  ) 


\begin {equation*}\forall x_{1}, \ldots , x_{t} \big ( A_{1} \land \cdots \land \forma _{n} \rightarrow \exists y_{1}, \ldots , y_{s} (\bigvee _{j = 1}^{m} \bigwedge _{k = 1}^{l_{j}} \formb _{1,k}) \big )\end {equation*}


     𝐴  →   ∶  =    𝐴  1   ,  …  ,    𝐴  𝑛  


$\vec {\forma } := \forma _{1}, \ldots , \forma _{n}$


       𝐵  →   𝑗   ∶  =    𝐵    𝑗  ,  1    ,  …  ,    𝐵    𝑗  ,    𝑙  𝑗    


$\vec {\formb }_{j} := \formb _{j,1}, \ldots , \formb _{j,l_{j}}$


     𝑦  1   ,  …  ,    𝑦  𝑠  


$y_{1}, \ldots , y_{s}$


$y_{1}, \ldots , y_{s}$


   ℛ  ,    𝐴  →   ,      𝐵  →   1   ⇒  Δ 


$\rel , \vec {\forma }, \vec {\formb }_{1} \lsar \Delta $


   ⋯ 


$\cdots $


   ℛ  ,    𝐴  →   ,      𝐵  →   𝑚   ⇒  Δ 


$\rel , \vec {\forma }, \vec {\formb }_{m} \lsar \Delta $


   ℛ  ,    𝐴  →   ⇒  Δ 


$\rel , \vec {\forma } \lsar \Delta $


   (  𝑤  𝑘  ) 


$\wk $


$\ctr $


$\lsub $


$u$


$w$


$\cut $


$\cut $


$\logicsv $


$\logicsv $


$\hcalcsv $


$\lcalcsv $


$\Gamma \sar \Delta $


$\Gamma $


$\Delta $


   𝑤  ∶  𝐴 


$w : A$


$w$


    Lab   ∶  =  {  𝑤  ,  𝑢  ,  𝑣  ,  …  } 


$\labset := \{w, u, v, \ldots \}$


$A \in \langmod $


$\Gamma $


    Lab   (  Γ  ) 


$\labset (\Gamma )$


$\Gamma $


   {    𝐴  1   ,  …  ,    𝐴  𝑛   } 


$\set {A_{1}, \ldots , A_{n}}$


   𝑤  ∶  {    𝐴  1   ,  …  ,    𝐴  𝑛   }  =  {  𝑤  ∶    𝐴  1   ,  …  ,  𝑤  ∶    𝐴  𝑛   } 


$w : \set {A_{1}, \ldots , A_{n}} = \set {w : A_{1}, \ldots , w : A_{n}}$


   Γ  (  𝑤  ) 


$\Gamma (w)$


   {  𝐴  ∣  𝑤  ∶  𝐴  ∈  Γ  } 


$\{A \mid w : A \in \Gamma \}$


$\lcalcsv $


$\logicsv $


$\lcalcsv $


$\lcalcsv $


$\logicsv $


   ℎ 


$h$


   ℎ  (  Γ  ⇒  Δ  )  ∶  =  Γ  (    𝑤  1   )  ⇒  Δ  (    𝑤  1   )  ∣  ⋯  ∣  Γ  (    𝑤  𝑛   )  ⇒  Δ  (    𝑤  𝑛   ) 


\begin {equation*}h(\Gamma \lsar \Delta ) := \Gamma (w_1) \lsar \Delta (w_1) \mid \cdots \mid \Gamma (w_n) \lsar \Delta (w_n)\end {equation*}


    Lab   (  Γ  ,  Δ  )  ∶  =  {    𝑤  1   ,  …  ,    𝑤  𝑛   } 


$\labset (\Gamma , \Delta ) := \set {w_{1}, \ldots , w_{n}}$


   ℓ 


$\ell $


   ℓ  (    Γ  1   ⇒    Δ  1   ∣  ⋯  ∣    Γ  𝑛   ⇒    Δ  𝑛   )  ∶  =    ⋃    1  ≤  𝑖  ≤  𝑛      𝑤  𝑖   ∶    Γ  𝑖   ⇒    ⋃    1  ≤  𝑖  ≤  𝑛      𝑤  𝑖   ∶    Δ  𝑖  


\begin {equation*}\ell (\Gamma _{1} \hsar \Delta _{1} \mid \cdots \mid \Gamma _{n} \hsar \Delta _{n}) := \bigcup _{1 \leq i \leq n} w_{i} : \Gamma _{i} \sar \bigcup _{1 \leq i \leq n} w_{i} : \Delta _{i}\end {equation*}


$\lcalcsv $


$\hcalcsv $


$\lcalcsv $


$\hcalcsv $


$h$


$\hcalcsv $


$\lcalcsv $


$\ell $


$h$


$\deriv $


$\ell $


$\Gamma \sar \Delta $


$\id $


$\botl $


   ℎ  (  Γ  ⇒  Δ  ) 


$h(\Gamma \sar \Delta )$


$\hcalcsv $


$\Gamma \sar \Delta $


$\deriv $


$h(\Gamma \sar \Delta )$


$\boxl $


$\boxl $


   𝐴 


$\forma $


   ^^03  𝐴 


$\Box \forma $


   𝐺  =  ℎ  (  Γ  ∖  𝑤  ∶  Γ  (  𝑤  )  ⇒  Δ  ∖  𝑤  ∶  Δ  (  𝑤  )  ) 


$G = h(\Gamma \setminus w : \Gamma (w) \sar \Delta \setminus w : \Delta (w))$


   ℎ  (  Γ  ,  𝑤  ∶  ^^03  𝐴  ,  𝑤  ∶  𝐴  ⇒  Δ  ) 


$h(\Gamma , w : \Box \forma , w : \forma \hsar \Delta )$


   𝐺  ∣  ^^03  𝐴  ,  𝐴  ,  Γ  (  𝑤  )  ⇒  Δ  (  𝑤  ) 


$G \mid \Box \forma , \forma , \Gamma (w) \hsar \Delta (w)$


$\boxli $


   𝐺  ∣  ^^03  𝐴  ,  Γ  (  𝑤  )  ⇒  Δ  (  𝑤  ) 


$G \mid \Box \forma , \Gamma (w) \hsar \Delta (w)$


   ℎ  (  Γ  ,  𝑤  ∶  ^^03  𝐴  ⇒  Δ  ) 


$h(\Gamma , w : \Box \forma \hsar \Delta )$


$u$


   𝐺  =  ℎ  (  Γ  ∖  {  𝑤  ∶  Γ  (  𝑤  )  ,  𝑢  ∶  Γ  (  𝑢  )  }  ⇒  Δ  ∖  {  𝑤  ∶  Δ  (  𝑤  )  ,  𝑢  ∶  Δ  (  𝑢  )  }  ) 


$G = h(\Gamma \setminus \set {w : \Gamma (w), u : \Gamma (u)} \sar \Delta \setminus \set {w : \Delta (w), u : \Delta (u)})$


   ℎ  (  Γ  ,  𝑤  ∶  ^^03  𝐴  ,  𝑢  ∶  𝐴  ⇒  Δ  ) 


$h(\Gamma , w : \Box \forma , u : \forma \hsar \Delta )$


   𝐺  ∣  ^^03  𝐴  ,  Γ  (  𝑤  )  ⇒  Δ  (  𝑤  )  ∣  𝐴  ,  Γ  (  𝑢  )  ⇒  Δ  (  𝑢  ) 


$G \mid \Box \forma , \Gamma (w) \hsar \Delta (w) \mid \forma , \Gamma (u) \hsar \Delta (u)$


$\boxlii $


   𝐺  ∣  ^^03  𝐴  ,  Γ  (  𝑤  )  ⇒  Δ  (  𝑤  )  ∣  Γ  (  𝑢  )  ⇒  Δ  (  𝑢  ) 


$G \mid \Box \forma , \Gamma (w) \hsar \Delta (w) \mid \Gamma (u) \hsar \Delta (u)$


$h(\Gamma , w : \Box \forma \hsar \Delta )$


$\hcalcsv $


   ^^03 


$\relax \square $


$\logickt $


$\lcalckt $


$\dcalckt $


$\logickt $


$\logickt $


   ⟨  ?    ⟩  1   ⋯  ⟨  ?    ⟩  𝑛   𝑝  →  ⟨  ?    ⟩    𝑛  +  1    𝑝 


$\qdia _{1} \cdots \qdia _{n} p \rightarrow \qdia _{n+1} p$


   ⟨  ?    ⟩  𝑖   ∈  {  ^^07  ,  ^^06  } 


$\qdia _{i} \in \{\bldia ,\dia \}$


   1  ≤  𝑖  ≤  𝑛  +  1 


$1 \leq i \leq n+1$


$\dcalckt $


$\lcalckt $


$\lcalckt $


$\dcalckt $


   Λ  ∶  =  ℛ  ,  Γ  ⇒  Δ 


$\Lambda := \rel , \Gamma \sar \Delta $


   𝐺  (  ℛ  )  =  (  𝑉  ,  𝐸  ) 


$G(\rel ) = (V,E)$


   𝑉 


$V$


$\rel $


   𝐸  =  {  (  𝑤  ,  𝑢  )    |    𝑤  𝑅  𝑢  ∈  ℛ  } 


$E = \{(w,u) \ | \ wRu \in \rel \}$


   Λ 


$\Lambda $


$\rel $


   𝐺  (  ℛ  ) 


$G(\rel )$


   Γ  ,  Δ 


$\Gamma , \Delta $


$\rel $


$\rel $


$\Gamma , \Delta $


$\forma $


$\lcalckt $


   ⇒  𝑤  ∶  𝐴 


$\lsar w : \forma $


$\lcalckt $


$\lcalckt $


$\rel $


$\disru $


$\diaru $


$\boxru $


$\blboxru $


$\lsar w : \forma $


$\lcalckt $


$\relax \square $


   𝑑 


$\ldkt $


   Λ  ⊙    Λ  ′  


$\Lambda \seqcomp \Lambda '$


   Λ  =  ℛ  ⇒  Γ 


$\Lambda = \rel \sar \Gamma $


     Λ  ′   =    ℛ  ′   ⇒    Γ  ′  


$\Lambda ' = \rel ' \sar \Gamma '$


   Λ  ⊙    Λ  ′   ∶  =  ℛ  ,    ℛ  ′   ⇒  Γ  ,    Γ  ′  


$\Lambda \seqcomp \Lambda ' := \rel , \rel ' \sar \Gamma , \Gamma '$


$\ldkt $


   Λ  ∶  =  ℛ  ⇒  Γ 


$\Lambda := \rel \sar \Gamma $


$u$


     Λ  ′   ⊆  Λ 


$\Lambda ' \subseteq \Lambda $


     Λ  ″  


$\Lambda ''$


   Λ  =    Λ  ′   ⊙    Λ  ″  


$\Lambda = \Lambda ' \seqcomp \Lambda ''$


     Λ  𝑢   ∶  =    ℛ  ′   ⇒    Γ  ′  


$\Lambda _{u} := \rel ' \sar \Gamma '$


$u$


     Λ  𝑢   ⊆  Λ 


$\Lambda _{u} \subseteq \Lambda $


     Γ  ′   ^^16  𝑢  =  Γ  ^^16  𝑢 


$\Gamma ' \restriction u = \Gamma \restriction u$


     𝑑  𝑢   (  Λ  ) 


$\ldkt _{u}(\Lambda )$


   ℛ  =  ∅ 


$\rel = \empseq $


     𝑑  𝑣   (  Λ  )  ∶  =  (  ⇒  Γ  ^^16  𝑣  ) 


$\ldkt _{v}(\Lambda ) := (\lsar \Gamma \restriction v)$


   𝑣  𝑅    𝑥  1   ,  …  𝑣  𝑅    𝑥  𝑛  


$vRx_{1}, \ldots vRx_{n}$


     𝑦  1   𝑅  𝑣  ,  …    𝑦  𝑛   𝑅  𝑣 


$y_{1}Rv, \ldots y_{n}Rv$


   𝑣  𝑅  𝑥 


$vRx$


   𝑦  𝑅  𝑥 


$yRx$


     𝑑  𝑣   (  Λ  )  ∶  =  Γ  ^^16  𝑣  ,  ∘  [    𝑑    𝑥  1    (    Λ    𝑥  1    )  ]  ,  …  ,  ∘  [    𝑑    𝑥  𝑛    (    Λ    𝑥  𝑛    )  ]  ,  •  [    𝑑    𝑦  1    (    Λ    𝑦  1    )  ]  ,  …  ,  •  [    𝑑    𝑦  𝑘    (    Λ    𝑦  𝑘    )  ]  . 


\begin {equation*}\ldkt _{v}(\Lambda ) := \Gamma \restriction v, \wnest {\ldkt _{x_{1}}(\Lambda _{x_{1}})}, \ldots , \wnest {\ldkt _{x_{n}}(\Lambda _{x_{n}})}, \bnest {\ldkt _{y_{1}}(\Lambda _{y_{1}})}, \ldots , \bnest {\ldkt _{y_{k}}(\Lambda _{y_{k}})}.\end {equation*}


   Λ  =    𝑤  𝑅  𝑣  ,  𝑣  𝑅  𝑢  ⇒  𝑤  ∶  ^^06  𝑞  ,  𝑤  ∶  𝑟  ∨  𝑞  ,  𝑣  ∶  𝑝  ,  𝑣  ∶  𝑞  ,  𝑢  ∶  ^^04  𝑝 


$\Lambda = \ wRv,vRu \lsar w : \dia q, w : r \lor q, v : p, v : q, u : \blbox p$


$w$


$u$


$v$


\begin {eqnarray}\if@eqnstar \else \ifx \\\@currentHref \\\else \hyper@makecurrent {equation}\mathopen {\Hy@raisedlink {\hyper@anchorstart {\@currentHref }\hyper@anchorend }}\fi \fi  \ldkt _{w}(\Lambda ) & = \dia q, r \lor q, \wnest {p, q,, \wnest {\blbox p}}\\ \ldkt _{v}(\Lambda ) & = \bnest {\dia q, r \lor q}, p, q, \wnest {\blbox p}\\ \ldkt _{u}(\Lambda ) & = \bnest {\bnest {\dia q, r \lor q}, p, q}, \blbox p\end {eqnarray}


   ^^06 


$\Diamond $


$\Box $


$p$


$\Prop $


     ℒ  𝑀  


$\langmod $


$\Box $


$\Box $


$\Diamond $


   𝐴  ∶  ∶  =  𝑝    |    ⊥    |    𝐴  ∨  𝐴    |    𝐴  ∨  𝐴    |    𝐴  →  𝐴    |    ^^03  𝐴 


\begin {equation*}\forma ::= p \ | \ \bot \ | \ \forma \lor \forma \ | \ \forma \lor \forma \ | \ \forma \imp \forma \ | \ \Box \forma \end {equation*}


   ^^06  𝐴  ∶  =  ¬  ^^03  ¬  𝐴 


$\Diamond A := \lnot \Box \lnot A$


   𝐹  ∶  =  (  𝑊  ,  𝑅  ) 


$F := (W,R)$


$W$


   𝑅  ⊆  𝑊  ×  𝑊 


$R \subseteq W \times W$


$M = (F,V)$


$F$


$V : \Prop \to 2^{W}$


   𝑀  =  (  𝑊  ,  𝑅  ,  𝑉  ) 


$M = (W,R,V)$


$\models $


   𝑀  ,  𝑤  ⊧  𝑝 


$M, w \models p$


$w \in V(p)$


   𝑀  ,  𝑤    ⊧   ⊥ 


$M, w \not \models \bot $


   𝑀  ,  𝑤  ⊧  𝐴  ∨  𝐵 


$M, w \models \forma \lor \formb $


   𝑀  ,  𝑤  ⊧  𝐴 


$M, w \models \forma $


   𝑀  ,  𝑤  ⊧  𝐵 


$M, w \models \formb $


   𝑀  ,  𝑤  ⊧  𝐴  ∧  𝐵 


$M, w \models \forma \land \formb $


$M, w \models \forma $


$M, w \models \formb $


   𝑀  ,  𝑤  ⊧  𝐴  →  𝐵 


$M, w \models \forma \imp \formb $


$M, w \models \forma $


$M, w \models \formb $


   𝑀  ,  𝑤  ⊧  ^^03  𝐴 


$M, w \models \Box \forma $


   𝑢  ∈  𝑊 


$u \in W$


$wRu$


   𝑀  ,  𝑢  ⊧  𝐴 


$M, u \models \forma $


$M \models \forma $


   𝑤  ∈  𝑊 


$w \in W$


$M, w \models \forma $


   𝐴  ∈    ℒ  𝑀  


$\forma \in \langmod $


$\langmod $


$M$


$M \models \forma $


$\logick $


$\langmod $


$\Diamond $


   𝑀  ,  𝑤  ⊧  ^^06  𝐴 


$M, w \models \dia A$


$u \in W$


$M, u \models \forma $


$\logicsiv $


$\logicsv $


$\logicsiv $


$\logicsv $


$\logicsiv $


$\langmod $


$\logicsv $


$\langmod $


   ^^06 


$\dia $


$\Box $


$\bldia $


   ^^04 


$\blbox $


$\Diamond $


$\Box $


$\bldia $


$\blbox $


$\logickt $


$\langten $


   𝐴  ∶  ∶  =  𝑝    |      𝑝  ‾     |    𝐴  ∨  𝐴    |    𝐴  ∧  𝐴    |    ⟨  ?  ⟩  𝐴    |    [  ?  ]  𝐴 


\begin {equation*}\forma ::= p \ | \ \dual p \ | \ \forma \lor \forma \ | \ \forma \land \forma \ | \ \qdia \forma \ | \ \qbox \forma \end {equation*}


$p$


$\Prop $


   ⟨  ?  ⟩  ∈  {  ^^06  ,  ^^07  } 


$\qdia \in \{\dia ,\bldia \}$


   [  ?  ]  ∈  {  ^^03  ,  ^^04  } 


$\qbox \in \{\Box ,\blbox \}$


$\langten $


   ¬ 


$\neg $


$\imp $


$\langmod $


$\langten $


$M = (W,R,V)$


$\models $


$\land $


$\lor $


$M, w \models p$


$w \in V(p)$


   𝑀  ,  𝑤  ⊧    𝑝  ‾  


$M, w \models \dual p$


   𝑤  ∉  𝑉  (  𝑝  ) 


$w \not \in V(p)$


   𝑀  ,  𝑤  ⊧  ^^06  𝐴 


$M, w \models \dia \forma $


$u \in W$


$wRu$


$M, u \models \forma $


   𝑀  ,  𝑤  ⊧  ^^07  𝐴 


$M, w \models \bldia \forma $


$u \in W$


   𝑢  𝑅  𝑤 


$uRw$


$M, u \models \forma $


$M, w \models \Box \forma $


$u \in W$


$wRu$


$M, u \models \forma $


   𝑀  ,  𝑤  ⊧  ^^04  𝐴 


$M, w \models \blbox \forma $


$u \in W$


$uRw$


$M, u \models \forma $


$M \models \forma $


$w \in W$


$M, w \models \forma $


$\forma \in \langten $


$\langten $


$M$


$M \models \forma $


$\logickt $


$\langten $


$\Box $


$A$


$B$


$A$


$B$


   𝐴  >  𝐵 


$A > B$


$\VLe $


   ≼ 


$\cless $


   𝐴  ≼  𝐵 


$A\cless B$


$A$


$B$


$A > B$


   (  ⊥  ≼  𝐴  )  ∨  ¬  (  (  𝐴  ∧  ¬  𝐵  )  ≼  (  𝐴  ∧  𝐵  )  ) 


$(\bot \cless A) \lor \neg ((A \land \neg B) \cless (A \land B))$


$A$


   𝐴  ∧  ¬  𝐵 


$A \land \neg B$


   𝐴  ∧  𝐵 


$A \land B$


$A \land B$


$A$


   𝐴  >  𝐵  ∶  =  (  ⊥  ≼  𝐴  )  ∨  ¬  (  (  𝐴  ∧  ¬  𝐵  )  ≼  𝐴  )  . 


$A > B := (\bot \cless A) \lor \neg ((A \land \neg B) \cless A).$


$\cless $


   > 


$>$


$\cless $


$p$


$\Prop $


   𝐴  ∶  ∶  =  𝑝    |    ⊥    |    𝐴  ∨  𝐴    |    𝐴  ∧  𝐴    |    𝐴  →  𝐴    |    𝐴  ≼  𝐴 


\begin {equation*}\forma ::= p \ | \ \bot \ | \ \forma \lor \forma \ | \ \forma \land \forma \ | \ \forma \imp \forma \ | \ \forma \cless \forma \end {equation*}


$\VLe $


   𝑀  =  (  𝑊  ,  𝑆  ,  𝑉  ) 


$M = (W, S, V)$


$W$


   𝑆  ∶  𝑊  →    2    2  𝑊   


$S: W \to 2^{2^W}$


   𝑉  ∶   Prop   →    2  𝑊  


$V: \Prop \to 2^W$


   𝑤  ∈  𝑊 


$w\in W$


$\alpha \in S(w)$


   𝛼  ≠  ∅ 


$\alpha \not = \emptyset $


   𝛼  ,  𝛽  ∈  𝑆  (  𝑤  ) 


$\alpha ,\beta \in S(w)$


   𝛼  ⊆  𝛽 


$\alpha \subseteq \beta $


   𝛽  ⊆  𝛼 


$\beta \subseteq \alpha $


   𝑆  (  𝑤  ) 


$S(w)$


   𝛼  ,  𝛽  ,  … 


$\alpha , \beta , \ldots $


$M = (W, S, V)$


$\models $


$\cless $


   𝑀  ,  𝑤  ⊧  𝐴  ≼  𝐵 


$M, w \models A\cless B$


$\alpha \in S(w)$


   𝑢  ∈  𝛼 


$u \in \alpha $


   𝑀  ,  𝑢  ⊧  𝐵 


$M, u \models B$


   𝑣  ∈  𝛼 


$v \in \alpha $


   𝑀  ,  𝑣  ⊧  𝐴 


$M, v \models A$


$\forma $


$M$


$M \models \forma $


$\VLe $


$M = (W, S, V)$


$\alpha \in S(w)$


$\alpha \modele A$


   𝑤  ∈  𝛼 


$w\in \alpha $


   𝑀  ,  𝑤  ⊧  𝐴 


$M, w\models A$


   𝛼    ⊧  ∀   𝐴 


$\alpha \modela A$


$w\in \alpha $


$M, w\models A$


$M, w \models A\cless B$


$\alpha \in S(w)$


   𝛼    ⊧  ∃   𝐵 


$\alpha \modele B$


$\alpha \modele A$


     𝑑  𝑤   (  Λ  ) 


$\ldkt _{w}(\Lambda )$


     𝑑  𝑣   (  Λ  ) 


$\ldkt _{v}(\Lambda )$


$\ldkt _{u}(\Lambda )$


$\rf $


$\rp $


   Λ  =  ℛ  ⇒  Γ 


$\Lambda = \rel \lsar \Gamma $


$w$


$u$


$\ldkt _{w}(\Lambda )$


$\ldkt _{u}(\Lambda )$


$\rf $


$\rp $


$\lcalckt $


$\dcalckt $


$\forma $


$\lcalckt $


$\forma $


$\dcalckt $


$\forma $


$\lcalckt $


$\ldkt $


$\dcalckt $


$\boxru $


$\bldiaru $


$\rel ,wRu\lsar u:A,\Gamma $


$\boxru $


$\rel \lsar w:\Box A,\Gamma $


$\leadsto $


$\ldkt _{w}(\rel ,wRu\lsar u:A,\Gamma )$


$\ldkt _{w}(\rel \lsar \Gamma ),\wnest {A}$


$\boxru $


$\ldkt _{w}(\rel \lsar \Gamma ),\Box A$


$\ldkt _{w}(\rel \lsar w:\Box A,\Gamma )$


$\rel ,wRu\lsar u:A,\Gamma $


$\bldiaru $


$\rel \lsar w:\bldia A,\Gamma $


$\leadsto $


$\ldkt _{u}(\rel ,wRu\lsar w:A,u:\bldia A,\Gamma )$


$X,\bldia A,\bnest {Y, A}$


$\bldiaru $


$X,\bldia A,\bnest {Y}$


$\ldkt _{u}(\rel ,wRu\lsar u:\bldia A,\Gamma )$


$\relax \square $


$\logicint $


$\scalcint $


$\lcalcint $


$\ncalcint $


$\lcalcint $


   ℛ  ,  Γ  ⇒  Δ 


$\rel , \Gamma \lsar \Delta $


$\rel $


$w \leq u$


$\Gamma $


$\Delta $


$w : A$


$A \in \langint $


$\scalcint $


$\lcalcint $


$\Gamma \sar \Delta $


$\scalcint $


   𝑤  ∶  Γ  ⇒  𝑤  ∶  Δ 


$w : \Gamma \sar w: \Delta $


$\lcalcint $


$\scalcint $


$\id $


$\botl $


$\id $


$\Gamma ,p\sar p,\Delta $


$\leadsto $


$\id $


$w\leq w,w:\Gamma ,w:p\lsar w:p,w:\Delta $


$\refl $


$w:\Gamma ,w:p\lsar w:p,w:\Delta $


$\disl $


$\disr $


$\conl $


$\conr $


$\iimpl $


$\iimpr $


$\iimpl $


$\iimpl $


$\scalcint $


$\iimpl $


   Γ  ,  𝐴  ⊃  𝐵  ,  𝐵  ⇒  Δ 


$\Gamma , \forma \iimp \formb , \formb \sar \Delta $


   Γ  ,  𝐴  ⊃  𝐵  ⇒  𝐴  ,  Δ 


$\Gamma , \forma \iimp \formb \sar \forma , \Delta $


$\iimpl $


   Γ  ,  𝐴  ⊃  𝐵  ⇒  Δ 


$\Gamma , \forma \iimp \formb \sar \Delta $


$\lcalcint $


$\wkl $


$\iimpl $


$\refl $


$\deriv =$


$w:\Gamma ,w:\forma \iimp \formb ,w:\formb \sar w:\Delta $


$\wkl $


$w\leq w,w:\Gamma ,w:\forma \iimp \formb ,w:\formb \sar w:\Delta $


$\deriv $


   𝑤  ∶  Γ  ,  𝑤  ∶  𝐴  ⊃  𝐵  ⇒  𝑤  ∶  𝐴  ,  𝑤  ∶  Δ 


$w : \Gamma , w : \forma \iimp \formb \sar w : \forma , w : \Delta $


$\wkl $


   𝑤  ≤  𝑤  ,  𝑤  ∶  Γ  ,  𝑤  ∶  𝐴  ⊃  𝐵  ⇒  𝑤  ∶  𝐴  ,  𝑤  ∶  Δ 


$w \leq w, w : \Gamma , w : \forma \iimp \formb \sar w : \forma , w : \Delta $


$\iimpl $


   𝑤  ≤  𝑤  ,  𝑤  ∶  Γ  ,  𝑤  ∶  𝐴  ⊃  𝐵  ⇒  𝑤  ∶  Δ 


$w \leq w, w : \Gamma , w : \forma \iimp \formb \sar w : \Delta $


$\refl $


   𝑤  ∶  Γ  ,  𝑤  ∶  𝐴  ⊃  𝐵  ⇒  𝑤  ∶  Δ 


$w : \Gamma , w : \forma \iimp \formb \sar w : \Delta $


$\iimpr $


$\iimpr $


$\wkl $


$\lsub $


   ℛ  ,  𝑤  ≤  𝑢  ,  Γ  ,  𝑤  ∶  𝐴  ,  𝑢  ∶  𝐴  ⇒  Δ 


$\rel , w \leq u, \Gamma , w : \forma , u : \forma \lsar \Delta $


   (  𝑙  𝑖  𝑓  𝑡  ) 


$\lift $


   ℛ  ,  𝑤  ≤  𝑢  ,  Γ  ,  𝑤  ∶  𝐴  ⇒  Δ 


$\rel , w \leq u, \Gamma , w : \forma \lsar \Delta $


$\Gamma ,\forma \sar \formb $


$\iimpr $


$\Gamma \sar \forma \iimp \formb ,\Delta $


$\leadsto $


$w:\Gamma ,w:\forma \sar w:\formb $


$\lsub $


$u:\Gamma ,u:\forma \sar u:\formb $


$\wkl $


$w\leq u,w:\Gamma ,u:\Gamma ,u:\forma \sar u:\formb $


$\lift $


$w\leq u,w:\Gamma ,u:\forma \sar u:\formb $


$\iimpr $


$w:\Gamma \sar w:\forma \iimp \formb $


$\relax \square $


$\lcalcint $


$\scalcint $


$\forma $


$\lcalcint $


$\forma $


$\scalcint $


$\lcalcint $


$\ncalcint $


$\scalcint $


$\lcalcint $


$\scalcint $


$\Lambda := \rel , \Gamma \sar \Delta $


$\rel $


$\Gamma , \Delta $


$\rel $


$\rel $


$\Gamma , \Delta $


   𝑛 


$\lnint $


$\Lambda := \rel , \Gamma \sar \Delta $


$u$


$\Lambda ' \subseteq \Lambda $


$\Lambda ''$


$\Lambda = \Lambda ' \seqcomp \Lambda ''$


     Λ  𝑢   ∶  =    ℛ  ′   ,    Γ  ′   ⇒    Δ  ′  


$\Lambda _{u} := \rel ', \Gamma ' \sar \Delta '$


$u$


$\Lambda _{u} \subseteq \Lambda $


$\Gamma ' \restriction u = \Gamma \restriction u$


     Δ  ′   ^^16  𝑢  =  Δ  ^^16  𝑢 


$\Delta ' \restriction u = \Delta \restriction u$


   𝑛  (  Λ  )  ∶  =    𝑛  𝑢   (  Λ  ) 


$\lnint (\Lambda ) := \lnint _{u}(\Lambda )$


     𝑛  𝑣   (  Λ  )  ∶  =    {            Γ  ^^16  𝑣  ⇒  Δ  ^^16  𝑣           if     ℛ  =  ∅    ;        Γ  ^^16  𝑣  ⇒  Δ  ^^16  𝑣  ,  [    𝑛    𝑧  1    (    Λ    𝑧  1    )  ]  ,  …  ,  [    𝑛    𝑧  𝑛    (    Λ    𝑧  𝑛    )  ]           otherwise   .          


