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A MONTE CARLO INVESTIGATION OF TWO DISTANCE
MEASURES BETWEEN STATISTICAL POPULATIONS
AND THEIR APPLICATION TO CLUSTER ANALYSIS

Abstract. The paper deals with a simulation study of one of the well-known
hierarchical cluster analysis methods applied to classifying the statistical populations.
In particular, the problem of clustering the univariate normal populations is studied.
Two measures of the distance between statistical populations are considered: the
Mahalanobis distance measure which is defined for normally distributed populations
under assumption that the covariance matrices are equal and the Kullback-Leibler
divergence (the so called Generalized Mahalanobis Distance) the use of which is
extended on populations of any distribution.

The simulation study is concerned with the set of 15 univariate normal populations,
variances of which are chanched during successive steps. The aim is to study robustness
of the nearest neighbour method to departure from the variance equality assumption
when the Mahalanobis distance formula is applied. The differences between two cluster
families, obtained for the same set of populations but with the different distance
matrices applied, are studied. The distance between both final cluster sets is measured
by means of the Marczewski-Steinhaus distance.

Key words: hierarchical cluster analysis methods, robustness of the nearest neighbour
method, the Mahalanobis distance, the Kullback-Leibler divergence, the Marczewski-Steinhaus
distance measure.

1. THE BASIC NOTIONS

Let n multivariate statistical populations II,, II,,..., II, be given
distributed according to density functions f,, f5,..., f,» respectively. The
starting point of the hierarchical cluster analysis procedures is constructing
a distance matrix D, elements of which express distances between each of
the two populations IT; and IL,G,j = 1,2,...,n).
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One of the most popular distance formulae applied to measuring
distances between statistical populations is the Mahalanobis distance measure
(Mahalanobis 1936), defined under assumption that the populations
are normally distributed and have a common covariance matrix II,~ N, Y)
for i=1,2,..,n. The Mahalanobis distance between two populations II,
and II; takes the form

AG, j) = (l‘z"l‘j)rz_l(ﬂt "'.uj) (1.1)

Kullback and Leibler (1951) introduced a distance measure between
statistical populations called “divergence”. The Kullback-Leibler divergence
is a more general measure, than the Mahalanobis distance. It can be used
without limitation to the case of normal populations with equal covariance
matrices.

Let two multivariate populations IT; and IT; have the respective probability
densities fi(x,, X, ..., %) and f(x,, X,, ..., X;) which are equivalent, i.e.

_ff:(xu Xgy ey Xp) =0 <= _ffj(xl, Xay ey Xz) =0
4 A

for any 4eB(RY). Then the divergence between II; and II; was defined by
Kullback and Leibler in the following form

I‘(i)dx

e (1.2)

JG, ) = [0 =1, log

where & ‘= (3% "x3, %, %),

In the case of normal populations (when IT, ~ N(y, %) and II;~ N(u, X)),
the divergence formula becomes

JG, J) = 3T = Z)ET = 27 Y]+ 50 — ) "E t + 27 Yy — ) (1.3)

and in the particular case, when X, = Z;=1X the divergence J(i, ) has
the form

JG, ) = (u— ﬂj)rz_l(ﬂz = 1) = AG, j) (1.4)

One can easily see from the equality (1.4) that the Mahalanobis distance
is a special case of the Kullback-Leibler divergence for normal populations
with a common covariance matrix.
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2. DEPARTURE FROM THE COVARIANCE EQUALITY ASSUMPTION
- A SIMULATION STUDY

The Mahalanobis distance is a distance measure often applied, used in
the cluster analysis for measuring distances between statistical populations.
However, its use is limited to the case of normal populations with the
equal covariance matrices. In practice, the Mahalanobis distance is employed
even when the assumptions are not satisfied. The following question arises:
how much disregarding the above mentioned assumptions affects the final
results of clustering? Do they deviate much from the correct results or not?
Let us consider the following example.

Example

Let 4 univariate normal populations II,, IT,, II,;, IT, be given
IT, ~ N(5, 1) II,~N(1, 5) II;~N(6, 9) IT,~ N(0, 15)

It can be easily seen, that the given standard deviations differ much from one
another. Thus, the variance equality assumption is not satisfied. In that case
the Mahalanobis distance formula provides us with the wrong distance matrix
of the given set of objects II,, IT,, IT;, I1,. In spite of this, let us not regard
the above mentioned assumption and try to evaluate the distance matrix by
means of the Mahalanobis distance formula. For this purpose it is necessary to
adopt a variance value which would be common for all the populations IT,,
IT,, I3, I1,. In practice such a common variance is evaluated as a mean of all
variances. The common variance becomes

o = (0% + 05+ 0} +0%) = 83

According to the Mahalanobis distance formula (1.1), adjusted to the
univariate case, we obtain the following distances

1T, I1, I1,

IT, | 0.193
IT, | 0.012 0.301
I, | 0301 0.012 0434

Now, using one of the well-known hierarchical cluster analysis methods
(e.g. nearest neighbour method) the following family of clusters is obtained
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A = {(Hl’ Ha)s (HZ’ n4)’ (Hl’ st H3’ H4)} (21)

The results can be presented also graphically in the form of “a tree
with a root”.

