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A M ONTE CARLO INVESTIGATION OF TWO DISTANCE 

M EASURES BETWEEN STATISTICAL POPULATIONS 

AND TH EIR  APPLICATION TO CLUSTER ANALYSIS

Abstract. The paper deals with a simulation study of one of the well-known 

hierarchical cluster analysis methods applied to  classifying the statistical popu lations. 

In particular, the problem of clustering the univariate normal populations is studied. 

Two measures o f the distance between statistical populations are considered: the 

M ahalanobis distance measure which is defined for normally distributed populations 

under assumption that the covariance matrices are equal and the K u llback-Leibler 

divergence (the so called Generalized Mahalanobis Distance) the use o f which is 

extended on populations of any distribution.

The simulation study is concerned with the set of 15 univariate norm al populations, 

variances of which are chanched during successive steps. The aim is to study robustness 

of the nearest neighbour method to  departure from the variance equality assumption 

when the Mahalanobis distance formula is applied. The differences between two cluster 

families, obtained for the same set of populations but with the different distance 

matrices applied, are studied. The distance between both final cluster sets is measured 

by means of the Marczewski-Steinhaus distance.
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method, the Mahalanobis distance, the K u llback-Leibler divergence, the Marczewski-Steinhaus 
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1. THE BASIC NOTIONS

Let n m ultivariate statistical populations П 1; П 2 , П „  be given 

distributed according to density functions f y, f 2, /„ , respectively. The 

starting point of the hierarchical cluster analysis procedures is constructing 

a distance matrix D, elements of which express distances between each of 

the two populations П, and Пj(i , j  — 1 , 2 , ...,n).
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D =  [dy] i = 1 , 2 , n; j  = 1 ,2 ,..., n;

One o f the m ost popular distance formulae applied to measuring 

distances between statistical populations is the M ahalanobis distance measure 

( M a h a l a n o b i s  1936), defined under assumption that the populations 

are normally distributed and have a common covariance matrix П, ~  N(ßt, ]T) 

for 1 = 1 , 2 ,. ..,« . The M ahalanobis distance between two populations П, 

and Пу takes the form

Д(Л j) = ( ß i ~ Vj) ( 1 . 1 )

K  u 11 b а с к and L e i b 1 e r (1951) introduced a distance measure between 

statistical populations called “divergence” . The Kullback-Leibler divergence 

is a more general measure than the Mahalanobis distance. It can be used 

without limitation to the case of normal populations with equal covariance 
matrices.

Let two multivariate populations ГТг and П, have the respective probability 

densities f [(x1, x 2, x k) and f j ( x lt x 2, ..., xk) which are equivalent, i .e.

X2’ •"> Хк) == 0 ■<=>- x 2, xt) =  0
a  A

for any A e B ( R k). Then the divergence between П, and П; was defined by 

Kullback and Leibler in the following form

J(Uj)  =  J ( f  i(x) - / j ( x ) )  • log dx  ( 1  2)
Rl Jj  W  v '

where x =  (xu  x 2,..., x k).

In the case of normal populations (when П, ~  N(n,  Z;) and ~  N(/x, £ ,)), 

the divergence formula becomes

J (h  J)  =  27> [ ( £ j -  Zj)(Zj  1 -  2 f x ) ]  +  ~ ( / i ,  -  lij)T( L r 1 +  2 7  l)(ßt -  /Xj) (1.3)

and in the particular case, when =  3C the divergence J(i, j ) has
the form

J (h  j )  =  (f*i - H j )TZ ~ l ( n i - n J) =  A ( i , j )  ( 1 . 4 )

One can easily see from the equality (1.4) that the M ahalanobis distance 

is a special case of the Kullback-Leibler divergence for normal populations 

with a common covariance matrix.



2. D EPA RTU RE FROM  THE COVARIANCE EQUALITY ASSUMPTION

-  A SIM ULATION STUDY

The M ahalanobis distance is a distance measure often applied, used in 

the cluster analysis for measuring distances between statistical populations. 

However, its use is limited to the case of normal populations with the 

equal covariance matrices. In practice, the Mahalanobis distance is employed 

even when the assumptions are not satisfied. The following question arises: 

how much disregarding the above mentioned assumptions affects the final 

results of clustering? Do they deviate much from the correct results or not? 

Let us consider the following example.