\begin {equation*}\lnint _{v}(\Lambda ) := \begin {cases} \Gamma \restriction v \sar \Delta \restriction v & \text {if $\rel = \empseq $}; \\ \Gamma \restriction v \sar \Delta \restriction v, [\lnint _{z_{1}}(\Lambda _{z_{1}})], \ldots , [\lnint _{z_{n}}(\Lambda _{z_{n}})] & \text {otherwise}. \end {cases}\end {equation*}


   𝑣  ≤    𝑧  1   ,  …  𝑣  ≤    𝑧  𝑛  


$v\leq z_{1}, \ldots v\leq z_{n}$


   𝑣  ≤  𝑥 


$v\leq x$


   Λ  ∶  =  𝑤  ≤  𝑣  ,  𝑣  ≤  𝑢  ,  𝑣  ∶  𝑝  ,  𝑢  ∶  𝑝  ⇒  𝑤  ∶  𝑝  ⊃  𝑞  ,  𝑣  ∶  𝑟  ,  𝑢  ∶  𝑞 


$\Lambda := w \leq v,v \leq u, v : p, u : p \sar w : p \iimp q, v : r, u : q$


$\lnint $


   𝑛  (  Λ  )  =    𝑛  𝑤   (  Λ  )  =  ∅  ⇒  𝑝  ⊃  𝑞  ,  [  𝑝  ⇒  𝑟  ,  [  𝑝  ⇒  𝑞  ]  ] 


\begin {equation*}\lnint (\Lambda ) = \lnint _{w}(\Lambda ) = \empseq \sar p \iimp q, [p \sar r, [ p \sar q ]]\end {equation*}


$\lcalcint $


$\ncalcint $


   Λ  =  ℛ  ,  Γ  ⇒  Δ 


$\Lambda = \rel , \Gamma \sar \Delta $


$w$


$u$


$\rel $


$w \rpath u$


   𝑤  =  𝑢 


$w = u$


     𝑣  𝑖  


$v_{i}$


   𝑖  ∈  {  1  ,  …  ,  𝑛  } 


$i \in \{1, \ldots , n\}$


   𝑤  ≤    𝑣  1   ,  …  ,    𝑣  𝑛   ≤  𝑢  ∈  ℛ 


$w \leq v_{1}, \ldots , v_{n} \leq u \in \R $


   𝑤  ≤  𝑢  ∈  ℛ 


$w \leq u \in \rel $


   𝑛  =  0 


$n = 0$


$\idpr $


$\iimplpr $


$\lcalcint $


$\refl $


$\trans $


$\ncalcint $


$\refl $


$\trans $


     L  (   IL   )   +  {  (    𝑟    𝑖  𝑑    )  ,  (    𝑝    ⊃  𝑙    )  } 


$\lcalcint + \{\idpr ,\iimplpr \}$


$\refl $


$\refl $


$\id $


$\refl $


$\idpr $


$w \rpath u$


$w$


$u$


$\id $


$\rel ,w\leq w,\Gamma ,w:p\lsar w:p,\Delta $


$\refl $


$\rel ,\Gamma ,w:p\lsar w:p,\Delta $


$\leadsto $


$\idpr $


$\rel ,\Gamma ,w:p\lsar w:p,\Delta $


$\refl $


$\trans $


$\id $


$\id $


$\trans $


$\idpr $


   𝑤       ℛ   𝑣 


$w \rpath v$


$\idpr $


$\id $


$\rel ,w\leq u,u\leq v,w\leq v,\Gamma ,w:p\lsar v:p,\Delta $


$\trans $


$\rel ,w\leq u,u\leq v,\Gamma ,w:p\lsar v:p,\Delta $


$\leadsto $


$\idpr $


   ℛ  ,  𝑤  ≤  𝑢  ,  𝑢  ≤  𝑣  ,  Γ  ,  𝑤  ∶  𝑝  ⇒  𝑣  ∶  𝑝  ,  Δ 


$\rel , w \leq u, u \leq v, \Gamma , w : p \lsar v : p, \Delta $


$\iimpl $


$\refl $


$\trans $


$\lcalcint $


$\iimpl $


$\refl $


$\trans $


$\refl $


$\iimplpr $


$\refl $


   𝑤       ℛ   𝑤 


$w \rpath w$


   ℛ  ,  𝑤  ≤  𝑤  ,  Γ  ,  𝑤  ∶  𝐴  ⊃  𝐵  ⇒  𝑤  ∶  𝐴  ,  Δ 


$\rel , w \leq w, \Gamma , w : \forma \iimp \formb \lsar w : \forma , \Delta $


   ℛ  ,  𝑤  ≤  𝑤  ,  Γ  ,  𝑤  ∶  𝐴  ⊃  𝐵  ,  𝑤  ∶  𝐵  ⇒  Δ 


$\rel , w \leq w, \Gamma , w : \forma \iimp \formb , w : \formb \lsar \Delta $


$\iimpl $


   ℛ  ,  𝑤  ≤  𝑤  ,  Γ  ,  𝑤  ∶  𝐴  ⊃  𝐵  ⇒  Δ 


$\rel , w \leq w, \Gamma , w : \forma \iimp \formb \lsar \Delta $


$\refl $


   ℛ  ,  Γ  ,  𝑤  ∶  𝐴  ⊃  𝐵  ⇒  Δ 


$\rel , \Gamma , w : \forma \iimp \formb \lsar \Delta $


$\iimplpr $


$\deriv \ =$


$\rel ,w\leq w,\Gamma ,w:\forma \iimp \formb \lsar w:\forma ,\Delta $


$\refl $


$\rel ,\Gamma ,w:\forma \iimp \formb \lsar w:\forma ,\Delta $


$\deriv $


$\rel , w \leq w, \Gamma , w : \forma \iimp \formb , w : \formb \lsar \Delta $


$\refl $


   ℛ  ,  Γ  ,  𝑤  ∶  𝐴  ⊃  𝐵  ⇒  𝑤  ∶  𝐴  ,  Δ 


$\rel , \Gamma , w : \forma \iimp \formb \lsar w : \forma , \Delta $


$\iimplpr $


$\rel , \Gamma , w : \forma \iimp \formb \lsar \Delta $


$\trans $


   Λ  =  ℛ  ,  𝑤  ≤  𝑢  ,  𝑢  ≤  𝑣  ,  𝑤  ≤  𝑣  ,  Γ  ,  𝑤  ∶  𝐴  ⊃  𝐵  ⇒  𝑣  ∶  𝐴  ,  Δ 


\begin {equation*}\Lambda = \rel , w \leq u, u \leq v, w \leq v, \Gamma , w : \forma \iimp \formb \lsar v : \forma , \Delta \end {equation*}


$\Lambda $


   ℛ  ,  𝑤  ≤  𝑢  ,  𝑢  ≤  𝑣  ,  𝑤  ≤  𝑣  ,  Γ  ,  𝑤  ∶  𝐴  ⊃  𝐵  ,  𝑣  ∶  𝐵  ⇒  Δ 


$\rel , w \leq u, u \leq v, w \leq v, \Gamma , w : \forma \iimp \formb , v : \formb \lsar \Delta $


$\iimpl $


   ℛ  ,  𝑤  ≤  𝑢  ,  𝑢  ≤  𝑣  ,  𝑤  ≤  𝑣  ,  Γ  ,  𝑤  ∶  𝐴  ⊃  𝐵  ⇒  Δ 


$\rel , w \leq u, u \leq v, w \leq v, \Gamma , w : \forma \iimp \formb \lsar \Delta $


$\trans $


   ℛ  ,  𝑤  ≤  𝑢  ,  𝑢  ≤  𝑣  ,  Γ  ,  𝑤  ∶  𝐴  ⊃  𝐵  ⇒  Δ 


$\rel , w \leq u, u \leq v, \Gamma , w : \forma \iimp \formb \lsar \Delta $


$\iimplpr $


$\trans $


$w \rpath v$


$\deriv \ =$


$\rel ,w\leq u,u\leq v,w\leq v,\Gamma ,w:\forma \iimp \formb \lsar v:\forma ,\Delta $


$\trans $


$\rel ,w\leq u,u\leq v,\Gamma ,w:\forma \iimp \formb \lsar w:\forma ,\Delta $


$\deriv $


   ℛ  ,  𝑤  ≤  𝑢  ,  𝑢  ≤  𝑣  ,  𝑤  ≤  𝑣  ,  Γ  ,  𝑣  ∶  𝐴  ⊃  𝐵  ,  𝑤  ∶  𝐵  ⇒  Δ 


$\rel , w \leq u, u \leq v, w \leq v, \Gamma , v : \forma \iimp \formb , w : \formb \lsar \Delta $


$\trans $


   ℛ  ,  𝑤  ≤  𝑢  ,  𝑢  ≤  𝑣  ,  Γ  ,  𝑤  ∶  𝐴  ⊃  𝐵  ⇒  𝑤  ∶  𝐴  ,  Δ 


$\rel , w \leq u, u \leq v, \Gamma , w : \forma \iimp \formb \lsar w : \forma , \Delta $


$\iimplpr $


$\rel , w \leq u, u \leq v, \Gamma , w : \forma \iimp \formb \lsar \Delta $


$\refl $


$\trans $


     L  (   IL   )   +  {  (    𝑟    𝑖  𝑑    )  ,  (    𝑝    ⊃  𝑙    )  } 


$\lcalcint + \{\idpr , \iimplpr \}$


$\relax \square $


       L  ′   (   IL   )   ∶  =    L  (   IL   )   +  {  (    𝑟    𝑖  𝑑    )  ,  (    𝑝    ⊃  𝑙    )  }  −  {  (  𝑟  𝑒  𝑓  )  ,  (  𝑡  𝑟  𝑎  )  } 


$\lcalcintii := \lcalcint + \{\idpr , \iimplpr \} - \{\refl ,\trans \}$


$\forma $


     L  ′   (   IL   ) 


$\lcalcintii $


$\forma $


$\lcalcint $


$\ncalcint $


$\lcalcint $


$\scalcint $


$\forma $


$\lcalcint $


$\forma $


$\ncalcint $


$\forma $


$\lcalcint $


$\refl $


$\trans $


$\lnint $


$\ncalcint $


$\idpr $


$\id $


$\iimplpr $


$\iimpl $


$\relax \square $


$\ncalcint $


$\scalcint $


$\forma $


$\ncalcint $


$\forma $


$\scalcint $


$\VLe $


$\lcalcv $


$\lor $


$\land $


   → 


$\rightarrow $


   G  3  K 


$\mathsf {G3K}$


$\logick $


$\lcalcv $


    WLab   ∶  =  {  𝑥  ,  𝑦  ,  𝑧  ,  …    } 


$\mathsf {WLab} := \set {x, y, z, \dots }$


    SLab   ∶  =  {  𝑎  ,  𝑏  ,  𝑐  ,  …    } 


$\mathsf {SLab} := \set {a,b,c,\dots }$


   𝑥  ∶  𝐴 


$x : A$


   𝑎    ⊩  ∃   𝐴 


$a\fe A$


   𝑥  ∈   WLab  


$x \in \mathsf {WLab}$


   𝑎  ∈   SLab  


$a \in \mathsf {SLab}$


   𝑥  ∶  𝐴 


$x:A$


$a\fe A$


   𝑥  ⊧  𝐴 


$x\models A$


   𝑎    ⊧  ∃   𝐴 


$a\models ^{\exists } A$


   𝑥  ∈  𝑎 


$x\in a$


   𝑎  ∈  𝑆  (  𝑥  ) 


$a\in S(x)$


   𝑎  ⊆  𝑏 


$a\subseteq b$


$x \in \mathsf {WLab}$


   𝑎  ,  𝑏  ∈   SLab  


$a, b \in \mathsf {SLab}$


$\Gamma \sar \Delta $


$\Gamma $


$\Delta $


$\calci {\VLe }$


   i 


$\mathsf {i}$


$\calci {\VLe }$


$\calci {\VLe }$


$\jumpi $


   [  Σ  ⊲  𝐵  ] 


$\cblock {\Sigma }{B}$


   Σ  ,  𝐵 


$\Sigma ,B$


$\Gamma \sar \Delta $


$\Gamma $


$\Delta $


   𝜄  (  Γ  ⇒  Δ  ,    [    Σ  1   ⊲    𝐵  1   ]   ,  …  ,    [    Σ  𝑛   ⊲    𝐵  𝑛   ]   ) 


$\iota (\Gamma \Rightarrow \Delta , \cblock {\Sigma _1}{B_1}, \ldots , \cblock {\Sigma _n}{B_n})$


   ⋀  Γ  →  ⋁    Δ  ′   ∨    ⋁    1  ≤  𝑖  ≤  𝑛      ⋁    𝐴  ∈    Σ  𝑖     (  𝐴  ≼    𝐵  𝑖   ) 


\begin {equation*}\bigwedge \Gamma \to \bigvee \Delta ' \lor \bigvee _{1\leq i\leq n}\bigvee _{A \in \Sigma _i}(A \cless B_i)\end {equation*}


$\calci {\VLe }$


   Γ  =  {    𝐴  1   ,  …  ,    𝐴  𝑚   } 


$\Gamma = \{ A_1,\dots , A_m \}$


   Σ  =  {    𝐷  1   ,  …  ,    𝐷  𝑘   } 


$\Sigma = \{D_1,\dots , D_k \}$


     Γ  𝑥  


$\Gamma ^x$


   𝑎    ⊩  ∃   Σ 


$a \fe \Sigma $


   𝑥  ∶    𝐴  1   ,  …  ,  𝑥  ∶    𝐴  𝑚  


$x: A_1,\dots , x:A_m$


   𝑎    ⊩  ∃     𝐷  1   ,  …  ,  𝑎    ⊩  ∃     𝐷  𝑘  


$a\fe D_1,\dots ,a\fe D_k$


$\Gamma , \Delta $


   𝑆  =  Γ  ⇒  Δ  ,    [    Σ  1   ⊲    𝐵  1   ]   ,  …  ,    [    Σ  𝑛   ⊲    𝐵  𝑛   ]  


\begin {equation*}S= \Gamma \Rightarrow \Delta , \cblock {\Sigma _1}{B_1}, \dots , \cblock {\Sigma _n}{B_n}\end {equation*}


$x$


     𝑎  ¯   =    𝑎  1   ,  …  ,    𝑎  𝑛  


$\bar {a} = a_1,\ldots , a_n$


   𝑡  (  𝑆    )    𝑥  ,    𝑎  ¯    


$t(S)^{x,\bar {a}}$


   𝑆 


$S$


           𝑡  (  𝑆    )    𝑥  ,    𝑎  ¯        ∶  =       𝑎  1   ∈  𝑆  (  𝑥  )  ,  .  .  ,    𝑎  𝑛   ∈  𝑆  (  𝑥  )  ,      𝑎  1     ⊩  ∃     𝐵  1   ,  .  .  ,    𝑎  𝑛     ⊩  ∃     𝐵  𝑛   ,          Γ  𝑥   ⇒    Δ  𝑥   ,    𝑎  1     ⊩  ∃     Σ  1   ,  .  .  ,    𝑎  𝑛     ⊩  ∃     Σ  𝑛       


\begin {equation*}\begin {array}{c c l} t(S)^{x,\bar {a}} & := &a_{1} \in S(x), .. , a_{n} \in S(x),\ a_1 \fe B_1,.., a_n \fe B_n, \\ & &\Gamma ^x \Rightarrow \Delta ^{x}, a_1 \fe \Sigma _1,.., a_n\fe \Sigma _n \end {array}\end {equation*}


   [    Σ  𝑖   ⊲    𝐵  𝑖   ] 


$\cblock {\Sigma _i}{B_i}$


     𝑎  𝑖  


$a_i$


     𝑎  𝑖   ∈  𝑆  (  𝑥  ) 


$a_i \in S(x)$


     𝑎  𝑖     ⊩  ∃     𝐵  𝑖  


$a_i \fe B_i$


     𝑎  𝑖     ⊩  ∃     Σ  𝑖  


$a_i\fe \Sigma _i$


$\cless $


   𝒟 


$\mathcal {D}$


$S$


     ℐ  𝑉  i  


$\calci {V}$


   {  𝒟    }    𝑥  ,    𝑎  ¯    


$\{\mathcal {D}\}^{x,\bar {a}}$


$\lcalcv $


$t(S)^{x,\bar {a}}$


      com   i  


$\comi $


$\Nes $


   𝑡  (  Γ  ⇒  Δ  ,    [    Σ  1   ⊲  𝐴  ]   ,    [    Σ  2   ⊲  𝐵  ]     )    𝑥  ,    𝑎  ¯   ,  𝑏  ,  𝑐   


$t(\Gamma \Rightarrow \Delta , \cblock {\Sigma _1}{A}, \cblock {\Sigma _2}{B})^{x,\bar {a}, b, c}$


$\Nes $


     𝑏  ⊆  𝑐   ,  𝑏    ⊩  ∃   𝐴  ,  𝑐    ⊩  ∃   𝐵  ,  𝑡  (  Γ    )    𝑥  ,    𝑎  ¯     ⇒  𝑡  (  Δ    )    𝑥  ,    𝑎  ¯     ,  𝑏    ⊩  ∃     Σ  1   ,  𝑐    ⊩  ∃     Σ  2  


${ b \subseteq c}, b \fe A, c \fe B, t(\Gamma )^{x,\bar {a}} \Rightarrow t(\Delta )^{x,\bar {a}}, b\fe \Sigma _1, c\fe \Sigma _2$


     𝑐  ⊆  𝑏   ,  𝑏    ⊩  ∃   𝐴  ,  𝑐    ⊩  ∃   𝐵  ,  𝑡  (  Γ    )    𝑥  ,    𝑎  ¯     ⇒  𝑡  (  Δ    )    𝑥  ,    𝑎  ¯     ,  𝑏    ⊩  ∃     Σ  1   ,  𝑐    ⊩  ∃     Σ  2  


${ c \subseteq b}, b \fe A, c \fe B, t(\Gamma )^{x,\bar {a}} \Rightarrow t(\Delta )^{x,\bar {a}}, b\fe \Sigma _1, c\fe \Sigma _2$


$\comi $


$\Nes $


    mon   ∃ 


$\Mon $


$\lcalcv $


    �    (   mon   ∃  )   


\begin {equation*}\infer [{(\Mon )}]{b \subseteq a, \Gamma \Rightarrow \Delta , a \fe A}{ b \subseteq a, \Gamma \Rightarrow \Delta , a \fe A, b \fe A }\end {equation*}


     ⊩  ∃  


$\fe $


$\mathcal {D}$


$S$


$\calci {\VLe }$


$\{\mathcal {D}\}^{x,\bar {a}}$


$t(S)^{x,\bar {a}}$


$\lcalcv $


   (  𝐴  ≼  𝐵  )  ∨  (  𝐵  ≼  𝐴  ) 


$(A\cless B) \lor (B \cless A)$


$\VLe $


$\calci {\VLe }$


   𝐵  ⇒  𝐴  ,  𝐵 


$B\Rightarrow A,B$


$\jumpi $


   ⇒    [  𝐴  ,  𝐵  ⊲  𝐵  ]   ,    [  𝐵  ⊲  𝐴  ]  


$\Rightarrow \cblock {A,B}{B},\cblock {B}{A}$


   𝐴  ⇒  𝐴  ,  𝐵 


$A\Rightarrow A,B$


$\jumpi $


   ⇒    [  𝐴  ⊲  𝐵  ]   ,    [  𝐴  ,  𝐵  ⊲  𝐴  ]  


$\Rightarrow \cblock {A}{B},\cblock {A,B}{A}$


$(\comi )$


   ⇒    [  𝐴  ⊲  𝐵  ]   ,    [  𝐵  ⊲  𝐴  ]  


$\Rightarrow \cblock {A}{B},\cblock {B}{A}$


$\rulecpri $


   ⇒    [  𝐴  ⊲  𝐵  ]   ,  𝐵  ≼  𝐴 


$\Rightarrow \cblock {A}{B}, B\cless A$


$\rulecpri $


   ⇒  𝐴  ≼  𝐵  ,  𝐵  ≼  𝐴 


$\Rightarrow A\cless B, B\cless A$


     ∨  𝑟  


$\lor _r$


   ⇒  (  𝐴  ≼  𝐵  )  ∨  (  𝐵  ≼  𝐴  ) 


$\Rightarrow (A\cless B) \lor (B\cless A)$


$\lcalcv $


$\Nes $


   𝑦  ∶  𝐵  ⇒  𝑦  ∶  𝐴  ,  𝑦  ∶  𝐵 


$y:B \Rightarrow y:A, y:B$


   𝑊  𝑘 


$Wk$


   𝑎  ∈  𝑆  (  𝑥  )  ,  𝑏  ∈  𝑆  (  𝑥  )  ,  𝑦  ∈  𝑎  ,  𝑦  ∈  𝑏  ,  𝑦  ∶  𝐵  ,  𝑏    ⊩  ∃   𝐴  ⇒  𝑎    ⊩  ∃   𝐴  ,  𝑎    ⊩  ∃   𝐵  ,  𝑏    ⊩  ∃   𝐵  ,  𝑦  ∶  𝐴  ,  𝑦  ∶  𝐵 


$a \in S(x), b \in S(x), y \in a,y \in b, y:B, b \fe A\Rightarrow a \fe A, a \fe B, b \fe B , y:A, y:B$


     ⊩  𝑟  ∃   ×  2 


$\Vdash ^{\exists }_r \times 2$


   𝑎  ∈  𝑆  (  𝑥  )  ,  𝑏  ∈  𝑆  (  𝑥  )  ,  𝑦  ∈  𝑎  ,  𝑦  ∈  𝑏  ,  𝑦  ∶  𝐵  ,  𝑏    ⊩  ∃   𝐴  ⇒  𝑎    ⊩  ∃   𝐴  ,  𝑎    ⊩  ∃   𝐵  ,  𝑏    ⊩  ∃   𝐵 


$a \in S(x), b \in S(x), y \in a,y \in b, y:B, b \fe A\Rightarrow a \fe A, a \fe B, b \fe B$


$\Vdash ^{\exists }_l$


   𝑎  ∈  𝑆  (  𝑥  )  ,  𝑏  ∈  𝑆  (  𝑥  )  ,  𝑎    ⊩  ∃   𝐵  ,  𝑏    ⊩  ∃   𝐴  ⇒  𝑎    ⊩  ∃   𝐴  ,  𝑎    ⊩  ∃   𝐵  ,  𝑏    ⊩  ∃   𝐵 


$a \in S(x), b \in S(x), a \fe B, b \fe A\Rightarrow a \fe A, a \fe B, b \fe B$


$Wk$


   𝑎  ⊆  𝑏  ,  𝑎  ∈  𝑆  (  𝑥  )  ,  𝑏  ∈  𝑆  (  𝑥  )  ,  𝑎    ⊩  ∃   𝐵  ,  𝑏    ⊩  ∃   𝐴  ⇒  𝑎    ⊩  ∃   𝐴  ,  𝑎    ⊩  ∃   𝐵  ,  𝑏    ⊩  ∃   𝐵 


$a \subseteq b, a \in S(x), b \in S(x), a\fe B, b \fe A\Rightarrow a \fe A, a\fe B, b \fe B$


$\Mon $


   𝑎  ⊆  𝑏  ,  𝑎  ∈  𝑆  (  𝑥  )  ,  𝑏  ∈  𝑆  (  𝑥  )  ,  𝑎    ⊩  ∃   𝐵  ,  𝑏    ⊩  ∃   𝐴  ⇒  𝑎    ⊩  ∃   𝐴  ,  𝑏    ⊩  ∃   𝐵 


$a \subseteq b, a \in S(x), b \in S(x), a\fe B, b \fe A\Rightarrow a \fe A, b \fe B$


$\Nes $


   𝑎  ∈  𝑆  (  𝑥  )  ,  𝑏  ∈  𝑆  (  𝑥  )  ,  𝑎    ⊩  ∃   𝐵  ,  𝑏    ⊩  ∃   𝐴  ⇒  𝑎    ⊩  ∃   𝐴  ,  𝑏    ⊩  ∃   𝐵 


$a \in S(x), b \in S(x), a \fe B, b \fe A \Rightarrow a \fe A, b \fe B$


     ≼  𝑟  


$\Rcless $


   𝑎  ∈  𝑆  (  𝑥  )  ,  𝑎    ⊩  ∃   𝐵  ⇒  𝑥  ∶  𝐵  ≼  𝐴  ,  𝑎    ⊩  ∃   𝐴 


$a \in S(x), a \fe B \Rightarrow x:B\cless A, a \fe A$


$\Rcless $


   ⇒  𝑥  ∶  𝐴  ≼  𝐵  ,  𝑥  ∶  𝐵  ≼  𝐴 


$\Rightarrow x: A\cless B, x: B\cless A$


$\lor _r$


   ⇒  𝑥  ∶  𝐴  ≼  𝐵  ∨  𝐵  ≼  𝐴 


$\Rightarrow x: A\cless B \lor B\cless A$


$\lcalcv $


$\calci {\VLe }$


$\lcalcv $


$\calci {\VLe }$


   𝑡  (  Γ  ⇒  Δ    )  𝑥  


$t(\Gamma \Rightarrow \Delta )^x$


   Γ  ⇒  Δ 


$\Gamma \Rightarrow \Delta $


$\calci {\VLe }$


$t(\Gamma \Rightarrow \Delta )^x$


$\lcalcv $


   𝒮 


$\mathcal {S}$


$\mathcal {S}$


$\mathcal {S}$


   r 


$\mathsf {r}$


$\calci {\VLe }$


$\mathcal {S}$


$\mathsf {r}$


$\calci {\VLe }$


$\calci {\VLe }$


$S$


   Γ  ,  Δ 


$\Gamma ,\Delta $


     𝑎  1   ⊆    𝑎  2   ,    𝑎  2   ⊆    𝑎  3   ,    𝑎  1   ⊆    𝑎  3   ,    𝑎  1   ∈  𝑆  (  𝑥  )  ,    𝑎  2   ∈  𝑆  (  𝑥  )  ,    𝑎  3   ∈  𝑆  (  𝑥  ) 


$a_1 \subseteq a_2 ,a_2 \subseteq a_3, a_1 \subseteq a_3, a_1\in S(x), a_2 \in S(x), a_3 \in S(x)$


     𝑎  1     ⊩  ∃     𝐴  1   ,    𝑎  2     ⊩  ∃     𝐴  2   ,    𝑎  3     ⊩  ∃     𝐴  3   ,  𝑥  ∶  Γ  ⇒  𝑥  ∶  Δ  ,    𝑎  1     ⊩  ∃     Σ  1   ,    𝑎  2     ⊩  ∃     Σ  2   ,    𝑎  3     ⊩  ∃     Σ  3  


$a_1 \fe A_1, a_2 \fe A_2, a_3 \fe A_3, x:\Gamma \Rightarrow x:\Delta , a_1 \fe \Sigma _1,a_2 \fe \Sigma _2, a_3 \fe \Sigma _3$


$S$


   Γ  ⇒  Δ  ,    [    Σ  1   ,    Σ  2   ,    Σ  3   ⊲    𝐴  1   ]   ,    [    Σ  2   ,    Σ  3   ⊲    𝐴  2   ]   ,    [    Σ  3   ⊲    𝐴  3   ]  


\begin {equation*}\Gamma \Rightarrow \Delta , \cblock {\Sigma _1, \Sigma _2, \Sigma _3 }{A_1}, \cblock {\Sigma _2, \Sigma _3}{A_2}, \cblock {\Sigma _3}{A_3}\end {equation*}


     𝑎  𝑖   ⊆    𝑎  𝑗  


$a_i \subseteq a_j$


     Σ  𝑗  


$\Sigma _j$


     𝑎  𝑗     ⊩  ∃     Σ  𝑗  


$a_j \fe \Sigma _j$


$\cless $


$\lcalcv $


   𝑥  →  𝑎 


$x\rightarrow a$


$a\in S(x)$


   𝑎  →  𝑦 


$a\rightarrow y$


   𝑦  ∈  𝑎 


$y\in a$


   𝑥  →  𝑦 


$x \rightarrow y$


   𝑥  →  𝑎  →  𝑦 


$x \rightarrow a\rightarrow y$


$a$


$\Gamma \Rightarrow \Delta $


$x$


$\Gamma $


   𝑦 


$y$


$x$


   𝑥  →  𝑦 


$x\rightarrow y$


$\calci {\VLe }$


$\mathcal {D}$


$\calci {\VLe }$


$\Gamma \Rightarrow \Delta $


     Γ  1   ⇒    Δ  1  


$\Gamma _1 \Rightarrow \Delta _1$


$\Gamma \Rightarrow \Delta $


$x$


$\Gamma $


$\Gamma _1 \Rightarrow \Delta _1$


$x$


$\Gamma \Rightarrow \Delta $


$x$


$\Gamma \Rightarrow \Delta $


$\Gamma _1 \Rightarrow \Delta _1$


$\Gamma \Rightarrow \Delta $


$\mathcal {D}$


$\Gamma \Rightarrow \Delta $


     𝒟  ′  


$\mathcal {D}'$


$\Gamma _1 \Rightarrow \Delta _1$


$\Gamma \Rightarrow \Delta $


$\Gamma _1 \Rightarrow \Delta _1$


$\mathcal {D}$


$\relax \mathsf {BI}$


   1 


$\neuS $


$\topS $


$\absS $


   m 


$\mneuL $


   a 


$\aneuL $


   𝜛 


$\abotL $


$\mulS $


$\addS $


$\leqS $


   𝔪 


$\mulL $


   𝔞 


$\addL $


   ⩽ 


$\leqL $


   𝐿 


$\LabsL $


   𝑈  =  {    m  ,  a  ,  𝜛    } 


$\LabsU = \ens { \mneuL , \aneuL , \abotL }$


     ℒ  𝐿  0   =  𝐿  ∪  𝑈 


$\Labs ^0_\LabsL = \LabsL \cup \LabsU $


$\LabsL $


     ℒ  𝐿  


$\Labs _\LabsL $


$\LabsL $


     ⋃    𝑛  ∈  ℕ      ℒ  𝐿  𝑛  


$\bigcup _{n \in \NAT } \Labs ^n_\LabsL $


     ℒ  𝐿    𝑛  +  1    ∶  =    ℒ  𝐿  𝑛   ∪  {    𝔯  (  ℓ  ,    ℓ  ′   )  ∣  ℓ  ,    ℓ  ′   ∈    ℒ  𝐿  𝑛     and    𝔯  ∈  {    𝔪  ,  𝔞    }    }  . 