Hl Ha H: IL_
Figure 1. Graphical representation of the cluster family A

The family A in (2.1) and its graphical representation (see Fig. 1) are
the final results of clustering.

We cannot forget however that the results may deviate much from the
correct ones, because of the dissatisfied assumption concerning the equality
of the population variances. It seems to be more reasonable to use in that
example the Kullback-Leibler divergence formula (1.3) derived for normally
distributed populations with unequal covariance matrices. The correct
distances calculated for the same set of objects by means of the Kul-
Iback-Leibler formula (1.3), adjusted to the univariate case, are the following

IT, IT, I,

I, | 19.840
I, | 40012 1429
I, | 124058 3.578 0.871

This leads to the following family of clusters
A’ = {(I, 11,), (I, II,, 11,), (I1y, IT,, I1,, I1,)} (2.2)
represented in Fig. 2.

Figure 2. Graphical representation of the cluster family A’

We can see that the last results differ from the previous ones (see
Fig. 1). The cluster family A differs from the cluster family A’, although
both of these families were obtained for the same set of objects
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I,, I1,, 11, I1,. But the important question is, how much they differ and
how to measure the similarity between the sets A and A’? In order to
answer the question we need to find a measure which could express the
degree of similarity between the families A and A’.

For this purpose we applied the so-called Marczewski-Steinhaus distance
measure, defined for two families of subsets of the same set.

The Marczewski-Steinhaus distance measure

The Marczewski-Steinhaus distance measure is defined for two families
of subset of the same set (M arczewskiand Steinhaus 1958, Karofi-
ski and Palka 1977). Let us denote by F, the i-th cluster of the family
A and by E,; the i-th cluster of the family A’. The distance between the
families A and A’ takes the form

n_ 1 . "Zleard(F,—E, ) + card(E, ;- F)
ot s rlrﬂg,ﬂ card(F,UE, )
and d(4, A')e0, 1),

where p is the permutation of the first n— 1 integers and P is the set
of all such permutations.

Let us evaluate the Marczewski-Steinhaus distance d(A, A’) for two
families of subsets (2.1) and (2.2) given in the example. The first family is
the following

A= {(Hb HS): (nz’ 1'14), (Hu Hz’ H:h Ht&)}
and the second one is

A = {(H:,, H4)’ (Hz, Ha’ Hct)s (Hp Hz’ I, H4)}

(2.3)

Now we consider 6 permutations of subsets of the family A’. Thus

A;,‘ = {(I1,, I1,), (I, I1,, I1,), (I1y, I1,, II,, 11,)}
A;», b {(Hsv I1), (I, IT,, II,, I1,), (I1,, I, H4)}_
A’p, = {(HZ, Has H4)9 (HS, H4)’ (Hl’ Hz, Hs; H4)}
A;v. = {(IT;, IT, 11,), (I, 1Ty, Iy, 11,), (I, I1,)}
A, = {0, I0,, Ty, 1), (I1,, I, I0,), (I1,, I1,)}
A’p, = {(Hv IT,, I, I1,), (Ha, I1,), (HZ: I1,, HA)}

According to the formula (2.3) we obtain the following schemes of
calculations for the first permutation p, (see Tab. 1).
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Table 1

Schemes of middle calculations of the Marczewski-Steinhaus distance for two families of
clusters: the family A given in (2.1) and the first permutation A, of the family 4’ given in (2.2).

Fl FZ 'FS
Fi (I, 10y) UL, 1) ! POt T, e
E Ep,.x Epl.z Epl.S
X (IT,, T1,) (o5 Py 00 7 93 O s D0 7 00 B
F,-E, I, @ @
¢l = card(F;— Ep",) 1 0 0
E, ,—F, 1, 1, 4
c2 card(E,", —F) 1 1 0
FUE, | (1, I, I1,) [0 1y T80 3 90 OO [ Gk RS o O B0
c3= card(F,uE,l' 3] 3 3 4
e : | 0

We obtain that

3 card(F,—E, ;) +card(E, ;—F) 2 1|
S1=Z (l pli) (p‘l & Swme L
i=1 card(F,uEp‘.,) o A
Continuing the calculations for all the permutations of the clusters of
the set 4" we obtain

e T T R T AT
%735 %3 Mg PR RS
3042 17 5 A b/
S3—Z+§+0—E S6—Z+§+Z—-l—i.
S _§+g+‘_2_z
il Skl il

Finnally, the Marczewski-Steinhaus distance has the value

17177417} 1

,TZ’E’Z’S,E ='3"l=0.33.