Example

Let 4 univariate normal populations П х, П 2, П 3, П 4  be given

n t ~ N ( 5, 1) n 2 ~ iV (l, 5) n 3 ~JV(6 , 9) П 4 ~ЛГ(0, 15)

It can be easily seen, that the given standard deviations differ much from one 
another. Thus, the variance equality assumption is not satisfied. In that case 
the Mahalanobis distance formula provides us with the wrong distance matrix 
of the given set of objects П 15 П 2, П 3, П4. In spite of this, let us not regard 
the above mentioned assumption and try to evaluate the distance matrix by 
means of the Mahalanobis distance formula. For this purpose it is necessary to 
adopt a variance value which would be common for all the populations П х, 
П 2, П 3, П 4. In practice such a common variance is evaluated as a mean of all 
variances. The common variance becomes

a =  ^(ffi +  a\  -f <r3 -(- ct4) =  83 ,

According to the M ahalanobis distance formula (1.1), adjusted to the 
univariate case, we obtain the following distances

Пх П2 п 3

n 2 0.193

n 3 0.012 0.301

n 4 0.301 0.012 0.434

Now, using one o f the well-known hierarchical cluster analysis methods 
(e.g. nearest neighbour method) the following family of clusters is obtained



(2.1)

The results can be presented also graphically in the form of “a tree 
with a root” .

The family A in (2.1) and its graphical representation (see Fig. 1) are 
the final results o f clustering.

We cannot forget however that the results may deviate much from the 
correct ones, because o f the dissatisfied assumption concerning the equality 
o f the population variances. It seems to be more reasonable to use in that 
example the Kullback-Leibler divergence formula (1.3) derived for normally 
distributed populations with unequal covariance matrices. The correct 
distances calculated for the same set of objects by means of the K ul-
lback-Leibler formula (1.3), adjusted to the univariate case, are the following

1^1 П3 ^ 2  П4

Figure 1. G raphical representation of the cluster family A

П,  n 2  n 3

n 2  19.840
П 3 40.012 1.429
П 4  124.058 3.578 0.871

This leads to the following family of clusters

A' =  {(П3, П 4), (П 2, П 3, П4), (П х, П 2, П 3, П4)} (2.2)

represented in Fig. 2.

П3 П4  П2 п ,

Figure 2. Graphical representation of the cluster famii'y A'

We can see that the last results differ from the previous ones (see 
Fig. 1). The cluster family A  differs from the cluster family A ', although 
both o f these families were obtained for the same set o f  objects



IIjl, П 2, n3, n4. But the important question is, how much they differ and 
how to measure the similarity between the sets A and A'? In order to 
answer the question we need to find a measure which could express the 
degree of similarity between the families A and A'.

For this purpose we applied the so-called Marczewski-Steinhaus distance 
measure, defined for two families of subsets of the same set.

The Marczewski-Steinhaus distance measure

The Marczewski-Steinhaus distance measure is defined for two families 
of subset of the same set ( M a r c z e w s k i  and S t e i n h a u s  1958, K a r o ń -  

s k i  and P a l k a  1977). Let us denote by Ft the г-th cluster of the family 

A and by Et the i-th cluster of the family A'. The distance between the 

families A and A' takes the form

d(A, A')  — L „ л , V < я * Г , - В л д + * * * * » , - ! )
n - l p e p , "  card(Ftu E P'd 1 >

and d(A, Л ')е< 0 , 1>,

where p  is the permutation of the first n - 1  integers and P  is the set 

o f all such permutations.

Let us evaluate the Marczewski-Steinhaus distance d(A, A ') for two 

families of subsets (2.1) and (2.2) given in the example. The first family is 

the following

A  = { (n lt П3), (П2, П4), (Uu  П2, П3, П4)}

and the second one is

A! =  {(П3, П4), (П2, П3, П4), (П1г П2, П3, П4)}

Now we consider 6  permutations of subsets of the family A'. Thus

A ’Pi =  {(П3, П4), (П2, П3, П4), (Пх, П2, П3, П4)}

A'„2 =  {(П3, П4), (П1; П2, П3, П4), (П2, П3, П4)}

AP, =  {(П2, п з, П4), (П3, П4), (П15 П2, n 3, n 4)}

A'Pt = {(П2, П3, П4), (ПА, П2, П3, П4), (П3, П4)}

A ’Pi = {(П15 П2, П3, П4), (П2, П3, П4), (П3, П4)}

A'P( = {(П1; П2, П3, П4), (П3, П4), (П2, П3, ri4)}

According to the formula (2.3) we obtain the following schemes of 

calculations for the first permutation (see Tab. 1).



T a b l e  1

Schemes of middle calculations of the Marczewski-Steinhaus distance for two families of 
clusters: the family A given in (2.1) and the first permutation A'p of the family A' given in (2.2).

F,

F i Fi F3

(Пц П,) (П2, П4) (П i, П2, П3, П4)

*л..