\begin {equation*}\Labs ^{n+1}_\LabsL := \Labs ^n_\LabsL \cup \ensc { \RONL {\labl }{\labl '} }{\labl ,\labl ' \in \Labs ^n_\LabsL \text { and } \ronL \in \ens { \mulL , \addL }}.\end {equation*}


   ℓ  ⩽    ℓ  ′  


$\LEQL {\labl }{\labl '}$


$\labl $


     ℓ  ′  


$\labl '$


   ℓ  ∶  𝐴 


$\lf {\VPA }{\labl }$


$\VPA $


$\labl $


$\relax \mathsf {GBI}$


   Γ  ⇒  Δ 


$\SEQ {\SG }{\SD }$


$\SG $


$\SD $


$\relax \mathsf {GBI}$


$\relax \mathsf {GBI}$


   𝔯 


$\ronL $


   r 


$\rneuL $


$\mulL $


$\addL $


$\mneuL $


$\aneuL $


$\relax \mathrm {R}$


   T 


$\relax \mathrm {T}$


     U  𝔯  i  


$\relax \mathrm {U^i_{\ronL }}$


$\mulL $


$\addL $


$\mneuL $


$\aneuL $


   𝑖  ∈  {    1  ,  2    } 


$i \in \ens {1,2}$


$\ronL $


$\ronL $


     E  𝔯  


$\relax \mathrm {E_{\ronL }}$


$\relax \mathrm {A^i_{\ronL }}$


$\ronL $


$\relax \mathrm {I_{\addL }}$


$\addS $


$\addL $


     P  𝔞  i  


$\relax \mathrm {P^i_{\addL }}$


$\addL $


$\addS $


$\LEQS {\wldm }{\ADDS {\wldm }{\wldn }}$


$\relax \mathrm {P^i_{\mulL }}$


   𝑤  ⊑  𝑤  ⊗  𝑢 


$\LEQS {\wldm }{\MULS {\wldm }{\wldn }}$


$\wldn $


$\absS $


$\neuS $


     C  𝔯  i  


$\relax \mathrm {C^i_{\ronL }}$


$\addS $


$\mulS $


$\VPA $


$\relax \mathsf {GBI}$


     m  ⩽  ℓ   ⇒  ℓ  ∶  𝐴 


$\relax {\LEQL {\mneuL }{\labl }\Rightarrow \lf {\VPA }{\labl }}$


$\relax \mathsf {GBI}$


$\labl $


$\relax \mathsf {GBI}$


   … 


$\gell $


$\relax \mathrm {id}$


   𝑥  𝑠 


$xs$


$x$


   𝑠  ∈  {    0  ,  1      }  ∗  


$s \in \ens {0,1}^*$


$xs$


$x$


$x$


$xs$


$\SG $


   𝛿 


$\LLD $


   𝔏  (  Γ  ,  𝛿  ) 


$\BTOL {\SG }{\LLD }$


$\SG $


$\LLD $


$\SG $


   𝔏  (  𝐴  ,  𝛿  )  =  {    𝛿  ∶  𝐴    } 


$\BTOL {\VPA }{\LLD } = \ens { \lf {\VPA }{\LLD } }$


   𝔏  (    ∅        𝔞     ,  𝛿  )  =  {      a  ⩽  𝛿     } 


$\BTOL {\BIanul }{\LLD } = \ens { \LEQL {\aneuL }{\LLD } }$


   𝔏  (    ∅        𝔪     ,  𝛿  )  =  {      m  ⩽  𝛿     } 


$\BTOL {\BImnul }{\LLD } = \ens { \LEQL {\mneuL }{\LLD } }$


   𝔏  (  (    Δ  0   ,    Δ  1   )  ,  𝛿  )  =  𝔏  (    Δ  0   ,  𝛿  0  )  ∪  𝔏  (    Δ  1   ,  𝛿  1  )  ∪  {      𝔪  (  𝛿  0  ,  𝛿  1  )  ⩽  𝛿     } 


$\BTOL {(\SD _0 \BImsep \SD _1)}{\LLD } = \BTOL {\SD _0}{\LLD 0} \cup \BTOL {\SD _1}{\LLD 1} \cup \ens { \LEQL {\MULL {\LLD 0}{\LLD 1}}{\LLD } }$


   𝔏  (  (    Δ  0   ;    Δ  1   )  ,  𝛿  )  =  𝔏  (    Δ  0   ,  𝛿  0  )  ∪  𝔏  (    Δ  1   ,  𝛿  1  )  ∪  {      𝔞  (  𝛿  0  ,  𝛿  1  )  ⩽  𝛿     } 


$\BTOL {(\SD _0 \BIasep \SD _1)}{\LLD } = \BTOL {\SD _0}{\LLD 0} \cup \BTOL {\SD _1}{\LLD 1} \cup \ens { \LEQL {\ADDL {\LLD 0}{\LLD 1}}{\LLD } }$


   Γ  ⇒  𝐴 


$\SEQ {\SG }{\VPA }$


   𝔏  (    Γ  ⇒  𝐴   ,  𝛿  ) 


$\BTOL {\SEQ {\SG }{\VPA }}{\LLD }$


   𝔏  (  Γ  ,  𝛿  )  ⇒  𝛿  ∶  𝐴 


$\SEQ {\BTOL {\SG }{\LLD }}{\lf {\VPA }{\LLD }}$


   𝛿  ∶  Γ 


$\BT {\SG }{\LLD }$


$\BTOL {\SG }{\LLD }$


   𝔏  (    Γ  ⇒  𝐴   ,  𝛿  )  =    𝛿  ∶  Γ  ⇒  𝛿  ∶  𝐴   . 


$\BTOL {\SEQ {\SG }{\VPA }}{\LLD } = \SEQ {\BT {\SG }{\LLD }}{\lf {\VPA }{\LLD }}.$


         𝛿  ∶  ;     𝛿  0  ∶  ,     𝛿   00   ∶    ∅        𝔪        𝛿   01   ∶  𝑝       𝛿  1  ∶  𝑞       𝔞        𝔪        𝛿  ∶  (  (    ∅        𝔪     ,  𝑝  )  ;  𝑞  )  ⇒  𝛿  ∶  𝑟         𝔞  (  𝛿  0  ,  𝛿  1  )  ⩽  𝛿   ,  𝛿  0  ∶  (    ∅        𝔪     ,  𝑝  )  ,  𝛿  1  ∶  𝑞  ⇒  𝛿  ∶  𝑟         𝔪  (  𝛿   00   ,  𝛿   01   )  ⩽  𝛿  0   ,    𝔞  (  𝛿  0  ,  𝛿  1  )  ⩽  𝛿   ,  𝛿   01   ∶  𝑝  ,  𝛿  1  ∶  𝑞  ⇒  𝛿  ∶  𝑟   


\begin {equation*}\begin {tikzpicture}[level distance=4em,text height=1em] \tikzstyle {level 1}=[sibling distance=6em] \tikzstyle {level 2}=[sibling distance=6em] \tikzstyle {edge from parent}=[->,draw] \node (sc) { \makebox [2em][c]{$\lf {\BIasep }{\LLD }$} } [grow'=up] child { node { \makebox [2em]{$\lf {\BImsep }{\LLD 0}$} } child { node (co) { \makebox [2em]{$\lf {\BImnul }{\LLD 00}$} } } child { node (p) { \makebox [2em]{$\lf {\VPP }{\LLD 01}$} } } } child { node (q) { \makebox [2em]{$\lf {\VPQ }{\LLD 1}$} } } ; \draw [dashed] (-3.25em,2em) to (3.25em,2em); \node at (0em,3em) { $\scriptstyle \addL $ }; \draw [dashed] (-6.5em,6.25em) to (0.5em,6.25em); \node at (-3em,7.25em) { $\scriptstyle \mulL $ }; \node (lbis) at (13.7em,0em) { $ \SEQ {\BT {((\BImnul \BImsep \VPP ) \BIasep \VPQ )}{\LLD }}{\lf {\VPR }{\LLD }}$ } [grow'=up] child { node { $ \SEQ {\LEQL {\ADDL {\LLD 0}{\LLD 1}}{\LLD }, \BT {(\BImnul \BImsep \VPP )}{\LLD 0}, \lf {\VPQ }{\LLD 1} }{\lf {\VPR }{\LLD }} $ } child { node { $ \SEQ {\LEQL {\MULL {\LLD 00}{\LLD 01}}{\LLD 0}, \LEQL {\ADDL {\LLD 0}{\LLD 1}}{\LLD }, \lf {\VPP }{\LLD 01}, \lf {\VPQ }{\LLD 1} }{\lf {\VPR }{\LLD }} $ } } }; \end {tikzpicture}\end {equation*}


   (  𝑝      −    ∗    (  𝑞      ⊃    𝑟  )  ;  𝑝      −    ∗    𝑞  )  ,  𝑝 


$(\VPP \BImimp (\VPQ \BIaimp \VPR )\BIasep \VPP \BImimp \VPQ )\BImsep \VPP $


   ⇒  𝑟 


$\Rightarrow \VPR $


         ∧    l  


$\PRNL {\BIaand }$


$\relax \mathsf {LBI}$


               𝔞  (  𝛿   00   ,  𝛿   01   )  ⩽  𝛿  0   ,    𝔪  (  𝛿  0  ,  𝛿  1  )  ⩽  𝛿   ,                            𝛿   01   ∶  𝑝      −    ∗    (  𝑞        ⊃      𝑟  )  ,  𝛿   00   ∶  𝑝      −    ∗    𝑞  ,  𝛿  1  ∶  𝑝          ⇒    𝛿  ∶  𝑟  


\begin {equation*}\SEQZ {\LEQL {\ADDL {\LLD 00}{\LLD 01}}{\LLD 0}, \LEQL {\MULL {\LLD 0}{\LLD 1}}{\LLD },\!\!\!\!\! }{\lf {\VPP \BImimp (\VPQ \! \BIaimp \! \VPR )}{\LLD 01}, \lf {\VPP \BImimp \VPQ }{\LLD 00}, \lf {\VPP \!}{\LLD 1} }{\lf {\VPR }{\LLD } }\end {equation*}


$\relax \mathsf {LBI}$


$\relax \mathsf {GBI}$


   Γ  ⇒  𝐴 


$\relax {\SG \Rightarrow \VPA }$


$\relax \mathsf {LBI}$


$\LLD $


   𝛿  ∶  Γ  ⇒  𝛿  ∶  𝐴 


$\relax {\BT {\SG }{\LLD }\Rightarrow \lf {\VPA }{\LLD }}$


$\relax \mathsf {GBI}$


$\relax \mathsf {LBI}$


$\relax \square $


$\relax \mathsf {GBI}$


$\relax \mathsf {LBI}$


$\relax \mathsf {GBI}$


$\relax \mathsf {LBI}$


$\relax \mathsf {GBI}$


   𝔅  (  𝑠  ,  ℓ  ) 


$\ltob (s,\labl )$


   𝑠 


$s$


$\labl $


$s$


   𝑠  @  𝑙 


$s@l$


$\ltob (s,\labl )$


$s$


$\labl $


$s$


   𝔅  (  𝑠  ) 


$\ltob (s)$


$\ltob (s,\labl )$


$\labl $


$s$


$\ltob (s,\labl )$


$\ltob (s,\labl )$


$\relax \mathsf {GBI}$


$s$


$\labl $


$s$


     𝔪  (    ℓ  𝑖   ,    ℓ  𝑗   )  ⩽  ℓ   ∈  𝑠 


$\LEQL {\MULL {\labl _i}{\labl _j}}{\labl } \in s$


   𝔅  (  ℓ  )  =  (  𝔅  (    ℓ  𝑖   )  ,  𝔅  (    ℓ  𝑗   )  ) 


$\ltob (\labl )= (\ltob (\labl _i) \BImsep \ltob (\labl _j))$


     𝔞  (    ℓ  𝑖   ,    ℓ  𝑗   )  ⩽  ℓ   ∈  𝑠 


$\LEQL {\ADDL {\labl _i}{\labl _j}}{\labl } \in s$


   𝔅  (  ℓ  )  =  (  𝔅  (    ℓ  𝑖   )  ;  𝔅  (    ℓ  𝑗   )  ) 


$\ltob (\labl )= (\ltob (\labl _i) \BIasep \ltob (\labl _j))$


       ℓ  ′   ⩽  ℓ   ∈  𝑠 


$\LEQL {\labl '}{\labl } \in s$


     ℓ  ′   ∈    ℒ  0  


$\labl ' \in \Labs ^0$


   𝔅  (  ℓ  )  =  𝔅  (    ℓ  ′   ) 


$\ltob (\labl ) = \ltob (\labl ')$


   𝔅  (  m  )  =    ∅        𝔪     ,  𝔅  (  a  )  =    ∅        𝔞    


$\ltob (\mneuL ) = \BImnul , \ltob (\aneuL ) = \BIanul $


   𝔅  (  ℓ  )  =      ∧    {    𝐴  ∣  ℓ  ∶  𝐴    } 


$\ltob (\labl ) = \BIaand \ensc {\VPA }{\lf {\VPA }{\labl }}$


       ∧    ∅  =      ⊤      𝔞    


$\BIaand \varnothing = \BIatop $


     ℓ  ′   ⩽  ℓ 


$\LEQL {\labl '}{\labl }$


$\labl '$


$s$


$\PRNL {\BIaand }$


$\relax \mathsf {GBI}$


$\ltob (s)$


$\labl _2$


$s$


   𝑛 


$n$


   𝑛  +  1 


$n+1$


           1  .          𝔅  (    ℓ  2   )  ⇒  𝑟                 𝔪  (    ℓ  0   ,    ℓ  1   )  ⩽    ℓ  2    ,        2  .          (  𝔅  (    ℓ  0   )  ,  𝔅  (    ℓ  1   )  )  ⇒  𝑟               m  ⩽    ℓ  0         3  .          (  𝔅  (  m  )  ,  𝔅  (    ℓ  1   )  )  ⇒  𝑟               𝔅  (  m  )  =    ∅        𝔪           4  .          (    ∅        𝔪     ,  𝔅  (    ℓ  1   )  )  ⇒  𝑟               𝔪  (    ℓ  3   ,    ℓ  4   )  ⩽    ℓ  1         5  .          (    ∅        𝔪     ,  (  𝔅  (    ℓ  3   )  ,  𝔅  (    ℓ  4   )  )  ⇒  𝑟                 ℓ  3   ∶  𝑝      −    ∗    (  𝑞      ⊃    𝑟  )      ∧    𝑝      −    ∗    𝑞        6  .          (    ∅        𝔪     ,  (  𝑝      −    ∗    (  𝑞      ⊃    𝑟  )      ∧    𝑝      −    ∗    𝑞  ,  𝔅  (    ℓ  4   )  )  ⇒  𝑟                 ℓ  4   ∶  𝑝        7  .          (    ∅        𝔪     ,  (  𝑝      −    ∗    (  𝑞      ⊃    𝑟  )      ∧    𝑝      −    ∗    𝑞  ,  𝑝  )  )  ⇒  𝑟                stop       


\begin {equation*}\begin {array}{l@{\quad }l@{\quad }|@{\quad }l} 1. & \SEQ {\ltob (\labl _2)}{\VPR } & \LEQL {\MULL {\labl _0}{\labl _1}}{\labl _2}, \\ 2. & \SEQ {(\ltob (\labl _0) \BImsep \ltob (\labl _1))}{\VPR } & \LEQL {\mneuL }{\labl _0} \\ 3. & \SEQ {(\ltob (\mneuL ) \BImsep \ltob (\labl _1))}{\VPR } & \ltob (\mneuL ) = \BImnul \\ 4. & \SEQ {(\BImnul \BImsep \ltob (\labl _1))}{\VPR } & \LEQL {\MULL {\labl _3}{\labl _4}}{\labl _1} \\ 5. & \SEQ {(\BImnul \BImsep (\ltob (\labl _3) \BImsep \ltob (\labl _4))}{\VPR } & \lf {\VPP \BImimp (\VPQ \BIaimp \VPR )\BIaand \VPP \BImimp \VPQ }{\labl _3} \\ 6. & \SEQ {(\BImnul \BImsep (\VPP \BImimp (\VPQ \BIaimp \VPR )\BIaand \VPP \BImimp \VPQ \BImsep \ltob (\labl _4))}{\VPR } & \lf {\VPP }{\labl _4} \\ 7. & \SEQ {(\BImnul \BImsep (\VPP \BImimp (\VPQ \BIaimp \VPR )\BIaand \VPP \BImimp \VPQ \BImsep \VPP ))}{\VPR } & \mathrm {stop} \end {array}\end {equation*}


$\relax \mathsf {GBI}$


$\relax \mathsf {LBI}$


$\relax \mathsf {GBI}$


   𝛿  𝑠  ∶  Θ 


$\BT {\ST }{\LLD s}$


   𝛿  𝑠  0  ∶  Θ 


$\BT {\ST }{\LLD s 0}$


   𝛿  𝑠  1  ∶  Θ 


$\BT {\ST }{\LLD s 1}$


       𝛿  ∶  Γ  (    𝔞  (  𝛿  𝑠  0  ,  𝛿  𝑠  1  )  ⩽  𝛿  𝑠   ,  𝛿  𝑠  0  ∶  Θ  ,  𝛿  𝑠  1  ∶  Θ  )  ⇒  𝛿  ∶  𝐴     𝛿  ∶  Γ  (  𝛿  𝑠  ∶  Θ  )  ⇒  𝛿  ∶  𝐴      (    C  T   )  


\begin {equation*}\dfrac {\SEQ {\BT {\SG (\LEQL {\ADDL {\LLD s0}{\LLD s1}}{\LLD s},\BT {\ST }{\LLD s0},\BT {\ST }{\LLD s1})}{\LLD }}{\lf {\VPA }{\LLD }}}{\SEQ {\BT {\SG (\BT {\ST }{\LLD s})}{\LLD }}{\lf {\VPA }{\LLD }}} {\footnotesize (\PRN {C_T})}\end {equation*}


$\relax \mathsf {GBI}$


$\relax \mathsf {LBI}$
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providing an overview of the logics and proof formalisms under consideration, we
show how these sequent-based formalisms can be placed in a hierarchy in terms
of the underlying data structure of the sequents. We then discuss how this hier-
archy can be traversed using translations. Translating proofs up this hierarchy is
found to be relatively straightforward while translating proofs down the hierar-
chy is substantially more difficult. Finally, we inspect the prevalent distinction in
structural proof theory between ‘internal calculi’ and ‘external calculi” We dis-
cuss the ambiguities involved in the informal definitions of these categories, and
we critically assess the properties that (calculi from) these classes are purported
to possess.

Keywords: bunched implication, conditional logic, display calculus, external cal-
culus, hypersequent, internal calculus, intuitionistic logic, labeled calculus, modal
logic, nested calculus, proof theory, sequent, tense logic.

Introduction

The widespread application of logical methods in computer science, episte-
mology, and artificial intelligence has resulted in an explosion of new logics.
These logics are more expressive than classical logic, allowing for finer dis-
tinctions and a direct representation of notions that cannot be well-stated
in classical logic. For instance, they are used to express different modes
of truth (e.g., modal logics [6]) and to study different types of reasoning,
e.g., hypothetical or plausible reasoning (e.g., conditional logics [69]) or
reasoning about the separation and sharing of resources (e.g., bunched im-
plication logics [103]). In addition to formalizing reasoning, these logics are
also used to model systems and prove properties about them, leading, for
example, to applications in software verification (e.g., [89]).

These applications require the existence of analytic calculi. Analytic cal-
culi consist of rules that compose (decompose, in the case of tableau calculi)
the formulae to be proved in a stepwise manner, and in particular, the key
rule of cut—used to simulate modus ponens—is not needed. As a result,
the proofs from an analytic calculus possess the subformula property: every
formula that appears (anywhere) in the proof is a subformula of the formu-
lae proved. This is a powerful restriction on the form of proofs, which can
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be exploited to develop automated reasoning methods [107] and establish
important properties of logics such as consistency [37, 38|, decidability [28],
and interpolation [85].

Since its introduction by Gentzen in the 1930s and his seminal proof
of the Hauptsatz (see [37, 38]), the sequent calculus formalism has become
one of the preferred frameworks for constructing analytic calculi. This
is because such systems are relatively simple and do not require much
technical machinery (that is, ‘bureaucracy’) to enable analyticity. The
downside of this simplicity is that Gentzen sequent calculi are often not
expressive enough to capture many logics of interest in an analytic man-
ner. In response, many proof-theoretic formalisms extending Gentzen’s
formalism have been proposed over the last 50 years to recapture analyt-
icity for more expressive logics. Such formalisms include hypersequent cal-
culi [2, 91], nested sequent calculi [13, 55], bunched sequent calculi [103],
display calculi [5, 113], and labeled sequent calculi [106, 112]. Each of
these proof-theoretic formalisms (or, formalisms for short) is characterized
in terms of the standard notation it uses, the data structures employed
in sequents, the types of inference rules that normally appear, and the
types of properties ordinarily shared by the proof calculi thereof (which
serve as instances of a formalism). As the notion is central to this pa-
per, we further remark that a proof-theoretic formalism is a paradigm in
which calculi are built or defined, i.e., a formalism constitutes the way
in which calculi are constructed, giving rise to a family resemblance shared
by systems within the same formalism.

In the literature, proof-theoretic formalisms and calculi have often been
classified into internal or external (e.g., [20, 25, 104]). There is no for-
mal definition of these properties, and the proof-theoretic community lacks
consensus on how each term should be precisely defined. Nevertheless, the
literature abounds with informal definitions of internal and external cal-
culi. Typically, internal calculi are described along multiple (sometimes
intersecting, sometimes conflicting) lines; e.g., internal calculi have been
qualified as proof systems omitting semantic elements from their syntax,
or proof systems where every sequent is translatable into an equivalent log-
ical formula. Often times, external calculi are defined as the opposite of
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internal calculi and, therefore, have also been qualified in multiple ways. It
has been claimed that internal calculi are better suited than external cal-
culi for establishing properties such as termination, interpolation, and opti-
mal complexity, while it is purported that external calculi are better suited
for counter-model generation and permit easier proofs of cut-admissibility
and completeness. We will challenge this divide in this paper.

Due to the diverse number of proof-theoretic formalisms, a large body of
work has been dedicated to investigating the relationships between calculi
within distinct formalisms by means of translations. A translation is a
function from one proof formalism into another which extends in a natural
way to yield structure-preserving maps between derivations in the concrete
calculi instantiating the formalisms. Translations represent a useful tool to
formally compare and classify different kinds of proof systems.

The goal of this paper is threefold: (1) we discuss the various sequent-
style formalisms that have come to prominence in structural proof the-
ory, (2) we map out the relationships between various proof-theoretic for-
malisms by means of translations, and (3) we investigate the internal and
external distinction in light of these relationships.! What we find is that
proof-theoretic formalisms sit within a hierarchy that increases in complex-
ity from Gentzen sequents up to labeled sequents, and is based upon the
underlying data structure of the sequents used in the system. We will ar-
gue that it is ‘easier’ to translate proofs up this hierarchy than down this
hierarchy. Furthermore, we will explain the ambiguities involved in the
terms ‘internal’ and ‘external,” and dispel myths about the properties such
calculi are purported to possess. To provide a broad account of sequent-
based systems we consider a large number of formalisms and systems for a
wide array of logics, including modal and tense logics, intuitionistic logic,
conditional logics, and bunched implication logic.

This paper is organized as follows: In Section 1, we introduce the var-
ious families of logics we consider and their semantics, including modal
and tense logics, intuitionistic logic, conditional logics, and bunched logics.

I'We restrict our study to sequent-based formalisms in this paper. Nevertheless,
our study retains generality as other types of proof systems, e.g., tableau systems and
natural deduction systems, can be transformed into sequent calculi.
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In Section 2, we explain the various sequent-based formalisms and specific
systems that have been introduced for these logics, giving a broad account
of the types of sequent systems that appear in the literature. In the sub-
sequent section (Section 3), we organize these proof-theoretic formalisms
and systems into a hierarchy and explain how to traverse this hierarchy
by means of translations. Lastly, in Section 4, we discuss the internal and
external distinction, and clarify what properties ‘internal’ and ‘external’
calculi can be expected to satisfy.

1. Logical preliminaries

To keep the paper self contained and make for a more general approach,
we introduce a variety of logics: modal, tense, intuitionistic, conditional,
and bunched logics. We will discuss various sequent-style systems for these
logics in the sequel.

All logics we consider as propositional, and thus, rely on a set Prop :=
{p,q,r,...} of propositional atoms (which are occasionally annotated). For
convenience, we will make use of the following two (equivalent) languages:

A s= p|L|AVA|ANA|A—>A (1.1)
A = p‘f)‘A\/A|A/\A (1.2)

When adopting (1.1), we define =4 as A — L and T as =L1. In (1.2),
implication is not a primitive operator and the dual = is allowed to occur
only on propositional atoms. However, by taking AV B := A A B and
ANB:= AV B, we can define A — B as AV B. The propositional lan-
guage (1.1) is traditionally used to define two-sided sequents, while (1.2)
is convenient when working with one-sided sequents. This distinction will
become clear in Section 2; for the moment, observe that the two formula-
tions are equivalent, as the connectives are interdefinable. For the logics
based on classical propositional language, we shall sometimes use (1.1) and
sometimes (1.2), depending on the corresponding proof system we con-
sider. When introducing intuitionistic logic, we instead need to use (1.1).
To avoid any confusion, we shall use D to denote intuitionistic implication.
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1.1. Modal logics

Even though a study of modalities dates back to Aristotle, modal logic as
we know it originates within the work of C.I. Lewis [68], who formulated
a notion of strict implication in an attempt to resolve certain paradoxes
of material implication. Since then, various modal logics have been de-
fined by expanding a base logic (e.g., classical or intuitionistic logic) with
modalities, that is, logical operators that qualify the truth of a proposi-
tion. Normal modal logics extend classical propositional logic through the
incorporation of alethic modalities, namely, “it is possible that” (denoted
by {) and “it is necessary that” (denoted by [0). For an in-depth treatment
and presentation of such logics, see Blackburn et al. [6].

For p ranging over Prop, we define the language £, of modal logics by
adding the O modality to (1.1) above:?

Aus=p|L|AVA|AVA|A— A|DA

We then set 0A := —[0-A. Modal formulae are interpreted over modal
Kripke models. We define such models below, and afterward, define how
formulae are interpreted over them.

DEFINITION 1.1 (Modal Kripke Model). A Kripke frame is defined to
be an ordered pair F := (W, R) such that W is a non-empty set of points,
called worlds, and R C W x W is the accessibility relation. A modal Kripke
model is defined to be a tuple M = (F,V) such that Fis a Kripke frame
and V : Prop — 2% is a valuation function mapping propositions to sets of
worlds.

DEFINITION 1.2 (Semantic Clauses). Let M = (W,R,V) be a modal
Kripke model. We define a forcing relation F such that

o M,wkpiff weV(p);
o M, wfl;
e MwEFAVBIiff M,wk Aor M,wkF B;

2This choice is functional to the choice of the proof systems we will introduce in
Section 2; the language could have been defined by adding O and ¢ to (1.2) instead.
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Name Frame Property Modal Axiom
Reflexivity VwwRw 0A— A
Symmetry Vw, u(wRu — uRw) A — O-0-A4

Transitivity | Vw, v, u(wRv AvRu — wRu) | OA — OOA
Euclideanity | Vw,v,u(wRv A wRu — vRu) | ~0A — O-0A

Figure 1: Frame properties and corresponding axioms.

e MwEFAANBff MiwF A and M,wF B;

e MwkFA— Biff it MjwE A, then M,wF B;

o M,wkE OA iff for every u € W, if wRu, then M, uF A;
o ME A iff for every we W, M, wk A.

We define a formula A € £;; to be £;,-valid iff for all modal Kripke
models M, M E A. We define the minimal normal modal logic K to be the
set of £,,-valid formulae.

The truth condition for ¢ formulae, which is not included in the defi-
nition above, is the following: M, w E QA iff there exists u € W such that
M,uk A. As is well-known in the domain of modal logics, certain formulae
are valid on a class of modal Kripke frames if and only if the accessibility
relation of those frames satisfies a certain property. This discovery led to
the formulation of correspondence theory [6], which investigates relation-
ships between modal axioms and the properties possessed by modal Kripke
frames. In Figure 1, we display some popular and well-studied correspon-
dences, and define the two prominent modal logics S4 and S5 accordingly:

DEFINITION 1.3 (S4 and S5). The modal logic S4 is defined to be the set of
L -valid formula over modal Kripke frames whose relation is reflexive and
transitive. The modal logic S5 is defined to be the set of £,,-valid formula
over modal Kripke frames whose relation is reflexive and Euclidean.
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1.2. Tense logics

Tense logics were invented by Prior in the 1950s [102], and are types of
normal modal logics that not only include the ¢ and [0 modalities, but
the converse modalitics 4 and . These modalities are interpreted in a
temporal manner, that is, ¢ is read as “in some future moment,” (I is read
as “in every future moment,” ¢ is read as “in some past moment,” and W
is read as “in every past moment.” In this paper, we consider the minimal
tense logic Kt [6], whose language £ is defined by adding tense modalities
to (1.2):
Aux=p|p|AVA|ANA| (DHA|[7A

where p ranges over Prop, (7) € {0, 4}, and [?] € {0, ®}. Formulae from
L are in negation normal form as this will simplify the sequent systems we
consider later on. Note that negation — and implication — can be defined
as usual; see e.g. [20]. Like formulae in £,;, we interpret formulae from £,
over modal Kripke models (Definition 1.1).