Thus, the distance between the family 4 and the family 4’ or between
the trees G and G' is equal to 0.33. It follows from the analyzed example
that the results of the cluster analysis, based on the Mahalanobis distance,
can deviate even much from the correct results, if the assumption concerning
the variance equality is not satisfied.

aA,m)=§mm{1



A Monte Carlo investigation of two distance measures... 125

Simulation study

In this section we present the results of a computer simulation study
performed similarly as described in the example but for a larger number of
univariate populations. Let us assume that all populations are normally
distributed with the expected values as follows

m, =4.86 mg = 4.91 my, = 4.96
m, = 4.87 m, = 4.92 my, =4.97
my = 4.88 mg = 4.93 my 3 =4.98
m, = 4.89 mq = 4.94 my, = 4.99
ms = 4.90 mg, =4.95 m; s = 5.00

The aim is to study sensitivity of the cluster analysis methods (with the
Mahalanobis distance matrix applied) to departure from the variance
equality assumption. The results of such an investigation for the nearest
neighbour method are presented in the Tab. 2.

Table 2

The Marczewski-Steinhaus distance values expressing robustness of the nearest
neighbour method to departure from variance equality assumption

The variances of the populations the Marczewski-
"f ag ,; a} a§ a: "fs -Steinhaus distance
4 4 4 4 4 4 4 0.00
6 4 4 4 4 4 4 0.14
8 6 4 4 4 4 4 0.24
8 8 4 4 4 4 4 0.24
8 6 6 4 4 4 4 0.24
8 8 6 4 4 4 4 0.28
8 8 8 4 4 4 4 0.28
8 8 6 6 4 4 4 0.31
8 8 8 6 6 4 4 0.29
6 6 8 8 8 4 4 0.34

The numbers in the second column of the Tab. 2 represent the values
of the Marczewski-Steinhaus distance between two families of clusters. Both
families were obtained for the same set of populations by means of the
nearest neighbour method but with the different distance matrices applied.
In the first case the Mahalanobis distance formula (1.1) was applied under
assumption that all population variances are equal. In the second case the
Kullback-Leibler distance formula (1.3) was used, (the so-called Generalized
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Mabhalanobis Distance), the use of which is extended on normal populations
with various covariance matrices.

3. FINAL REMARKS

The simulation results lead to the conclusion that the nearest neighbour
method based on the Mahalanobis distance measure is not robust to
departure from the variance equality assumption.
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Agnieszka Rossa

MIARY ODLEGLOSCI POMIEDZY POPULACJAMI STATYSTYCZNYMI
I ICH ZASTOSOWANIE W ANALIZIE SKUPIEN - BADANIE MONTE CARLO

W pracy zawarte zostaly wyniki symulacyjnego badania dotyczacego jednej z metod
hierarchicznego grupowania populacji statystycznych, tj. metody najblizszego sasiedztwa.
Punktem wyjfcia jest konstrukcja macierzy odleglosci pomigdzy obiektami (tu pomigdzy
populacjami statystycznymi). Celem pracy bylo zbadanie odpornosci wspomnianej metody
aglomeracyjnej na odejécie od zatozeri warunkujacych zastosowanie okreslonej miary odlegtosci.
W badaniu uwzglednione zostaly dwie miary odlegloéci: odlegtosé Mahalanobisa, zdefiniowana
dla populacji normalnych o jednakowych macierzach kowariancji oraz odleglo§é Kullbac-
ka-Leiblera, bedgca uogélnieniem odlegio$ci Mahalanobisa na przypadek populacji o dowolnych
rozkiadach. W pracy gléwny nacisk polozony zostat na badanie odpornosci wspomnianej
metody aglomeracyjnej na odejicie od zalozenia o réwno$ci macierzy kowariancji. Badanie
symulacyjne przeprowadzone zostalo w odniesieniu do ustalonego z gbry zbioru 15 jedno-
wymiarowych populacji normalnych, ktérych wariancje zmieniane byty w kolejnych krokach.
Celem badania bylo ustalenie stopnia réznic pomigdzy rodzinami skupiefi otrzymanymi dla
danego zbioru populaciji lecz przy uzyciu innej macierzy odlegloéci. Jako miare stopnia réznic
pomigdzy otrzymanymi rodzinami skupiefi wykorzystano odleglosé Marczewskiego-Steinhausa.