(П3, П4) (П2, П3, n j (nj, П2, П3, П4)

П, 0 0

c l  =  card(Ft — Ep l ) 1 о о

П4 Пз 0
c l  = card(Ep — F,) 1 1 о

F‘uEp,.i (Пц П3> n j (П2, П3, П4) (П„ п 2, П3, П4)

с3 = card(Flu E p ,) 3 3 4

c l  + c 2  
c3

2
3

1
3 0

We obtain that

3 card(Ft — Ep ,) -f card(Ep j - F j )  2 1
S  i =  £ --------------------- -----------------------------------=  +  + o = l

card(F,vEp  3 3

Continuing the calculations for all the permutations o f the clusters of 
the set A'  we obtain

2 2 1 17 2 1 2 4

3 + 4 +  4 =  12 S s = 4 +  3 +  4 =  3

3 2 17 2 2 1 17

4 +  3 -  Í2 4 +  3 +  4 = 12'

„ 3 2 2 7 
S4  =  - +  -ľ +  - j = T

4 4 4 4

Finnally, the Marczewski-Steinhaus distance has the value

,. . 1 . Г 17 17 7 4 17) 1

d(A, A )  =  -m m  j l ,  =  0 .33.

Thus, the distance between the family A  and the family A' or between 

the trees G and G' is equal to 0.33. It follows from the analyzed example 

that the results o f the cluster analysis, based on the M ahalanobis distance, 

can deviate even much from the correct results, if the assumption concerning 

the variance equality is not satisfied.



Simulation study

In this section we present the results of a computer simulation study 
performed similarly as described in the example but for a larger number of 
univariate populations. Let us assume that all populations are normally 
distributed with the expected values as follows

» 4  = 4 .8 6  m6 =  4.91 mll  =  4.96
m2  =  4.87 m1 =  4.92 m1 2  =  4.97
w 3  =  4.88 m8 = 4.93 m1 3  =  4.98
m4  =  4.89 m9 =  4.94 m1 4  =  4.99
ms ~  4-90 m1 0  — 4.95 m15 =  5.00

The aim is to study sensitivity of the cluster analysis methods (with the 
M ahalanobis distance m atrix applied) to  departure from the variance 
equality assumption. The results of such an investigation for the nearest 
neighbour method are presented in the Tab. 2 .

T a b l e  2

The Marczewski-Steinhaus distance values expressing robustness o f the nearest 
neighbour method to departure from variance equality assumption

The variances of the populations the Marczewski- 
-Steinhaus distance° 2i a l al < °-?5

4 4 4 4 4 4 4 o.oo
6 4 4 4 4 4 4 0.14
8 6 4 4 4 4 4 0.24
8 8 4 4 4 4 4 0.24
8 6 6 4 4 4 4 0.24
8 8 6 4 4 4 4 0.28
8 8 8 4 4 4 4 0.28
8 8 6 6 4 4 4 0.31
8 8 8 6 6 4 4 0.29
6 6 8 8 8 4 4 0.34

The numbers in the second column of the Tab. 2 represent the values 
of the Marczewski-Steinhaus distance between two families of clusters. Both 
families were obtained for the same set of populations by means of the 
nearest neighbour method but with the different distance matrices applied. 
In the first case the M ahalanobis distance formula (1.1) was applied under 
assumption that all population variances are equal. In the second case the 
Kullback-Leibler distance formula (1.3) was used, (the so-called Generalized



M ahalanobis Distance), the use of which is extended on normal populations 
with various covariance matrices.

3. FIN A L REM ARKS

The simulation results lead to the conclusion that the nearest neighbour 
method based on the M ahalanobis distance measure is not robust to 
departure from the variance equality assumption.
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Agnieszka Rossa

M IARY  ODLEGŁOŚCI POM IĘDZY POPULACJAMI STATYSTYCZNYMI 
I ICH ZASTOSOWANIE W ANALIZIE SKUPIEŃ -  BADANIE M ONTE CARLO

W pracy zawarte zostały wyniki symulacyjnego badania dotyczącego jednej z metod 

hierarchicznego grupowania populacji statystycznych, tj. metody najbliższego sąsiedztwa. 

Punkiem wyjścia jest konstrukcja macierzy odległości pomiędzy obiektami (tu pomiędzy 

populacjami statystycznymi). Celem pracy było zbadanie odporności wspomnianej metody 

aglomeracyjnej na odejście od założeń warunkujących zastosowanie określonej miary odległości. 

W badaniu uwzględnione zostały dwie miary odległości: odległość M ahalanobisa, zdefiniowana 

dla populacji normalnych o jednakowych macierzach k owariancji oraz odległość Kulibac- 

ka-Leiblera, będąca uogólnieniem odległości Mahalanobisa na przypadek populacji o dowolnych 

rozkładach. W pracy główny nacisk położony został na badanie odporności wspomnianej 

metody aglomeracyjnej na odejście od założenia o równości macierzy kowariancji. Badanie 

symulacyjne przeprowadzone zostało w odniesieniu do ustalonego z góry zbioru 15 jedno-

wymiarowych populacji normalnych, których wariancje zmieniane były w kolejnych krokach. 

Celem badan ia było ustalenie stopnia różnic pomiędzy rodzinami skupień otrzymanymi dla 

danego zbioru populacji lecz przy użyciu innej macierzy odległości. Jako miarę stopnia różnic 

pomiędzy otrzymanymi rodzinami skupień wykorzystano odległość Marczewskiego-Steinhausa.