DEFINITION 1.4 (Semantic Clauses). Let M = (W, R,V) be a modal
Kripke model. We define the forcing relation F as follows, where the clauses
for A and V are as in Definition 1.2:

o M,wEp iff weV(p);

o« M, wED iff wé¢ V(p);

o M,wk QA iff there exists a v € W such that wRu and M, u F A;
o M,wkF @A iff there exists a v € W such that uRw and M, u F A;
o M,wkE OA iff for every u € W, if wRu, then M, u F A;

o M,wE BA iff for every u € W, if uRw, then M, u F A;

e ME A iff for every we W, M,wE A.

We define a formula A € £ to be L-valid iff for all modal Kripke models
M, M E A. We define the minimal tense logic Kt to be the set of £;-valid
formulae.
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1.3. Conditional Logics

Conditional logics formalize hypothetical statements that cannot be faith-
fully represented using material implication and/or the modal operator [J.
Examples of such sentences are counterfactual conditionals, e.g., “if A were
the case, then B would be the case,” and non-monotonic statements, such as
“Normally, if A then B.” To represent counterfactuals and non-monotonic
sentences, conditional logics introduce in a classical propositional language
a binary modal operator, the conditional, which we denote by A > B.
Although the family of conditional logics contains over 50 systems, we con-
centrate on the conditional logic V, which is the basic logic of counterfactual
reasoning as introduced by D. Lewis [69]. We choose to focus our atten-
tion on this conditional logic as its proof-theoretical treatment, while being
simpler than for other systems, illustrates the methods needed to capture
conditionals.

In Lewis’s account, the conditional operator is defined in terms of an-
other operator, referred to as comparative plausibility and denoted <. The
formula A < B states that “A is at least as plausible as B.” The conditional
operator A > B may then be defined as (L < A) V—=((AA—B) < (AAB)),
meaning that “either A is impossible or AA—B is less plausible than AA B.”
This definition can be simplified by replacing A A B by A in the second
disjunct, yielding: A > B:= (L A)V-((AA—-B) < A).

Conversely, the comparative plausibility < can be defined in terms of the
conditional operator >. Our full language is defined by adding < to the lan-
guage (1.1) above, for p ranging over Prop:

As=p|L|AVA|ANA|A—>A|A<A

From a semantic point of view, logic V is characterized by special kinds
of neighborhood models, introduced by Lewis and called sphere models. In
this semantics, each world is assigned a system of spheres, i.e., a set of
nested neighborhoods. The intuition is that spheres represent degrees
of plausibility, so that worlds in smaller/innermost spheres are considered
more plausible than worlds contained solely in larger/outermost spheres.
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DEFINITION 1.5 (Sphere Model). A sphere model M = (W,S,V) is a
triple such that W is a non-empty set of worlds, S : W — 22W, V : Prop —
2" is a valuation function, and the following conditions are satisfied, for
every w € W:

o Non-emptiness: For every a € S(w), a # 0;
e Nesting: For every «, 8 € S(w), either « C S or 5 C a.

The elements of a system of spheres S(w) are called spheres and we use
a, 3,... to denote them.

DEFINITION 1.6 (Semantic Clauses). Given a sphere model M = (W, S, V),
the forcing relation F is defined by adding to the forcing relation defined in
Definition 1.2 the following clause for <:

e M,wEF A< B iff for all & € S(w), if there exists u € a such that
M, uF B, then there exists v € a such that M, v F A.

We define a formula A to be wvalid iff for any sphere model M, M F A, and
we define the conditional logic V to be the set of all valid formulae over the
class of sphere models.

Given a sphere model M = (WS, V), we find it useful to introduce the
following notation for a sphere a € S(w):

o aF' A iff there is w € a such that M,wE A;
o akY A iff for all w € «, it holds that M,w F A.

With this notation, the semantic clause for the comparative plausibility
operator becomes the following:

e M,wk A< B iff for all @ € S(w), if a F? B, then o F* A.

For completeness, we report the truth condition of the conditional op-
erator, which is defined in our language:

e M,wF A > B iff either for all a € S(w), of°A, or there is an
a € S(w) such that a F A and a F¥ A — B.
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By imposing additional properties on sphere models, we obtain Lewis’s
family of conditional logics. Later on, we will define calculi for conditional
logics that incorporate inference rules for the comparative plausibility op-
erator.

1.4. Intuitionistic logic

Intuitionistic logic aims to capture the notion of constructive proof, some-
thing which classical logic fails to do [49]. For this reason intuitionistic logic
does not contain familiar classical axioms such as the law of the excluded
middle (p V —p) and double negation elimination (——p D p). The language
of intuitionistic logic £; is just the language of classical logic (1.1), where
classical implication is replaced by intuitionistic implication D:

Aus=p| L|AVA|ANA|ADA

where p ranges over Prop. As usual, we define =A := A O 1. Contrary to
the classical case, the connectives A and V are not inter-definable. Intu-
itionistic formulae are interpreted over intuitionistic Kripke models.

DEFINITION 1.7 (Intuitionistic Kripke Model). An intuitionistic Kripke
frame is defined to be an ordered pair F := (W, <) such that W is a non-
empty set of points, called worlds, and the accessibility relation < C W x W
is reflexive and transitive. A intuitionistic Kripke model is defined to be
a tuple M = (F,V) such that F is an intuitionistic Kripke frame and
V : Prop — 2" is a valuation function satisfying the persistence condition,
that is, if w € V(p) and w < u, then u € V(p).

DEFINITION 1.8 (Semantic Clauses). Given an intuitionistic Kripke model
M = (W, <, V), we define a forcing relation F for propositional atoms, 1, V,
and A as in Definition 1.2, but replace the clause for — with the following;:

e M,wEADBiffforallu e W,ifw <wand M,ukF A, then M, uF B;

We define a formula A € £; to be intuitionistically-valid iff for all intu-
itionistic Kripke models M, M F A. We define intuitionistic logic IL to be
the set of intuitionistically-valid formulae.
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A basic fact of intuitionistic logic is that it forms a proper subset of clas-
sical logic. Conversely, via the double negation translation, classical logic
can be embedded into IL [14]. Moreover, there is also a natural embedding
of (axiomatic extensions of) intuitionistic logic (called intermediate logics)
into (axiomatic extensions of) the modal logic S4 [57].

1.5. Bunched logics

Bunched logics are substructural logics® arising from mixing different kinds
of connectives associated with a resource aware interpretation. In this
paper we focus on the logic of bunched implications (Bl) [95, 103], which
combines propositional intuitionistic logic with intuitionistic multiplicative
linear logic. More formally, the set of formulae of Bl, denoted Fm, is given
by the following grammar in BNF:

Av=p|Tn|A*A|AxA|T.|L|ANA|AVA|AD A

multiplicatives additives

where p ranges over Prop.

Bl admits various forcing semantics [103], called resource semantics,
which use more elaborate models than those used for intuitionistic logic or
modal logics. The most intuitive and widespread resource semantics for Bl
is the monoid based Kripke semantics that arises from the definition of
a (multiplicative) resource composition ® on worlds, viewed as resources.
The monoid based Kripke semantics can be generalized to a relational
semantics [35] replacing both the accessibility C and the monoidal com-
position ® with a ternary relation R on worlds & la Routley-Meyer (thus
reading w ® w’ C u as a particular case of Rww’u).

The standard monoid based Kripke semantics [35] requires only one
resource composition reflecting the properties of the multiplicative connec-
tives. The specifics of the additive connectives are implicitly reflected in
their forcing clauses using the properties of the accessibility relation. How-
ever, in this paper, we follow [34] and use a monoid based Kripke semantics

3Logics that include connectives for which at least one of the usual structural rules
(weakening, contraction, exchange, associativity) does not hold.
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in which we add a second (additive) resource composition @ that explicitly
reflects the syntactic behaviour of A into the semantics.

DEFINITION 1.9 (Resource Monoid). A resource monoid (RM) is a struc-
ture M = (M, ®,1,®,0,00,C) where (M, ®,1), (M, ®,0) are commutative
monoids and C is a preordering relation on M such that:

o forallwe M, wC co and oo C 0o ® w;

o forallw,u e M, wCE w®uand wd wC w;

e fwCuandw Cu/,thenw@@uw Cu®u andwdw Cudu'.
Let us remark that the conditions of Definition 1.9 imply that co and

0 respectively are greatest and least elements and that & is idempotent.

DEFINITION 1.10 (Resource Interpretation).  Given a resource monoid
M, a resource interpretation (RI) for M, is a function [—] : Fm — oM
satisfying V p € Prop, co € [p] and Vw,u € M, if w € [p] and w C u, then
u € [pl.

DEFINITION 1.11 (Kripke Resource Model). A Kripke resource model
(KRM) is a structure X = (M,F,[—]) where M is a resource monoid, [—|
is a resource interpretation and F is a forcing relation such that:

o M,wEpiff we|pl;

e Mwk Liff o Cw; M,wE Ta iff 0C w; M,wkF Tu iff 1 C w;

o« M,wk Ax B iff for some u,v’ in M, u®u C w, M,uF A and
M, v F B;

o« M,wk ANB iff for some u,v’ in M, u® v C w, M,uF A and
M,u F B;

e M,wk A— Biff for all u,u” in M such that M,u F A and w®u C u’,
M, v F B;

e M,wk A D Biff for all u,u” in M such that M,u F A and w®u C v/,
M, v F B;
e MwkE AV B iff MiwE Aor M,wk B.
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A formula A is valid in the Kripke resource semantics iff M,1F A in
all Kripke resource models.

Let us call dmMKRS the Kripke resource semantics based on double
monoids as defined in this section (and first introduced in [34]) and call
smKRS the standard one based on single monoids (as defined in [35]). The
smKRS is recovered from the dmKRS by erasing all references to @ in Def-
inition 1.9 and replacing the forcing clauses for the additive connectives in
Definition 1.11 with the following ones:

o M,wE Ta iff always;
e MwEAANB iff MiwE A and M,w F B;

e M,wE A D B iff for all w in M such that w C w, if M,uF A then
M,ukE B.

The forcing clauses for the additive connectives might seem more nat-
ural in the smKRS as they convey their intuitive interpretation in terms
of resource sharing (see [103] for details). Indeed, it is immediately seen
that A A B is about A and B sharing the same resource (namely, the re-
source w in M,wkF AA B). Let us remark that the interpretation of the
multiplicative connectives in terms of resource separation (A * B holds for
resource w if it can be split into two resources u and u’, one satisfying A
and the other satisfying B) remains the same in both semantics. Let us also
mention that the interpretation of Bl formulae in terms of resource sharing
and separation is one of the key differences with Linear Logic [39] and its
interpretation of formulae in terms of resource accounting (consumption
and production).

Although (arguably) less intuitive, the dmKRS clearly makes the presen-
tation of the semantics more uniform as the differences between the addi-
tive and multiplicative connectives are captured at the level of the algebraic
properties that the corresponding monoidal operators should satisfy (e.g.,
idempotence for @ but not for ®) and not at the level of the forcing clauses
which can therefore be formulated in a similar way. As we shall see later
in Section 2.6 it also makes the dmKRS more in tune with the bunched
sequent calculus of Bl in which the differences between the additive and



Internal and External Calculi 73

System Type ‘ Data Structure of Sequent ‘
Labeled Sequents Graphs of Gentzen Sequents
Display Sequents (Pairs of)(Poly-)Tree(s) of

Gentzen Sequents
Nested, Tree-hypersequents, Trees of Gentzen Sequents
& Bunched Sequents
2-Sequents Lines of Gentzen Sequents
& Linear Nested Sequents

Hypersequents (Multi-)Set of Gentzen Sequents

Gentzen Sequents (Pairs of)(Multi-)Set(s)

Figure 2: Common sequent formalisms and their data structure.

multiplicative connectives are handled at the level of the structural rules
that the connectives should satisfy and not at the level of the logical rules
(which share a similar form).

2. An overview of the proof-theoretic jungle

In this section, we give a broad overview of the various sequent-based for-
malisms that have come to prominence as generalizations of Gentzen’s se-
quent formalism [37, 38]. Each formalism enriches the data structure em-
ployed in Gentzen sequents. Figure 2 summarizes the formalisms we will
consider, and the data structure used in the sequents of the formalism.
These formalisms form a hierarchy, starting from Gentzen sequents at the
bottom and increasing in complexity up to labeled sequents at the top.

2.1. Gentzen system: Classical logic

Gentzen [37, 38] introduced the sequent formalism to proof theory by defin-
ing sequent calculi for classical and intuitionistic logic. We begin by recall-
ing the sequent calculus for classical logic. A sequent is an object of the
form ' = A where I' and A are (possibly empty) multisets of formulae
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I - (L
I'p=pA (id) 1, T=A (L0)
I'NA,B= A (A) I'=AA I'= BA (")
LAANB=A ‘! [ = AAB,A r
INA= A I''B=A v,) I'= A B A (v.)
ILAVB=A ! I=AVBA "
I'=s A A I''B=A (=) A= B, A (=)
INA—-B=A ! I's>A— B A "

Figure 3: Initial sequents and logical rules of S(CP).

from language (1.1). We call T" the antecedent and A the consequent of the
sequent. Each sequent I' = A with I' = A;,...,A4,, and A = By,..., B,

I m
can be interpreted as a formula of the following form:

When m = 0, Tk empty cohfmébtion idinterptdted/as ¥ Bnd when n = 0,
the empty disjunction is interpreted as L.

A sequent calculus contains axioms, also called initial sequents, and
rules that let one derive sequents from sequents. The latter are divided
into logical rules that introduce complex formulae in either the antecedent
or consequent of a sequent, and structural rules which modify the structure
of the antecedent/consequent, without changing the formulae themselves.
Figure 3 contains the axioms (id) and (L;), and the logical rules for the
sequent calculus S(CP) for classical propositional logic.

We define a derivation D of a sequent S to be a (potentially infinite)
tree whose nodes are sequents satisfying the following conditions: (1) the
root of D is the sequent S, and (2) every parent node is the instance of
the conclusion of a rule with its children the corresponding premises. We
say that a derivation 2D of S is a proof of S if all the leaves of D are
axioms. We say that a sequent S is provable iff it has a proof. The height
of a derivation is equal to the number of sequents along a maximal path
from the root to a leaf. In a rule, we define the principal formulae to be
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= A (why) = A (wh, ) A/ A=A

A= A T=AA FASA )
'=A4A A (cr.) r=A4A A=A (cut)
r=A4A \Ir r=A o

Figure 4: Structural rules for the sequent calculus S(CP).

those explicitly introduced in the conclusion, and the auziliary formulae
to be those explicitly used in the premise(s) to derive the conclusion. For
example, A — B is the principal formula in (—;) and A and B are the
auxiliary formulae. By proof-search we mean an algorithm that builds a
derivation by applying inference rules bottom-up.

The structural rules for S(CP) are displayed in Figure 4. The weak-
ening rules (wk;) and (wk,) introduce formulae into the antecedent and
consequent of a sequent, while the contraction rules (cr;) and (er,.) remove
additional copies of formulae. The (cut) rule can be seen as a general-
ization of modus ponens and has a special status, namely, it encodes the
transitivity of deduction. Observe that the (cut) rule is not analytic, as
the premises contain an arbitrary formula that disappears in the conclu-
sion. It is important to notice that all structural rules, and in particular the
(cut) rule, are admissible in the calculus S(CP), meaning that if instances of
the premises are provable, then so is the corresponding conclusion. By this
fact, structural rules are recognized to be unnecessary for completeness.

The logical rules for negation, which we have chosen not to include as
primitive rules, are also admissible in S(CP), and we will sometimes use
them in derivations:

I'=AA (=) A=A (=)
IL-A=A ! F=-AA 7

The Gentzen calculus S(CP) is a ‘two-sided’ proof system, meaning that
sequents are composed of an antecedent and consequent, and consequently
the proof system is constituted by left and right logical rules. By taking
the language of classical propositional logic to be (1.2), it is possible to
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define a more compact ‘one-sided’ version of S(CP). In this case, a sequent
is just a multiset of formulae A = B, V -V B,,, and it is interpreted as
the formula 7(A) := B; V -+ V B,,. The rules of the one-sided calculus are
displayed in Figure 5. It is easy to see that the one-sided and the two-sided
versions of S(CP) are equivalent.

The Gentzen calculus S(CP) has some important properties, discussed
below, that set it as an ‘ideal’ proof system. The following terminology
will also be applied to the other kinds of sequent-style systems we consider
later on.

Analyticity: the premises of each rule only contain subformulae of the con-
clusion. Thus, if we do not consider multiple occurrences of the same
formulae (i.e., we consider a sequent as a pair of sets), given a proof of a
sequent S, there are only finitely many different sequents that can occur in
P. This follow from the admissibility of the cut rule (i.e., cut-elimination),
which means that every proof containing applications of (cut) can be trans-
formed into a cut-free proof of the same conclusion [37, 38].

Termination: the premises of each rule are less complex than the conclu-
sion. This property holds in S(CP) (without structural rules) since the
auxiliary formulae are always less complex than the principal formulae.
This property together with analyticity ensures that the process of build-
ing a derivation (bottom-up) always terminates, that is, every branch of
a derivation 2 terminates at an axiom or an unprovable sequent (usually
containing only atoms).

Invertibility: if any instance of the conclusion of a rule is provable, then
its corresponding premises are provable. By this property, the order of
bottom-up applications of rules during proof-search does not matter: ei-
ther we obtain a proof of the root sequent, or we get a (finite) derivation
containing an unprovable sequent as a leaf. When this property is present,
backtracking (i.e., searching for alternative proofs) is unnecessary during
proof-search.

Counter-model generation: if proof-search yields a derivation 2 that is not
a proof of the conclusion, then there exists an unprovable sequent as a leaf
which can be used to define a counter-model of the conclusion. In the case
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A A B,A ") A, B,A Vo)
AAB,A O TAVB,A VT

A, p,D

Figure 5: One-sided rules of S(CP).

of S(CP), if ' = A is such a leaf in a derivation 2D, then I' N A = {), and
one can define a propositional evaluation ‘V(p) =t iff p € I” that falsifies
the conclusion of D.

Complexity-optimal: the proof system admits a (relatively straightforward)
proof-search algorithm that decides the (in)validity of formulae in the com-
plexity of the logic.

The calculus S(CP) satisfies the above four properties; as a consequence,
the calculus provides a decision procedure for classical propositional logic.
Proof-search is carried out by building just one derivation that will either be
a proof, or from which a counter-model of the conclusion can be extracted.
Furthermore, the decision procedure based on the calculus has an optimal
complexity (CoNP).

2.2. Gentzen system: Intuitionistic logic

Gentzen’s sequent systems are flexible enough to capture other logics. For
example, intuitionistic logic can be provided a sequent calculus by making
simple modifications to S(CP). The calculus S(IL) for intuitionistic logic
is obtained by replacing the (—;) and (—,.) rules in S(CP) with the (D;)
and (D,.) rules shown in Figure 6. Originally, Gentzen obtained a sequent
calculus for intuitionistic logic by imposing a restriction on the sequent cal-
culus S(CP) for classical logic, namely, only sequents with at most one for-
mula in the consequent (i.e., sequents I' = A such that |A| < 1) could
be used in derivations. However, Gentzen’s restriction invalidates certain
admissibility and invertibility properties, which can be regained allowing
multiple formulae to occur in the conclusion. The calculus S(IL), due to
Maehara [84], is a variant of Gentzen’s sequent calculus for intuitionistic
logic that has all structural rules, including (cut), admissible.
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LADB,B=A T,A>DB=AA ) A= B 5.)
[LADB=A Y T=A>BA ‘7"

Figure 6: Intuitionistic implication rules for S(IL).

The calculus S(IL) is analytic, though not terminating as the premises of
a rule may be as complex as the conclusion as witnessed by the premises
of (D;). Additionally, the (D,) rule is not invertible, which is an impedi-
ment to proof-search. In particular, if proof-search constructs a derivation
that is not a proof, then a proof may still exist and the constructed deriva-
tion may not provide a counter-model of the conclusion. Due to analyticity
a decision procedure can still be obtained; however, the procedure will also
require loop checking which diminishes its efficiency. For an overview of
various proof systems for intuitionistic logic and associated decision proce-
dures, see [29].

Although Gentzen systems have been provided for many logics, the for-
malism is still not general enough to yield cut-free systems for many logics
of interest (e.g., S5 and bi-intuitionistic logics [66, 12]). This motivates
the search for more expressive formalisms that enrich Gentzen sequents to
recapture analyticity and other properties.

2.3. Beyond Gentzen’s formalism

In the previous section we highlighted some desirable properties of proof
systems, which Gentzen sequent systems often times satisfy. However,
we are here interested in the definition of formalisms satisfying desirable
properties for large families of logics. Thus, we identify five desiderata for
proof-theoretic formalisms:*

(1) Generality: the formalism covers a sizable class of logics with proof
systems sharing desirable properties;

4For discussions of other desiderata for proof systems and formalisms, see [113, 2].



Internal and External Calculi 79

(2) Uniformity: the formalism need not be enriched to obtain a system
for a logic within a given class;

(3) Modularity: a system for one logic within the considered class can be
transformed into a system for another, with properties preserved, by
adding/deleting rules or modifying the functionality of rules;

(4) Constructibility: a method is known for constructing a calculus for a
given logic in the considered class;

(5) Syntactic Parsimony: the data structures employed are as simple as
required by the logic or purpose of the proof systems.

When the desiderata (1)—(4) are satisfied, a proof formalism is expected
to generate large classes of proof calculi for logics without requiring sub-
stantial work on the side of the logician. According to requirement (5),
a formalism should employ sequents that are as simple as possible, in order
to maintain their interpretation as formulae of the language and simplify
derivations.

It is not to be taken for granted that a single proof formalism can fulfill
all of the above requirements, which justifies the study of alternative proof
systems and formalisms with different properties and applications. For in-
stance, although Gentzen’s sequent formalism satisfies syntactic parsimony
to a high degree, the formalism lacks uniformity and modularity, since sim-
ple modifications to a calculus can nullify key properties such as analyticity.
Similarly, although nested sequents employ trees of Gentzen sequents, they
are better suited for counter-model extraction than Gentzen sequent calculi,
and so, if we aim to use our systems to extract counter-models of formulae,
then it is sensible to trade the simple structure of Gentzen sequents for
nested sequents.

In the next subsections we will present a number of formalisms that are
less parsimonious that Gentzen sequents, but are more satisfactory than
Gentzen sequents regarding requirements (1)—(4).
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G|IT=A|=A
(1) < |

id
(id) G|I,L=A G|I'=04,A )

G|T,p=pA

G|F,DA,A:>A( ) GIT,OA=A|S, A=11
G|T,0A= A i GIT,UA=A | =1

Y

Figure 7: Rules for a hypersequent calculus H(S5) for S5.

2.4. Hypersequents

Introduced independently by Mints [91], Pottinger [101], and Avron [1],
the hypersequent formalism is a simple generalization of Gentzen’s sequent
formalism. A hypersequent is an expression of the form I'; = Ay | - |
I',, = A,, such that each component I'; = A, is a Gentzen sequent. That
is, a hypersequent is a (multi)set of Gentzen sequents, where each element
of the (multi)set is separated by the ‘|” operator. Usually, we interpret
the ‘|” operator disjunctively, meaning, hypersequents are interpreted as
disjunctions of Gentzen sequents. We use G, H, ... to denote hypersequents.

To demonstrate the hypersequent formalism, we provide an example
of a hypersequent calculus H(S5) for the modal logic S5, which is due to
Poggiolesi [97] though adapted to the language we are using for S5.° The
hypersequent calculus H(S5) contains the rules shown in Figure 7 together
with analogs for the rules (V;), (V,.), (A;), (A,), (=), and (—,) from the
Gentzen calculus S(CL). These latter rules perform the same operation
as their Gentzen calculus counterparts and are applied to components of
hypersequents; for example, the (—;) and (—,.) rules are defined as follows:

G|T=AA G|F,B:>A(_> G|T,A= B,A
G|IT,A—-B=A ! G|T'=A— BA

(=)

As with Gentzen calculi, hypersequent calculi may contain axioms, log-
ical rules, and structural rules. For instance, the hypersequent calculus
H(S5) contains the axioms (id) and (L;) and all remaining rules are logical

5See [4, 58, 105] for alternative hypersequent systems for the modal logic S5.
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rules. Moreover, similar to Gentzen systems, one can often find a selection
of structural rules that are admissible in a hypersequent system. Due to
the additional structure present in hypersequent calculi, structural rules
can be classified into a wider variety of types. That is to say, the hyper-
sequent structure makes it possible to define new external structural rules
that allow for the exchange of information between different components
of a hypersequent. This increases the expressive power of hypersequent
calculi compared to ordinary Gentzen systems.

As an example, for the hypersequent calculus H(S5), one can define both
internal and external structural rules. Internal structural rules strictly af-
fect components; for instance, the following internal weakening (iw) and in-
ternal contraction (ic) rules apply weakenings and contractions only within
components of hypersequents:

G|T=A . G|T,5,2=1LII,A

Gin,x=1ma " GIT,S=1ILA (i)

On the other hand, external structural rules are more general and affect
the overall structure of a hypersequent; for instance, the following external
weakening (ew) and external contraction (ec) rules weaken in new compo-
nents and contract components, respectively:

G (ew) GIT=A|T=A
G|IT=A G|IT=A

(ec)

We remark that all of the above rules are admissible in H(S5) as is a
hypersequent version of the cut rule [97].

It is well-known that the hypersequent formalism allows for the formu-
lation of cut-free sequent-style systems for logics failing to possess a cut-free
Gentzen system. The formalism also supports the algorithmic transforma-
tion of large classes of Hilbert axioms and frame properties into cut-free
hypersequent calculi for wide classes of logics, including substructural log-
ics [18], intermediate logics [24], and modal logics [62, 65]. Therefore,
the hypersequent formalism can be seen to satisfy our five desiderata to a
large degree: with only a basic increase in syntactic complexity from that
of Gentzen sequents, hypersequent systems with favorable properties (e.g.,
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analyticity) can be algorithmically generated for wide classes of logics. This
demonstrates the generality, uniformity, modularity, and constructibility of
such systems. Nevertheless, there are logics for which the hypersequent for-
malism is ill-suited for providing analytic systems (e.g., the tense logic Kt
and some modal logics characterized by geometric frame conditions [106]),
showing that the generality of the formalism is still limited in scope.

2.5. 2-Sequents and linear nested sequents

The 2-sequent formalism was introduced by Masini [87, 88] as a general-
ization of Gentzen’s sequent formalism whereby an infinite list of multi-
sets of formulae implies another infinite list. For instance, an example of
a 2-sequent is shown below left and an another example is shown below
right:

A B D A B D
C = FEF C = FE F,0G
G

In the 2-sequent above left, the antecedent consists of the list whose first
element is the multiset A, B, second element is the singleton C, and where
every other element is the empty multiset. By contrast, the consequent
consists of a list beginning with the three multisets (1) D, (2) E, F, and
(3) G, and where every other element is the empty multiset. The 2-sequent
shown above right is derivable from the 2-sequent shown above left by
‘shifting’ the G formula up one level and introducing a [J modality, thus
demonstrating how modal formulae may be derived in the formalism. Sys-
tems built with such sequents have been provided for various logics—e.g.,
modal logics [87], intuitionistic logic [88] and tense logics [3]—and tend
to exhibit desirable proof-theoretic properties such as generalized forms of
cut-elimination and the subformula property.

More recently, a refined but equivalent re-formulation of 2-sequents was
provided by Lellmann [64]. Rather than employing sequents with infinite
lists for antecedents and consequents, the formalism employs linear nested
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sequents, which are finite lists of Gentzen sequents. For example, the 2-
sequents shown above left and right may be re-written as the linear nested
sequents shown below left and right respectively with the ¢/’ constructor
separating the components (i.e., each Gentzen sequent) in each list:

AB=DJ/C=EF/|b=G A,B=D/)C= E FOG

Linear nested sequent systems have been provided for a diverse selection of
logics; e.g., modal logics [64], Godel-Léb provability logic [76], propositional
and first-order Gédel-Dummett logic [61, 71], the tense logic Kt [42] and the
tense logics with linear time [51, 52]. Moreover, such calculi have been used
to write constructive interpolation proofs [61] and decision procedures [42].

As discussed by Lellmann [64], there is a close connection between
Gentzen sequent calculi, nested sequent calculi (discussed in Section 2.7 be-
low), and linear nested sequent calculi. In particular, certain linear nested
sequent systems have been found to encode branches within sequent cal-
culus proofs as well as branches within nested sequents. For example, the
standard (O) rule that occurs in the sequent calculus for the modal logic
K (shown below left) corresponds to |I'| many applications of the ((J;) rule
followed by an application of the (O,.) rule in the linear nested sequent
calculus for K (cf. [64]).

5,00 = 0A4,A )T = A
0) ~ SOr=04A)0=A
2,00 = 04, A r

Observe that the top linear nested sequent in the inferences shown above
right stores the conclusion and premise of the () rule, thus demonstrating
how linear nested sequents can encode branches (i.e., sequences of infer-
ences) in sequent calculus proofs.

Due to the fact that linear nested sequents employ a relatively sim-
ple data structure, the formalism typically allows for complexity-optimal
proof-search algorithms, similar to (depth-first) algorithms written within
sequent and nested sequent systems. As such, the linear nested sequent for-
malism strikes a balance between complexity-optimality on the one hand,

I'=A (@) x |1

>, 00 = 0A, A
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and expressivity on the other, since the formalism allows for many logics
to be captured in a cut-free manner while exhibiting desirable invertibility
and admissibility properties. Note that if we let the ‘//” constructor be com-
mutative, then it can be seen as the hypersequent |’ constructor, showing
that every hypersequent calculus is technically a linear nested sequent cal-
culus, i.e., the latter formalism generalizes the former [64]. It can be seen
that the linear nested sequent formalism satisfies the same desiderata as
the hypersequent formalism, though improves upon generality as the for-
malism is known to capture logics lacking a cut-free hypersequent calculus,
e.g., the tense logic Kt [42].

2.6. Bunched sequents

As recalled in Section 2.1, a standard Gentzen sequent is an object of the
form I' = A where the contexts I' and A usually are sets or multisets,
sometimes (but less often®) lists. Those data structures are one dimen-
sional and built from a single context forming operator usually written as
a comma or a semi-colon. An interesting extension of Gentzen sequents
are bunched sequents, which arise when the contexts are built from more
than one context forming operators. For example, in [17] two context form-
ing operators, “;” and ‘,° are used to split the contexts into several zones
the formulae of which are handled differently by a focused sequent calculus.
Nevertheless, inside a zone, the formulae are arranged as a one dimensional
structure (usually a multiset) and the inference rules can be applied to any
formula in that shallow structure (thus making the inference rules shallow).
Let us remark that bunched structures can also be used to extend the hy-
persequent framework to bunched hypersequents (forests of sequents) as
illustrated in a recent work [23]. However, in the remaining of the section,
we shall focus on the most representative witness of a bunched sequent cal-
culus, which is undoubtedly the one given for Bunched Implications logic
(Bl) in [103]. Let us note that such kind of structured calculi were initially
proposed in the field of relevant logics [27, 92].

6This is the case for logics lacking all structural rules.
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Figure 8: The sequent calculus LBI.
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In BI, formulae are arranged as “bunches” which can be viewed as trees
whose leaves are labeled with formulae and whose internal nodes are la-
beled with either “;” or “,”. More formally, bunches are trees given by the
following grammar:

r==A1[0 |0T;T|0,|T,T

notation I'(A) denotes a bunch T" that contains the bunch A as a subtree.

Bunches are considered up to a structural equivalence = given by com-
mutative monoid equations for “;” and “,” with units ), and 0, respectively,
together with the substitution congruence for subbunches. From a logical
point of view, bunches relate to formulae as follows: let I be a bunch, the
corresponding formula is  which is obtained from I' by replacing each
with Tm, each (), with Ta, each “,” with % and each “;” with A.

The standard internal calculus for Bl is a single conclusion bunched
sequent calculus called LBI. In LBI, bunches arise (on the left-hand side
only) from the two kinds of implications D and —, that respectively give

W

rise to two distinct context forming operators “;” and “,” as follows:

I';yA=B ryA=_=p

FsA5B ") = AxB

()

From a syntactic point of view, the main distinction between “;” (associ-
ated with A) and “,” (associated with =) is that “;” admits both weakening
and contraction while “,” does not.

The LBI sequent calculus, depicted in Figure 8, derives sequents of the
form I' = C| where T is a bunch and C'is a formula. A formula C'is a the-
orem of LBl iff ), = C'is provable in LBI. Let us remark that the inference
rules of LBI are deep in that they can be applied to formulae anywhere in
the tree structure of a bunch and not only at the root. Let us also men-
tion that the CUT rule is admissible in LBI [103] and that the contraction
rule CR may duplicate whole bunches and not just formulae. Indeed, as
shown in Example 2.1, restricting contraction to single formulae would not
allow to prove the end sequent.

Ezample 2.1. LBl-proof of ((p—(¢ D r)Ap—xq) *p) —r.
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(id) (id)

57 0 s
p=p qOri(p—=*q,p)=>r ) a
(p—=>*(g>D7),p);(p—>*q,p) =T H(lwm
(p=(g>r),p)i((p~=(gDr);p—=q),p)=r (WK)
(p—=*(gD7);p—=*q),p);((p—~>(gDr);p—=*q),p) =T (CR)

(p=(gDr);p—=*q),p=r
(p=(gD>r)Ap—*q),p) =7
0,,((p—=*(@Dr)Ap—*q),p)=r
0,,(p=*(@Dr)Ap—*q)*xp)=r
0, = ((p=(@Dr)Ap—*q) *p)—>*r

(A7)
(*1)
(=)

2.7. Nested sequents

Nested sequent calculi were originally defined by Kashima for tense log-
ics [55] and Bull for the fragment of PDL without the Kleene star [13].7
The characteristic feature of such calculi is the use of trees of Gentzen se-
quents in proofs. This additional structure has led to the development of
cut-free calculi for various logics not known to possess a cut-free Gentzen
sequent calculus. This formalism is general in the sense that sizable classes
of logics can be uniformly captured with such systems. For example,
cut-free nested sequent calculi have been given for classical modal log-
ics [11, 98], for intuitionistic modal logics [108, 72], for classical tense logics
[55, 44], and for first-order non-classical logics [74, 78]. Moreover, the
rules of nested sequent calculi are usually invertible, which—as mentioned
above—are useful in extracting counter-models from failed proof-search
(cf. [109, 77]). We remark that nested sequents have also been referred
to as tree-hypersequents [98, 99]; however, we will stick to the term nested

7We note that nested sequent calculi can be seen as ‘upside-down’ versions of prefixed
tableaux [31, 32]. Furthermore, Leivant’s 1981 paper [63] introduces a calculus for PDL
that is structurally equivalent to a nested sequent calculus. Both of these works predate
the work of Kashima and Bull.
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sequent as it is far more prevalent in the literature and is the original term
given by Kashima [55] and Bull [13].

Nested sequents generalize the syntax of one-sided Gentzen sequents
via the incorporation of a nesting constructor. For instance, for the tense
logic Kt, nested sequents are generated via the following grammar in BNF:

Siu=A[0]32,3 oY) | o[3]

where A € £,; and () is the empty nested sequent. Examples of nested
sequents generated in the above syntax include (1) X, = p,0q, (2) X, =
Wp,o[p,e[q]], and (3) X5 = p A r,°[0,°[0q,p],e[~q V q]],o[~g], which are
graphically displayed below as trees with labeled edges in order from left
to right.

p.0q]  [Mp] PAT
\O\@ ? &
—q
N

< S
@ [ [vd

Nested sequent calculi typically exhibit a mode of inference referred
to as deep-inference, whereby inference rules may be applied to any node
within the tree encoded by the sequent [47]. This contrasts with shallow-
inference, where inference rules are only applicable to the root of the tree
encoded by the sequent. We remark that shallow-inference is an essential
feature of display calculi, which will be discussed in Section 2.8 below. Al-
though nested calculi are typically formulated with deep-inference, shallow-
inference versions have been introduced [43, 55].% Nevertheless, as has be-
come standard in the literature, we understand the term nested sequent
calculus to mean deep-inference nested sequent calculus as the shallow-
inference variants are known to be subsumed by the display calculus for-
malism [20] and will be considered as such.

8We note that in shallow-inference nested calculi certain rules called display or resid-
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; >{I, A, B} S{I, A} >{I', B}
>{T',p.p} (s) >{T,AV B} ) >{T', A A B} (")
S{T, o[A]} S{OA, o[T', A]} ST, A, o[A, O A]}
>{T, 04} © S{0A,o[[]} (01) S{T, o[A, O A]} (02)
S{T, o[A]} {84, [T, A} S{T, A, o[A, #A]}
>{I, WA} (=) S{A, o[I]} (42) S{T, oA, $A4]} (¢2)

Figure 9: The nested sequent system N(Kt) for the modal logic Kt [55].

An example of a nested sequent calculus for the tense logic Kt, referred
to as N(Kt), is provided in Figure 11 and is due to Kashima [55]. The
notation X{I'} is commonly employed in the formulation of nested inference
rules and exhibits deep-inference. We read X{I'} as stating that the nested
sequent I' occurs at some node in the tree encoded by the nested sequent
Y. For example, we can write the nested sequent ¥, above as 3X5{p, ¢[q|},
or the nested sequent X5 above as ¥5{—¢} in this notation, thus letting
us refer to the displayed nodes and the data confined within. Similarly,
we may refer to multiple nodes in a nested sequent ¥ simultaneously by
means of the notation X{T"; }{T'5}---{T',,}. For instance, we could write X,
as Xy {p}H{q} or Xy as By {p A r}{[0g, p]}.

The (id) rule in N(Kt) states that any nested sequent containing both
p and —p at a node is an axiom. The remaining rules tell us how complex
logical formulae may be constructed within any given node of a derivable
nested sequent. For example, (V) states that A, B can be replaced by
AV B, and (0J) states that o[A] can be replaced by JA. As an example of
how derivations are constructed in nested sequent calculi, we show how the
modal axiom K (in negation normal form) can be derived in N(Kt) below.

uation rules are required for completeness. This will be discussed in the next section.
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Z{th = Al}w{FQ =D, AZ}U (Zd> Z{FvJ- = A}w ( l)

I{T,A= A}, >{I',B= A},
S{T, AV B = A},

S{I' = A,B,A},
>{I' = AV B,A},

(Vi) (V)

S{I'A,B= A}, A) S{I'= A,A},  S{I'= B,A},
S{T,AAB=A}, " >{I' = AAB,A},

E{FUA D B= Al}w{r2?B = AQ}u E{FUA D B= Al}w{FZ = A7A2}u
E{FlvA >B= AI}UJ{FZ = A?}u

S{T'=A[A= Bl }w
>{I'=A,AD B},

(>r)
Side condition: { = u must be reachable from w.

Figure 10: The nested sequent system N(IL) for intuitionistic logic.

id id
O(p A —=q), O—p, °[p, —p, q] (id) O(p A —q), O—p, o[~q, —p, q] (id)
()
O(p A —=q), O—p,o[p A —q,—p, q]
(0) x 2
<><p/\_'Q)a<>_'p7°[q] (D)
O(p A —q), O—p,Oq (V) x 2

O(p A—q) vV O—p Vg

Nested sequent calculi admit a couple methods of construction, which
have proven to be rather general. One method is due to Goré et al. [43, 44]
and consists of extracting nested sequent calculi from display calculi. The
second method, referred to as structural refinement, is due to Lyon [72, 73]
and consists of extracting nested sequent calculi from labeled sequent cal-
culi or semantic presentations of non-classical logics.® In fact, a general
algorithm was recently defined for extracting (cut-free) nested sequent cal-
culi from (Horn) labeled sequent calculi [79]. Since methods of construction

9Labeled sequent calculi are discussed in Section 2.9 below.
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for display and labeled calculi are well-understood and general, these ap-
proaches have led to the formulation of broad classes of cut-free nested se-
quent calculi for a variety of logics, including bi-intuitionistic logics [43, 80],
intuitionistic modal logics [72], (deontic) agency logics [82, 73], and stand-
point logic [77] (used in knowledge integration).

Both methods rely on the elimination of structural rules in a display or
labeled calculus, replacing them with propagation rules [16, 31, 106], or the
more general class of reachability rules [73, 74, 80]. Propagation rules oper-
ate by (bottom-up) propagating data along paths within a sequent, whereas
reachability rules have the added functionality that data can be searched for
within a sequent, and potentially propagated elsewhere (see [73, Chapter 5]
for a discussion of these types of rules). Since propagation and reachability
rules play a crucial role in the formulation of nested sequent calculi, we will
demonstrate their functionality by means of an example. More specifically,
we will introduce the nested sequent calculus N(IL), shown in Figure 10,
which employs the (D;) propagation rule and (id) reachability rule.'®

Nested sequents in N(IL) are generated via the following grammars:

Z:::Fir‘z,[Z]w F=:=A|(Z)|F,F

where A € £}, w is among a countable set of labels w, u, v ..., and 0 is the
empty multiset. The notation used in the rules of N(IL) marks nestings with
labels, e.g., in (id) and (D;) the labels w and u are used. It is assumed that
each label is used once in a nested sequent and we note that such labels
are merely a naming device used to simplify the formulation of certain
inference rules. As stated in Figure 10, the (id) and (D;) rules have a side
condition stating that each respective rule is applicable only if the node
u is reachable from the node w. This means that in the tree encoded by
the nested sequent X, the rule is applicable only if there is a path (which
could be of length 0) from w to u. For example, in the N(IL) proof below
the (D;) rule recognizes the p D ¢ in the w nesting and propagates ¢ into

10The calculus N(IL) is the propositional fragment of the nested calculi given for
first-order intuitionistic logics in [73], and is a variation of the nested calculus given by
Fitting [32].
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[p = ¢], in the left premise and p into [p = ¢|, in the right premise when
read bottom-up. Each premise of (D;) can be read as an instance of (id)
since u is reachable from u with a path of length 0.

Shoiomiodds ) Shoispordd
=pP2q=[p=d.l )
=[pD>q=>pDd, !
=p®P>2¢9>mD9 7

(D))

In Section 3, we show how N(IL) can be extracted from a labeled sequent
calculus, thus exemplifying the structural refinement method [73, 72].

We end this subsection with a brief discussion concerning the relation-
ship between propagation/reachability rules and the property of modular-
ity, that is, the ease with which a calculus for one logic may be transformed
into a calculus for another logic within a given class. An interesting feature
of propagation and reachability rules concerns the means by which they in-
troduce modularity into a proof calculus. It has been argued—most notably
by Avron [2, Section 1] and Wansing [113, Section 3.3]—that modularity
ought to be obtained via Dosen’s Principle, which is stated accordingly:

[T]he rules for the logical operations are never changed: all
changes are made in the structural rules [26, p. 352]

Although we agree that modularity is an important feature of a proof for-
malism, we argue that Dosen’s principle is too strict. This perspective
is supported by the formulation of propagation/reachability rules within
nested systems, which attain modularity by a different means. Since these
types of rules generalize the functionality of logical rules by permitting
data to be shifted or consumed along paths within a nested sequent, sys-
tems which include such rules possess a high degree of modularity, obtained
by simply changing the paths considered, irrespective of structural rules.
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2.8. Display sequents

Introduced by Belnap [5] (and originally called Display Logic), the Display
Calculus formalism generalizes Gentzen’s sequent calculus by supplement-
ing the structural connective (,) and the turnstile (=) with a host of new
structural connectives—corresponding to pairs of dual connectives—and
rules manipulating them. Incorporating structural connectives for pairs of
dual connectives has proven fruitful for the construction of cut-free proof
systems for large classes of logics, including modal and intuitionistic log-
ics [5], tense logics [56, 113], bunched implication logics [9], resource sen-
sitive logics [45], and bi-intuitionistic logic [115]. Display calculi also ad-
mit algorithmic constructibility starting from Hilbert axioms [22, 46]. To
provide the reader with intuition concerning display systems and related
concepts we accompany our general descriptions of such systems with con-
crete examples in the context of tense logics [102] and which comes from
the work in [55, 56, 113].

First, to demonstrate the concept of a structural connective, let us de-
fine structures, which serve as the entire antecedent or consequent of a
display sequent and fuse together formulae by means of structural connec-
tives. When defining display sequents for tense logics, we let a structure X
be a formula obtained via the following grammar in BNF:

X:::A‘I|*X|OX|(XOX>

where A is a formula in the language of tense logic, i.e., within the language
L. Using X, Y, Z, ... to represent structures, we define a display sequent to
be a formula of the form X = Y. We provide the reader with an example
of a display sequent as well as show the pair of graphs representing the
structures present in the antecedent and consequent of the display sequent.

Ezample 2.2. As can be seen in the example below the antecedent (shown
bottom left) and consequent (shown bottom right) of a (tense) display
sequent encodes a polytree; cf. [75].

) (Al o *AQ) o .A3 o A4 = A5 o .(*AG o *A7) o .A8

Antecedent Consequent
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A characteristic feature of the display calculus is the display property,
which states that every occurrence of a substructure in a sequent can be
written (displayed) as the entire antecedent or succedent (but not both).
Rules enabling the display property are called display rules or residuation
rules, and display sequents derivable from one another via such rules are
called display equivalent. These rules are invertible and hence a sequent can
be identified with the class of its display equivalent sequents. For example,
the bullet e represents a 4 in the antecedent of a display sequent and a
O in the consequent, and since $A — B and A — B are equivalent in
the setting of tense logics, the display sequents eA = B and A = eB are
defined to be mutually derivable from one another. This gives rise to the
following display rule introduced by Wansing [113].

X =Y

Xy

As mentioned in the previous section, nested sequent calculi employing
shallow-inference are also types of display calculi. As an example, if we
take the nested calculus N(Kt) and add the display/residuation rules (rf)
and (rp) rules shown below left as well as replace the (¢q), (05), (¢1),
and (#,) rules with the () and (#) rules shown below right, then we
obtain Kashima’s shallow-inference (i.e., display) calculus D(Kt) for the
logic Kt [55]. The calculus D(Kt) can be seen as a ‘one-sided’ display
calculus that equates nested sequents with structures.

T, o[A] T, e[A] T, 0A,o[A, A

o2 Tma T.0A,o[A]

| I
w

T, 04, oA, A

(rp) T, 44, o[A]

(©) ()

The rules (rf) and (rp) are similar to Wansing’s display rule (o), however,
they rely on the equivalence between B—A V B and —A VvV OB.
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Quite significantly, Belnap’s seminal paper [5] also proves a general cut-
elimination theorem, that is, if a display calculus satisfies a set of eight con-
ditions, then cut-elimination follows as a corollary. The display formalism
has been used to supply truly sizable classes of logics with cut-free proof sys-
tems, proving the formalism general. Furthermore, the formalism is highly
uniform and modular as structural rules are used to capture distinct log-
ics, and due to the algorithms permitting their construction [22, 46], they
enjoy constructibility. These nice features come at the cost of syntactic par-
simony however as display sequents utilize complex structures to facilitate
reasoning.

2.9. Labeled sequents

Labeled sequents generalize Gentzen sequents by annotating formulae with
labels and introducing semantic elements into the syntax of sequents. For
example, the labeled sequents used by Simpson [106] and Vigano [112] have
the form shown below top in the following example and encode a binary
graph of Gentzen sequents. Thus, labeled sequents properly generalize all
sequents considered in previous sections.

Ezxample 2.3. A labeled sequent is shown below top and its corresponding
graph is shown below bottom.

wRu,uRv,vRw, zRz,w: A,u:B,v:C = u:D,z: E,z: F

Relational Atoms Labeled Formulae Labeled Formulae

SN N
w (7 v z

\/

The idea of labeling formulae in sequents comes from Kanger [54], who
made use of spotted formulae to construct sequent systems for normal modal
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logics.!* The labeled sequent formalism is quite general and covers many
logics; e.g., intuitionistic (modal) logics [30, 106], normal modal logics [48,
93, 112], predicate modal logics [15, 59], relevance logics [112], and (deontic)
agency logics [110, 111, 82].

The labeled sequent formalism offers a high degree of uniformity and
modularity. This is typically obtained by taking a base calculus for a par-
ticular logic and showing that through the addition of structural rules the
calculus can be extended into a calculus for another logic within a specified
class. A favorable feature of the labeled sequent formalism is the exis-
tence of general theorems confirming properties such as cut-admissibility,
invertibility of rules, and admissibility of standard structural rules [30,
106, 112]. Another desirable characteristic concerns the ease with which
labeled systems are constructed; e.g., for logics with a Kripkean semantics
one straightforwardly obtains labeled calculi by transforming the semantic
clauses and frame/model conditions into inference rules. Thus, the labeled
formalism is highly general, uniform, modular, and constructible, but as
with the display formalism, this comes at a cost of syntactic complexity.

To provide the reader with intuition about the generality, uniformity,
and modularity of labeled sequent systems we consider a specific system for
the tense logic Kt (cf. [20, 7]). The labeled sequents used are defined to be
expressions of the form R = I', where R is a set of relational atoms wRu
and I' is a multiset of labeled formulae w : A with A € L. The labeled
sequent system L(Kt) is presented in Figure 11 and contains the axiom (id)
as well as six logical rules; note that the (OJ) and (M) rules is subject to
a side condition, namely, the label v must be fresh and not occur in the
conclusion of a rule application.

This calculus may be extended with structural rules to obtain labeled
sequent systems for extensions of Kt (e.g., tense S4 and S5). Such rules
encode frame properties corresponding to axioms. For example, to obtain
a labeled sequent system for Kt with serial frames one can extend L(Kt)
with the (ser) rule shown below, and to obtain a labeled sequent calculus
for tense S4 one can extend L(Kt) with the structural rules (ref) and (tra).

I'We note that labeling has also been used in tableaux for modal logics, e.g., the
prefixed tableaux of Fitting [31].
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R=>w:Aw: BT
R=>w:AvV B,T

T (id) (V)

Rﬁw:paw:fx

R=w:AT R=w:BT (n)
R=w:ANB,T

R,wRu = w: QA u: AT ©) R,uRw = w: ¢Au: AT
R, wRu = w: QAT R, uRw = w: AT

(4)

R, wRu = u: AT
R=w:0A4T

R, uRw = u:AT
R=w:BAT

(0)

(M)

Side condition: u must be fresh in () and (H).

Figure 11: Labeled sequent system L(Kt) for the tense logic Kt [7, 20].

R, wRu =T
R=T

R, wRw =T

(ser) with u fresh =T (ref)

R, wRu,uRv,wRv = T
R, wRu,uRv =T

(tra)

In fact, most commonly studied frame properties for logics with Krip-
kean semantics (such as seriality, reflexivity, and transitivity) can be trans-
formed into equivalent structural rules. Simpson showed that a large class
of properties, referred to as geometric axioms, could be transformed into
equivalent structural rules, referred to as geometric rules, in labeled se-
quent calculi [106]. A geometric axiom is a formula of the form shown
below, where each A; and B, ; is a first-order atom.

m l.?'
V&, .., $t<A1 A NA, = Ty, ... ,ys(\/ /\ Bl,k))
j=1k=1

Each geometric formula is equivalent to the geometric rule of the form

shown below, where A= Ay, A Ej =B, 1,...,B;, , and each variable

y<iny j,ljv
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R=A R=A R=A
—=— = (wk;) ——=—— (wk l
R, wRu = A (why) R=>w:AA (wk,) Rlw/u] = Alw/u] (ts)
R=>w:Aw: A A (ctr) R=w:AA R=>w:AA y
R=>w:AA oA (cut)
Figure 12: Labeled structural rules.
Y1, ---,Ys is fresh, i.e., the rule can be applied only if none of the variables
Y1, ---» Y occur in the conclusion.
R,A B, = A R, A B, = A
RA= A

Figure 12 gives a selection of structural rules that are typically ad-
missible in labeled sequent systems with geometric rules. The weakening
rule (wk) adds additional labeled formulae to the consequent of a labeled
sequent, the contraction rule (ctr) removes additional copies of labeled for-
mulae, the substitution rule (Is) replaces a label u by a label w in a labeled
sequent, and the (cut) rule encodes the transitivity of implication. The
admissibility of these rules tends to hold generally for labeled sequent sys-
tems, along with all logical rules being invertible [30, 48, 82, 106]. Beyond
admissibility and invertibility properties, labeled systems allow for easy
counter-model extraction due to the incorporation of semantic notions into
the syntax of sequents, though termination of proof-search is not easily
achieved as labeled sequents contain a large amount of structure.

Last, we note that although (cut) is usually admissible in labeled se-
quent systems, it is often the case that a strict form of the subformula
property fails to hold. This phenomenon arises due to the incorporation of
geometric rules which may delete relational atoms from the premise when
inferring the conclusion. Nevertheless, it is usually the case that labeled
sequent systems possess a weak version of the subformula property, i.e.,
it can be shown that every labeled formula occurring in a derivation is a
subformula of some labeled formula in the conclusion [112].
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3. Navigating the proof-theoretic jungle

As discussed in Section 2 and shown in Figure 2, the data structure underly-
ing sequents naturally imposes a hierarchy on sequent-style formalisms. At
the base of this hierarchy sits Gentzen sequents, and each level of the hier-
archy gets incrementally more general until labeled sequents are reached at
the top. As we are interested in exploring this hierarchy, we present trans-
lations of proofs between systems in different proof-theoretic formalisms,
thus letting us ‘shift’ derivations up and down the hierarchy. The lesson
we learn is that translating proofs down the hierarchy (usually) requires
significantly more work than translating proofs up the hierarchy.

3.1. Translations for S5: Labeled and hypersequent calculi

We begin our demonstration of how to translate proofs between distinct
formalisms by considering translations between hypersequent and labeled
calculi for the modal logic S5. In particular, we will explain how proofs are
translated between the hypersequent calculus H(S5) (see Figure 7) and the
labeled sequent calculus L(S5) shown in Figure 13.

In this section, we define a labeled sequent to be an expression of the
form I' = A such that T and A are finite multisets of labeled formulae
w : A with w among a denumerable set Lab := {w,u,v,...} of labels and
A € £,;. For a multiset ' of labeled formulae, we define Lab(I") to be the
set of all labels occurring in T', for a multiset {A4,, ..., A, } of formulae, we
define w : {A4;,...,4,} = {w: A,...,w: A}, and we let I'(w) be the
multiset {A | w: AeT}.

A labeled sequent calculus L(S5) for the modal logic S5 is shown in
Figure 13. We remark that the labeled sequents used in L(S5) have a
simpler structure than those discussed in Section 2.9, namely, they do not
use relational atoms. This is a special case and a byproduct of the fact
that L(S5) is a calculus for the modal logic S5; in general, more complex
modal logics require the use of relational atoms (cf. [106, 112]).

It is straightforward to define translations that map labeled sequents to
hypersequents and vice-versa. To translate labeled sequents into hyperse-
quents, we make use of the h translation, defined as follows:
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) —— (L
Nw:p=>w:p A (i) Nw:1L=A (L0)
I'sw:Aw: B/A Nw: A=A Thw: B= A

(V) (Vy)
'sw: AV B A " Nw: AvB=A !
Tw:Aw: B=A (A) '=sw:AA l'=w:BA (A)
Lw: ANB= A ! I'=w:AABA r
'sw:AA I'w: B= A (=) Nw:A=w:B,A (=)
Lbw:A— B=A ! I =w:A— BA r

Nw:04,u: A= A
Nw:04A=A

F'=su:AA

Tl 2
(H) I'=sw:04A (M)

Side conditions: T, stipulates that u € Lab(I', A) in (1J;) and f, stipulates
that w must be fresh in (O,.).

Figure 13: The labeled calculus L(S5) for the modal logic S5.

WM = A) =T(w;) = Awy) | - | T(w,) = Alw,)

where Lab(T", A) := {w,...,w, }. To translate hypersequents into labeled
sequents, we make use of the ¢ translation, defined as follows:

(L, = A |-|T,=A) Uw r;, = Uw A,

Using the above translations, we can conﬁrm that all aerwatlons (which,
properly includes all proofs; see Section 2.1) in L(S5) and H(S5) are iso-
morphic to each other.

PROPOSITION 3.1. Every derivation in L(S5) is isomorphic to a deriva-
tion in H(S5) under the h translation, and every derivation in H(S5) is
isomorphic to a derivation in L(S5) under the ¢ translation.

PrOOF: We prove the case for the h translation by induction on the height
of the given derivation 2, and remark that the case of translating proofs
with the reverse translation ¢ is similar.

Base case. If ' = A is an axiom, i.e., an instance of (id) or (L,), then
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hI = A) will be an axiom in H(S5) as well. If I' = A is a leaf in the
derivation 2D, but not an axiom, then A(I' = A) trivially translates to a
leaf in the hypersequent derivation.

Inductive step. We show how to translate the ({J;) case. There are
two cases to consider in the (0J;) case: in the first case, the label of the
auxiliary formula A is identical to the label of the principal formula CJA.
This is resolved as shown below where G = h(T'\w : T'(w) = A\w : A(w)).

M iw:O04,w: A= A)
G| 04, A, T(w) = A(w) 5
G | OA,T(w) = A(w) _( n)

h(C,w:04=A)

In the second case, the label u of the auxiliary formula is distinct from
the label of the principal formula. This case is resolved as shown below
where G = h(T'\ {w: T'(w),u: T(uw)} = A\ {w: A(w),u: A(u)})

h(T,w:04,u: A= A) B
G |OAT(w) = A(w) | A,T'(u) = Au) (@)
G|OAT(w) = Aw) [ T(u) = A(w) 72
R(D,w:0A = A) B

The remaining cases are easily resolved by applying IH and then the
corresponding rule in H(S5). O

3.2. Translations for Kt: Labeled and display calculi

We show how to translate proofs from L(Kt) into D(Kt). The method of
translation we present was first defined in [20] and is strong enough to not
only translate labeled proofs into display proofs for Kt, but also for any
extension of Kt with path azioms of the form (?); - (?),p = (?),,,1p With
(7); € {#,0} for 1 < i < n+ 1 A generalization of this technique is
presented in [75] and shows how to translate cut-free display proofs into
cut-free labeled sequent proofs for the even wider class of primitive tense
logics [56]. We note that the converse translation from D(Kt) to L(Kt)
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is simpler so we omit it, though the details can be found in [20] for the
interested reader.

The key to translating labeled proofs into display proofs is to recog-
nize that ‘non-treelike’ data (e.g., loops and cycles) cannot occur in proofs
of theorems. We refer to these labeled sequents as labeled polytree se-
quents [20] and define them below. This insight is useful as labeled polytree
sequents and display sequents are notational variants of one another, which
facilitates our translation from L(Kt) to D(Kt).

DEFINITION 3.2 (Labeled Polytree). Let A := R, ' = A be a labeled
sequent, and define the graph G(R) = (V,E) such that Vis the set of
labels ocurring in R and E = {(w,u) | wRu € R}. We define A to be
a labeled polytree sequent iff R forms a polytree, i.e., the graph G(R) is
connected and cycle-free, and all labels in T', A occur in & (unless R is
empty, in which case every labeled formula in I'; A must share the same
label). We define a labeled polytree derivation to be a derivation containing
only labeled polytree sequents.

LEMMA 3.3.  Ewvery derivation of a formula A in L(Kt) is a labeled polytree
derivation.

PROOF: Suppose we are given a derivation of the labeled polytree sequent
= w : A in L(Kt). Observe that every rule of L(Kt), if applied bottom-
up to a labeled polytree sequent, yields a labeled polytree sequent since
rules either preserve the set X of relational atoms when applied bottom-up
(e.g., (V) and (Q)), or via (O) or (M), add a new relational atom from
a label occurring in the labeled sequent to a fresh label (which has the
effect of adding a new forward or backward edge in the polytree encoded
by the labeled sequent). Hence, the derivation of = w : A in L(Kt) must
be a labeled polytree derivation. O

We now define the d function that maps labeled polytree sequents to
display sequents, which can be stepwise applied to translate entire labeled
polytree proofs into display proofs. As it will be useful here, and later on,
we define the sequent composition A © A’ between two labeled sequents
A=R=Tand AN'=R"=T"tobe AOAN =R, R =T,T".
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DEFINITION 3.4 (Translation d). Let A := X% = T be a labeled polytree
sequent containing the label u. We define A’ C A iff there exists a labeled
polytree sequent A” such that A = A" © A”. Let us define A, := %" =T
to be the unique labeled polytree sequent rooted at w such that A, C A
and IV [ u =T | u. We recursively define d,,(A):

(1) if ® =0, then d,(A) := (=T [v), and

(2) if vRxy,...vRz, and y,Rwv, ...y, Rv are all relational atoms of the
form vRz and yRz, respectively, then

dy(A) :=T [ v,0[d, (A )], o0ldy (Ay )], eldy, (Ay )] 0[d, (A, )]
Example 3.5. Welet A = wRv,vRu = w: Qq,w:rVq,v:p,v:q,u:Bp
and show the output display sequent for w, u, and v.

dy(A) =0q,7V q,°[p,q,,[Hp]|
dy(A) = e[0q,rVq],p,q,[p]
d,(A) = e[e[0q,rVq],p,q],Hp (3.1)

We find something interesting if we observe the display sequents d,,(A),
d,(A), and d,(A) above, namely, each display sequent is derivable from
the other by means of the display rules (rf) and (rp). In fact, as stated
in the following lemma, this relationship holds generally; its proof can be
found in [20].

LEMMA 3.6. If A = R = T is a labeled polytree sequent with labels w
and u, then d,,(A) and d,,(A) are display equivalent, i.e., both are mutually
derivable with the (rf) and (rp) rules.

Relying on Lemma 3.3 and 3.6, we can define a proof translation from
L(Kt) to D(Kt) as specified in the proof of the following theorem.

THEOREM 3.7.  Ewery proof of a formula A in L(Kt) can be step-wise
translated into a proof of A in D(Kt).

PROOF: Suppose we are given a proof of a formula A in L(Kt), we know
by Lemma 3.15 that the proof is a labeled polytree proof, and thus, d is
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defined for every labeled sequent in the proof. We show that the proof
can be translated into a proof in D(Kt) by induction on the height of the
proof. We only consider the () and (#) cases of the inductive step as
the remaining cases are trivial or similar.

d,(R,wRu = u: AT)

R, wRu = u: A, T o) d, (R =T),0[4] @)
R=w:04T d,(R=T),0A4
d,(R=w:0AT)
d (R, wRu = w: Au:4¢AT)
R, wRu = u: AT ) X, $A, o[V A] *)
R=w:44AT X, A, Y]
d,(R,wRu = u: $AT)
The remaining cases of the translation can be found in [20]. g

3.3. Translations for IL: Labeled, nested, and sequent calculi

We now consider translating proofs between the sequent calculus S(IL) and
a labeled calculus L(IL) for intuitionistic logic shown in Figure 14. The
translation from the sequent calculus to the ‘richer’ labeled sequent cal-
culus is relatively straightforward and demonstrates the ease with which
proofs may be translated up the proof-theoretic hierarchy (Figure 2). As
traditional sequents are simpler than labeled sequents, the converse trans-
lation requires special techniques to remove extraneous structure from la-
beled proofs. To accomplish this task we utilize structural rule elimination
(cf. [73, 70]) to first transform labeled proofs into nested proofs in N(IL)
(see Figure 10), and then extract sequent proofs from these.

3.3.1. From sequents to labeled sequents

The labeled sequent calculus L(IL) (Figure 14) makes use of labeled se-
quents of the form R, T' = A, where R is a (potentially empty) multiset of
relational atoms of the form w < u and I" and A are (potentially empty)
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multisets of labeled formulae of the form w : A with A € £;. The theorem
below gives a translation of proofs in S(IL) into proofs in L(IL).

THEOREM 3.8.  Every proof of a sequent T' = A in S(IL) can be step-wise
translated into a proof of w: T = w: A in L(IL).

PrOOF: By induction on the height of the given proof in S(IL).
Base case. The (id) rule is translated as shown below; translating the
(L,) rule is similar.

(id)
(ref)

Inductive step. As the (V;), (V,), (A;), and (A,.) cases are simple, we
only show the more interesting cases of translating the (D;) and (D,.) rules.

(D;). For the (D;) case, we assume we are given a derivation in S(IL)
ending with an application of the (D;) rule, as shown below:

I''ADB,B= A I'ADB= AA (>)
LADB=A !

(id) ., w<ww:T,w:p=>w:pw:A

Ip=pA
p=r w:Dw:p=w:pw:A

To translate the proof and inference into the desired proof in L(IL), we
invoke IH, apply the admissible (wk;) rule, apply (D;), and finally, apply
(ref) as shown below:

D w:F,w:ADB,w:Béw:AIH

w<ww:Tiw: ADBw: B=w:A
IH

(whk;)

w:T,w:ADB=w:Aw:A

D w<ww:Tiw:ADB=w: Aw: A
w<ww:Tiw:ADB=w:A

w:liw:ADB=w:A (ref)

(wk;)
(21)

(D,). Translating the (D,.) rule requires more effort. We must make
use of the admissible weakening and label substitution rules (wk;) and (Is)
along with the following admissible lift rule:

Row<uliw:Au: A=A
Rw<ulw: A=A

(tift)
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The translation is defined as shown below:

w:lNw:A=w:B TH

l
u:Tu:A=u:B (is)

A= 1B (wk;)
—_ Y (D . . . . l
FéAZ)B,A(T> ~ wgu,w.F,u-F,u-A:MA.B(lift>

wSu,w:F,u:Aéu:B(D>
w:I'=w:ADB " O

3.3.2. From labeled sequents to sequents

We now consider the converse translation from L(IL) to S(IL), which demon-
strates the non-triviality of translating from the richer labeled sequent
formalism to the sequent formalism. In this section, our main aim is to
establish the following theorem:

THEOREM 3.9. Every proof of a formula A in L(IL) can be step-wise
translated into a proof of A in S(IL).

We prove the above theorem by establishing two lemmata: (1) we trans-
late labeled proofs from L(IL) into nested proofs in N(IL), and (2) we
translate nested proofs into sequent proofs in S(IL). We then obtain the de-
sired translation from L(IL) to S(IL) by composing the two aforementioned
ones. We first focus on proving the labeled to nested translation, and then
argue the nested to sequent translation.

DEFINITION 3.10 (Labeled Tree). We define a labeled tree sequent to be
a labeled sequent A := R,I" = A such that R forms a tree and all labels
in T', A occur in R (unless X is empty, in which case every labeled formula
in I'; A must share the same label). We define a labeled tree derivation to
be a proof containing only labeled tree sequents. We say that a labeled
tree derivation has the fized root property iff every labeled sequent in the
derivation has the same root.

DEFINITION 3.11 (Translation n). Let A := R, T' = A be a labeled tree
sequent with root u. We define A’ C A iff there exists a labeled tree sequent
A” such that A = A" © A”. Let us define A, := R',I" = A’ to be the
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(id)

€
Rw<u,Tiw:p=u:p A RT,w: L=A (L0)

Row<u,lu: A= u:B/A (5.)
R,T=w:ADB,A "

RT,w:A= A RT,w:B=A
RT,w:AVB=w:A

RT=w:Aw:B/A
RT=w:AVB,A

(V1)

(V)

RT,w:Aw: B=A n) RT=w:AA RT=w:BA (A)
RT,w: ANB= A ! RT=w:AANBA r

Row<u,l,w:ADBu: B=A Row<u,T,w:ADB=u:AA
Row<u,T,w:ADB=A

(D))

R,w<w = A
R,T = A

Row<u,u<v,w<o, = A
Row<uu<ol =A

(tra)

(ref)

Side conditions: w is fresh in (D,).

Figure 14: The labeled sequent calculus L(IL) for intuitionistic logic [30].

unique labeled tree sequent rooted at u such that A, CA, IV [u =T [ u,
and A" [ uw = A | u. We recursively define n(A) :=n, (A):

nu(A) = Flv=Alv if R =0;
U T o= AT, (AL, [n. (A, )] otherwise.

In the second case above, we assume that v < z;,...v < %z, are all of the
relational atoms occurring in the input sequent which have the form v < .

Example 3.12. Welet A :=w<v,v<u,v:p,u:p=>w:pDqu:ru:q
and show the output nested sequent under the translation n.

n(A):nw(A):(Z):>p3q7[p:>r,[p:>q]]

As discussed in the section on the nested sequent formalism (Section 2.7),
propagation and reachability rules play a crucial role in the formulation
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RT,w:p=u:p A (Tia)

R T, w:ADB=u:AA R,T,w:ADBu: B=A
R,T,w:ADB=A

(p-,)

Side conditions: Both rules are applicable only if w ~» 5 u.

Figure 15: Reachability rules for L(IL).

of nested sequent calculi. As we aim to transform labeled proofs in L(IL)
into nested sequent proofs in N(IL), we must define reachability rules in the
context of labeled sequents. Toward this end, we define directed paths in
labeled sequents accordingly.

DEFINITION 3.13 (Directed Path [70]). Let A =R, T = A be a labeled
sequent. We say that there exists a directed path from w to u in R (written
w ~p u) iff w=u, or there exist labels v, (with ¢ € {1,...,n}) such that
w < vy, ...,v, <u€ R (we stipulate that w < u € R when n = 0).

Directed paths are employed in the formulation of the labeled reacha-
bility rule (r;4) and the labeled propagation rule (p- ), shown in Figure 15
and based on the work of [70, 73]. As the lemma below demonstrates, by
adding these rules to L(IL), the structural rules (ref) and (¢ra) become
eliminable. Since analogs of these structural rules do not exist in N(IL),
showing their eliminability is a crucial step in translating proofs from the
labeled setting to the (nested) sequent setting, as discussed later on.

LEMMA 3.14.  (ref) and (tra) are eliminable in L(IL) + {(r;4), (p5,)}-

PROOF: We argue the eliminability of both rules by induction on the
height of the given derivation.

Base case. We first argue the (ref) case. Note that (ref) is freely per-
mutable above (id), except when the principal relational atom is auxiliary
in (ref). This case is resolved by making use of the (r,;;) propagation rule
as shown below, where the side condition is satisfied since w ~+4 u holds
(taking w and u to be equal).
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(i)

Rw<wl,w:p=w:
,w7w7 7w p w p’ (Tef) ~ R,F7w:p:w:p7

R T, w:p=w:p A

A (T:a)

Similar to the (ref) case, the only non-trivial case of permuting (¢ra)
above (id) is when the principal relational atom of (id) is auxiliary in (tra).
Observe that the conclusion of the proof shown below left is an instance
of (r;4) because w ~»4 v holds. Thus, the proof can be replaced by the
instance of (r;;) as shown below right.

(id)

Rw<uu<v,w<ov,Lw:p=v:p A
3 = W, = U, = Uy L, p D, (t’f‘ll) PSS

Rw<uu<v,[bw:p=v:p A

Row<uu<v,w:p=v:p A (ia)

Inductive step. With the exception of the (D;) rule, (ref) and (tra)
freely permute above every rule of L(IL). Below, we show how to resolve
the non-trivial cases where the relational atom principal in (D;) is auxiliary
in (ref) or (tra). In the (ref) case below, observe that (p- ) can be applied
after (ref) since w ~»4 w holds.

Row<wT,w:ADB=w:AA Row<wTlw:ADBw: B=A

Rw<wl,w:ADB=A (ref)
RT,w:A>B= A re.

(D))

The above inference may be simulated with (pjl) as shown below:

Row<wT,w:ADB=w:AA

D:
AT w: AoBow an )

Row<wT,w:ADBw: B=A
D R T, w:ADB=w:AA
R,T,w:ADB=A

(ref)
(p-,)

Let us consider the non-trivial (tra) case below:
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A=Rw<uu<v,w<v,l,w:ADB=v:AA

A Row<u,u<v,w<v,lbw:ADBv: B= A
Rw<uu<v,w<ovlbw:ADB=A
Rw<uu<v,l,w:ADB=A

(21)

(tra)

Observe that (pjl) can be applied after applying (tra) since w ~», v
holds.

Row<uu<vw<v,yw:ADB=v:A4A

D = t
Rw<uu<v,liw:ADB=w:AA (tra)
Rw<uu<v,w<v,lLv:ADBw: B=A (tra)
D Rw<uu<v,Lw:ADB=w:AA e
(p-,)

Rw<uu<v,yw:ADB=A

Thus, the structural rules (ref) and (¢ra) are eliminable from every
proof in L(IL) + {(r;q), (p5,)}- O

A consequence of the above elimination result is that L’(IL) := L(IL) 4+
{(ria), (p>,)} —{(ref), (tra)} serves as a complete calculus for intuitionistic
logic. Moreover, the calculus has the interesting property that every proof
of a theorem is a labeled tree derivation; the proof of the following lemma
is similar to the proof of Lemma 3.3.

LEMMA 3.15.  Ewvery derivation of a formula A in L'(IL) is a labeled tree
derivation.

By means of the above lemmata, we may translate every proof of a the-
orem A in L(IL) into a proof of the theorem in N(IL). The translation is
explained in the lemma given below and completes part (1) of the transla-
tion from L(IL) to S(IL).

LEMMA 3.16. Every proof of a formula A in L(IL) can be step-wise
translated into a proof of A in N(IL).
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Proor: By Lemma 3.14 above, we know that every proof of a formula A
in L(IL) can be transformed into a proof that is free of (ref) and (tra) infer-
ences. By Lemma 3.15, we know that this proof is a labeled tree derivation,
and therefore, every labeled sequent in the proof can be translated via n
into a nested sequent. One can show by induction on the height of the
given proof that every rule directly translates to the corresponding rule in
N(IL), though with (r;,) translating to (id) and (p, ) translating to (D).
|

There are two methods by which nested sequent proofs in N(IL) can
be transformed into sequent proofs in S(IL). The first method, discussed
in [96], shows how proofs within nested calculi of a suitable shape can
be directly transformed into sequent calculus proofs. Alternatively, the
second method [76] explains a linearization technique, which first trans-
forms nested sequent proofs into linear nested sequent proofs, which are
then transformable into sequent calculus proofs. Both methods rely on
restructuring nested sequent proofs by means of rule permutations and
shedding the extraneous treelike structure inherent in nested sequents to
obtain a proof in a sequent calculus. As the details of these procedures are
tedious and involved, we omit them from the presentation and refer the
interested reader to the papers [96] and [76], noting that these methods
imply the following lemma.

LEMMA 3.17. Every proof of a formula A in N(IL) can be step-wise
translated into a proof of A in S(IL).

3.4. Translating proofs for conditional logic

In this section, we discuss translations between two sequent-style calculi
for the conditional logic V (introduced in Section 1.3). The first calculus is
a labeled sequent calculus, dubbed G3V, and consists of the rules shown in
Figure 16 along with the initial sequents and propositional rules for V, A,
and — from the labeled sequent calculus G3K for the modal logic K (see [94]
for these latter rules). We remark that this labeled sequent calculus was
introduced in [41].
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r€a,r: Al = A
alF? AT = A

rea,l=Az:Aal” A
rca,l = AalF” A

() ()

a€S(x),al? BT = Aal’ A -
I'=Az:A<B o

acS(x),z:ASBT=Aal’B alF? Ajaec S(z),z2: A BT = A

: (<o)
a€S(),r: A BT =A
r€a,aCbrebl =A ()
r€a,aChl=A =t
aCbyaeS(x),beSx), I =A bga,aGS(x),beS(x),FéA( )
nes

a€Sx),beSx),I'=A

Side conditions: Label z must be fresh in (I-}), and label @ must be fresh
in (<,)-

Figure 16: Some labeled calculus rules for the conditional logic V.
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The labeled calculus G3V uses two sorts of labels: WLab := {z,y, z,... }
for worlds and SLab := {a, b, ¢, ... } for spheres. We define a labeled formula
to be an expression of the form z : A or a IF? A with 2 € WLab and
a € SlLab. Given a sphere model, labeled formulae of the form =z : A
and a IF7 A are interpreted as x £ A and a F7 A in the model, respectively.
We define a relational atom to be an expression of the form x € a, a € S(x),
or a C b with x € WLab and a,b € SLab. A labeled sequent is an expression
of the form I' = A such that I and A are finite multisets of relational
atoms and labeled formulae.

The second sequent-style calculus we consider in this section is the struc-
tured calculus 73, [40], which is a kind of nested sequent calculus'?. Sequents
in this calculus make use of a special structure called a block, which is an
expression of the form [¥ < B] such that X, B is a multiset of conditional
formulae. In this setting, a sequent is an expression I' = A, where I is a
multiset of conditional formulae, and A is a multiset of conditional formulae
and blocks. The formula interpretation (T = A, [E, < B4], ..., [%,, < B,])
of a sequent is taken to be equal to the following formula:

AT—=\Vav \/ \/(AxB)

1<i<n Aex,

Some interesting rules from the structured sequent calculus Ji, are pre-
sented in Figure 17; see [40] for the full list of rules.

We remark that the translation between the labeled and structured cal-
culi is not straightforward. The non-triviality of translating proofs between
the two systems not only arises from the fact that both systems use a differ-
ent language, but also from the fact that there is no direct correspondence
between the relevant rules of the two calculi. In the following, we first
discuss the translation from the structured calculus to the labeled one, and
afterward, we discuss the reverse translation. See [41] for a formal and
complete description of both translations.

2The i in Ji, stands for ‘invertible’, as in [40] a version of the same proof system

with less invertible rules is also introduced. In .7iv, the only non-invertible rule is jump
(see Figure 17).
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I'= A,[A< B] i
I'=AA<B <)

IMAXB=A,[B,x<1C] T, ASB=A[X<4],[Ex(]
IA<SB=A[2<(]

(<1

= A [X,,%, <A4],[2, < B = A2, <4],[2,32, < B
I'= A8, <A],[E;, < B

(com’)

A= X
'=AX<A

] (jump)

Figure 17: Some structured calculus rules for the conditional logic V.

3.4.1. From structured sequents to labeled sequents

We illustrate the translation from the structured calculus to the labeled
calculus. We adopt the following notational convention: given multisets
of formulae I' = {4,,...,4,,} and ¥ = {D,,..., D, }, we shall write I'”
and a IF° X as abbreviations for z : A,...,z : A,, and a IF° Dy,...,a IF°
D,, respectively. To illustrate the translation, consider a sequent of the
following shape, with I'; A multisets of formulae:

S:F:>A7[EI<IB1],..7[E”<]Bn]

Then, fix as parameters a world label x and a set of sphere labels a =
ay,...,a,. The translation £(S)*® of S is the following labeled sequent:

t(S)*a = a, € S(x),.,a, € S(x), a; IF° By, ..,a, > B,
Iz = A% a; 3y, ..,a, IF 2,

The idea is that for each block [£; < B;] we introduce a new sphere
label a; such that a; € S(z), and formulae a, I B, in the antecedent and
a; IF° %, in the consequent. These formulae correspond to the semantic
condition for a block i.e., a disjunction of < formulae in sphere models.
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We can then define a formal translation of any derivation 2 of a sequent
S in the structured calculus Ji, to a derivation {2} in the labeled calculus
G3V of the translated sequent ¢(S)*®. Some cases of the translation are
reported in Figure 18.

The most interesting case is the translation of the rule (com'). Since
this rule encodes sphere nesting, it is worth noticing that its translation
requires the (nes)-rule applied to t(I' = A, [2; < A], [S, < B])®%b¢, which
is derived by (nes) from the two sequents:

bC bl A clF? B t(IT)™a = t(A)*
cCbbIFE A clF? B tI)®0 = t(A)

,a
,a

DI Y, el 8,
WY el 8,

Thus, the (com') rule can be ‘mimicked’ using the (nes) rule. Moreover,
the translation uses the following rule (mon3), admissible in G3V:

bCal =AalF? AblIH A
bCal=Aal’ A

(mon3)

This rule propagates (in a backward semantic reading) a false IF-statement
from a larger to a smaller neighborhood. The translation is correct:

THEOREM 3.18. Let D be a derivation of a sequent S in Ji,, then {D}**
is a derivation of t(S)*® in G3V.

Ezample 3.19. As an example let us consider a derivation of (A < B) V
(B < A), one of the axioms of V, in Ji,:

B=AB . A= A B
A B<B, Bad M) Ao BLA B4
= [A < B],[B < 4]
=[A<B],BxXA
= AXB,BxA
= (A< B)V(B< A)

(jump)
com')

—~

<)
(<)

(V)
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Dl x,a {Dl}zﬁb 7
I'= A,[A< B] ~  t(['= A, [A<B])»ab
'=sAAXB r) t(F:}A,A#B)””’& <)

Dy Dy
{r;»A,[zl,zqu],[zqu] = A, [£<A],[51< Bl i} "
T= A, S <A, 2, < B (com’)

{Dl}z,{zbc
tC = A, [2],3, < A],[Z, < B)»abe
bCeblF A clF B, t(D)™% = t(A)>* bIF £,,b 1 2y, clF 3,
bCc, bl A el B,t(T)*% = t(A)*% b Ty, cl- 3,
t= A, [Z; < A],[Z; < B])»abe

(wk)
(mon3)

(nes)

In the above, & is a derivation of sequent ¢ C b,bIF> A, c I3 B, t(F)x’a = t(A)%% b IF?
¥y, ¢ I 3, from the translation of the rightmost premiss of (com'). & is constructed
similarly to the displayed derivation of the premiss of (nes).

z,ab

D,
{x:Eéw:A ('ump)} >
r-axada ’ t{D,y* /vl

t(x:Eéx:A)z[I/y] (wh)

- - w

yebbeS(x),y: A t(I)% = t(A)»% y: L bl 2 3
= = X

yebbeS(z),y: A ) = t(A)> bIFP = (P() r)xn
l

tl = A, [S < A])™aeb

Figure 18: Some cases of the translation from Ji, to G3V.



Internal and External Calculi 117

The derivation above can be translated into a derivation in G3V as
shown below. We only show the derivation of the left premise of (nes) as
the other is symmetric.

y:B=>y:Ay:B
acS),beS(x),ycayecby:BbIF A=al-? Aal-? B,bIF B,y: A,y: B
acS),beS(x),ycayecby:BbIF A=alF? Aol BbIF B )
a€S@),beSx),alF BblF2 A= alF® A,alF? B,bIF? B (Wkl)
aCbaeS),beS),al? BbIP A=al A,al B,bIF B
aCbhacSx),beSx),alF BbF A=al? AbIF B (mon3)
acS),beSk),al? B,bIF A=alF? AbIF B < ()nes)
acS(x),al*B=>x:B<xAal? A o
=2:A<XBx:B<xA v.) o
=1x:A<XBVB=<XA T

(Wk)
(K x2)

s

3.4.2. From labeled sequents to structured sequents.

The translation from the labeled calculus G3V to the structured calculus J4,
is more difficult, as not every sequent of the labeled calculus can be trans-
lated into a sequent of the structured calculus. Consequently, a derivation
in G3V might contain steps that cannot be simulated in the calculus Ji,. In
this section we only describe the general strategy behind the translation;
for a formal treatment we refer the reader to [41].

More specifically, the translation only applies to labeled sequents of
the form ¢(I' = A)® which are the image of the translation of a sequent
I' = A of the structured calculus Ji,. Then, since a proof of ¢(I' = A)®
in G3V may involve sequents that are not translatable, the first step is to
rearrange the proof in a specific normal form, in which rules are applied in
a certain order. Then, one shows that derivations in normal form can be
‘partitioned’ into subderivations § such that, for each §, the premisses of
S are translatable into premisses of a rule r of J iv, and the conclusion of &
can be translated into the conclusion of r. Thus, the rules of the structured
calculus Ji, act as ‘macros’ over the rules of the labeled calculus, ‘skipping’
the untranslatable sequents.

We illustrate the translation of labeled sequents into the sequents with
blocks of Ji, with an example. Let S be the following sequent, where I', A
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only contain formulae of the language:

a; C ay,a9 Cag,a; Cag,ay € S(x),a9 € S(x),a3 € S(x),
a; I Ajyay IF Ay ag P Ay, T =2 Ajay I X, ay 2 2y, a4 I 3,

The translation of S is the following sequent with blocks:
[= A 2,5, 53 < 4], [5;, 85 <Ay, [E3 < Ag]

Intuitively, the translation re-assembles the blocks from formulae labeled
with the same sphere label. Furthermore, for each inclusion a; C a; we
add to the corresponding block also formulae ¥; such that a; = 3 occurs
in the consequent of the labeled sequent. Thus, each block in the internal
calculus consists of <-formulae relative to some sphere i.e., labeled with
the same sphere label in G3V.

Moreover, a labeled sequent is translatable only if it has a tree-like
structure. This tree-like structure is generated by the two spheres/worlds
relations z — a iff a € S(z), the relation a — y iff y € a, and their
composition: x — y iff © — a — y for some a. Intuitively, a labeled
sequent I' = A is tree-like if, for every label z occurring in I, the set of
labels y reachable from x by the transitive closure of the relation z — y
forms a tree!3.

Concerning the translation of a normal form derivation 2, the idea is
that one first translates, starting from the root, the rules whose sequents
have a translation in J iV, until labeled sequents that cannot be translated
are reached. Next, we need to deal with untranslatable (but derivablel!)
sequents. For this, we show that a derivable untranslatable sequent I' = A
can be replaced by a derivable translatable sequent I'; = A, obtained by a
decomposition of I' = A determined by the tree-like structure associated to
every label z occurring in I': either I'y = A, is the subsequent containing
only the labels in the tree rooted in = and the formulae/relation involving
these labels, or it is the subsequent obtained by removing from I' = A the
labels and formulae of the tree of x, or it is obtained from the latter by

13To be precise, only a subset of sequents with a tree-like structure can be translated
in sequents of the language of Jy,, but we avoid giving full details here.
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iterating the process (on another label). If I' = A is derivable, there exists
a translatable subsequent I'y = A, of I' = A which is derivable too (with
the same height).

Thus, in order to define the translation of the whole derivation 2D,
when an untranslatable sequent I' = A is reached, we consider then the
translation of the sub-derivation 2’ of a subsequent I'; = A, obtained by
decomposition of I' = A. Since the sequent I'j = A, is not determined in
advance and it is not necessarily unique, the translation of D is not entirely
deterministic.

3.5. A more difficult case: Translating bunched logics

Using the Kripke resource semantics of Bl it is not difficult to build a labeled
sequent or labeled tableau proof system. As usual, the first step is to devise
a labeling algebra that reflects the properties of the semantics. The units
1, 0 and oo are reflected into the labels units m, a and w. The semantic
properties of the binary operators ®, @ and the preodering relation C are
reflected into the binary functors m, a and the binary relation <.

DEFINITION 3.20. A countable set L of symbols is a set of label letters
if it is disjoint from the set U = {m,a,w } of label units. £% = LU U is
the set of atomic labels over L. The set £ of labels over L is defined as
U, €7 Where

L= onu{e(,0) | 6,0 € £7 and v € {m,a}}.

A label constraint is an expression £ < £’, where ¢ and £’ are labels. A
labeled formula is an expression £: A, where A is a formula and ¢ is a label.

The second step is to define labeled sequents (as in GBI) of the form
I' = A, where I' is a multiset mixing both labeled formulae and label con-
straints and A is a multiset of labeled formulae.

The third and final step is to devise logical rules capturing the mean-
ing of the connectives and structural rules reflecting the properties of the
underlying frame. The logical rules of GBI are given in Figure 19 and are
direct translations of their semantic clauses. The structural rules of GBI
are given in Figure 20 where t (resp. r) denotes either m or a (resp. m and
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Fw<is A LA ) raisaca M Facismoea (™
INwow<i=A I'm</f=A
) X L ) x T
I,L:{=A (L) [Lm:l= A (T1)
Tal=A
FTema (1) Ta<f= Ta:L,A (Ter)
a(l,£,) <Ly, T,AD Bil= A:0;,A a(Z,Zl)<£2,F,ADB:E,B:€2:>A(D)
a(t,€,) <y, T,AD B:l=A !
ml,0) <Ly, TAxBil=A:6;,A ml€)<ly, T A*xB:{,B:ly= A (o)
m(l,€,) <Ly, T,A+B: L= A !
a(€,0,) <y, T, A:8; = B:ly A (5.) m(l,0,) <y, T, A: by, = B: 4y, A (o)
IT'=ADB: (A r IT=A=xB:lA "
u(el,zz)gz,r,A:el,B:ez;sA( ) m(ly,0y) <O,T,A:6,,B:ly = A (o)
[LAANB: L= A L ILAxB:{=A !
a(ly, b)) < 6T = A: by, A a(fl,KQ)gf,FéB:EQ,A( )
a(l,6,) < ,T = AANB: L, A "
m(ly,0) <OT = AxB:l,A:6;,A m(l;,l)<lT=AxB:{,B:ly,, A (o)
m(l,, ) <D= AxB:l A r

F,A:EZ>A F,BE?A(V) FﬁAiG{LQ}:E,A
T,AVB:£= A ! D= A VA, LA

(V7))

Side conditions: ¢; and ¢, must be fresh label letters in *;, Ap, —g,
and Dg.

Figure 19: Logical rules of GBI.
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(<L = A R by <lly <L, 0, <L T =A
=A by < U0, <0 T = A

a(l,0) < 0,T'= A
I'=s A

(O SET=A el ) 6T = A
Vb b)) < LTS A

t(l,r) <4LT = A
I'=A (U I'=A
(BE)

tla, by) < by el lo) SLT = A
t(€47£3) <€17t(£1762) <€7F:>A '

v(ly, ly) S lpivlly, b)) < LT = A )
€0y by) < by, el ) < T = A

éi < €7m(€1a£2) < &F = A
o T G) <6T = A

4
w)

g gaa(€17€2) g gar = A
a(ly,4,) < LT = A

<O, T, Al = A

Jor<nrAisa N

t(l, ly) < U by < Uy, e(ly,ly) <L,T = A
by < by e(ly,4,) < LT = A

0, <OT = A0, A

t(ly,by) < ly <Ly, x(ly,4y) < LT = A
U <ITS AA

EO < gZat(£17£2) < &F = A

T

ry,I'y,I' =A

ry=A I'= A,
Ty, Ty = A

W
FO,F1:>A( 2 L= AypA 7
I'=s Ay, Ay

(Cy)

(Cr)

Side conditions:
ie{l,2}and v € {m,a}.

{y is a fresh label letter in ALl. ¢, . in Pi must be in {m,w }.

¢in R and I, ¢;,/, in P! and ¢, in Pi must occur in I', A or {m,a,w }.

Figure 20: Structural Rules of GBI.
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a) in contexts where the multiplicative or additive nature of the functor
(resp. unit) is not important (e.g., for properties that hold in both cases).

The structural rules R and T capture the reflexivity and transitivity of
the accessibility relation. Rules Ul capture the identity of the functors m
and a w.r.t. m and a. The superscript ¢ € {1,2} in a rule name denotes
which argument of an t-functor is treated by the rule and can be dropped
if we consider the v-functor as implicitly commutative instead of having
the explicit exchange rules E, for commutativity. The rules Al reflect the
associativity of the v-functors and I, reflects the idempotency of @ into
the a-functor. The projection rules Pi reflect into the a-functor the fact
that @ is increasing, i.e., w C w @ u. The projection rules Pl capture the
fact that w C w ® u only holds if u is 0o or 1. The compatibility rules Ci
reflect that @ and ® are both order preserving.

DEFINITION 3.21. A formula A is a theorem of GBI iff m < /= /{: A is
provable in GBI for some label letter £.

Figure 21 gives an example of a proof in GBI, where the notation “...”
subsumes all the elements we omit to keep the proof more concise. Let us
also remark that in order to keep the proof shorter we do not explicitly
represent the weakening steps before occurring before applying the axiom
rule id.

3.5.1. From bunched to labeled proofs

In order to highlight the relationships between the labels and the tree
structure of bunches more easily let us use label letters of the form xs
where x is a non-greek letter and s € {0, 1 }* is a binary string that encodes
the path of the node xs in a tree structure the root of which is z. Let us
call  the root of a label letter xs and let us use greek letters to range over
label letters with the convention that distinct greek letters denote label
letters with distinct roots.

DEFINITION 3.22.  Given a bunch T and a label letter 6, £(T,J), the
translation of T' according to ¢, is defined by induction on the structure
of I as follows:
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(ia)
ly:r =4Ly:r
(id) (K.
l1:q =140y:q by <loy,.., Ly:r,.. =4Ly:T
o)
a(ly,€1) < £y,
£y <Ly, m(m,£y) < Lo
m(ls, L) <Ly, m(lg, Ly) <€y, g,
L5 < 3,06 < {3, Ly:gDm,
a(ls,le) < L3, m(l3,Lq) <Ly,  L5:p(gDT),
m(Lg,£y) <o, m < £, lg:pq,ly:p =Lo:T
14)
£y <lp,m(m, L) <L (ta
m(ls, L) <Ly, m(lg, Ly) <€y, g,
U5 < 3,06 < {3, Ly:gDm,
a(ls,le) < L3, m(l3,L4) <Ly,  L5:p(gDT),
m(Lg,£1) <4y, m < £, lg:ipxqly:ip =Lg:rT
(P‘“)
m(m, £y) < £y
m(ls, L) <Ly, m(lg, Ly) <€y,  Ly:q,
U5 < 3,0 < {3, Ly:gDm,
a(ls, lg) < £3,m(l3,€4) <Ly, L5ip=(qDT),
m(£g,£y) <4y, m < £, lg:ipxqly:p =lo:rT
(Cw)
m(ls, L) <Ly, m(lg, Ly) <lp,  Ly:q,
L5 < 3,06 < {3, Ly:gDm,
— (ia) a(ls,le) < L3, m(l3,L4) <Ly,  L5:p(gDT),
Lyip =1Lyip m(l, £1) < L2, m < Lo, lg:ipxqlyip =Lyir
)
m(ls,q) < Ly, m(lg, Lq) < L1, (
U5 < L3,46 < {3, Ly:gDm,
—(id) a(ls, Lg) < £3,m(l3,£4) <Ly, Lsip=(gDT),
Ly:p =Ly:p m(£g,£1) < £y, m < Lo, Le:pxqly:ip =La:r

m(ls, 0y) <Ly, m(€g, ly) < Ly,
L5 <L3,6p < {3,
a(ls,bg) < L3, m(l3,4) <Ly, Ls:ip(gDrT),

m(£y,£1) <€z, m < Ly, Log:p*qly:ip =La:r
(Cm)
ls < L3, € < L3,
a(ls, Lg) < £3,m(l3,£4) <Ly, L5:p-(gDT),
m(lo, 1) < L2, m < Lo, legipxqlyip =Ly:ir
(Pa)
a(ls, lg) < Lz, m(l3,£4) <€y, Ls:p-*(gD7),
m(£g, €1) < €2, m < Lo, lo:ipwqly:p =La:r
(A
m(l3,L4) <y, l3:p=*(gDr)Ap-xq,
m(ly, £1) <lo,m< Ly, Ly:p =Ly:T (
*1)

m(ly, £1) <L, m< Ly, Ly:i(px(gDr)Apxq)xp =Lly:T

*7)
m<Ly =Lo:i((p*(@Dr)Ap*q)*p)=r

Figure 21: GBIl-proof of ((p — (g D7) Ap—xq) x p) = 1.
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° S(Av(s) = {6"4}’ '2(®u’5) = {agé}a ’2(@“\;5) = {mgé}v

o £((Ay,A1),0) = L£(Ay,00) U L(A,61)U{m(50,01) <d},

o £((Ag;A),0) = £(Ag,00) U L£(A;,01)U{a(60,01) <4}
Given a sequent I' = A, £(I' = A, ¢) is defined as £(I",0) = §: A.

We write § : T' as a shorthand for £(T',d) so that £(' = A,§) =
0:T'= §: A. The following is an illustration of Definition 3.22:

6000 501:p m(800,501) < 60,a(50,61) < 6,601:p,61:q=d:7

N T

d1:q a(80,01)<6,60: (0, ,p),0l:q=0d:r

A |

3:((0,.p)3q)=d:r

As a second example, the translation of the sequent (p—x(¢ D7) ; p—*q) ,p
= r, which is the premiss of the A; rule in the LBIl-proof presented in
Example 2.1, results in the following labeled sequent:

a(000,401) < 60,m(50,01) < 6,601 :p—(¢D7),000:p—*q,0l:p =0:71
Using Definition 3.22 it is not particularly difficult to translate LBI-
proofs into GBIl-proofs and we have the following result:

THEOREM 3.23. If a sequent T' = A is provable in LBIl, then for any
label letter §, the labeled sequent 6 : ' = §: A is provable in GBI.

PROOF: The proof is by induction on the structure of an LBI-proof using
an appropriate definition of label substitutions. See [34] for details. O

3.5.2. From labeled to bunched proofs

Trying to translate labeled GBI-proofs into bunched LBl-proofs is much
harder than the opposite way and is currently only known for a subclass
of GBI-proofs satisfying a conjunction of specific conditions called the tree
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property. Since describing the tree property in full technical details is out of
the scope of this paper (see [36] for details), we should focus here on giving
an intuitive account of its content and discuss the related issues. Let us
also mention that the tree property arises from a careful inspection of the
proof of Theorem 3.23 which shows that in all sequents of a translated LBI-
proof, the label constraints of GBl-sequent describe a tree structure which
allows the reconstruction of a bunch from the label of the formula on its
right-hand side.

Let us write B(s,¢) the function that translates a label sequent s to
a bunch using the label ¢ (required to occur in s) as its reference point.
The result sQ[ of B(s,¥) is called “the bunch translation of s at £”. For
conciseness, we shall omit s when clear from the context. Let us finally
define B(s) as B(s, £) where £ is the label of the formula on the right-hand
side of s. In the light of Definition 3.22, let us make an intuitive attempt
at algorithmically defining B (s, ¢).

DEFINITION 3.24.  B(s,{), the translation of a GBI labeled sequent s at
label ¢, recursively constructs a bunch from the label-constraints in s as
follows:

o ifm(f;, ;) <L E s, then B(L) = (B(¢;),B(L))

7]

o if a(f;,£;) < L€ s, then B(L) = (B(L;);B(L;))

ir%y
o if / <l€esand ¢ € L0 then B(¢) =B(¢)
o otherwise B(m) =0,,B(a) =0, B) =A{A|{: A} with Al = Ta

The translation described in Definition 3.24 is illustrated in Exam-
ple 3.25. Remark that label constraints of the form ¢ < ¢, where ¢ is
an atomic label, act as “jumps” that move the reference point from one
label to another (such “jumps” are in fact reduction orderings described
more precisely in [34]).

Example 3.25.  Let s be the labeled sequent which is the premiss of the A;
rule in the GBI-proof presented in Figure 21. The starting point of B(s) is
{5, the label occurring of the right-hand side of s. The translation proceeds
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as described in the following table, where the comment on the right-hand
side at Step n is the justification of the result obtained on the left-hand side
of Step n + 1.

1. B, =r m(ly, ) < Ly,

2. (B(ly),B(ly)) =7 m < £,

3. (B(m),B,)) =r B(m) =0,

4. (0, ,B,)) =r m(ls,0,) < £,

5. (0,.,(B(L3),B(Ly) =r ly:p—(qD1)Ap—xq
6. (0..(p=*(@Dr)Ap—=q,B())=r | L:p

7. (0. (p*(gD>r)Ap—xq,p)) =T stop

Unfortunately, the translation in Definition 3.24 only works when all of
the sequents in a GBI-proof satisfy the tree property. As shown in [34], all
LBI-translated GBI-proofs satisfy the tree property, but at the cost of the
flexibility of the labeled proof system in full generality. Indeed, translat-
ing contraction and weakening steps requires contrived labeled versions of
the contraction and weakening rules that preserve the tree structure. For
instance, the tree-preserving contraction rule looks like this (the subtree
root at ds : © is duplicated into two new subtrees ds0 : © and dsl : © and
linked as children of the old subtree):

d:T(a(0s0,0s1) < ds,ds0 : ©, sl : ©) :>5:A(C )
0:T(0s:0)=0:A4 T

Figure 21 and Example 2.1 respectively are GBI- and LBI-proofs of the
same formula. Comparing both proofs, we notice that they share the same
logical proof plan, more precisely, they decompose the same logical con-
nectives in the same order. However, the GBl-proof does not use any of
the tree-preserving rules of GBI and thus does not correspond to an LBI-
translated GBl-proof. Translating the LBIl-proof would require the tree-
preserving contraction rule discussed previously to perform the contraction
step above the A; rule. Such tree-preserving rules are very restrictive, do
not mimic the semantics and would not be naturally devised in a conven-
tional labeled system. Although conventional GBI structural rules such as
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weakening, contraction and idempotency can easily break the tree property,
they also allow more flexibility in the labeled proofs. For example, let s be
the sequent that is the premiss of the I, rule in the GBI-proof depicted in
Figure 21. Trying to compute B(s, ¢,;) would fail for the following reasons:

(1) We have several distinct label-constraints with the same root (i.e., with
the same label on the right-hand side). For instance, we have ¢; < ¢, and
m(4y,¢;) < ¢y. Should we “jump” from ¢, to £; or should we recursively
translate B({,) and B(¢;) ? We could define a strategy for determinis-
tically choosing between distinct label-constraints with the same root. A
reasonable one would be to choose the label-constraint that has been intro-
duced the more recently (as being closer to the translated sequent might
be more pertinent), but it emphasizes the fact that a suitable translation
should take the global structure of the labeled proof into account and not
just labeled sequents locally.

(2) Anyway, whatever strategy we might come up with in the previously
discussed point, the label-constraint a(¢;,¢;) < ¢; clearly does not describe
a tree structure, but a cycle forcing B (s, ¢;) into an infinite loop. We could
place a bound on the number of loops allowed, but then which one? It is
clear that the idempotency rule I, in GBI is related with contraction in
LBI, but it is not currently clear to us how to predict the correct number of
copies a bunch might need in a LBl-proof using a general GBIl-proof that,
on one hand, does not correspond to an LBI-translated proof and, on the
other hand, does not itself need any copy.

It is currently an open problem whether a general GBIl-proof can always
be turned into a GBI-proof satisfying the tree property.

3.5.3. Lost in translation: Why it fails when it fails

Bunched (and resource) logics exhibit a first notable difference with intu-
itionistic logic and modal logics like K in that the corresponding semantics
do not rely only on properties of an accessibility relation in a Kripke model,
but also on world (resource) composition. In particular, since Bl admits
both an additive and a multiplicative composition, the relational atoms
uRw are generalized into relations of the form v(¢;,¢;) < £ where t is one
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of the binary functors a or m. Moreover, in intuitionistic logic or modal
logics like K, S4, S5, the semantic and the syntactic readings of a rela-
tional atom uRw coincide when interpreted in terms of ordering relations
“successor” and “expanded after.” More precisely, consider the rule for
right implication in intuitionistic logic depicted in Figure 14. The seman-
tic reading is that, when interpreted in a Kripke structure, u should be
the successor of w w.r.t. the accessibility relation, which can be written as
W Cgqyuee U- The syntactic reading of uRw is that since A and B are labeled
with w and A D B is labeled with u, A and B are subformulae of A D B
and should therefore necessarily appear (and be expanded) after A D B
in a (shallow) proof system. In other words, the subformula interpretation
induces a rule application order in a syntactic proof system, which could be
written as f(w) <per f(u) (the formulae labeled with v must be expanded
after the ones labeled with w). Notice that <. and < are covariant

(w and w occur on the same side in both orders).

after

However, a key problem in Bl (and in resource logics more generally)
is that the syntactic and the semantic readings are contravariant and some-
times even fully lost. Indeed, if we consider the rule for the left multiplica-
tive conjunction * given in Figure 19, it is clearly seen that since A and
B are subformulae of A x B, we syntactically have f(¢) <, por [f(¢;) (for
i € {1,2}), but we semantically have (reading < as <qyee) M(¢1,45) <euee ¢
(with ¢; and £, occurring on the opposite side compared with <, ¢, ). More-

over, we do not even get any relation of the form ¢ < .. ¢; or ¢; < uec ¢
at all.

The immediate consequence of losing the general connection between
the syntactic subformula ordering and the semantic successor ordering is
that finding an extension of (the translation in) Definition 3.24 that could
work for unrestricted labeled proofs is not at all trivial and might even be
impossible to achieve.

3.6. Some remarks on translations

The above translations substantiate our claim that translating up the proof-
theoretic hierarchy tends to be ‘easier’ than translating down. In particular,
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we found that structural rule elimination was needed to translate labeled
proofs into nested proofs for intuitionistic logic (Section 3.3). Moreover,
translating labeled proofs to structured sequent proofs for conditional logics
introduced non-determinism (Section 3.4) and translating labeled proofs
into bunched proofs (Section 3.5) was only possible given that the labeled
proof was of a ‘treelike’ shape. Converse translations were far simpler to
obtain, e.g., translating sequent proofs into labeled proofs for intuitionistic
logic (Section 3.3) and translating display proofs into labeled proofs for
the tense logic Kt (Section 3.2). The sophistication required in translating
proofs down the hierarchy supports the claim that formalisms higher up in
the hierarchy are more expressive than those below them.

4. The internal and external distinction

In the literature, proof formalisms and calculi have been classified into
internal or external.'* Typically, a formalism or calculus is placed into
one of these two classes based on the syntactic elements present within the
sequents used and/or the interpretability of sequents as logical formulae.
Various informal definitions have been given for ‘internal’ and ‘external,’
and are often expressed in one of two ways:

(1) Internal calculi omit semantic elements from the syntax of their se-
quents, whereas external calculi explicitly include semantic elements.

(2) Internal calculi are those where every sequent is interpretable as a
formula in the language of the logic, whereas external calculi are
those without a formula translation.

For example, hypersequent and nested calculi are often considered internal
since their sequents are (usually) interpretable as logical formulae [86]. On
the other hand, labeled calculi are often classified as external as they in-
corporate semantic information in their syntax and labeled sequents exist

14 As discussed below, the distinction between internal and external systems is rather
vague. Some interpretations of this distinction are essentially the same as the distinction
between semantically polluted and syntactically pure proof systems; cf. [104, 100].
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which resist interpretation as logical formulae [19]. We remark that some-
times extra machinery is inserted into a proof calculus for ‘bureaucratic’
reasons (e.g., to correctly formulate proof-search algorithms); such machin-
ery should be ignored when considering a calculus internal or external.

A core motivation for separating formalisms/calculi into these two cat-
egories, is that internal and external formalisms/calculi are claimed to pos-
sess distinct advantages over one another. It has been argued that internal
calculi are better suited for establishing properties such as termination, in-
terpolation, and optimal complexity, while external calculi are more easily
constructed and permit simpler proofs of completeness, cut-admissibility,
and counter-model generation (from terminating proof-search). However,
we will argue that a large number of such claims are false.

In this section, we delve into the internal and external distinction, and
discuss two main themes. First, we attempt to formally define the notions
of internal and external, arguing that each candidate definition comes with
certain drawbacks, or fails to satisfy our intuitions concerning internal and
external systems in some way. Second, we aim to dispel myths about the
claimed properties of internal and external systems, while identifying which
attributes are genuinely useful for certain applications.

4.1. Analyzing definitions of internal and external

We begin by investigating definition (1) above, where external calculi are
those which incorporate ‘semantic elements’ into the syntax of their se-
quents while internal calculi are those which do not. An immediate issue
that arises with this definition is that it relies on an inherently vague no-
tion: what do we take to be a ‘semantic element’? Admittedly, it seems
clear that the labels and relational atoms used in labeled sequents should
qualify as ‘semantic elements’ as such syntactic objects encode features of
relational models. Yet, via the translation from labeled to nested sequents
(see Definition 3.11 in Section 3), one can see that the tree structure en-
coded in a nested sequent also encodes features of relational models (with
points in the tree corresponding to worlds and edges in the tree corre-
sponding to the accessibility relation). Similarly, the components of linear
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nested sequents and hypersequents directly correspond to worlds in rela-
tional models with the linear nested structure ¢/’ and the hypersequent
bar ‘| encoding features of the accessibility relation (cf. [67, 62]). It seems
that (linear) nested sequents and hypersequents should qualify as external
systems then, contrary to the fact that such systems are almost always
counted as internal. As another example, ‘semantic elements’ are encoded
in the language of the sequent calculi used for hybrid modal logics [8]. Yet,
many would qualify such proofs systems as internal since their sequents are
straightforwardly interpretable as formulae in the language of the logic; in
fact, it is the incorporation of ‘semantic elements’ that allows this.

The issue with the first proposed definition is that it is too vague to
properly distinguish between internal and external systems as the concept
of a ‘semantic element’ is too vague. Thus, we find that definition (1) is
unsuitable for distinguishing internality and externality.

Let us now investigate definition (2) above, where internal calculi are
qualified as those with sequents interpretable as formulae in the language
of the logic, and external calculi are those for which this property does
not hold. A couple of questions come to the fore when we consider this
definition. First, what does it mean for a sequent to be interpretable as a
formula? For instance, in the context of display calculi for modal and tense
logics [56], display sequents are naturally translatable to tense formulae,
yet, some of these tense formula can actually be reinterpreted as modal
formulae. This shows that it is not always prima facie clear that a sequent
in fact translates to a formula in the language of the logic. A second
question is: what properties should such an interpretation possess?

We begin investigating these questions by considering a few examples
of ‘internal’ systems from the literature. Our aim is to extract general
underlying patterns from the examples with the goal of supplying a formal
definition of ‘internality’ along the lines of definition (2) above. What we
will find is that regardless of how we attempt to rigorously specify this
definition, calculi (intuitively) recognized as ‘internal’ and ‘external’ exist
which fail to satisfy the definition, thus witnessing its inadequacy.

Gentzen calculi, nested sequent calculi, and hypersequent calculi are
normally characterized as internal systems. Typically, what is meant by an
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‘interpretation of a sequent as a formula’ is a translation Tthat maps every
sequent to a (i) ‘structurally similar’ and (ii) ‘logically equivalent’ formula
in the language of the logic. For instance, Gentzen sequents in S(CP),
nested sequents in N(IL), and hypersequents for S5 admit the following
translations:

7(T'= A) AF—>\/A
(= A S s s (Sl )::Arg VAvVT(E)V-vr(S,))

” vanﬁv@

T<F1 = A1 | | Fn = An) :
1<i<n

We can see that the output of every translation produces a formula
that is ‘structurally similar’ to the input in the sense that it serves as a
homomorphism mapping every sequent into a formula of the same shape (by
replacing all structural connectives in the sequent with logical connectives).
Moreover, the input and output are ‘logically equivalent’ by definition, i.e.,
a sequent is satisfied on a model of the underlying logic iff its output
is. This indeed seems a promising candidate for formalizing the notion
of ‘internality,” however, let us consider the labeled sequents from L’(IL)
(defined on p. 110).

As witnessed by Definition 3.11, every labeled sequent of a treelike shape
can be interpreted as a nested sequent, and thus, by the second translation
above, can be interpreted as a ‘structurally similar’ and ‘logically equiva-
lent’ formula in the language of the logic IL. Yet, L’(IL) is permitted to
use labeled sequents of a non-treelike shape (e.g., w < u,u < w = w: A),
despite that fact that such sequents play no role in deriving theorems of
IL as shown in Lemma 3.15. Since it appears that labeled sequents of a
non-treelike shape do not admit a ‘structurally similar’ translation in the
language of IL, we are forced to conclude by the above notion of internal-
ity that L’(IL) is external. Nevertheless, if we re-define L’(IL) slightly so
that only labeled tree sequents are permitted in proofs, then L’(IL) ceases
to be external and becomes internal by what was said above. Hence, the
above notion of ‘internality’ implies that being internal or external is not a
property of a formalism, but of the language of a calculus, that is, the set
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of sequents that the calculus draws from to construct proofs. We should
therefore speak of internal and external sequent languages (i.e., the set of
sequents used by a proof system) rather than internal or external calculi.

Based on the discussion above, we could identify calculi as internal
or external if the sequent language of the calculus is internal or external,
respectively. Nevertheless, two practical issues arise: first, confirming that
a language is external is subject to the difficulty that one must confirm the
non-existence of any translation mapping sequents to ‘structurally similar’
and ‘logical equivalent’ formulae. Although confirming the non-existence of
such a translation is perhaps not impossible,!® it appears to be a relatively
difficult feature. Second, if we define internal or external systems relative to
an internal or external sequent language, then proof systems may ‘switch’
from being internal or external simply based on expanding or contracting
the sequent language associated with the calculus.

However, it must be conceded that the above notion of ‘internal’ is
aligned with our intuition concerning what an internal system ought to be,
and can be taken as a sufficient (but not necessary) criterion for applying
the term ‘internal’ to a proof system. What we find to be important how-
ever, is less about whether a proof system satisfies our intuitions concerning
‘internality,” and more about the existence of translations from sequents to
‘structurally similar’ and ‘logically equivalent’ formulae—a fact that will
be discussed in more detail below.

4.2. Purported properties of internal and external systems

Here we consider various properties attributed to internal and external cal-
culi, and clarify how such claims are (in)correct. For ease of presentation,
we first present each claim in italics, and after, provide our perspective of
the claim. Although this section is intended to dispel myths about internal
and external systems, we do put forth positive applications of ‘internal’
calculi at the end of the section (which satisfy the sufficient criterion dis-
cussed at the end of the previous section). In particular, we explain how

15This has been confirmed, for instance, for the hypersequents in [90] for Lukasiewicz
logic—one of the main fuzzy logics.
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the existence of a translation from sequents to ‘structurally similar’ and
‘logically equivalent’ formulae can be practically leveraged in a few ways.

Internal calculi are better suited than external calculi for decidability. There
are two standard methods in which decidability is obtained via proof-search
in a sequent calculus, which we call (1) the brute-force method, and (2) the
counter-model extraction method. In the former method, one establishes
that every theorem has a proof of a certain form, and shows that only
a finite number of such proofs exist. Decidability is then obtained by
searching this finite space, and if a proof is found, the input is known to
be valid; otherwise, the input is known to be invalid. In the latter method,
one attempts to construct a proof of the input, and shows that if a proof-
search fails, then a counter-model of the input can be extracted. The
brute-force method is more easily applied to (analytic) Gentzen systems,
which are typically characterized as internal systems. This is due to the
simplicity of Gentzen sequents for which it is straightforward to establish an
upper finite bound on the space of analytic derivations for a given formula.
Nevertheless, external systems, e.g., those of Simpson [106], also admit
decidability via the brute-force method.

When it comes to applying the counter-model extraction method, there
appears to be a trade-off between using internal and external calculi. Note
that this method consists of two components: (1) one must establish the
termination of the proof-search procedure, and (2) one must extract a
counter-model if proof-search fails. We point out that ‘internal’ calculi
seem better for securing termination while ‘external’ calculi appear better
suited for extracting a counter-model. First, since the sequents in internal
systems tend to utilize simpler data structures, establishing the termination
of proof-search tends to be more easily obtained than for external systems
(which utilize more complex and difficult to control data structures). Sec-
ond, extracting a counter-model from failed proof-search tends to be easier
in external systems than internal systems as the former tend to encode
model-theoretic information.

Nevertheless, this observation merely points out that there are trade-
offs in using one type of system as opposed to another, and does not out-
right prove that one type of system is more advantageous than another
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in establishing decidability. Indeed, there are many examples of deci-
sion/proof-search algorithms for wide classes of logics based on internal
systems [77, 109, 107] and external systems [50, 106, 83], so we find that
this claim is not warranted.

Internal calculi are better suited than external calculi for interpolation.
The method of establishing interpolation via sequent-style systems is due
to Maehara [85], and was originally introduced in the context of Gentzen
systems. This method has been adapted to linear nested and hypersequent
systems [61], nested systems [33, 81], display systems [10], and labeled
systems [60]. If one compares such works on proof-theoretic interpolation,
they will find that both internal and external systems alike are used in
securing interpolation properties for a logics; e.g., truly sizable classes of
logics have been shown to exhibit Craig and Lyndon interpolation with both
internal (viz., nested) systems [73] and external (viz., labeled) systems [60].
Therefore, the claim that internal calculi are better suited for establishing
interpolation does not appear warranted.

Internal calculi are harder to find/construct then external calculi. We
somewhat agree with the claim that internal calculi are more difficult
to find/construct in contrast to external calculi. First, we note that it
is rather straightforward to generate labeled calculi for diverse classes of
logics [21, 106]. Nevertheless, techniques do exist for generating internal
calculi as well. For example, numerous logics have been provided (inter-
nal) display calculi [5, 114], algorithms exist for producing sequent and
hypersequent calculi from suitable Hilbert systems [18], and it is now un-
derstood how to transform certain semantic properties into nested sequent
systems [72, 79] or hypersequent systems [62]. Even though such methods
yield sizable classes of internal calculi, they are more involved than the
method of generating labeled systems.

Cut-admissibility s more difficult to establish for internal calculi. The claim
that cut-admissibility is more difficult to shown with internal calculi does
not appear to be warranted. Both the labeled and display formalisms yield
uniform and modular calculi for extensive classes of logics, yet, general
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cut-admissibility results exist for labeled calculi [106] and a general cut-
elimination theorem holds for display calculi [5].

In spite of the various properties attributed to ‘internal’ and ‘external’
systems, we have identified three ways in which ‘internal’ systems (i.e.,
sequent-style systems with a ‘structurally similar’ and ‘logically equiva-
lent’ formula translation) are useful. The first use concerns a relationship
between formulaic completeness, which is when every valid formula in a
logic is provable in the proof system, and sequential completeness, which is
when every valid sequent is provable in the proof system. If the rules of an
‘internal’ system are invertible and the system has formuliac completeness,
then one can (typically) establish sequential completeness. It is straight-
forward to establish this property: if we assume a sequent is valid, then
its formula translation is valid, meaning the formula translation is prov-
able as the system has formulaic completeness. One can then apply the
invertibility of the inference rules to the formula translation to prove the
original sequent, which establishes sequential completeness. Although we
do not claim that this property holds of any system that might be rea-
sonably deemed ‘internal’ we do note that this method of lifting formulaic
completeness to sequential completeness works in a variety of cases; e.g.,
(linear) nested sequents [61, 72].

A second favorable property of ‘internal’ calculi concerns the lack of
a ‘meta-semantics.’ Since sequents are interpreted via their ‘structurally
similar’ and ‘logically equivalent’ formula translations, there is no need
to define a more general semantics as is done with labeled systems, for
example. Third, it has been shown that ‘internal’ (viz., nested) systems
can be used to derive Hilbert systems, i.e., axiomatizations, for logics [53].
This is obviously beneficial for anyone interested in characterizing a logic
purely in terms of its formulae with simple inference rules.
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   ∀  𝑤  𝑤  𝑅  𝑤 


   ^^03  𝐴  →  𝐴 


   ∀  𝑤  ,  𝑢  (  𝑤  𝑅  𝑢  →  𝑢  𝑅  𝑤  ) 


   𝐴  →  ^^03  ¬  ^^03  ¬  𝐴 


   ∀  𝑤  ,  𝑣  ,  𝑢  (  𝑤  𝑅  𝑣  ∧  𝑣  𝑅  𝑢  →  𝑤  𝑅  𝑢  ) 


   ^^03  𝐴  →   ^^03^^03   𝐴 


   ∀  𝑤  ,  𝑣  ,  𝑢  (  𝑤  𝑅  𝑣  ∧  𝑤  𝑅  𝑢  →  𝑣  𝑅  𝑢  ) 


   ¬  ^^03  𝐴  →  ^^03  ¬  ^^03  𝐴 


   ⊤      𝔪  


   ∧ 


   ⊤      𝔞  


   ⊤      𝔪  


   ∗ 


   ∧ 


   −    ∗ 


   ⊃ 


   ∨ 


   ∧ 


   ∧ 


   ∗ 


       Γ   


   (  𝑖  𝑑  ) 


   Γ  ,  𝑝  ⇒  𝑝  ,  Δ 


   (    ⊥  𝑙   ) 


   ⊥  ,  Γ  ⇒  Δ 


   Γ  ,  𝐴  ,  𝐵  ⇒  Δ 


   (    ∧  𝑙   ) 


   Γ  ,  𝐴  ∧  𝐵  ⇒  Δ 


   Γ  ⇒  𝐴  ,  Δ 


   Γ  ⇒  𝐵  ,  Δ 


   (    ∧  𝑟   ) 


   Γ  ⇒  𝐴  ∧  𝐵  ,  Δ 


   Γ  ,  𝐴  ⇒  Δ 


   Γ  ,  𝐵  ⇒  Δ 


   (    ∨  𝑙   ) 


   Γ  ,  𝐴  ∨  𝐵  ⇒  Δ 


   Γ  ⇒  𝐴  ,  𝐵  ,  Δ 


   (    ∨  𝑟   ) 


   Γ  ⇒  𝐴  ∨  𝐵  ,  Δ 


   Γ  ⇒  𝐴  ,  Δ 


     →  𝑙  


   Γ  ,  𝐴  →  𝐵  ⇒  Δ 


   Γ  ,  𝐴  ⇒  𝐵  ,  Δ 


     →  𝑟  


   Γ  ⇒  𝐴  →  𝐵  ,  Δ 


   Γ  ⇒  Δ 


   𝑤    𝑘  𝑙  


   Γ  ,  𝐴  ⇒  Δ 


   𝑤    𝑘  𝑟  


   Γ  ⇒  Δ  ,  𝐴 


   Γ  ,  𝐴  ,  𝐴  ⇒  Δ 


   𝑐    𝑟  𝑙  


   Γ  ⇒  𝐴  ,  𝐴  ,  Δ 


   𝑐    𝑟  𝑟  


   (  𝑐  𝑢  𝑡  ) 


   Δ  ,  𝑝  ,    𝑝  ‾  


   𝐴  ,  Δ 


   𝐵  ,  Δ 


   𝐴  ∧  𝐵  ,  Δ 


   𝐴  ,  𝐵  ,  Δ 


   𝐴  ∨  𝐵  ,  Δ 


   Γ  ,  𝐴  ⊃  𝐵  ,  𝐵  ⇒  Δ 


   Γ  ,  𝐴  ⊃  𝐵  ⇒  𝐴  ,  Δ 


   (    ⊃  𝑙   ) 


   Γ  ,  𝐴  ⊃  𝐵  ⇒  Δ 


   Γ  ,  𝐴  ⇒  𝐵 


   (    ⊃  𝑟   ) 


   Γ  ⇒  𝐴  ⊃  𝐵  ,  Δ 


   𝐺  ∣  Γ  ,  𝑝  ⇒  𝑝  ,  Δ 


   𝐺  ∣  Γ  ,  ⊥  ⇒  Δ 


   𝐺  ∣  Γ  ⇒  Δ  ∣    ⇒  𝐴 


   (    ^^03  𝑟   ) 


   𝐺  ∣  Γ  ⇒  ^^03  𝐴  ,  Δ 


   𝐺  ∣  Γ  ,  ^^03  𝐴  ,  𝐴  ⇒  Δ 


   (    ^^03    𝑙  1    ) 


   𝐺  ∣  Γ  ,  ^^03  𝐴  ⇒  Δ 


   𝐺  ∣  Γ  ,  ^^03  𝐴  ⇒  Δ  ∣  Σ  ,  𝐴  ⇒  Π 


   (    ^^03    𝑙  2    ) 


   𝐺  ∣  Γ  ,  ^^03  𝐴  ⇒  Δ  ∣  Σ  ⇒  Π 


   𝐺  ∣  Γ  ⇒  𝐴  ,  Δ 


   𝐺  ∣  Γ  ,  𝐵  ⇒  Δ 


   (    →  𝑙   ) 


   𝐺  ∣  Γ  ,  𝐴  →  𝐵  ⇒  Δ 


   𝐺  ∣  Γ  ,  𝐴  ⇒  𝐵  ,  Δ 


   (    →  𝑟   ) 


   𝐺  ∣  Γ  ⇒  𝐴  →  𝐵  ,  Δ 


   𝐺  ∣  Γ  ⇒  Δ 


   (  𝑖  𝑤  ) 


   𝐺  ∣  Γ  ,  Σ  ⇒  Π  ,  Δ 


   𝐺  ∣  Γ  ,  Σ  ,  Σ  ⇒  Π  ,  Π  ,  Δ 


   (  𝑖  𝑐  ) 


   𝐺  ∣  Γ  ,  Σ  ⇒  Π  ,  Δ 


   𝐺 


   (  𝑒  𝑤  ) 


   𝐺  ∣  Γ  ⇒  Δ  ∣  Γ  ⇒  Δ 


   (  𝑒  𝑐  ) 


   𝐺  ∣  Γ  ⇒  Δ 


   𝐴  ,  𝐵 


   𝐷 


     


   𝐶 


   ⇒ 


   𝐸  ,  𝐹 


   𝐸  ,  𝐹  ,  ^^03  𝐺 


   Γ  ⇒  𝐴 


   (  ^^03  ) 


   Σ  ,  ^^03  Γ  ⇒  ^^03  𝐴  ,  Δ 


   Σ  ,  ^^03  Γ  ⇒  ^^03  𝐴  ,  Δ      /    /     Γ  ⇒  𝐴 


   (    ^^03  𝑙   )  ×  |  Γ  | 


   Σ  ,  ^^03  Γ  ⇒  ^^03  𝐴  ,  Δ      /    /     ∅  ⇒  𝐴 


   (    ^^03  𝑟   ) 


   ⊤      𝔪  


   ⊤      𝔪  


   ⊤      𝔞  


   ⊤      𝔞  


   ⊤      𝔪  


   ⊤      𝔪  


   ⊤      𝔞  


   ⊤      𝔞  


   ∨ 


   ∨ 


   ∨ 


   ∨ 


   −    ∗ 


   −    ∗ 


   −    ∗ 


   −    ∗ 


   ∗ 


   ∗ 


   ∗ 


   ∗ 


   ⊃ 


   ⊃ 


   ⊃ 


   ⊃ 


   ∧ 


   ∧ 


   ∧ 


   ∧ 


   ⊤      𝔪  


   ⊤      𝔞  


   ∗ 


   ⊃ 


   −    ∗ 


   ⊃ 


   −    ∗ 


   ⊃ 


   ⊃ 


   −    ∗ 


   −    ∗ 


   −    ∗ 


   −    ∗ 


   −    ∗ 


   −    ∗ 


   −    ∗ 


   −    ∗ 


     𝑝  ∧  𝑟  


     ∅  


     ¬  𝑞  


     ^^06  𝑞  ,  𝑝  


     ¬  𝑞  ∨  𝑞  


     ^^04  𝑝  


     𝑝  


     𝑞  


     𝑝  ,  ^^06  𝑞  


   Σ  {  Γ  ,  𝑝  ,    𝑝  ‾   } 


   Σ  {  Γ  ,  𝐴  ,  𝐵  } 


   (  ∨  ) 


   Σ  {  Γ  ,  𝐴  ∨  𝐵  } 


   Σ  {  Γ  ,  𝐴  } 


   Σ  {  Γ  ,  𝐵  } 


   (  ∧  ) 


   Σ  {  Γ  ,  𝐴  ∧  𝐵  } 


   Σ  {  Γ  ,  ∘  [  𝐴  ]  } 


   (  ^^03  ) 


   Σ  {  Γ  ,  ^^03  𝐴  } 


   Σ  {  ^^06  𝐴  ,  ∘  [  Γ  ,  𝐴  ]  } 


   (    ^^06  1   ) 


   Σ  {  ^^06  𝐴  ,  ∘  [  Γ  ]  } 


   Σ  {  Γ  ,  𝐴  ,  •  [  Δ  ,  ^^06  𝐴  ]  } 


   (    ^^06  2   ) 


   Σ  {  Γ  ,  •  [  Δ  ,  ^^06  𝐴  ]  } 


   Σ  {  Γ  ,  •  [  𝐴  ]  } 


   (  ^^04  ) 


   Σ  {  Γ  ,  ^^04  𝐴  } 


   Σ  {  ^^07  𝐴  ,  •  [  Γ  ,  𝐴  ]  } 


   (    ^^07  1   ) 


   Σ  {  ^^07  𝐴  ,  •  [  Γ  ]  } 


   Σ  {  Γ  ,  𝐴  ,  ∘  [  Δ  ,  ^^07  𝐴  ]  } 


   (    ^^07  2   ) 


   Σ  {  Γ  ,  ∘  [  Δ  ,  ^^07  𝐴  ]  } 


   (  𝑖  𝑑    )  †  


   Σ  {    Γ  1   ,  𝑝  ⇒    Δ  1     }  𝑤   {    Γ  2   ⇒  𝑝  ,    Δ  2     }  𝑢  


   Σ  {  Γ  ,  ⊥  ⇒  Δ    }  𝑤  


   Σ  {  Γ  ,  𝐴  ⇒  Δ    }  𝑤  


   Σ  {  Γ  ,  𝐵  ⇒  Δ    }  𝑤  


   Σ  {  Γ  ,  𝐴  ∨  𝐵  ⇒  Δ    }  𝑤  


   Σ  {  Γ  ⇒  𝐴  ,  𝐵  ,  Δ    }  𝑤  


   Σ  {  Γ  ⇒  𝐴  ∨  𝐵  ,  Δ    }  𝑤  


   Σ  {  Γ  ,  𝐴  ,  𝐵  ⇒  Δ    }  𝑤  


   Σ  {  Γ  ,  𝐴  ∧  𝐵  ⇒  Δ    }  𝑤  


   Σ  {  Γ  ⇒  𝐴  ,  Δ    }  𝑤  


   Σ  {  Γ  ⇒  𝐵  ,  Δ    }  𝑤  


   Σ  {  Γ  ⇒  𝐴  ∧  𝐵  ,  Δ    }  𝑤  


   Σ  {    Γ  1   ,  𝐴  ⊃  𝐵  ⇒    Δ  1     }  𝑤   {    Γ  2   ,  𝐵  ⇒    Δ  2     }  𝑢     Σ  {    Γ  1   ,  𝐴  ⊃  𝐵  ⇒    Δ  1     }  𝑤   {    Γ  2   ⇒  𝐴  ,    Δ  2     }  𝑢  


   (    ⊃  𝑙     )  †  


   Σ  {    Γ  1   ,  𝐴  ⊃  𝐵  ⇒    Δ  1     }  𝑤   {    Γ  2   ⇒    Δ  2     }  𝑢  


   Σ  {  Γ  ⇒  Δ  ,  [  𝐴  ⇒  𝐵    ]  𝑢     }  𝑤  


   Σ  {  Γ  ⇒  Δ  ,  𝐴  ⊃  𝐵    }  𝑤  


       𝐴  4   


       𝐴  1   ∘  ∗    𝐴  2   


       𝐴  3   


       𝐴  5   


     ∗    𝐴  6   ∘  ∗    𝐴  7   


       𝐴  8   


   Γ  ,  ∘  [  Δ  ] 


   (  𝑟    𝑓  ) 


   •  [  Γ  ]  ,  Δ 


   Γ  ,  •  [  Δ  ] 


   (  𝑟  𝑝  ) 


   ∘  [  Γ  ]  ,  Δ 


   Γ  ,  ^^06  𝐴  ,  ∘  [  Δ  ,  𝐴  ] 


   (  ^^06  ) 


   Γ  ,  ^^06  𝐴  ,  ∘  [  Δ  ] 


   Γ  ,  ^^07  𝐴  ,  •  [  Δ  ,  𝐴  ] 


   (  ^^07  ) 


   Γ  ,  ^^07  𝐴  ,  •  [  Δ  ] 


   𝑤 


   𝑢 


   𝑣 


   𝑧 


   ℛ  ⇒  𝑤  ∶  𝑝  ,  𝑤  ∶    𝑝  ‾   ,  Γ 


   ℛ  ⇒  𝑤  ∶  𝐴  ,  𝑤  ∶  𝐵  ,  Γ 


   ℛ  ⇒  𝑤  ∶  𝐴  ∨  𝐵  ,  Γ 


   ℛ  ⇒  𝑤  ∶  𝐴  ,  Γ 


   ℛ  ⇒  𝑤  ∶  𝐵  ,  Γ 


   ℛ  ⇒  𝑤  ∶  𝐴  ∧  𝐵  ,  Γ 


   ℛ  ,  𝑤  𝑅  𝑢  ⇒  𝑤  ∶  ^^06  𝐴  ,  𝑢  ∶  𝐴  ,  Γ 


   ℛ  ,  𝑤  𝑅  𝑢  ⇒  𝑤  ∶  ^^06  𝐴  ,  Γ 


   ℛ  ,  𝑢  𝑅  𝑤  ⇒  𝑤  ∶  ^^07  𝐴  ,  𝑢  ∶  𝐴  ,  Γ 


   ℛ  ,  𝑢  𝑅  𝑤  ⇒  𝑤  ∶  ^^07  𝐴  ,  Γ 


   ℛ  ,  𝑤  𝑅  𝑢  ⇒  𝑢  ∶  𝐴  ,  Γ 


   ℛ  ⇒  𝑤  ∶  ^^03  𝐴  ,  Γ 


   ℛ  ,  𝑢  𝑅  𝑤  ⇒  𝑢  ∶  𝐴  ,  Γ 


   ℛ  ⇒  𝑤  ∶  ^^04  𝐴  ,  Γ 


   ℛ  ,  𝑤  𝑅  𝑢  ⇒  Γ 


   (  𝑠  𝑒  𝑟  ) 


   𝑢 


   ℛ  ⇒  Γ 


   ℛ  ,  𝑤  𝑅  𝑤  ⇒  Γ 


   (  𝑟  𝑒  𝑓  ) 


   ℛ  ⇒  Δ 


   (  𝑤    𝑘  𝑙   ) 


   ℛ  ,  𝑤  𝑅  𝑢  ⇒  Δ 


   (  𝑤    𝑘  𝑟   ) 


   ℛ  ⇒  𝑤  ∶  𝐴  ,  Δ 


   (  𝑙  𝑠  ) 


   ℛ  [  𝑤  /  𝑢  ]  ⇒  Δ  [  𝑤  /  𝑢  ] 


   ℛ  ⇒  𝑤  ∶  𝐴  ,  𝑤  ∶  𝐴  ,  Δ 


   (  𝑐  𝑡  𝑟  ) 


   ℛ  ⇒  𝑤  ∶    𝐴  ‾   ,  Δ 


   Γ  ,  𝑤  ∶  𝑝  ⇒  𝑤  ∶  𝑝  ,  Δ 


   Γ  ,  𝑤  ∶  ⊥  ⇒  Δ 


   Γ  ⇒  𝑤  ∶  𝐴  ,  𝑤  ∶  𝐵  ,  Δ 


   Γ  ⇒  𝑤  ∶  𝐴  ∨  𝐵  ,  Δ 


   Γ  ,  𝑤  ∶  𝐴  ⇒  Δ 


   Γ  ,  𝑤  ∶  𝐵  ⇒  Δ 


   Γ  ,  𝑤  ∶  𝐴  ∨  𝐵  ⇒  Δ 


   Γ  ,  𝑤  ∶  𝐴  ,  𝑤  ∶  𝐵  ⇒  Δ 


   Γ  ,  𝑤  ∶  𝐴  ∧  𝐵  ⇒  Δ 


   Γ  ⇒  𝑤  ∶  𝐴  ,  Δ 


   Γ  ⇒  𝑤  ∶  𝐵  ,  Δ 


   Γ  ⇒  𝑤  ∶  𝐴  ∧  𝐵  ,  Δ 


   Γ  ⇒  𝑤  ∶  𝐴  ,  Δ 


   Γ  ,  𝑤  ∶  𝐵  ⇒  Δ 


   Γ  ,  𝑤  ∶  𝐴  →  𝐵  ⇒  Δ 


   Γ  ,  𝑤  ∶  𝐴  ⇒  𝑤  ∶  𝐵  ,  Δ 


   Γ  ⇒  𝑤  ∶  𝐴  →  𝐵  ,  Δ 


   Γ  ,  𝑤  ∶  ^^03  𝐴  ,  𝑢  ∶  𝐴  ⇒  Δ 


   (    ^^03  𝑙     )    †  1   


   Γ  ,  𝑤  ∶  ^^03  𝐴  ⇒  Δ 


   Γ  ⇒  𝑢  ∶  𝐴  ,  Δ 


   (    ^^03  𝑟     )    †  2   


   Γ  ⇒  𝑤  ∶  ^^03  𝐴  ,  Δ 


         𝑑  𝑤   (  Λ  )   


   ℛ  ,  𝑤  𝑅  𝑢  ⇒  𝑢  ∶  𝐴  ,  Γ 


   ℛ  ⇒  𝑤  ∶  ^^03  𝐴  ,  Γ 


     𝑑  𝑤   (  ℛ  ,  𝑤  𝑅  𝑢  ⇒  𝑢  ∶  𝐴  ,  Γ  ) 


     𝑑  𝑤   (  ℛ  ⇒  Γ  )  ,  ∘  [  𝐴  ] 


     𝑑  𝑤   (  ℛ  ⇒  Γ  )  ,  ^^03  𝐴 


     𝑑  𝑤   (  ℛ  ⇒  𝑤  ∶  ^^03  𝐴  ,  Γ  ) 


   ℛ  ⇒  𝑤  ∶  ^^07  𝐴  ,  Γ 


     𝑑  𝑢   (  ℛ  ,  𝑤  𝑅  𝑢  ⇒  𝑤  ∶  𝐴  ,  𝑢  ∶  ^^07  𝐴  ,  Γ  ) 


   𝑋  ,  ^^07  𝐴  ,  •  [  𝑌  ,  𝐴  ] 


   𝑋  ,  ^^07  𝐴  ,  •  [  𝑌  ] 


     𝑑  𝑢   (  ℛ  ,  𝑤  𝑅  𝑢  ⇒  𝑢  ∶  ^^07  𝐴  ,  Γ  ) 


   𝑤  ≤  𝑤  ,  𝑤  ∶  Γ  ,  𝑤  ∶  𝑝  ⇒  𝑤  ∶  𝑝  ,  𝑤  ∶  Δ 


   (  𝑟  𝑒  𝑓  ) 


   𝑤  ∶  Γ  ,  𝑤  ∶  𝑝  ⇒  𝑤  ∶  𝑝  ,  𝑤  ∶  Δ 


   𝒟  = 


   𝑤  ∶  Γ  ,  𝑤  ∶  𝐴  ⊃  𝐵  ,  𝑤  ∶  𝐵  ⇒  𝑤  ∶  Δ 


   𝑤  ≤  𝑤  ,  𝑤  ∶  Γ  ,  𝑤  ∶  𝐴  ⊃  𝐵  ,  𝑤  ∶  𝐵  ⇒  𝑤  ∶  Δ 


   𝑤  ∶  Γ  ,  𝑤  ∶  𝐴  ⇒  𝑤  ∶  𝐵 


   𝑢  ∶  Γ  ,  𝑢  ∶  𝐴  ⇒  𝑢  ∶  𝐵 


   𝑤  ≤  𝑢  ,  𝑤  ∶  Γ  ,  𝑢  ∶  Γ  ,  𝑢  ∶  𝐴  ⇒  𝑢  ∶  𝐵 


   (  𝑙  𝑖  𝑓  𝑡  ) 


   𝑤  ≤  𝑢  ,  𝑤  ∶  Γ  ,  𝑢  ∶  𝐴  ⇒  𝑢  ∶  𝐵 


   𝑤  ∶  Γ  ⇒  𝑤  ∶  𝐴  ⊃  𝐵 


   ℛ  ,  𝑤  ≤  𝑢  ,  Γ  ,  𝑤  ∶  𝑝  ⇒  𝑢  ∶  𝑝  ,  Δ 


   ℛ  ,  Γ  ,  𝑤  ∶  ⊥  ⇒  Δ 


   ℛ  ,  Γ  ,  𝑤  ∶  𝐴  ⇒  Δ 


   ℛ  ,  Γ  ,  𝑤  ∶  𝐵  ⇒  Δ 


   ℛ  ,  Γ  ,  𝑤  ∶  𝐴  ∨  𝐵  ⇒  𝑤  ∶  Δ 


   ℛ  ,  Γ  ⇒  𝑤  ∶  𝐴  ,  𝑤  ∶  𝐵  ,  Δ 


   ℛ  ,  Γ  ⇒  𝑤  ∶  𝐴  ∨  𝐵  ,  Δ 


   ℛ  ,  Γ  ,  𝑤  ∶  𝐴  ,  𝑤  ∶  𝐵  ⇒  Δ 


   ℛ  ,  Γ  ,  𝑤  ∶  𝐴  ∧  𝐵  ⇒  Δ 


   ℛ  ,  Γ  ⇒  𝑤  ∶  𝐴  ,  Δ 


   ℛ  ,  Γ  ⇒  𝑤  ∶  𝐵  ,  Δ 


   ℛ  ,  Γ  ⇒  𝑤  ∶  𝐴  ∧  𝐵  ,  Δ 


   ℛ  ,  𝑤  ≤  𝑢  ,  Γ  ,  𝑤  ∶  𝐴  ⊃  𝐵  ,  𝑢  ∶  𝐵  ⇒  Δ 


   ℛ  ,  𝑤  ≤  𝑢  ,  Γ  ,  𝑤  ∶  𝐴  ⊃  𝐵  ⇒  𝑢  ∶  𝐴  ,  Δ 


   ℛ  ,  𝑤  ≤  𝑢  ,  Γ  ,  𝑤  ∶  𝐴  ⊃  𝐵  ⇒  Δ 


   ℛ  ,  𝑤  ≤  𝑤  ,  Γ  ⇒  Δ 


   ℛ  ,  Γ  ⇒  Δ 


   ℛ  ,  𝑤  ≤  𝑢  ,  𝑢  ≤  𝑣  ,  𝑤  ≤  𝑣  ,  Γ  ⇒  Δ 


   (  𝑡  𝑟  𝑎  ) 


   ℛ  ,  𝑤  ≤  𝑢  ,  𝑢  ≤  𝑣  ,  Γ  ⇒  Δ 


   ℛ  =  ∅ 


   (    𝑟    𝑖  𝑑    ) 


   ℛ  ,  Γ  ,  𝑤  ∶  𝑝  ⇒  𝑢  ∶  𝑝  ,  Δ 


   ℛ  ,  Γ  ,  𝑤  ∶  𝐴  ⊃  𝐵  ⇒  𝑢  ∶  𝐴  ,  Δ 


   ℛ  ,  Γ  ,  𝑤  ∶  𝐴  ⊃  𝐵  ,  𝑢  ∶  𝐵  ⇒  Δ 


   (    𝑝    ⊃  𝑙    ) 


   ℛ  ,  Γ  ,  𝑤  ∶  𝐴  ⊃  𝐵  ⇒  Δ 


   ℛ  ,  𝑤  ≤  𝑤  ,  Γ  ,  𝑤  ∶  𝑝  ⇒  𝑤  ∶  𝑝  ,  Δ 


   ℛ  ,  Γ  ,  𝑤  ∶  𝑝  ⇒  𝑤  ∶  𝑝  ,  Δ 


   ℛ  ,  𝑤  ≤  𝑢  ,  𝑢  ≤  𝑣  ,  𝑤  ≤  𝑣  ,  Γ  ,  𝑤  ∶  𝑝  ⇒  𝑣  ∶  𝑝  ,  Δ 


   ℛ  ,  𝑤  ≤  𝑢  ,  𝑢  ≤  𝑣  ,  Γ  ,  𝑤  ∶  𝑝  ⇒  𝑣  ∶  𝑝  ,  Δ 


   𝒟    = 


   ℛ  ,  𝑤  ≤  𝑤  ,  Γ  ,  𝑤  ∶  𝐴  ⊃  𝐵  ⇒  𝑤  ∶  𝐴  ,  Δ 


   ℛ  ,  Γ  ,  𝑤  ∶  𝐴  ⊃  𝐵  ⇒  𝑤  ∶  𝐴  ,  Δ 


   ℛ  ,  𝑤  ≤  𝑢  ,  𝑢  ≤  𝑣  ,  𝑤  ≤  𝑣  ,  Γ  ,  𝑤  ∶  𝐴  ⊃  𝐵  ⇒  𝑣  ∶  𝐴  ,  Δ 


   ℛ  ,  𝑤  ≤  𝑢  ,  𝑢  ≤  𝑣  ,  Γ  ,  𝑤  ∶  𝐴  ⊃  𝐵  ⇒  𝑤  ∶  𝐴  ,  Δ 


   𝑥  ∈  𝑎  ,  𝑥  ∶  𝐴  ,  Γ  ⇒  Δ 


     ⊩  𝑙  ∃  


   𝑎    ⊩  ∃   𝐴  ,  Γ  ⇒  Δ 


   𝑥  ∈  𝑎  ,  Γ  ⇒  Δ  ,  𝑥  ∶  𝐴  ,  𝑎    ⊩  ∃   𝐴 


     ⊩  𝑟  ∃  


   𝑥  ∈  𝑎  ,  Γ  ⇒  Δ  ,  𝑎    ⊩  ∃   𝐴 


   𝑎  ∈  𝑆  (  𝑥  )  ,  𝑎    ⊩  ∃   𝐵  ,  Γ  ⇒  Δ  ,  𝑎    ⊩  ∃   𝐴 


     ≼  𝑟  


   Γ  ⇒  Δ  ,  𝑥  ∶  𝐴  ≼  𝐵 


   𝑎  ∈  𝑆  (  𝑥  )  ,  𝑥  ∶  𝐴  ≼  𝐵  ,  Γ  ⇒  Δ  ,  𝑎    ⊩  ∃   𝐵 


   𝑎    ⊩  ∃   𝐴  ,  𝑎  ∈  𝑆  (  𝑥  )  ,  𝑥  ∶  𝐴  ≼  𝐵  ,  Γ  ⇒  Δ 


     ≼  𝑙  


   𝑎  ∈  𝑆  (  𝑥  )  ,  𝑥  ∶  𝐴  ≼  𝐵  ,  Γ  ⇒  Δ 


   𝑥  ∈  𝑎  ,  𝑎  ⊆  𝑏  ,  𝑥  ∈  𝑏  ,  Γ  ⇒  Δ 


     ⊆  𝑙  


   𝑥  ∈  𝑎  ,  𝑎  ⊆  𝑏  ,  Γ  ⇒  Δ 


   𝑎  ⊆  𝑏  ,  𝑎  ∈  𝑆  (  𝑥  )  ,  𝑏  ∈  𝑆  (  𝑥  )  ,  Γ  ⇒  Δ 


   𝑏  ⊆  𝑎  ,  𝑎  ∈  𝑆  (  𝑥  )  ,  𝑏  ∈  𝑆  (  𝑥  )  ,  Γ  ⇒  Δ 


    nes  


   𝑎  ∈  𝑆  (  𝑥  )  ,  𝑏  ∈  𝑆  (  𝑥  )  ,  Γ  ⇒  Δ 


   Γ  ⇒  Δ  ,    [  𝐴  ⊲  𝐵  ]  


     ≼  𝑟  i  


   Γ  ⇒  Δ  ,  𝐴  ≼  𝐵 


   Γ  ,  𝐴  ≼  𝐵  ⇒  Δ  ,    [  𝐵  ,  Σ  ⊲  𝐶  ]  


   Γ  ,  𝐴  ≼  𝐵  ⇒  Δ  ,    [  Σ  ⊲  𝐴  ]   ,    [  Σ  ⊲  𝐶  ]  


     ≼  𝑙  i  


   Γ  ,  𝐴  ≼  𝐵  ⇒  Δ  ,    [  Σ  ⊲  𝐶  ]  


   Γ  ⇒  Δ  ,    [    Σ  1   ,    Σ  2   ⊲  𝐴  ]   ,    [    Σ  2   ⊲  𝐵  ]  


   Γ  ⇒  Δ  ,    [    Σ  1   ⊲  𝐴  ]   ,    [    Σ  1   ,    Σ  2   ⊲  𝐵  ]  


   (     com   i   ) 


   Γ  ⇒  Δ  ,    [    Σ  1   ⊲  𝐴  ]   ,    [    Σ  2   ⊲  𝐵  ]  


   𝐴  ⇒  Σ 


    jump  


   Γ  ⇒  Δ  ,    [  Σ  ⊲  𝐴  ]  


   (    ≼  𝑟  i   ) 


   (     com   i   ) 


   (   nes   ) 


   (   jump   ) 


   (    ⊩  𝑙  ∃   ) 


   (   mon   ∃  ) 


   ⊤      𝔪  


   ⊤      𝔪  


   ⊤      𝔞  


   ⊤      𝔞  


   ⊃ 


   −    ∗ 


   ⊃ 


   −    ∗ 


   ∧ 


   ∗ 


   ∧ 


   ∗ 


   ∨ 


   ∨ 


   ∗ 


   ∧ 


   −    ∗ 


   ⊃ 


   ⊃ 


   ⊃ 


   −    ∗ 


   ∧ 


   ∗ 


   −    ∗ 


   −    ∗ 


   𝛿  ∶  ; 


   −    ∗ 


   ∧ 


   −    ∗ 


   ∧ 


   ∧ 


   −    ∗ 


   ⊃ 



